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Abstract
Performance of gravitational wave (GW) detectors can be characterized by
several figures of merit (FOMs) which are used to guide the detector’s
commissioning and operations, and to gauge astrophysical sensitivity. One
key FOM is the range in Mpc, averaged over orientation and sky location, at
which a GW signal from binary neutron star inspiral and coalescence would
have a signal-to-noise ratio (SNR) of 8 in a single detector. This fixed-SNR
approach does not accurately reflect the effects of transient noise (glitches),
which can severely limit the detectability of transient GW signals expected
from a variety of astrophysical sources. We propose a FOM based instead on
a fixed false-alarm probability (FAP). This is intended to give a more realistic
estimate of the detectable GW transient range including the effect of glitches.
Our approach applies equally to individual interferometers or a network of
interferometers. We discuss the advantages of the fixed-FAP approach, present
examples from a prototype implementation, and discuss the impact it has had
on the recent commissioning of the GW detector GEO 600.
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1. Introduction

The operation of a worldwide network of the first generation of interferometric instruments
designed to detect GWs has recently come to a close. This network included two LIGO [1]
interferometers, Virgo [2], and GEO 600 [3]. No detection of GWs were made during its
operation. Currently only GEO 600 is collecting science data, while the other detectors are
undergoing a major upgrade to the second generation interferometer network.

Data from the first generation network has been used to search for GWs from a variety of
astrophysical sources including isolated neutron stars, coalescence of neutron stars and/or black
holes, and stellar collapse [4–6]. The expected detectable signal duration depends on the source.
For non-axisymmetric rotating neutron stars GWs are continuous and nearly monochromatic.
For the coalescence of binary compact objects—such as neutron stars or black holes—the
chirp-like signals reside in the first generation detector bandwidth for up to tens of seconds.
A supernova however may emit a burst of GW energy which is only a fraction of a second
long. These signals might be detected in blind searches or in coincidence with astrophysical
events detected by electromagnetic or neutrino observatories such as supernovae or gamma-ray
bursts. Non-GW information about an astrophysical event enables more sensitive searches,
especially when a search only uses a single GW instrument.

Characterizing the sensitivity of individual instruments, as well as networks of these
instruments, to expected GW signals is important for a wide range of activities surrounding
the GW discovery endeavor. These activities include the design of new instruments and
networks, commissioning of the instruments, and reporting of scientific results.

On one hand, a simple astrophysical search sensitivity can be derived from estimations
of the power spectrum of the interferometer output, assuming GWs do not contaminate the
estimate appreciably. On the other hand, the ultimate measure of astrophysical sensitivity is
carried out by the search itself, often run on a network of interferometers. In figure 1 we
show example noise amplitude spectra from the various science runs (period of stable detector
operations dedicated to astrophysical observations) of the 4 km LIGO interferometer located
in Hanford, Washington. A simple sensitivity characterization, which was the primary figure of
merit (FOM) for the detector operation during the running of the first generation network of in-
terferometers, is the binary neutron star (BNS) range FOM [7, 8]. For first generation detectors
the main commissioning goal was to improve and tune the instrument to increase that FOM.

The BNS range quantifies the canonical sensitivity of a search for GWs from the inspiral
portion of the coalescence of two spinless 1.4 M� neutron stars on circular orbits. It estimates
the range in Mpc at which such a GW signal would produce a matched-filter signal-to-noise-
ratio (SNR) of 8 [7]. This range is volume averaged over the interferometer’s beam pattern
and orbital inclinations of the binary relative to the line of sight. The range is given by

DBNS(ρ) = K

ρ

[∫ fISCO

fmin

d f
1

f 7/3Sn( f )

]1/2

, (1)

where Sn( f ) is an estimate of the one-sided power spectral density of the interferometer output,
fISCO = c3/(6

√
6πGM) is the frequency of GW emission at the innermost stable circular orbit
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2nd science run (2003.04.08)
3rd science run (2004.01.04)
4th science run (2005.02.26)
5th science run (2007.03.18)
6th science run (2010.02.22)
LIGO design
advanced LIGO design

Figure 1. Progression of the 4 km LIGO Hanford detector noise spectra over the six
science runs. These correspond to large increases in the BNS range in between the six
science runs, respectively: 0.02 Mpc, 0.5 Mpc, 6.5 Mpc, 7.7 Mpc, 16 Mpc and 19 Mpc.
Data obtained from the LIGO laboratory8.

in a Schwarzschild metric, K is a constant of proportionality involving only the binary mass and
physical constants, and ρ is the chosen SNR threshold. In the following sections we describe
how in general a range FOM is derived, and obtain the BNS range as a particular case. Here
it is important to notice that the BNS range FOM is simply a reduction of the information
contained in the noise power spectral density of an interferometer into a single number.

However the noise power spectral density does not completely characterize interferometer
noise. Searches looking for short duration GWs found many transient events that were clearly
instrumental artifacts such as photo-diode saturations or scattered light [9]. These glitches
were found to limit the search reach by a significant factor over what the reach would be in
the case of Gaussian instrument noise, especially for un-modeled GW burst searches. This
limitation has been as large as a factor of two which results in a factor 8 smaller rate of
observable events. In such cases the simple BNS range FOM described above does a poor
job at estimating the search sensitivity because noise power spectral estimation is designed to
characterize Gaussian noise. Essentially, it measures the noise standard deviation in different
frequency bins, which depends mostly on the typical fluctuations of the noise and is relatively
insensitive to rare large excursions, especially when the power of these transient excursions is
spread over a large number of bins. Since short duration GW searches are looking for transient
GW signals in the data, they are naturally affected by transient noise events and therefore can
be used as a tool for characterizing non-Gaussian noise. Such characterizations are routinely
done as part of the analysis procedure but are rarely presented as FOMs for others outside of
the analysis community.

We describe a range based FOM which lies between a simple sensitivity estimate like the
BNS FOM and a complete measure of network sensitivity given by the results of an actual
search. It uses search procedures to include non-Gaussian components of the noise but is
computed in a continuous manner to provide rapid feedback to the GW community.

8 http://www.ligo.caltech.edu/∼jzweizig/distribution/LSC_Data/
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In section 2 we introduce a simplified formalism for discussing astrophysical search
sensitivity of glitchy instruments and compare the old and new range FOMs within this
formalism. In section 3 we discuss real FOMs and introduce an example prototype applied to
GEO 600 data where we contrast the behavior of the two methods for characterizing noise.
In section 4 we discuss how the range FOMs have informed the commissioning process and
argue for the importance of the new range FOMs in the next years of GW research.

2. Formalism

In this section we introduce a formalism to characterize astrophysical search sensitivity of
gravitational wave (GW) detectors. For clarity we neglect for the moment the shape or
frequency make-up of the astrophysical signal, and concentrate on aspects related to making a
detection of a transient GW signal with an instrument whose background noise contains many
glitches.

2.1. Astrophysical range FOM

The question at the heart of the discussion presented in this paper is what it means for a signal
to be minimally detected. This section gives the basic concept behind an astrophysical range.
Let us define the amplitude of the GW emitted from a source at some nominal distance D0 to
be hemit. Then the amplitude hdet of the signal in an interferometer at a distance D from the
source along the same line of sight is given by

hdet ∝ D0

D
hemit. (2)

Now let us introduce a statistic that can pick out and order the strength of possible GW events
in the detector noise [10, 11]. This statistic ρ has properties similar to an SNR such that

〈ρ〉 ∝ hdet√
SN

(3)

where SN is the noise power spectral density at frequencies where the signal, hdet, also has
spectral power. Here the proportionality factor depends on the specific statistic used. For the
construction of the FOM we neglect the fluctuations of ρ due to noise and approximate it by
its ensemble average 〈ρ〉. Combining relations (2) and (3) we can solve for the source distance
corresponding to an event in the interferometer output characterized by the level ρ as

D = Ahemit

ρ
√

SN
(4)

where A is the combined proportionality factors from relations (2) and (3). If we then take ρ

to be the minimum value ρmin that we would claim as a detection of GWs from this type of
source, then (4) represents the basic concept from which all astrophysical range FOMs are
derived. This paper discusses different ways of choosing ρmin and what their consequences are
in the cases of Gaussian and non-Gaussian noise.

2.2. Transient detector noise

Here we review some of the concepts involved in determining the significance of a candidate
GW event in non-Gaussian noise [10–13]. Transient detector noise is characterized by creating
a background data set in which the signals one is searching for are suppressed. When
performing a transient GW analysis across multiple interferometers, the background data
is typically created by shifting the time-streams of the individual interferometers by relative

4



Class. Quantum Grav. 31 (2014) 085004 M W
↪

as et al

Figure 2. Cartoon cumulative FAR histogram. At a given ρ this plots the FAR for all
events with larger ρ values. The three histograms plotted here correspond to the three
scenarios in figure 3. Here ρ = hdet√

SN
. We specify a maximum acceptable FAR for stating

a detection shown as the dashed black line. The corresponding ρ thresholds, ρmin, which
would be applied to foreground data for searches then specifies the amplitudes in figure 3
as hdetmin = ρmin

√
SN .

offsets longer than both the light travel time between any two interferometers and the auto-
correlation timescale of the searched signal. This ensures that there are no time coincidences
in the data caused by a single transient GW event. Given that the expected rate of GWs is very
low, chance coincidences between a time shifted GW signal and some other transient in the
data does not bias noticeably the background data set. GW searches conducted in coincidence
with other types of instruments, like gamma-ray detectors or optical telescopes, only search
within a short temporal window around the observations of those instruments. Hence all other
times are considered as background, this is especially relevant for single GW detector searches
for which the background could not be estimated otherwise.

When a search algorithm is applied to this background data set it will find events that can
then be ranked by a statistic like the ρ given in (3), whether the noise is Gaussian or not. Once
this event ranking is carried out, the background can be characterized by collecting all events
with ρ rankings greater than or equal to a given value and calculate a rate as a function of
this ρ threshold. This is called a cumulative false-alarm rate (FAR) histogram. For any given
ρ level it gives the rate of louder events that would be detected in the background data set
which in principle only contains noise. We will see in a bit that the FAR statistic is the central
piece of characterization information for any detection statement. Figure 2 shows an example
of such a histogram.

After this characterization of the background data is done, a search is then carried out
by running the same algorithm on a foreground data set. This is the data set that should
contain GWs. In multiple detector analyses, data sets from the different detectors are matched
in coincidence using GW travel times between sites. For external coincidence searches the
foreground would be a short time surrounding the event time in the partner instrument.
Normally, the background data sets contain much more data than the foreground, so that the
background characterization has sufficiently low statistical errors.

Each event in the foreground is characterized by the ρ detection statistic. For any event
the cumulative FAR histogram gives an estimate of the rate at which louder events due to
instrumental glitches occur. Then, given the length of time spanned by the foreground data
set and assuming a Poisson distribution of background events, this rate can be converted to a
probability that the event is simply noise. This is the false-alarm probability (FAP) or p-value

5
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characterizing the level of confidence that a given event is not due to a glitch. This value is
then used to derive the confidence of a detection statement.

It is a matter of personal choice at what level of confidence one accepts the detection
to be true. Nonetheless, in this paper we turn this process around by setting a given FAP as
the threshold for claiming a detection. One can then use the expected data taking length and
current knowledge of the cumulative FAR histogram to calculate a ρmin threshold above which
one might claim a detection of GWs.

2.3. Choice of detection threshold

In section 2.1 we discussed how astrophysical range FOMs are based on (4) where ρ = ρmin

is the detection threshold. We intend to display what this statement means in light of the
relationship between detection significance and the FAP. Assuming the instrument noise is
Gaussian, one can simply fix ρmin to a certain value, ρmin = ρfix. Using standard, Gaussian
noise characterization techniques ρfix can be calculated from the desired FAP of a hypothetical
search. The resulting fixed-SNR range would then be given by

Dρ = Ahemit

ρfix
√

SN
∝ 1√

SN
. (5)

We see here that Dρ is simply inversely proportional to the square root of the noise power
SN and is thus a good measure of the noise floor, but not of other properties of the noise. For
noise which contains glitches or other forms of short transient noise, the effect of these glitches
on Dρ is small compared to the effect it could have on the FAR because the measurement of SN

is meant to be robust against brief, transient fluctuations. In a phase of strong commissioning
where the noise floor is changing by large amounts, as shown in figure 1, Dρ functions to
approximately tie the results of the work to astrophysical quantities. However, near the end
of the commissioning process the Gaussian noise floor is evolving at a slower pace and the
interferometers are preparing for long periods of science running operation where minimal
commissioning is done. Here it is essential to have a FOM that more accurately mimics the
analysis process. The downside as we will see in section 3.2 is that it comes with slow (order
1 h) reaction time scales.

At the end of section 2.2 we mentioned that a ρmin threshold could be measured from
background data. Given a FAP threshold, αfix, and a length of foreground data, T , we can
calculate a FAR threshold assuming Poisson statistics as

γfix = − ln(1 − αfix)

T
� αfix

T
. (6)

Representing the cumulative FAR histogram as F (ρ), we can then write the ρ threshold for
detection as

ρmin = F−1
(αfix

T

)
. (7)

This yields a fixed-FAP range based on (4) as

Dα = Ahemit

F−1
(

αfix
T

)√
SN

∝ 1

F−1
(

αfix
T

) √
SN

. (8)

We now see here that Dα measures both the Gaussian noise floor through SN and the
transient noise fluctuations through F−1

(
αfix
T

)
. An alternative way to view (8) is to recall the
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Figure 3. Pictorial representation of three different non-Gaussian noise scenarios. The
black lines show the level of the Gaussian noise component, and the heights of the
peaks the typical amplitude hdetmin of the non-Gaussian component. See figure 2 for the
corresponding FAR histogram.

properties of ρ in (3) in combination with (7) and note

hdetmin ∝ F−1
(αfix

T

) √
SN (9)

⇒ Dα ∝ 1

hdetmin

. (10)

Here hdetmin is simply the minimum detectable hdet signal which takes into account the Gaussian
noise floor as well as glitches.

Equation (8) is a simple toy version9 of the main elements that go into the calculation of the
exclusion distances or source rate-density upper limits which are the results of GW analyses
[10–12, 14]. Because it mimics the analysis procedures, the fixed-FAP range accounts for
glitches in the same way and thus gives a better representation of the output of an astrophysical
search than a fixed-SNR range.

2.4. Consequences of detection threshold choice

In order to illustrate the differences between the two choices of ρmin (fixed or tied to a FAP
threshold), let us consider three cases where the instrument noise consists of some Gaussian
noise as well as glitches. Figures 2 and 3 are a pictorial representations of the cases. The first
two cases (from left to right) in figure 3 have the same level of Gaussian noise. The difference
between the two is that the glitches in the second case are half as strong. In the third case, the
glitches are just as strong as in the second case but the Gaussian noise floor is now half as
high in amplitude. The corresponding FAR histograms are shown in figure 2 where we have
chosen ρ = hdet√

SN
.

For these three cases we now calculate the fixed-SNR range, Dρ , and the fixed-FAP range,
Dα , from (5) and (8) using Ahemit = 1 and ρfix = 2. The results are shown in table 1. We
see here that the fixed-SNR range is simply a measure of the Gaussian noise floor while the
fixed-FAP range is a measure of the amplitude of the minimum detectable GW signal as was

9 Compared to a real analysis we have neglected the fluctuations due to noise in the relation (3) between ρ and hdet.
The effect of these fluctuation is measured in practice using a time consuming Monte Carlo.
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Table 1. Value of fixed-SNR and fixed-FAP ranges for the three cases described in
figures 2 and 3.

Case 1 Case 2 Case 3

Dρ 0.5 0.5 1
Dα 0.25 0.5 0.5

alluded to in (5) and (10) respectively. For example, in going from case 1 to case 2 we see that
as the minimum detectable signal decreases, our fixed-FAP range increases while the fixed-
SNR range remains the same. This means that using a fixed-FAP range gives an incentive for
reducing the transient background noise of the interferometers whereas the fixed-SNR range
is blind to this effect. In going from case 2 to case 3 we see the opposite effect. The fixed-SNR
range shows an increase as the noise floor is decreased but the glitch environment remains
the same so the fixed-FAP range does not change. This time an incorrect incentive is given by
the fixed-SNR range as a GW analysis would not have seen any difference between the two
cases. Using a fixed-FAP range instead of a fixed-SNR range to monitor the commissioning
process can tie successful commissioning more strongly to the possible science outcomes of
the searches.

The next section discusses the issues that arise when attempting to create a realistic
FOM using the simple toy model presented here as a basis. We also introduce and discuss an
implementation of a fixed-FAP FOM.

3. Proof of concept

For most of the rest of this paper, we will restrict the discussion to short un-modeled GW sources
or bursts. Due to the broad scope of these searches, they are more affected by instrumental
glitches which are predominantly of short duration (sub-second). In comparison, GW searches
looking for modeled signals that are more than a few seconds long are mostly unaffected by
glitches once appropriate non-Gaussian noise rejection tests are used [15].

In this section, we describe an implementation of a fixed-FAP FOM as described in
section 2 and give some examples of how such a FOM behaves with GEO 600 data in
comparison to the standard fixed-SNR FOM. The FOM we have implemented here is only for
a single instrument so for simplicity we also restrict the discussion mainly to single instrument
FOMs. A discussion about the reasons for extending this to multiple instrument networks is
presented in section 4. We limit our discussion to an FOM for burst searches, which in the
past were most affected by glitches [9]. However, the formalism can be applied in a general
manner.

3.1. Realistic FOMs

We define a realistic FOM by first considering the frequency spectrum of the GW signal that
would be seen in an interferometer. Let us postulate a signal of the form

hdet = k

D
hn(t) (11)

where D is the distance between the source and the interferometer; k is a factor which depends
on the emission amplitude, the direction to the source relative to the interferometer, and the

8
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GW polarization; and hn(t) is the normalized shape of the waveform. The normalization is
such that ∫ ∞

0
|Hn( f ′)|2d f ′ = 10−42s (12)

where Hn( f ) is the Fourier transform of hn(t), this is the order of magnitude of a waveform
that can be currently detected by GEO 600.

When carrying out a matched filter analysis looking for the same waveform hn(t) in
the data output of the interferometer, whose noise spectral density is Sn( f ), the SNR for the
signal (11) is given by

ρ = k

D

[∫ ∞

0

|Hn( f ′)|2
SN ( f ′)

d f ′
] 1

2

. (13)

As in section 2 we solve for D and substitute for ρ some minimum threshold SNR for declaring
a detection. This gives a range FOM for a single source

Dmin = k

ρmin

[∫ ∞

0

|Hn( f ′)|2
SN ( f ′)

d f ′
] 1

2

. (14)

As discussed above, we can create either a fixed-SNR or fixed-FAP FOM simply by choosing
ρmin differently. Note that the BNS range (1) is a particular case of (14) with the signal of the
form |Hn( f )| ∝ 1/ f 7/6 for f < fISCO.

As a simple concrete source model, we postulate a transient mass quadrupole rotating at
a frequency f0

2 such that the resultant waveform is an enveloped sine waveform with central
frequency f0 and duration τ . An example of such a waveform is the sine-Gaussian:

h f0τ (t + t0) = h0 sin(2π f0t) e− t2

τ2 , (15)

where t0 is the time at the center of the waveform and h0 is an amplitude parameter. If the
energy emitted from such a transient is given by EGW then the average factor k assuming a
distribution uniform in volume and source orientation [16] is

k( f0) = A0
1 kHz

f0

(
EGW

10−8M�c2

) 1
2

, (16)

where A0 � 500 pc. Now for τ large enough such that SN ( f ) does not vary significantly over
the frequency range in which Hn( f ) is non-negligible, we can simplify (14) by making use of
the normalization condition (12) and substitute the amplitude k( f0) to obtain

Dmin( f0, τ ) = 500 pc

ρmin( f0, τ )

1 kHz

f0

(
10−42s

SN ( f0)

EGW

10−8M�c2

) 1
2

. (17)

This is the minimum detectable range FOM for a single source waveform which is a short
burst of energy EGW and duration τ , at frequency f0. The unknown sky position and source
rotation axis orientation has already been averaged over in the calculation of the amplitude
factor k( f0) in (16).

Un-modeled searches for GW bursts are meant to cover a wide range of short transients,
which span the entire sensitive frequency band of the instruments and a range of durations.
Thus an over-complete decomposition onto O(1000) waveforms covering that parameter
range is performed. Computational cost for the searches carried out during the era of the initial
instruments was too prohibitive to allow the calculation of a minimum detectable range for
each basis waveform. Instead, statistics on the backgrounds for a wide range of waveforms
are collected together. When this is done, in place of an SNR detection threshold for each
waveform ρmin( f0, τ ) we set an overall threshold which is applied for all the waveforms

9
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together. Let us call this threshold ρ
[ f1, f2],[τ1,τ2]
min where [ f1, f2] and [τ1, τ2] simply label the

frequency and duration range of the collected waveforms respectively.
In the end, since we do not know the details of the sources we are trying to search for

it is useful to average over the possible frequencies creating one parameter, a marginalized
range 〈Dmin〉, which gives information about the capabilities of the instrument for a given
distribution of sources. In general, this distribution of sources could be a density

d(r, f0) ≡ dNGW

dtdV d f0
, (18)

where r is the position vector, NGW is the number of transient events of energy EGW and
frequency f0, dt is the time element, and dV is the volume element. Let us consider the simplest
case of a uniform distribution of sources in space and frequency so that d(r, f0) = B

� f0
where

B is simply the rate density of sources of all frequencies. Then the number of sources we
expect to detect during a specified time interval of length T is

NGW =
∫

d(r, f0)dt dV d f0 (19)

= 4πT
B

f2 − f1

∫ f2

f1

∫ D( f0 )

0
r2 dr d f0 (20)

= 4π

3

T B

f2 − f1

∫ f2

f1

D( f0)
3d f0, (21)

where D( f0) is the single source range FOM (17) using the multiple source threshold,

D( f0) = 500 pc

ρ
[ f1, f2],[τ1,τ2]
min

1 kHz

f0

(
10−42s

SN ( f0)

EGW

10−8M�c2

) 1
2

. (22)

If we define

〈Dmin〉 ≡
[

1

f2 − f1

∫ f2

f1

D( f0)
3d f0

] 1
3

, (23)

we can easily calculate the number of expected events for a given uniform density source
population as

NGW = 4π

3
〈Dmin〉3T B. (24)

This is exactly the characteristic we would like to have from a marginalized range FOM
for searches of un-modeled GW bursts coming from a uniform (in space and over a frequency
interval [ f1, f2]) distribution of possible sources. Thus 〈Dmin〉 defined in (23) and (22) is the
form of the range FOM which we will deal with for the rest of this paper.

3.2. Determination of FAR threshold

In the previous section we introduced the general form of a realistic, single instrument GW
burst range FOM. What remains now is the choice of the threshold ρ

[ f1, f2],[τ1,τ2]
min used in (22). It

follows from the discussion in section 2 that a fixed-SNR FOM can be trivially constructed by
setting ρ

[ f1, f2],[τ1,τ2]
min = ρfix. For the fixed-FAP FOM the threshold can be given by something

similar to (7). Here we discuss how the chosen relation between the FAP and ρmin depends on
the type of analysis considered and how the resultant FOM behaves in the face of different
distributions of glitches.

10
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The FOM example which will receive the most attention in the rest of this article is
designed to provide feedback on a search for GWs seen in a single interferometer triggered
by a detection of neutrinos from a galactic core-collapse supernova. Because the time of flight
of the neutrinos is expected to be the same as for the GWs, the search would only look for
transients in the interferometer data within a window of about two seconds long. This already
includes delays for most GW emission scenarios (see [17, 18] for recent reviews). For this
simple example search we can easily construct a single interferometer fixed-FAP FOM by
following the same procedure the search analysis uses. We choose a FAP level for claiming a
detection, αfix, and combine this with the length of the foreground data, T = 2 s, as specified
in (6). Here we will use a 3 sigma detection threshold which gives a FAP of αfix = 3 × 10−3,
resulting in a FAR threshold γSN ≡ αfix

T = 1.5 mHz.
This trivial choice becomes somewhat arbitrary when ones attempts to create a fixed-FAP

FOM which does not exactly follow the search analysis procedure but instead attempts to
estimate its results using a simplified procedure. For example, one could construct a single
interferometer FOM which estimates the capabilities of a three interferometer network. Here
we imagine a hypothetical detector network made of three identical interferometers that
have the same noise spectrum and FAR histogram. An analysis could be carried out on this
network by simply searching for coincident events in the independent instruments. If the
three interferometers are separated by distances of 10 ms light travel time, then coincidence
would require that all three interferometers see the event within a single δt = 10 ms time
window. For Poisson statistics, the probability of a false-alarm in an interferometer with a
FAR of γ within the time window δt is approximately γ δt. Thus the probability that all three
interferometers see an event within a window of length δt is (γ δt)3. Turning this back into
a rate gives the FAR for coincident analysis on a network of three identical interferometers
γnet � γ 3δt2. We can use this relation to define what FAR threshold is reasonable for fixed-
FAP FOMs of single interferometers extended into a network of three similar interferometers.
For a year long observation and a FAP of αfix = 3 × 10−3 = γ 3δt2 × 1 year, we obtain
γ = 10 mHz ≡ γ3det. This is the single interferometer FAR which, when combined with two
other similar interferometers in coincidence for one year of operation, would produce a FAP
of 3 × 10−3.

We can see from these two examples with very different analyses and interferometer
network configurations that a single FAP can result in very different threshold FARs for their
respective FOMs. For these kinds of threshold based analyses, the corresponding FARs have
a large effect on which populations of glitches affect the FOMs. To illustrate this effect let us
consider an interferometer whose noise spectrum never changes so any fixed-FAP range FOM
is simply inversely proportional to the SNR threshold determined from the cumulative FAR
histogram and the FAR threshold. We begin with a base population of background events such
that the cumulative FAR histogram is an inverse-squared function of the event SNR. This is
plotted in figure 4 (blue histogram). The SNR thresholds, F−1(γfix), corresponding to the two
FAR thresholds discussed are shown in table 2 for this and the following scenarios.

Now imagine that on top of this base population of glitches we add another population
which consists of frequent, low amplitude glitches as shown in cyan in the figure. We see
that this addition affects the three interferometer network analysis FOM with the high FAR
threshold but has no effect on the single interferometer analysis FOM. This occurs because the
glitches in the added population all have SNRs below the single interferometer analysis SNR
threshold set by the base population. Since each bin in the cumulative histogram is constructed
from glitches with SNRs greater than a given SNR, it does not matter how many glitches we
add to the population below the threshold in some base population. For the three interferometer
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Figure 4. Cumulative FAR histogram of a distribution whose dependence on glitch SNR
is inverse-squared (blue) where the total rate of glitches is 0.5 Hz. The horizontal red and
green lines denote FAR threshold choices for FOMs tailored to two different analyses as
described in this section (single and three interferometer network analysis respectively).
The corresponding solid vertical lines show the resulting SNR thresholds, F−1(γfix), for
this distribution. A resultant fixed-FAP range FOM would then be an inverse function
of this SNR threshold as shown in (22) and (23). In cyan we show the cumulative FAR
histogram for the same events with an added family of glitches having a high rate of
0.15 Hz and low SNR (uniformly distributed between 0 and 15). The SNR thresholds
for this new distribution are shown as the dashed vertical lines.

Table 2. A comparison of threshold ρmin (and therefore inversely proportional to
the fixed-FAP range FOM) for different glitch populations added onto a starting
base population. The FAR thresholds used here correspond to FOMs tailored to two
different analyses (1.5 mHz for a single interferometer search and 10 mHz for a three
interferometer network search) as described in this section.

F−1(1.5 mHz) F−1(10 mHz)

base population 18 7.3
+ high rate, low SNR 18 15
+ low rate, high SNR 19 7.3
+ med rate, med SNR 78 11

analysis FOM the new threshold gets set near 15, to the largest SNR allowed in the added
population.

On the other extreme, we can consider adding a population of very large amplitude glitches
which are very infrequent (figure 5). Here we see that the three interferometer network analysis
FOM is not affected at all while the single interferometer analysis FOM gets a only 6% increase
in its SNR threshold. In this scenario we have added glitches whose SNRs are chosen from
a uniform distribution from 100 to 1000. Some of these have SNRs approximately 60 times
larger than the SNR threshold of the single interferometer analysis FOM and 140 times larger
than the three interferometer analysis FOM. However, the rate of the added population is
10 times and 67 times lower than the single and three interferometer analyses’ FAR thresholds
respectively. Therefore, although the added glitches move the entire cumulative histogram up
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Figure 5. Same as in figure 4 but with the added family of glitches having a low rate of
150 μHz and high SNR (uniformly distributed between 100 and 1000).

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR

F
A

R
 [H

z]

 

 
with added glitch family
baseline population
single interferometer thresholds
three interferometers thresholds

Figure 6. Same as in figure 4 but with an added family of glitches having a medium rate
of 5 mHz and medium SNR (uniformly distributed between 10 and 100).

in rates, the change is minuscule. Instead, the SNR thresholds are dominated by the baseline
population of glitches which are happening at rates near the FAR thresholds. It is worth noting
here that for these threshold analyses, it doesn’t matter how loud these infrequent glitches are,
only that they are above the previous SNR threshold. They could have even been much louder
and the effect would have been exactly the same.

In the final scenario (figure 6), let us add an intermediate population of glitches to the base
population with a rate lying between the last two additions. Since this population has glitches
of larger amplitude than the SNR threshold and has a rate higher than the FAR threshold for
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the single interferometer analysis FOM, we see that the SNR threshold behaves as the three
interferometer analysis FOM did in the first scenario. It simply jumps to near the loudest
allowable SNR in the additional population. The three interferometer analysis FOM behaves
similarly to the single interferometer analysis FOM in the second scenario by showing a small
increase. The proportional increases here are different from the previous scenarios because of
the different relationships between the thresholds and the glitch family parameters, however
the concepts are the same.

It should be clear from this investigation that a fixed-FAP FOM is only sensitive to the
highest SNR family of glitches that happen at rates near or higher than the FAR threshold.
Unless one displays multiple FOMs for different FAP levels, this method can potentially hide
large amplitude backgrounds that could exist at lower FAP levels. Finally, it should be kept
in mind that this was all done assuming the spectral noise estimation is not affected by the
glitches. For a sufficiently large population of glitches the noise spectral estimation would rise
and affect the range FOM as well.

3.3. Example implementation

We now describe an implementation of a fixed-FAP FOM. As mentioned in section 3.2, this
is tailored to give feedback on searches for GW using single interferometer GEO 600 data
triggered externally by the detection of neutrinos from a galactic core-collapse supernova.
These supernovae are caused by the core-collapse of a massive star which is then followed by
the formation and excitation of a proto neutron star with rotation frequencies predicted to be
in the range of 250–1000 Hz. There are many different mechanisms for producing GWs from
core-collapse supernovae [17, 18]. One could attempt to incorporate all of them into a range
FOM, however for simplicity we will only consider here the rotational excitations of the proto
neutron star. This would produce GWs within the frequency range 500–2000 Hz which is the
most sensitive region of GEO 600. In the end, we will see that the calculated ranges will be
smaller than the thickness of the disk of the Milky Way in the vicinity of the Solar System so
we can assume that the possible sources are distributed uniformly in space.

Given this astrophysical scenario, we can then apply the treatment in section 3.1 to define
a core-collapse supernova range as

DSN ≡ 〈Dmin〉 = 500 pc

ρ
[ f1, f2],[τ1,τ2]
min

(
EGW

10−8M�c2

) 1
2

×
[

1

1.5 kHz

∫ 2 kHz

0.5 kHz

(
10−42 s

SN ( f )

) 3
2
(

1 kHz

f

)3

d f

] 1
3

. (25)

For the power spectrum, SN ( f ), estimation we use the median averaging method [15] with one
second long spectra averaged over one minute of data. These parameters are comparable to
what has been used to compute the BNS range as displayed in the detectors’ control rooms. A
consequence of this averaging is that the spectrum is most affected by glitches that are about
one second long which was the expected duration of BNS signals.

We will use equation (25) to define two range FOMs to compare. For a fixed-SNR FOM
we will simply set

ρ
[ f1, f2],[τ1,τ2]
min = ρSN = 6.5. (26)

This value is determined by calculating the threshold corresponding to a FAP of 3 × 10−3

assuming Gaussian noise.
For a fixed-FAP FOM we first need to collect statistics about transient events from a

suitable data analysis algorithm. Here we will use the Omega pipeline [19, 20]. This search
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algorithm has been used for generic GW burst searches [21, 22] and has also proven to be
a useful tool for low latency detector characterization [9]. This makes Omega a convenient
choice as the event generator for a fixed-FAP FOM.

Once we have the collection of events for a given time, we can create the cumulative FAR
histogram F (ρ) as described in section 2. For our fixed-FAP FOM, following sections 2.3 and
3.2, we use the threshold

ρ
[ f1, f2],[τ1,τ2]
min = F−1(γSN) = F−1(1.5 mHz). (27)

However, the FAR histogram F (ρ) may change with time as the detector performance and
environmental conditions change. This raises the question of which data duration to use for
the estimation of F (ρ). In other words what time-averaging should be performed on the non-
Gaussian component of the noise. Shorter windows are subject to greater statistical uncertainty
on the estimate of the value of the rate while longer windows will be slow to react to changes
happening in the interferometer. On one side, the shortest window length that can be used is
set by the inverse of the FAR threshold since lower FARs cannot be probed by shorter times.
For our supernova range this is 1

γSN
= 667 s. On the other side, the upper limit for a reasonable

window length is set by considering the analysis type and the treatment of background non-
stationarity. For an externally triggered supernova search, between a few hours and a few days
of background data would be used assuming that the data behavior is not changing significantly
on this time scale. In the case of the coherent all-sky GW burst search, since the background
needs to be estimated at a FARs of 10−3 yr−1 and lower, a few months of data is used from
each interferometer for background estimation. The changes in data behavior are then partially
taken into account by splitting the data set into different data quality categories [9].

The more important consideration is the role the FOM will ultimately play. For tracking
commissioning changes, it is often beneficial to see immediately the effects of changes made
to the instrumentation. However, if the FOM is intended for helping with the decision to start
a science run, it then makes sense to use longer background estimation windows. In the study
presented, a window length of 4000 s is used since the FOM was initially designed as a tool to
aid the commissioning process. In the plots below, this window slides along the data every two
minutes producing a new FOM data point which is highly correlated to the neighboring points.

An easy way to construct the SNR threshold F−1(γfix) can be seen by viewing it as the
SNR for which the events of equal to or higher SNRs occur at a rate γfix. For window lengths
that are integer multiples of the shortest possible length, n × 1

γfix
, the SNR threshold simply

becomes the SNR of the nth loudest event. Thus in the following section we will take as
F−1(1.5 mHz) the sixth loudest glitch in 4000 s.

3.4. Behavior in real data

We now present the results of applying the FOMs described above on data from GEO 600.
Figure 7 plots a comparison of the fixed-SNR and fixed-FAP supernova ranges as described in
section 3.3 for eight days of data. There is only one configuration change of the interferometer
where the squeezed light source [23] was switched off between days 2.3 and 4.4. The squeezed
light source is used to decrease photon shot noise which is the dominant source of Gaussian
noise above one kHz. This effect can be seen in figure 8.10

Note the significant difference in the behavior between the two FOMs in figure 7. While
the fixed-SNR FOM remains stable the fixed-FAP range fluctuates more rapidly, changing by

10 Another unknown effect happens to also be present here causing the noise floor to decrease in the several hundred
Hz regime.
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Figure 7. Comparison of fixed-SNR and fixed-FAP supernova ranges plotted over
eight days of GEO 600 data. This data is not necessarily representative of long term
GEO 600 sensitivity. The absolute scale is proportional to

√
EGW and we assume here

that supernovae emit EGW = 10−8M�c2. Three time intervals are chosen for closer
inspection and are depicted by colored lines at the top of the figure: interval 1 is 8 h
within (1.00, 1.36) days, interval 2 is 8 h within (2.83, 3.18) days, and interval 3 is
8 h within (5.91, 6.26) days. The black line denotes days 2.3 to 4.4 during which the
squeezed light source was not operational.

a factor of several11. This time period is not necessarily representative of GEO 600 sensitivity
but was chosen because it contains three time intervals with similar properties as the three
scenarios presented in figure 3. Interval 1 is a case with high fixed-SNR range but low fixed-
FAP range. Interval 2 is a case with lower fixed-SNR range but higher fixed-FAP range. The
third interval has the same high fixed-SNR range as interval 1 and has the highest fixed-FAP
range. These characteristics are summarized in table 3 and figure 10.

To get a clearer picture of what is happening here we take a look into the individual
contributions to the FOMs. First we look at the spectral noise contribution by defining

〈
√

SN ( f )〉 ≡
√

10−42 s

ρ
[ f1, f2],[τ1,τ2]
min

500 pc

DSN

1 kHz

〈 f 〉
(

EGW

10−8M�c2

) 1
2

(28)

= 1

〈 f 〉

[
1

f2 − f1

∫ f2

f1

(
1

SN ( f )

) 3
2 d f

f 3

]− 1
3

, (29)

where

〈 f 〉 ≡
[

1

f2 − f1

∫ f2

f1

d f

f 3

]− 1
3

(30)

based on the range definition in (25). This is simply the particular type of frequency average
of the spectral noise distribution which contributes to the two range FOMs. In figure 8 we

11 This difference is larger than what one would expect between a fixed-FAP BNS range and the usual BNS range.
The reason is that the Fourier transform duration used for power spectrum estimation here is much longer than the
duration of expected GW burst signals while for BNS inspiral signals the durations are of the same magnitude.
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Figure 8. Spectral noise estimation during time intervals defined in figure 7. The dotted
lines show the spectral average (29) over the frequency range which is included in the
SN range calculation.

Table 3. GEO fixed-FAP SN range for the time intervals defined in the caption of
figure 7. We also show here the two contributions to the range FOM which depend on
the data: a measure of the Gaussian noise floor and a measure of the glitch distribution.

Interval DSN [pc] 〈√SN ( f )〉 [Hz− 1
2 ] F−1(1.5 mHz)

1 130 2.4 × 10−22 17
2 160 2.8 × 10−22 12
3 240 2.4 × 10−22 9.2

plot the average spectral noise level for the three intervals. Intervals 1 and 3 have very similar
Gaussian noise characteristics while interval 2 has a spectral noise level which is 20% higher
than the other intervals. As seen in figure 7, the squeezed light source was switched off during
interval 2 which explains this behavior.

Let us now take a closer look at the non-Gaussian characteristics of the data. Figure 9
shows the cumulative FAR histograms for the 3 intervals. Here we use all the event triggers
for each full 8 h interval. We see that the transient properties of the noise in each case are all
very different. In particular, interval 1 and 3 have similar spectra but have cumulative FAR
histograms with very different shapes. It is likely that the populations of glitches existing in
the two intervals are very different from each other. In any case, this population change is
not at all noticed by the spectral estimations but makes a large impact on the non-Gaussian
measure, F−1(1.5 mHz).

Finally in table 3 and figure 10, we combine the Gaussian and non-Gaussian properties
of the data into the fixed-FAP range FOM and the corresponding ρmin threshold respectively.
Here we see that in each of the cases studied here, the effect on the FAR-based range from the
non-Gaussian nature of the data is far larger (85% between interval 1 and 3) and somewhat
independent of the changes in the Gaussian noise floor (17% between interval 2 and the others).
Thus the non-Gaussian properties dominate the movement of the range FOM. As mentioned
in section 2, the fixed-FAP range incorporates the effect of non-Gaussiannoise on a putative
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Figure 9. Cumulative FAR histogram for intervals 1–3 defined in figure 7. Black dashed
lines show the FAR corresponding to a FAP of 3 × 10−3 and the ρmin thresholds for the
intervals shown on figure 7.
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Figure 10. Pictorial representation of the minimum detectable signals,
ρ

[ f1, f2],[τ1,τ2]
min 〈√SN ( f )〉, for the fixed-SNR (black lines) and fixed-FAP (tips of

peaks) scenarios. The three cases here correspond to the three intervals defined in the
caption of figure 7.

search and thus is more representative of an astrophysical search sensitivity than the fixed-SNR
range.

4. Discussion and conclusion

In the previous section we observed the markedly different behaviors of the fixed-SNR and
fixed-FAP range FOMs in GEO 600 data. One way to describe the fixed-FAP range FOM is
that it is a single number which integrates a combination of spectral sensitivity and glitch
characterization in an interferometer or a network, in a way that mimics what is done in a
search. As it is tailored for a specific search, a separate FOM for each type of astrophysical
sources will be required. This new fixed-FAP range FOM should prove to be of increased
benefit not only to predicting search performance, but also of particular use to diagnose
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problems which arise during the construction and commissioning of various parts of the new
second generation interferometers.

Due to their complexity, GW interferometers often require a large time investment in
commissioning to make improvements. During a science run, operational time is very precious
so commissioning must be optimized to reduce down time. The question then arises of how
large of an effect any given improvement will have on the search capability? Also, what are
the relative gains between having lower noise floor or less glitches? We have shown in this
work that a fixed-FAP range in combination with a fixed-SNR version, as in figure 7, are good
FOMs for answering questions like these. The fixed-SNR range gives information about the
Gaussian noise floor, while the fixed-FAP range shows the effect of glitchy interferometer
behavior. These FOMs are also useful throughout a science run as they can help with the
monitoring of the interferometer status and its continuous fine tuning.

Currently on work days the GEO 600 interferometer is taken out of operation to
commission upgrades or investigate noise sources. This operation is restored during nights and
weekends. Since other interferometers are not operational, this provides for the opportunity
to observe a serendipitously strong GW event if seen in coincidence with an exceptional
astrophysical event. Due to this operational state, GEO 600 is being constantly tuned to
produce the best possible science. This is why GEO 600 was a natural choice for prototyping
a fixed-FAP range FOM. Some aspects of the interaction between the fixed-FAP supernova
range and the commissioning process are worth discussion here.

At GEO 600 a study of the fixed-FAP range relative to the fixed-SNR range often caused
the commissioning focus to shift strongly from investigating noise floor sources toward
investigating glitch sources when the glitch background increased dramatically. Moreover,
a fixed-FAP range forces glitch investigations to focus in a very natural manner on the glitches
that are actually hurting the astrophysical range. For our supernova example these are the
glitches which happen at a rate of 5 × 10−4 Hz. Other glitches which may have been more
tempting to investigate without such a FOM, like the few loudest glitches happening every
day or the most numerous, were labeled as second priority. After over a year of using the
fixed-FAP supernova range in the GEO 600 control room, we have seen that it motivates the
commissioning to proceed in a direction which has a better efficiency in improving the overall
performance of the instrument relative to astrophysical searches. It is clear that such FOMs
are essential for commissioning GW interferometers near or during a science run.

This work has focused on a single interferometer FOM meant to estimate the capability of
a single interferometer GW search because GEO 600 is the only GW interferometer currently
taking data. However, as construction completes on the Advanced LIGO, Advanced Virgo
and KAGRA instruments, the GW detector network will again expand into a worldwide
network [24]. It is thus important to further extend the concept described in this work to
general networks of interferometers. In its most general form, this is to provide relatively
quick and automatic feedback of the GW search capabilities of an interferometer or network
of interferometers in the form of a FOM. This FOM could take on many different forms. On
the simple end, single interferometer FOMs anticipating network searches could be created as
described in section 3.2, however this should not impede the creation of full network FOMs
which would most accurately estimate the search capabilities.

As an example, in the last network science run formed by the GEO 600 and Virgo
interferometers during summer 2011, steps were taken to provide network analysis feedback
to the commissioning work. Here parts of the coherent all-sky GW burst search procedure
were run manually once a week on the network so that event backgrounds could be calculated.
At this time GEO 600 had just finished the first implementation of a squeezed light source in a
GW interferometer [23]. The squeezed light source decreased the Gaussian noise of GEO 600
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by about 20% for frequencies above 1.5 kHz. Due to improper isolation of the injection path
of the squeezed light there were a large amount (a factor of 10 more than nominal) of low
amplitude glitches whenever the squeezed light source was operating. Since the science run
had already started when this glitch excess was discovered, a simple decision to investigate
the source of the glitches and eliminate them could not be made as this would use up a large
portion of the science run time. We then turned to the network background events which were
produced by the coherent all-sky GW burst search analysis to ask the question of how much
this glitch excess is hurting the search. By investigating some data stretches with and without
the squeezed light source in operation, we were able to see that the network SNR threshold
that would be used by a search was increasing by no more than 10% when the squeezed
light source was in operation. This feedback combined with the fact that the squeezed light
source decreases the Gaussian noise floor by 20% gave us the confidence to continue running
the squeezed light source throughout the science run without spending observational time to
investigate the excess glitches.

This example illustrates the importance of getting feedback from GW search analyses into
the interferometer control rooms. This kind of feedback is only possible with the experience
that the GW research community has gained in analysis and computing during the era of the
first generation network of GW interferometers. As the community walks into the era of the
second generation network, it is important that we take steps toward strengthening the loop
from the instruments to the analyses and back to the instruments. The stronger this loop is
the more the system as a whole, a network of interferometers including the search analysis
pipelines, can grow as a GW detection tool. The work presented here is one step in making
the connection of the analysis pipelines to the instruments more apparent.
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