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The formation of collision complexes, as a first step towards reaction, in collisions between two
open-electronic shell radicals is treated within an adiabatic channel approach. Adiabatic channel po-
tentials are constructed on the basis of asymptotic electrostatic, induction, dispersion, and exchange
interactions, accounting for spin-orbit coupling within the multitude of electronic states arising from
the separated reactants. Suitable coupling schemes (such as rotational + electronic) are designed to
secure maximum adiabaticity of the channels. The reaction between C(3P) and OH(2�) is treated
as a representative example. The results show that the low temperature association rate coefficients
in general cannot be represented by results obtained with a single (generally the lowest) potential
energy surface of the adduct, asymptotically reaching the lowest fine-structure states of the reactants,
and a factor accounting for the thermal population of the latter states. Instead, the influence of non-
Born–Oppenheimer couplings within the multitude of electronic states arising during the encounter
markedly increases the capture rates. This effect extends up to temperatures of several hundred K.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4889996]

I. INTRODUCTION

Radical-radical reactions at low temperature present a
particular challenge to rate theory. Open-electronic shell rad-
icals in electronically degenerate or nearly-degenerate states
approach each other in a multitude of bonding or repulsive
electronic states which generally will interact in the course
of the formation of reaction adducts. While quantum scatter-
ing or classical trajectory (CT) calculations on single Born-
Oppenheimer (SBO) potential energy surfaces (PESs) can be
done today with remarkable precision (see, e.g., Ref. 1), the
influence of the multitude of interacting electronic potentials
so far has only rarely been taken into account in a satisfac-
tory manner. Mostly, SBO rate constants for adduct forma-
tion on the lowest PES, kSBO

cap , have been multiplied by a factor
fel(T) accounting for the thermal population of the lowest elec-
tronic fine-structure levels of the separated radicals, see, e.g.,
Refs. 2–5. The Born–Oppenheimer (BO) approximation of an
adiabatic correlation between the reactant and adduct ground
(X) electronic states, which is implicitly followed in this ap-
proach, then leads to the corresponding capture rate constant

k
X, BO
cap ≈ fel(T )kSBO

cap . (1.1)

It is the aim of the present work to show that the de-
scribed procedure – at least for low temperature conditions
– will generally not be adequate. However, a full quantum
scattering calculation including all electronic states at present
still appears at the limit of feasibility. We, therefore, propose
an alternative simpler approach which has been successful for

a)Electronic mail: shoff@gwdg.de.

SBO processes under high temperature conditions. We design
adiabatic channels whose quantum numbers are (nearly) con-
served during the course of adduct formation and which show
a minimum of nonadiabaticity generated by the kinetic en-
ergy of the approaching radicals. In the original version of
the adiabatic channel (AC) model (the statistical AC model,
SACM, of Ref. 6), adiabatic channel potentials Vi(R) were
obtained as eigenvalues of the Hamiltonian at fixed interre-
actant center-of-mass distances R neglecting the orbital rota-
tion. Adding orbital energy, each channel with the quantum
number i has its specific centrifugal energy barrier E0, i(�),
and these barriers with increasing orbital quantum number �

often move towards smaller R, an effect which can be mim-
icked by variational transition state theory (although the re-
sults are not the same6). The task of diagonalizing the Hamil-
tonian at each R was simplified by separating conserved and
transitional modes, by correlating states of the latter modes
for separated and combined reactants, and by further simpli-
fying the calculation of the Vi(R) by the use of exponential
switching models. Nonadiabatic transitions between adiabatic
channels, induced by the motion along R and related to cross-
ings and avoided crossings of the Vi(R), were accounted for in
different ways, see, e.g., the post-adiabatic channel approach
of Ref. 7. Alternatively, either the dynamics of the transi-
tional modes was treated by classical trajectories (CT) and
combined with adiabatic dynamics of the conserved modes
(the AC-CT concept of Refs. 8–12), or Coriolis coupling was
treated in an axially nonadiabatic channel approach.13 For
high temperature applications, SBO-AC and AC-CT treat-
ments were shown to lead to the same results.14 On the other
hand, quantum models are required for ultralow temperature
applications.15–18 One should note that the AC concept can
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be exploited in a variety of ways. Besides capture rate con-
stants also capture cross sections in scattering theory have
been expressed in terms of numbers of open ACs, see, e.g.,
Refs. 2 and 19–21. Likewise, lifetimes of dissociating species
may be expressed with numbers of open ACs.22, 23 Although
the details of numerically characterizing ACs may differ in
the various approaches, the general equivalence of the con-
cept has been elaborated and emphasized, see, e.g., Refs. 24
and 25.

After having formed an adduct by capture, this adduct
may redissociate or move on to form new species. Capture
and redissociation obviously are related by microscopic re-
versibility while the formation of new species involves differ-
ent ACs. Provided that the internal dynamics is sufficiently
strongly coupled and leads to randomization, the overall rate
constant may be expressed fully statistically in terms of num-
bers of open “entrance” and “exit” ACs. Alternatively, par-
tially statistical or completely nonstatistical behavior of the
adduct may be observed, while the entrance and exit dy-
namics still be adequately described by the corresponding
ACs. Whatever the type of reaction, ACs have a far reach-
ing relevance20 and the present work, by extending SACM
beyond the SBO results of Refs. 6 and 8–12, provides AC po-
tentials for general applications.

When two open-electronic shell species approach each
other, a multitude of Born-Oppenheimer (MBO) electronic
states is generated. One may be tempted to formulate ACs
for these states individually such as described before,6 and as-
sume electronically adiabatic behavior. For example, one may
postulate that the dynamics of the system that starts on the
lowest electronic state of the separated reactants will bring the
system to the lowest BO state of the adduct. A consequence of
this assumption is the concept of Eq. (1.1), i.e., of a weighting
of the SBO results by the thermal population of specific elec-
tronic states at the entrance of the reaction. Whenever non-BO
couplings between the MBO electronic states are present and
the coupling between various electronic states of the separated
reactants upon approach gains importance, this treatment be-
comes questionable. This is the problem which is addressed in
the following article. Adiabatic channels now are constructed
in a way different from SBO situations and being specific for
each radical-radical reaction. Adiabatic channel potentials are
defined within a non-Born-Oppenheimer (NBO) approach.
We take the capture of C(3P) by OH(2�) as a representa-
tive example. We have chosen this system for a number of
reasons. First, there have been high-level SBO calculations
for this system which, with the help of Eq. (1.1), led to low
temperature rate constants26–31 such as considered also in the
present work. This allows us to compare the present results
with this alternative treatment and to inspect the validity (or
non-validity) of an approach based on Eq. (1.1). Furthermore,
long-range asymptotic potentials for the 18 doubly degenerate
MBO states arising from C(3P) + OH(2�), such as character-
ized in Ref. 28, are complemented in our work by the contri-
butions from the asymptotic electronic exchange interaction
which, at intermediate interreactant distances, results in a sep-
aration of the electronic states of the adduct which finally can
be characterized by total spin and reflection symmetry (the
total electronic moment is averaged to zero). In this way cap-

ture into various electronic states of the adduct can also be
differentiated.

Other treatments of triatomic radical-radical reactions so
far essentially were limited to SBO approaches employing
Eq. (1.1). For instance, the reaction O + OH ↔ HO2 ↔ H
+ O2 was treated in Refs. 1, 14, and 32–39, O + O2 ↔ O3 in
Refs. 40–42, S + OH ↔ HSO ↔ H + SO in Refs. 38 and 43,
N + OH ↔ HNO ↔ H + NO in Refs. 38 and 44–46, and Si
+ OH ↔HSiO ↔ H + SiO in Ref. 47. A preliminary treat-
ment of the reaction O(3P) + OH(2�) within our asymptotic
adiabatic channel approach was presented in Ref. 32. How-
ever, this work needs a continuation with the goal to resolve
the discrepancies between the various experimental and theo-
retical results, see Ref. 1.

The plan of the present article is the following. Sec-
tion II describes Hamiltonian, basis functions and potential
energy surfaces of our asymptotic approach. Section III is
devoted to the determination of AC potential curves for the
C + OH reaction, with and without artificially switching off
spin-orbit coupling. Section IV describes the implementation
of the AC potentials into SACM expressions for thermal rate
coefficients of capture into various electronic states of the
adduct. It also discusses the differences between SBO calcu-
lations as corrected by Eq. (1.1) and NBOAC calculations.
Finally, Section V concludes the article.

II. ASYMPTOTIC HAMILTONIAN AND POTENTIAL
ENERGY SURFACES

A. Hamiltonians, quantum numbers, and basis
functions

Following the general concept of SACM,6, 20 the Hamil-
tonian Ĥ of the system is formulated and its eigenvalues,
the adiabatic channel potential curves Vi(R), are calculated
for fixed interreactant center-of-mass distance R. For situa-
tions where a SBO treatment suffices, Ĥ is expressed by the
sum of the electronic state potential Eel, the orbital energy of
the nuclear framework T rot

nuc(R), and the Hamiltonian Ĥint of
the remaining coordinates which may (or may not) be sepa-
rated into contributions from “conserved” and “transitional”
modes. In the present MBO treatment with strong NBO cou-
plings, a separation between the multitude of electronic po-
tentials and the Hamiltonian Ĥint cannot be made. Instead, ef-
fective adiabatic channel potentials curves Vi (R) are defined
as sums of eigenvalues of the rotronic (rotational and elec-
tronic) Hamiltonian Ĥ rotr and the orbital energy T rot

nuc (R), i.e.,
one employs a Hamiltonian

Ĥ = Ĥ rotr + T rot
nuc (R) . (2.1)

Here Ĥ rotr is referred to the interreactant axis R which is
assumed stationary in space. In the present calculations, for
C + OH with fast rotating OH, the Coriolis interaction aris-
ing from the gyroscopic properties of the rotronic motion
in the reference frame of the rotating interreactant axis R,
is neglected. We assume that adiabatic channels constructed
in the described way show the largest degree of adiabatic-
ity in the association dynamics. We emphasize, however,
that this assumption needs to be validated by calculations of
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nonadiabatic effects induced by the relative motion or, finally,
by full quantum scattering calculations, see above.

In the present work, following Ref. 32, we express the
Hamiltonian Ĥ rotr by asymptotic theory, i.e., we employ its
long-range limiting form. In the special case of C + OH cap-
ture considered here, the rotronic Hamiltonian Ĥ rotr includes
the long-range interaction Ulr between the C atom and the OH
molecule (represented by multipole electrostatic, dispersion,
and induction terms), the asymptotic exchange interaction Uex

between the outer valence and uppermost inner electronic
shells of C and OH, the Russel-Saunders spin-orbit coupling
Ĥ SO

C of the free C(3P) atom, and the Hamiltonian Ĥ rotr
OH of the

rotating OH molecule in an approximation sufficient to de-
scribe the manifold of the rotronic states of isolated OH(2�).
It is essential that our asymptotic Hamiltonian includes the
exchange interaction Uex. Without this contribution the de-
rived AC potential curves Vi(R) at short distance could not
be attributed to their respective BO states of the adduct. One
should note that the Hamiltonian Ĥ rotr

OH of OH corresponds to
a situation intermediate between Hund’s coupling cases a and
b (for the matrix representation in Hund’s coupling cases a
and b, see, e.g., Ref. 48). �- or �-doubling effects in the free
reactant OH are ignored. One should furthermore take into
account that, in contrast to Ulr and Uex, the part

Ĥ rotr
C,OH = Ĥ SO

C + Ĥ rotr
OH (2.2)

of Ĥ rotr induces no coupling between basis states differing
in � (this follows directly from the matrix representation in
Hund’s coupling case b applied to the Hill-van Fleck Hamil-
tonian, see, e.g., Ref. 49). On the other hand, Ulr, in contrast
to Uex and Ĥ rotr

C,OH, is independent of spin variables.
In summary, Ĥ rotr in the present work is expressed by

Ĥ rotr = U lr + U ex + Ĥ SO
C + Ĥ rotr

OH (2.3)

which asymptotically, for R → ∞, approaches Ĥ rotr
C,OH from

Eq. (2.2). The accurate quantum numbers of the free reactants
then are the total angular momentum JC (JC = 0, 1 and 2) of
the C(3P) manifold, its projection MJC

onto the interreactant
axis (directed from the center of mass of OH to the C atom),
the total angular momentum JOH of the OH(2�, JOH) man-
ifold (JOH being either J−

OH or J+
OH for the F1 or F2 ladder

of levels, respectively) with its projection MJOH
onto the in-

terreactant axis. To each state of the pair of quantum num-
bers J−

OH and J+
OH there belong two substates (convention-

ally called e and f states) that differ in parity. We consider
these states as degenerate, i.e., we assume that the nonadia-
batic coupling between these two states falls into the sudden
regime. In this way, for R → ∞, the asymptotic eigenvalues
of Ĥ rotr, Erotr

C,OH(JC, J±
OH), are given by

Erotr
C,OH(JC, J±

OH) = EC(JC) + Erotr
OH(J±

OH),

EC(JC) = aJC(JC + 1),
(2.4)

Erotr
OH(J+

OH = 1/2) = B − A,

Erotr
OH(J±

OH ≥ 3/2) = B(J±
OH − 1/2)(J±

OH + 3/2) − A/2

±
√

B2(J±
OH − 1/2)(J±

OH + 3/2) + (B − A/2)2,

where a = 7.72 cm−1 is the Russell-Saunders spin-orbit
coupling coefficient for the 3P state of the C atom,
B = 18.55 cm−1 is the rotational constant of OH(2�) in its
ground vibrational state, and A = −139.7 cm−1 is the spin-
orbit coupling coefficient for OH(2�), see Ref. 50. The order
a < B < |A| is responsible for specific temperature regimes
of the capture process. The energy levels of the separated re-
actants, for non-rotating OH (NR) or for vanishing spin–orbit
(no SO, NSO) interactions, are obtained from Eq. (2.4) by
putting B = 0 or a = A = 0, respectively, i.e.,

E±
NR(JC) = aJC(JC + 1) ∓ A/2 − A/2,

ENSO (K) = Erotr
OH

(
A = 0, J±

OH = K ± 1/2
)

(2.5)

= B {K (K + 1) − 1} .

The first line in Eq. (2.5) corresponds to the asymptotic energy
levels of the eighteen MBO states, and the second line, with
K being the quantum number of the total electronic rotational
angular momentum of a rotor in a � state, to the energy levels
of a free OH molecule in the limit of Hund’s coupling case b
(spin uncoupled from the molecular axis).

The eigenvalues of the Hamiltonian Ĥ rotr in Eq. (2.3) can
be calculated in matrix representation of any basis which is
consistent with the approximation made for the asymptotic
Hamiltonian Ĥ rotr

C,OH. Neglecting SO interactions, we chose to
write the matrix Hrotr in the basis of the rotronic functions of
the separated reactants as

〈L,ML,K,MK,�, S,MS | = 〈L,ML|〈K,MK,�|〈S,MS |
(2.6)

with fixed rotronic moment K of OH, total spin S of the sys-
tem, the projections MK of K, MS of S, ML of the electronic
moment L = 1 of C(3P) onto the interreactant axis, and the
projection � = ±1 of the electronic moment of OH(2�) onto
the molecular axis (details of the used frames and angular mo-
mentum projections are given in Subsection A 1 of the Ap-
pendix). We note here that, with the electronic component of
this basis with reference to Ulr + Uex, one obtains the cor-
rect symmetry representation of the electronic states of the
adduct. However, because Ĥ rotr

C,OH originally was written in the
matrix representation of Hund’s coupling case a, a transfor-
mation to the functions of Eq. (2.6) is required. Keeping in
mind the different quantizations of the spins in the two basis
sets (quantization onto molecular and interreactant axes), we
formulate this transformation as

〈JC,MJC
, JOH,MJOH

,�|L,ML, S,MS,K,MK,�〉

= (−1)ML(ML
+1)/2C

JC,M
JC

1,M
L

1,M
JC

−M
L

C
S,M

S

1,M
JC

−M
L

1/2,M
S
−M

JC
+M

L

×〈JOH,MJOH
,�|D1/2

M
S
−M

JC
+M

L
,�−� (ϕ, θ, χ ) |K,MK,�〉

= (−1)ML(ML
+1)/2

×
√

2JOH+1

2K+1
C

JOH,M
JOH

K,M
K

1/2,M
S
−M

JC
+M

L

C
JOH,�

K,�1/2,�−�

×C
JC,M

JC
1,M

L
1,M

JC
−M

L

C
S,M

S

1,M
JC

−M
L

1/2,M
S
−M

JC
+M

L

. (2.7)
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The C-factors here are the Clebsch–Gordan coefficients for
angular momentum addition. The Wigner function D(φ,θ ,χ )
in Eq. (2.7), representing the rotation of the quantization axis
of the spin, here is responsible for the transformation from
half-integer momentum (JOH in Hund’s coupling case a) to
integer momentum quantum number (K in Hund’s coupling
case b) rotronic functions. The integration variables in the cal-
culation of the corresponding matrix element are the Euler an-
gles ϕ, θ , χ for orientation of the body fixed system (with the
molecular axis taken as the ζ -axis and the adduct plane taken
as the reference ξζ -plane) with respect to the space fixed sys-
tem (with the reference xz-plane passing through the interre-
actant axis R taken as the z-axis, see Subsection A 1 of the
Appendix).

The adiabatic channels are specified by the exact quan-
tum numbers of total angular momentum and total parity (see,
e.g., Refs. 20 and 51). In addition, they are characterized by a
series of good quantum numbers such as the projection of the
total momentum onto the collision axis,

P = ML + MK + MS = N + MS, (2.8)

where N is the projection of the total rotronic momentum, and
further quantum numbers for the numbering of states which
asymptotically correspond to different quantum numbers of
free OH as well as to different fine-structure components of
free C (see Eq. (2.4)). In our approximation sub-matrices dif-
fering in P are uncoupled and can be diagonalized separately.
States differing in the sign of P only are degenerate and do
not need any separate consideration.

Three features of the matrix Hrotr appear worth mention-
ing in particular. First, in the region of large R, the matrix Hrotr

approaching H rotr
C,OH remains non-diagonal in the adopted ba-

sis. Second, in the region of intermediate R, which is of par-
ticular importance for capture, the NBOAC potential curves
exhibit a pattern of narrowly avoided crossings that originate
from the coupling of the states with � = ±1 by the axially
non-symmetric component of Ulr. Since we here avoid the
discussion of nonadiabatic effects caused by the translational
motion, the passage across such narrowly avoided crossings
may be considered for two limiting cases, the adiabatic and
the diabatic regimes. This leads to two possibilities for cor-
relations between the states of the adduct and the states of
the separated reactants of a given P, see below. Third, in the
region of small R, the pattern of the eigenvalues of Ĥ rotr re-
flects the importance of exponentially increasing Uex and of
diminishing SO interaction.

Employing an asymptotic approach to Ĥ rotr allows one
to consider different types of non-BO couplings. The prize
to pay for the asymptotic treatment then is the loss of an in-
dication into which BO electronic state individual channels
will lead at small R. We overcome this problem by follow-
ing the channel potentials Vi(R) to intermediate values of
R where the BO states have separated sufficiently. For this
range, we then compare AC potentials on the various lev-
els (BO, NBO(NSO), and NBO) which allows us to specify
which electronic state of the adduct is finally reached. For in-
stance, we calculate NBO(NSO) states as eigenvalues of Ĥ rotr

neglecting SO interactions (a = A = 0) and replacing the com-

ponent Ĥ rotr
C,OH by the operator B(K̂

2 − �2) (see, e.g., Ref. 49).
These states then are specified by the good quantum numbers
S, MS, and N. Finally, we solve the electronic MBO problem,
i.e., we determine the eigenvalues of Ulr + Uex in the basis of
the electronic functions

〈L,ML,�, S,MS | = 〈L,ML|〈�|〈S,MS |. (2.9)

The diagonalization of the corresponding interaction ma-
trix altogether leads to 12 electronic states of the adduct, 3 of
2A′, 3 of 2A′′, 3 of 4A′, and 3 of 4A′′ symmetry where the
lowest state of 2A′ symmetry is the ground electronic state
(X2A′) of the adduct. For each of the corresponding PESs, we
then construct adiabatic channels as solutions of the hindered
rotor problem. We do this for Ĥ rotr replacing its component
Ĥ rotr

C,OH by the kinetic energy operator BĴ2
rot of a structureless

free linear rotor and employing a matrix representation with
spherical harmonics

〈Jrot,M| = Y
Jrot
M (θ, ϕ) . (2.10)

Here M is the projection of the rotational angular momentum
onto the interreactant axis and θ and ϕ are the polar and az-
imuthal spherical coordinates of the rotor in the space fixed
system (see Table I in Subsection A 1 of the Appendix). Due
to the axial symmetry, the projection M is a good quantum
number. Along with the classification by S, MS, and the sym-
metry properties of the electronic states of the adduct, the
NBO ACs are characterized by the good quantum number M.
Because the projection of the total electronic moment of the
adduct averages to zero, the projection quantum number M
obeys the correlations

N = M,

P = M + MS.
(2.11)

Taking into account the correlation rules of Eqs. (2.8) and
(2.11), we may separate the AC states, calculated in BO,
NBO(NSO), and NBO approximations, into groups of fixed
|P|. We do this at fixed R in the intermediate range, for the C
+ OH system, e.g., at R = 5 a.u. Inside these groups we cor-
relate AC states in the order of increasing energy one after
the other, from BO to NBO(NSO) and then from NBO(NSO)
to NBO. This specifies which BO electronic state will be
reached by individual NBO ACs. We remember that a sim-
ilar type of correlation was employed in the earlier versions
of the SACM, see, e.g., Ref. 6. We note that the energy mis-
match at R = 5 a.u., at least for the lowest BO, NBO(NSO),
and NBO AC states, is found to be small in comparison to the
energy quantum of the hindered rotation. Our procedure thus
is expected to provide a reasonable method to determine the
branching of reactive fluxes into various electronic states of
the adduct.

B. Potential energy surfaces at long range

As long as the SO interaction is not considered, calcula-
tions using the basis of the electronic functions of the C(2p2,
3P) + OH(1π3,2�) manifolds result in six doublet and six
quartet adduct states. Asymptotically, for R → ∞, the twelve
PESs then converge to a single energy level that corresponds
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to C(P) and to non-rotating OH(�). Within this approxima-
tion we begin with the construction of a matrix representation
for Ĥ rotr − Ĥ rotr

C,OH, i.e., for Ulr + Uex, which is written in the
basis of the electronic wave functions (2.9). The long-range
interaction Ulr = Uelst + Uind + Udisp in our asymptotic ap-
proach is represented by a series expansion of the multipole
electrostatic, Uelst, induction, Uind, and dispersion, Udisp inter-
actions up to R−6 terms, while the exchange interaction Uex

has its asymptotic two-electron form. Details of the calcula-
tion of the various contributions to Ulr at long range are given
in Subsection A 2 of the Appendix.

At large R, all terms of Ulr except the dipole–quadrupole
contribution can be neglected and the results of the diagonal-
ization converge to three, 12-fold degenerate, PESs with R−4

dependence,

EX,2(R, θ )=−3
√

2d
〈
r2

C

〉(√
2 cos θ±√

13+5 cos 2θ
)
/20R4,

(2.12)
E1 (R, θ )=3d

〈
r2

C

〉
cos θ/5R4,

where atomic units (a.u.) are used, 〈r2
C〉 = 3.89,50 d = 0.702

(see Table II in Subsection A 2 of the Appendix), and
where the subscripts X (+ sign in the parenthesis), 1, and 2
(− sign in the parenthesis) correspond to the ground, first and
second excited electronic states, respectively. (Contributions
from terms proportional to R−5 as well as induction (Uind)
and dispersion (Udisp) terms proportional to R−6are given in
Table S.1 of the supplementary material.60) We note that our
long-range expressions for Ulr agree with the results of Ref.
28, see Table III in Subsection A 2 of the Appendix.

As emphasized above, a central element of our treatment
is the inclusion of the asymptotic exchange interaction Uex.
As this inclusion has not been performed before, it will be
described in the following. Further details are given in Sub-
section A 3 of the Appendix. We retain four components of
the exchange between the valence and the first upper inner
shells. These asymptotic exchange components (see Eq. (27)
from Ref. 32 and Eqs. (18) and (19) from Ref. 57) are deter-
mined by the asymptotic radial behavior of the valence 2p (q
= 1) and inner 2s (q = 3) atomic orbitals of C(2s22p2,3P) and
the valence 1π (q = 2) and upper inner 3σ (q = 4) molecu-
lar orbitals of OH(3σ 21π3,2�) (the molecular orbitals being
approximated by atomic 2p-orbitals centered at the center-of-
mass of OH close to the nucleus of O). The corresponding
radial wave functions are expressed as

ψq

(
n = 2, l = 0, 1; γqr � 1

) = Aqr
1/γ

q
−1 exp(−γqr)

×
{

1 − 1

2γ 2
q r

(
1

γq

− 1

)
+ l (l + 1)

2γqr
+ O

(
1

r2

)}
,

(2.13)
γq =

√
2εq,

where n and l are principal and azimuthal quantum numbers
of the atomic orbitals. The energies εq of the valence orbitals
in Eq. (2.13) correspond to the first ionization potentials; in
the molecular case they are given by the first vertical ion-
ization potentials (ionization starting at fixed O–H distance
rOH = 〈rOH

v=0〉, averaged over the ground vibrational state of
OH). For the inner orbitals, in addition to the ionization po-

tential, εq includes the energy of the cationic excitation, aris-
ing from the filling of the hole in the valence shell with an
electron from the parent inner shell (i.e., by the excitation
C+(2P→4P)50 or by the vertical excitation OH+(X3�− →
13�)58). Matching the ab initio orbitals (see, e.g., Ref. 53)
with their asymptotic form of Eq. (2.13), defines the coef-
ficients Aq. For example, this gives A1(C, 2p2) = 1.350 and
A2(OH,1π3) = 1.332 (in Ref. 59 the coefficient A2(OH, 1π3)
was taken as the coefficient A1(O, 2p4) which, according to
Ref. 50, is equal to 1.3). Keeping the definition of the orbital
energies εq as given above, we slightly modified the coeffi-
cients Aq in order to improve the match between our asymp-
totic and the ab initio PESs of Refs. 26 and 29. The parameters
which we substitute into Eq. (2.13) for this purpose are listed
in Table IV of Subsection A 3 of the Appendix.

Considering the angular dependence of the molecular or-
bitals (approximated by spherical harmonics), one has to take
into account their quantization along the molecular axis. The
passage to the quantization along the interreactant axis gener-
ates sums of products of the transformed orbitals for “out-
going” and “incoming” exchange electrons over projection
quantum numbers, which contain as coefficients the prod-
ucts of the corresponding Wigner D-functions of the Euler
angles for axis rotation. We reduce these coefficients to finite
Clebsch-Gordan sums of Wigner D-functions which consid-
erably simplifies further calculations of the rotronic matrix el-
ements. The atomic (or molecular) orbital approximation re-
duces the electronic wave function to a sum of products of
one-electron orbital and moiety functions (for the nomencla-
ture see Ref. 56). The factors arising for OH here are the
coefficient of the fractional parentage of the OH+ moiety,

G
SOH QOH
SOH+ QOH+ , the Clebsch-Gordan coefficient of the electron

and the OH+ moiety spin addition, C
SOHM

SOH

S+
OHM

S
+
OH

1/2 m
s

, and the

molecular Clebsch-Gordan coefficient of the electronic mo-
mentum addition, [

QOH+ λ QOH

�̃OH+ λ̃ �̃OH
]. For example, the factor for the

parent OH(1π3 2�) and the moiety OH+(1π2 3�−) molecular
configurations consists of the coefficients

G
1/2 1
1 0− = 1√

2
, C

1/2 M
SOH

1M
SOH+ 1/2 m

s

,

[
�−

0
1
�

1
�

]
= −1.

(2.14)

For the calculation of the electronic matrix elements of
Uex, we follow a formalism which reduces the total spin ma-
trix representation of the Dirac operator in the Heitler-London
exchange Hamiltonian (with the components 〈S, MS| from
Eq. (2.9)) to the individual reduced matrix elements of spins
of the exchanged electrons (see Ref. 57).

Within our approach, the exchange interaction can be
expressed through the exchange integral functions I

(q,q′)
kn .

The latter are given by an integral representation (see, e.g.,
Ref. 56), and can be easily calculated numerically. We have
fitted them, within the range of R from 4 to 10 a.u., by an
expression

ln
(
I

(q,q ′)
kn

) = a
(q,q ′)
kn R3 + b

(q,q ′)
kn R2 + c

(q,q ′)
kn R + d

(q,q ′)
kn

(2.15)
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with fitting coefficients listed in Table V of Subsection A 3 of
the Appendix.

Having constructed the long-range expressions for Ulr

and Uex, PESs in the absence of SO interaction are obtained
by diagonalization of the electronic Hamiltonian matrix

H el
NSO = 〈L,ML,�, S,MS |U lr + U ex|L′,M ′

L,�′, S,MS〉
(2.16)

which generates 12 PESs of the adduct, 3 of 2A′, 3 of 2A′′, 3
of 4A′, and 3 of 4A′′ symmetry. We observe that the described
asymptotic theory at intermediate interaction distances, 4 < R
< 7 a.u., nearly quantitatively reproduces the ab initio calcu-
lations of the lowest 4 PESs of each spin and reflection sym-
metry of the adduct from Refs. 26 and 29. (This is illustrated
in Fig. 8 in Subsection A 3 of the Appendix, see also Fig. S.1
of the supplementary material.60) Therefore, we can be con-
fident about the quality of the asymptotic PESs generated in
the described way and we can use these PESs to construct BO
ACs. This will be described in Sec. III.

When the SO interaction is switched on, the total spin S
and its projection MS cease to be good quantum numbers. In
states with given JC and �, the SO interaction asymptotically
reduces to the sum of the SO interactions of the free reactants,
see Eq. (2.5). To solve the electronic problem in this case, we
transform the matrix representation of Ulr + Uex, as written in
the basis of the functions of Eq. (2.9), to a basis of eigenfunc-
tions 〈JC,MJC

,�| for the total SO interaction:

〈JC,MJC
,�|L,ML,�, S,MS〉

= (−1)ML(ML
+1)/2

×C
JC,M

JC
1,M

L
1,M

JC
−M

L

C
S,M

S

1,M
JC

−M
L

1/2,M
S
−M

JC
+M

L

×d
1/2
M

S
−M

JC
+M

L
,�−� (θ ) . (2.17)

Here the Wigner d(θ )-functions correspond to the rotation
from the interreactant to the molecular quantization axis of
the molecular spin SOH = 1/2. The diagonalization of the elec-
tronic Hamiltonian matrix (for E±

NR(JC) see Eq. (2.5)),

H el = 〈JC,MJC
,�|U lr + U ex|J ′

C,M ′
JC

,�′〉
+δJ ′

C,JC
δM ′

JC
,M

JC

δ�′,�ENR(JC,�),

ENR(JC,� = ±3/2) = E−
NR(JC), (2.18)

ENR(JC,� = ±1/2) = E+
NR(JC)

generates 18, according to Kramers doubly degenerate, PESs
of COH (see, e.g., Ref. 32). Contour plots of the 2 lowest
PESs are shown in Fig. 1 (contour plots for the next 4 higher
PESs are shown in Figs. 9 and 10 in Subsection A 3 of the Ap-
pendix). The solid and dashed lines correspond to equipoten-
tial lines of the PESs from asymptotic theory, for positive and
negative energies, respectively. The figure in addition includes
gray lines which indicate the distance between the displayed
and the next higher PESs. Locations with distances less than
0.1 B correspond to places where non-BO dynamic behavior
becomes most probable. Inside the central parts, R ≤ 5 a.u.,
the figure also specifies which PESs without SO-coupling in
the intermediate range correspond to the displayed PES in-

FIG. 1. Contour plots of the PESs for the two lowest electronic states of the
adduct (calculations including SO-coupling; OH oriented along the horizon-
tal axis with its geometric center at the origin, position of C in the plane with
distances from the origin in a.u., O–H distance = 1.85 a.u.; energies in units
of B, the gray contour lines give the energetic distance to the next higher PES;
the color- coded lines specify the electronic correlation with NSO states).

cluding SO-coupling. The figure illustrates the complicated
structure of the crossing of the BO PESs. A similar behav-
ior was documented for the PESs of the OH + O system in
Ref. 32 and it is expected to be encountered quite generally.
Although NBO ACs in the present work are generated by di-
rect diagonalization of Ĥ rotr (as described in Sec. III), their
BO counterparts including SO-coupling could also be gen-
erated employing the PESs of Fig. 1. We do not follow this
concept in the present work, because BO ACs including SO-
coupling would not lead to the correct rotronic correlations at
long distances such that no advantage would be gained.

It appears worthwhile to remember that PESs, which
asymptotically correlate with the fine-structure state JC = 0
of the free C atom (having neither an atomic quadrupole mo-
ment, nor an anisotropic component of the polarizabilities),
are of R−6 long-range character. The asymptotic continuation
of the ab initio PES of ground state COH(X2A′) from Ref. 26,
such as used in the CT calculations of Ref. 27, also reduces
to this form and takes the value V (R) = −97.3 R−6 (we here
extracted the coefficient from the rate constant at the lowest
temperature of 5 K which was given in Ref. 27). We note that
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the coefficient exceeds more than twice the values for the total
isotropic induction and dispersion coefficients (41.4 for ML
= ±1, Lb = 0 and 39.3 for ML = 0, Lb = 0, see Subsec-
tion A 2 of the Appendix and Ref. 28). This discrepancy is
essentially the result of second order contributions to the PES
from the electrostatic interaction (being proportional to R−8,
see below) which were neglected in Ref. 27.

III. BO, NBO(NSO), AND NBO CALCULATIONS
OF ADIABATIC CHANNEL POTENTIALS
FOR THE C + OH SYSTEM

In earlier versions of the SACM, for processes with loose
transition states involving reactants with closed electronic
shells (see Refs. 5, 6, and 8–12), it was sufficient to calcu-
late AC potentials not too far inside the centrifugal barriers.
For low temperatures, this corresponded to rather large dis-
tances R. In the present formulation of an SACM for reac-
tants with open electronic shells, AC energies have to be fol-
lowed to much smaller R (here we consider values of R down
to 5 a.u.) where the PESs of different electronic states sepa-
rate from each other sufficiently and an electronic assignment
of the NBO ACs via a comparison with NBO(NSO) and BO
ACs becomes possible. For the present applications such as
described in Sec. II, the asymptotic theory including exchange
interaction covers well the relevant range of distances. Differ-
ent from the earlier versions of the SACM, however, all NBO
AC potentials now are obtained by direct diagonalization of
the rotronic Hamiltonian without passing through PES calcu-
lations. BO AC potentials, on the other hand, are calculated
as before by diagonalization of the hindered rotor Hamilto-
nian on the precalculated PES. We pay particular attention
to the behavior of the lowest BO, NBO(NSO), and NBO AC
potentials at large distances because these determine the low
temperature (semi-classical) limit of the corresponding cap-
ture rate constants.

We first consider BO ACs. When SO and the rotronic
interaction inducing A′/A′′ state mixing are switched off, adi-
abatic channels divide into independent groups of BO chan-
nels. These differ both in their electronic state (subscript ε)
and in the projection quantum number M of the rotational mo-
mentum Jrot of the rotor onto the interreactant axis. At values
of R in the interval 5–40 a.u., we fit axially symmetric asymp-
totic PESs (for the lowest ones, see Fig. 8 in Subsection A 3
of the Appendix) as functions of the polar angle θ and expand
them into Legendre polynomials. We then solve the secular
problem for the hindered rotor Hamiltonian matrix

H rot = δJ ′
rot,Jrot

BJrot(Jrot + 1)

+〈Jrot,M|Eε(R, θ )|J ′
rot,M〉,

(3.1)
Eε(R, θ ) =

∑
n

cn(R)Pn(cos θ ),

written in the representation of the spherical harmonics of
Eq. (2.10). As the result we obtain the BO adiabatic chan-
nel potentials V

(ε)
M,i (R). For the lowest BO adiabatic channel

potential in the electronic ground state X2A′, the asymptotic
dependence on R is given by the diagonal matrix element of

the asymptotic interaction EX(R, θ ) from Eq. (2.12), i.e.,

V
(X)
M=0,i=0(R) = 〈JOH =0,M =0|EX (R, θ ) |JOH =0,M =0〉

= −3d
〈
r2

C

〉
20R4

(
3 + 1√

5
ln

[
47 + 21

√
5

2

])

(3.2)

(as before in a.u., with d = 0.702 and 〈rC
2〉 = 3.89, see Sub-

section A 2 of the Appendix).
We next consider ACs in the NBO(NSO) approxima-

tion, which accounts for the A′/A′′ state mixing. The projec-
tion N (asymptotically equal to ML + MK and, according to
Eq. (2.11), correlating with M in the intermediate range of R)
of the total angular electronic and rotational (rotronic) mo-
mentum onto the interreactant axis remains a good quantum
number. As long as the SO interaction is switched off and the
total spin S is a good quantum number, also its projection MS
onto the interreactant axis is a good quantum number lead-
ing, like in the BO approximation, to an additional degener-
acy only. The matrix representation for the rotronic problem
at given N in this case uses the basis functions from Eq. (2.6),

〈L,ML,K,N − ML,�, S,MS |
= 〈L,ML|〈�|〈K,N − ML,�|〈S,MS |,

(3.3)
〈K,N − ML,�| =

√
(2K + 1)/4πDK

N−M
L

� (ϕ, θ, χ )

which are quantized both along the fixed interreactant and ro-
tating molecular axes (the angle χ here is not specified and
can be put to equal to zero). The solution of the correspond-
ing secular problem, for the 18-fold degenerate lowest states
with K = 1 (spin degeneracy here is excluded), in the limit
of large R leads to the asymptotic AC potentials given in
Table VI in Subsection A 4 of the Appendix. The close match
of the NBO(NSO) and BO states with M = N at R = 5 a.u.
indicates that only one of the two repulsive channels with N
= 0 (written in parenthesis in Table VI in Subsection A 4 of
the Appendix) leads into the 12A′′ electronic state, while all
others lead into the X2A′ state.

We finally proceed to the calculation of NBO adiabatic
channel potentials, with SO-coupling switched on and keep-
ing the basis of Eq. (2.6). This basis was already employed for
the interaction Ulr + Uex, when the matrix representation of
the Hamiltonian Ĥ rotr in the NBO(NSO) approximation was
constructed. We now apply the transformation of Eq. (2.7) to
this basis with respect to the matrix H rotr

C,OH of Eq. (2.2) which
originally was written in the representation of Hund’s cou-
pling case a. According to the angular momentum addition
rules, it requires large (but finite) numbers of functions to re-
produce that part of the energy spectrum of the reactants (up
to about 5 − 7 kBT) which contributes to the low-temperature
capture rate constant. The half-integer projection P of the to-
tal angular momentum onto the interreactant axis here exclu-
sively survives as a good quantum number and it character-
izes the energy eigenvalues V|P |,i (R) (in the approximation
of fixed interreactant axis these are doubly degenerate with
respect to the sign of P).

Using the correlation rules for the angular momentum
projections (see Eqs. (2.8) and (2.11)), we now establish
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FIG. 2. Energies of the lowest ACs at R = 5 a.u. in BO, NBO(NSO), and
NBO approximation (ACs leading into X2A′ (—, red), 12A′ ′ (—, blue), 14A′
(—, pink), and 14A′ ′ (—, cyan); encircled numbers indicate the number of
the original state at R → ∞, e.g., 1© at 1.8 B, 2© at 2.6 B, see Fig. 3).

within groups of the same |P| the sequence of the BO,
NBO(NSO), and NBO adiabatic channel states at R = 5 a.u.
(from BO to NBO(NSO) and then from NBO(NSO) to NBO).
Together with the calculation of the NBO AC potentials, this
allows us to specify the “entrance states” of the free reac-
tants with respect to their branching into the different elec-
tronic states of the adduct. The procedure and the results
of this specification are illustrated in Figs. 2 and 3, respec-
tively. Fig. 2 shows AC energies, at fixed R = 5 a.u., for large

FIG. 3. Separated reactant states (R → ∞) and their branching into ACs
leading into different electronic states of the adduct (degeneracy grot; color
code as in Fig. 2, higher states in gray, the two lines near 12.7 B nearly coin-
cide).

amplitude bending (hindered rotation) of the adduct, calcu-
lated at the three levels of approximation, BO, NBO(NSO),
and NBO. When the level of approximation for the shown
states is increasing, the trends are very regular and the influ-
ence of adding interactions is easily recognizable. Our proce-
dure thus clearly provides the electronic state assignment of
the adduct vibronic states at intermediate (NBO(NSO)) and
at the highest (NBO) levels of approximation. The choice of
5 a.u. as a BO-NBO matching distance was justified by the
fact that the different BO electronic states at this distance are
sufficiently separated. At smaller distances, the increasing in-
teraction of the molecular modes finally leads to the limits of
applicability of the asymptotic theory and of the SACM pro-
cedure. These natural limitations of the procedure determin-
ing electronic branching become increasingly more serious
for capture into higher electronic states and for higher tem-
peratures.

Fig. 3 indicates the distribution of ACs, originating from
the shown “entrance states” of the separated reactants, over
the various BO states of the adduct. grotr denotes the corre-
sponding number of ACs. One observes that only ACs with
entrance energies Eentr < 3B exclusively lead into the X 2A′

electronic ground state of the adduct. ACs with larger en-
trance energies show an increasing branching also into excited
electronic states of the adduct. The branching is illustrated by
the same color code in Figs. 2 and 3. Fig. 4 finally illustrates
the difference between the branching of entrance states into
the adduct X2A′ state within the present AC procedure (up-
per panel) and within the conventional electronic correlation
between the lowest electronic state of the adduct and the low-
est electronic state of the free reactants (lower panel). The red
color here corresponds to branching into X2A′, the gray color
to branching into excited electronic states. For example, in
the conventional treatment the lowest states with JC �= 0 are
closed for branching into X2A′ (this corresponds to a closure
of 24 and 26 ACs starting from the entrance states at 2.5 B
and 4.4 B, respectively) while they are open in the present
procedure.

FIG. 4. As Fig. 3, red: formation of the electronic ground states of the
adduct; gray: formation of excited electronic states (upper panel: present
NBO approach, lower panel: conventional SBO approach).
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Fig. 2 illustrates the values of selected AC potential
curves Vi(R) at R = 5 a.u. and their variation at the three lev-
els of approximation (BO, NBO(NSO), and NBO). We do not
show here examples of complete AC potential curves Vi(R)
because they look quite similar as the corresponding curves of
other systems, e.g., as shown for H + O2 in Ref. 14. Likewise
the interplay between the Vi(R) and the orbital energies T rot

nuc,
which leads to the centrifugal maxima E0, i(�) of the AC po-
tential curves, resembles the illustrations of Ref. 14. Further-
more, the number of relevant channels in the present case is
quite large such that their representation does not increase in-
sight. Instead, in the following we only inspect the lowest AC
potentials, as the low temperature (semi-classical) limit of the
capture rate constant is completely determined by the long-
range potentials of the 4 doubly degenerate adiabatic channels
with |P| = 1/2, 3/2 (correlating with the lowest rotronic state
0, F1 (JC = 0, J−

OH = 3/2) of the free reactants). All of these
adiabatic channels lead into the ground electronic state of the
adduct (see Figs. 2–4).

Because of the spherical isotropy of the wave function,
the atomic state with JC = 0 possesses neither a quadrupole
moment, nor an anisotropic component of the atomic dipole
polarizabilities. As a consequence, the adiabatic channels at
long range are 4-fold degenerate and their potentials can be
represented by the expressions

6V|P |= 3
2

= −C6, 3/2R
−6 = −42.2R−6,

(3.4)
6V|P |= 1

2
= −C6, 1/2R

−6 = −39.2R−6,

where the C6-coefficients are given in detail in Table VII
in Subsection A 4 of the Appendix. In the absence of di-
agonal matrix elements in the lowest rotronic state, there
are nevertheless non-diagonal matrix elements of the atomic
quadrupole moment. The dipole-quadrupole coupling with
the upper states with JC = 2 and JOH = 3/2, 5/2 then is re-
sponsible for a second order perturbation of the considered
lowest states (we limit ourselves here to the approximation of
Hund’s coupling case a):

8V|P |= 3
2

= −C8, 3/2R
−8 = −1.05 × 104R−8,

(3.5)
8V|P |= 1

2
= −C8, 1/2R

−8 = −0.671 × 104R−8,

where the C8-coefficients again are given in detail in
Table VII of Subsection A 4 of the Appendix. These contri-
butions deserve particular attention, because they contribute
to capture rate constants in the temperature range considered
below. In the presence only of R−6 terms, the capture rate con-
stants would be proportional to C6

1/3. Instead of numerically
calculating kcap for ACs with R−6 and R−8 contributions, we
chose a simpler approach. We noted that the main contribu-
tions to kcap come from values of R = Reff where V(Reff) =
−C6 Reff

−6 is about equal to kBT. Modifying C6 Reff
−6 by C6

Reff
−6 + C8 Reff

−8 and expressing this by C̄6 (T )Reff
−6 leads

to a temperature dependent effective

C̄6 (T ) =
{

3
√

C6, 1/2 (T ) + 3
√

C6, 3/2 (T )

2

}3

(3.6)

to be used in the calculation of kcap. With the additional
contributions from Eq. (3.5), the effective parameter C̄6 (T )
achieves its highest value of ≈80 at a temperature near T
= 2.5 K. This value of C̄6 is twice the total induction and
dispersion value of the channels (see Eq. (3.4)) and it acci-
dentally is close to the value of C6 obtained by the analyti-
cal isotropic continuation of the ab initio PES of Ref. 26 in
Ref. 27 and employed in the CT calculations of kcap in
Ref. 27. A comparison with the CT results from Ref. 27 thus
is of interest, see below.

IV. CALCULATION OF THERMAL CAPTURE RATE
CONSTANTS FOR C + OH

Once the AC potential curves Vi(R) and their channel
maxima E0,i(l) are determined, one proceeds to the imple-
mentation of the latter quantities into expressions for kinetic
observables like kcap such as this is done in the various appli-
cations of SACM the usual procedure of SACM (Refs. 6–20).
For example, one determines numbers of open channels
W(E,l) (i.e., numbers of ACs for which E > E0,i(l)) or acti-
vated complex partition functions Q∗ defined by

Q∗ =
∑
i,�

(2� + 1) exp[−E0,i (�) /kBT ], (4.1)

where the E0, i(�) are the maxima of Vi (R)
+ ¯2� (� + 1) /2μR2. The thermal rate constant for cap-
ture, kcap(T), in the nomenclature of transition state theory
then is expressed by

kcap (T ) = kBT

h

(
h2

2πμkBT

)3/2
Q∗

Q
(4.2)

with Q∗ and the corresponding product of reactant parti-
tion functions Q (unless stated differently, we use CGS units
in this section). First, we only consider capture into the
X2A′ electronic ground state of the adduct, characterized by
kcap, X(T). Both Q∗ and Q include rotronic states, the former of
the activated complex, the latter of the reactants. Within our
NBO treatment, Q∗NBO

X is given by

Q∗NBO
X =

∑
i

gX
i

∑
�

(2� + 1) exp
[−EX

0,i (�) /kBT
]
, (4.3)

where the EX
0,i (�) are V X

i (R) + ¯2� (� + 1) /2μR2 are for a
given adiabatic channel (i) leading into the adduct electronic
ground state X2A′ (gX

i is its degeneracy). The corresponding
partition function Q of the free reactants here is given by

Qrotr (T ) =
∑

JC,J±
OH

g(JC, J±
OH) exp

[−Erotr
C,OH(JC, J±

OH)/kBT
]
,

(4.4)
where the summation includes all possible values of the
rotronic quantum numbers JC, J−

OH, and J+
OH (see Eq. (2.4)).

Inserting Q∗NBO
X and Qrotr into Eq. (4.2), for Q∗ and Q, re-

spectively, gives the NBO rate constant for capture into the
X2A′ state, denoted by kNBO

cap,X (T ). Figs. 5 and 6 show the re-
sults. kNBO

cap,X (T ) increases with temperature until a maximum
is reached at 28 K. The subsequent decrease is slow, one half
of the maximum value of 4.1 × 10−10cm3s−1 is attained only
near 220 K.
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FIG. 5. Thermal capture rate constants kNBO
cap,ε of C and OH into different elec-

tronic states ε of the adduct (—, red: into ground state, ε = X2A′, with adi-
abatic (or —-, red dashed: with diabatic) passage through narrowly avoided
crossings, see Sec. IV; —, blue; —, pink; and —, cyan: into ε = 12A′ ′, 14A′,
14A′ ′ states of the adduct, respectively; —, gray: total rate constant for cap-
ture into the lowest four electronic states of the adduct).

With the AC potentials ∝ R−6 from Eq. (3.4), the lim-
iting low temperature (semi-classical) capture rate constant
according to the relation

kcap = 211/6� (2/3)
√

π/μC
1/3
6 T 1/6 (4.5)

would be given by

kcap (T → 0 K) = 1.92 × 10−10 (T/K)1/6 cm3s−1. (4.6)

As indicated above, however, the additional R−8 terms of
Eq. (3.5) for the lowest ACs make a non-negligible contribu-
tion for intermediate temperatures (in the present case in the
range 1–10 K), before the influence of higher ACs takes over

1 10 100 200

5x10-10

2x10-10

1x10-10

7x10-10

C
6

C
6
(T)

T / K

k ca
p,

X
/c

m
3
s-1

C
4

7x10-11

FIG. 6. Thermal rate constants for capture into the ground electronic state of
the adduct COH(X2A’) (—, red: kNBO

cap,X, as in Fig. 5; —-, red dashed: kBO
cap,X,

see Sec. IV; - · - · -, red dashed-dotted: single SBO – CT calculations k
BO,CT
cap,X

of Ref. 16; C̄6 (T ) , C4 , and C6 mark the low-temperature limits of

Eqs. (4.7), (4.10), and (4.11), respectively).

at higher temperatures. Therefore, with C̄6 (T ) from Eq. (3.6),
Eq. (4.6) in the intermediate temperature range is replaced by

kNBO
cap,X (T → 0 K) → 2.43 × 10−10 (T/K)1/6 cm3s−1. (4.7)

This value in turn is close to the CT results from Ref. 27 which
corresponded to nearly the same effective value of C6, see
below.

We briefly also consider the role of the few narrowly
avoided crossings which originate from the � – coupling
within groups of channels with given good quantum number P
(see Sec. II). An assumption that all narrowly avoided cross-
ings with a splitting smaller than 0.1 B are passed diabatically
leads to only minimal changes in the SACM capture rate con-
stant (indicated by the dashed line in Fig. 5). This is the result
of only negligible changes in the branching into electronic
states of the adduct. For example, only one doubly degenerate
channel with |P| = 1/2 changes its branching and leads from
the lowest rotronic state with JC = 1 into the excited elec-
tronic state of the adduct, 12A′′; vice versa, assuming com-
plete channel adiabaticity, all such channels starting with JC
= 1 lead into the ground electronic state X2A′ (as shown in
Figs. 2–4). We emphasize again that the AC specification of
the electronic state only holds for the initial approach of the
reactants until the chosen distance of 5 a.u. is reached; elec-
tronically nonadiabatic and intramolecular vibrational transi-
tions are likely to occur later on, but are not considered in the
present analysis.

As we were able to specify NBO ACs with respect
to the attained electronic state (at distances of about 5
a.u.), we also calculated thermal rate constants for capture
into specific electronic states. In this case Q∗ analogous to
Eq. (4.3) was determined for ACs ending in such electronic
states. Fig. 5 includes results for formation of adducts in
the states X2A′, 12A′′, 14A′, and14A′′; the total rate constant
kNBO

cap (T ) for capture in all of these states is also given (capture
into 8 higher excited electronic states of the adduct here is ne-
glected). Capture into the excited states 12A′′, 14A′, and 14A′′

shows a threshold behavior; capture into 12A′′ and 14A′′ pre-
vails over capture into 14A′. The total capture rate constant
kNBO

cap (T ) has a rather flat temperature dependence with a not
very pronounced maximum near to 70 K.

The comparison of the derived kNBO
cap,X (T ) with the corre-

sponding kBO
cap,X (T ) from the conventional SACM treatment

corrected using Eq. (1.1) shows marked differences such as
illustrated in Fig. 6. In SACM calculations, Q∗BO

X includes
contributions from hindered rotor ACs as calculated with
the asymptotic PES of X2A′ neglecting SO-coupling (see
Sec. III). The corresponding Q is equal to the rotational par-
tition function (the electronic degeneracy of the doublet state
cancels here)

Qrot (T ) =
∑
Jrot≥0

(
2Jrot + 1

)
exp

[−Jrot

(
Jrot + 1

)
B/kBT

]
.

(4.8)
The electronic factor fel(T) in this case accounts for the ther-
mal population of the lowest electronic state of the reactants
which a assumed to contribute exclusively to kBO

cap,X (T ), and it
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FIG. 7. Thermal branching factors fel and frotr (—-, red dashed: fel from
Eq. (4.9); —, red: frotr from Eq. (4.12) for branching into X2A′ with adiabatic,
or diabatic ( · · · · , dotted red), passage through narrowly avoided crossings,
see Sec. IV; —, blue; —, pink; and —, cyan: frotr for branching (adiabatic
passage) into the 12A′ ′, 14A′, and 14A′ ′ electronic states of the adduct, re-
spectively; —, gray: frotr for branching into the four lowest electronic states
of the adduct).

is given by

fel(T ) = {1 + exp[−A/kBT ]}−1{1 + 3 exp[−2a/kBT ]

+5 exp[−6a/kBT ]}−1. (4.9)

fel and Qrot approach unity at T→ 0 K. Q∗NBO
X , on the other

hand, at low temperatures is calculated with the AC potential
of Eq. (3.2) as given by V(R) = −C4 R−4. With this R – depen-
dence the limiting low temperature capture rate constant be-
comes temperature independent (analogous to the Langevin
rate constant for ion-induced dipole capture). One obtains
Langevin type (see C4 in Fig. 7) and is given by

fel (T = 0 K) = 1, Qrot (T = 0 K) = 1,

(4.10)

kBO
cap,X (T →0 K) = 2π

√√√√3d
〈
r2

C

〉
10μ

(
3+ 1√

5
ln

[
47 + 21

√
5

2

])

= 6.4 × 10−10 cm3s−1.

See the curve labeled C4 in Fig. 6. Due to the T1/6 – depen-
dence of kcap in Eqs. (4.5) and (4.6), the capture rate constant
from the NBO calculations at T < 15 K becomes smaller than
th BO values from Eq. (4.10). At higher temperatures, on the
other hand, kBO

cap,X (T ) falls markedly below kNBO
cap,X (T ) which

is mostly due to the rapid decrease of fel(T) (and finally due
to the BO assumption that only the lowest electronic state of
the free reactants participates in kBO

cap,X (T )). One should note
that kBO

cap,X (T ) /fel (T ) exceeds the total capture rate constant
kNBO

cap (T ) at all temperatures, partly because the excited elec-
tronic states of the reactants are less attractive and thus less
effective in capture as their ground electronic state.

We next compare the present calculations of kNBO
cap,X (T )

and kBO
cap,X (T ) with the results from the CT calculations

k
BO,CT
cap,X (T ) of Ref. 27. Fig. 6 illustrates this comparison. We

first note a difference between k
BO,CT
cap,X (T ) and kBO

cap,X (T ) at the
lowest temperatures where the electronic factor, fel, being con-
tained in both quantities, approaches unity. This difference is
due to the difference in the long-range asymptotic behavior of
the used PES for the X2A′ electronic state. The CT calcula-
tions of Ref. 27, unlike our asymptotic theory, employ the ab
initio PES from Ref. 26 and the isotropic potential −C6R−6

as its asymptotic continuation. With the corresponding
C6 = 97.3 a.u., see above, the low-temperature semi-classical
rate constant (see curve C6 in Fig. 6) then approaches

k
BO, CT
cap,X (T → 0 K) → 211/6� (2/3)

√
π/μC

1/3
6 T 1/6

= 2.6 × 10−10 (T/K)1/6 cm3s−1. (4.11)

The comparison with Eq. (4.7) shows that this choice of the
asymptotic potential in the CT calculations accidentally re-
produces the low temperature effect of SO-coupling (which
actually was neglected in the employed ab initio PES of
Ref. 26). k

BO,CT
cap,X (T ) and kBO

cap,X (T ) approach each other at
higher temperatures when the differences in the asymptotic
behavior of the PES loose importance and the similar in-
termediate part of the ab initio PES matters most. As it
was repeatedly noted (see, e.g., Refs. 8–12), SACM and CT
for the same PES approach each other at temperatures with
kB T > B.

It was stated before that the drop of fel(T) with increasing
temperature is the main factor responsible for the decline of
kBO

cap,X (T ). Having described the branching of the free reac-
tant states into the different electronic states of the adduct in
Sec. III (see Figs. 2–4), one may also define a rotronic ther-
mal branching factors frotr(T) analogous to fel(T), now speci-
fying the fraction of the free reactant rotronic state population
which in the NBO approach leads into the electronic ground
state. This frotr(T) then is defined by

frotr (T ) = Qrotr
X (T ) /Qrotr (T ) ,

(4.12)
Qrotr

X (T ) =
∑

i

gX
i exp[−Ei/kBT ],

where Qrotr
X (T ) includes the entrance states branching into

X2A′. Because of complete branching into X2A′ from the
ground rotronic state of the free reactants, the factor frotr(T)
as well as the factor fel(T) approach unity for T → 0 K. How-
ever, frotr(T) decreases much more slowly with T than fel(T).
Fig. 7 illustrates this difference. It is the consequence of the
differences in the branching such as illustrated in Fig. 4. For
example, the lowest rotronic states with JC �= 0 in the NBO
approach lead into the ground state of the adduct, whereas
the corresponding excited electronic states of the free reac-
tants do not correlate adiabatically with X2A′ and, as a conse-
quence, do not contribute to capture into this state in the BO
approximation. Fig. 7 includes also rotronic factors for NBO
branching into excited electronic states of the adduct. In the
presented temperature range, the shown rotronic factors from
the NBO approach nearly sum up to unity (the small drop to
0.95 at 200 K is due to the omission of 8 upper excited elec-
tronic states of the adduct which start to contribute at higher
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temperatures). It should be mentioned again that switching
to the assumption that all narrowly avoided crossings with
a splitting smaller than 0.1 B are passed diabatically, leads
only to minimal changes in the frotr(T) (see the dotted line in
Fig. 7).

V. CONCLUSIONS

The present work provided a statistical adiabatic chan-
nel treatment of the formation of adducts at low tempera-
ture by capture in collisions between two open electronic
shell species. The capture in collisions between C(3P) and
OH(2�) was used as a representative example. Adiabatic
channel potential curves were obtained by direct diagonal-
ization of the rotronic Hamiltonian containing asymptotic in-
teractions. Along with the long-range electrostatic multipole,
induction, and dispersion interactions, also exchange inter-
action and spin–orbit coupling were taken into account. By
exploiting explicit correlation rules for the projection of an-
gular momenta onto the interreactant axis (corresponding to
good quantum numbers within various approximations) and
employing a suitable matching procedure at intermediate in-
terreactant distances, the individual adiabatic channels could
be specified with respect to the electronic states reached in
adduct formation.

A series of details of the procedure and results deserve
particular mention. By slightly adjusting the pre-exponential
factors of the asymptotic single-center atomic/molecular or-
bitals used for the construction of the exchange interaction
(see Eq. (2.13)), the ab initio PESs of the C + OH sys-
tem from Refs. 26 and 29 at intermediate distances could be
almost quantitatively reproduced. Including spin–orbit cou-
pling, the asymptotic PESs indicated a multitude of areas with
electronic nonadiabaticity. This nonadiabaticity mainly is re-
sponsible for the fact that our calculated capture rate constants
at the considered temperatures (up to 200 K) markedly exceed
the results obtained by CT calculations on the single elec-
tronic ground state PES corrected by the statistical electronic
factor fel(T) (Ref. 16). The maximum of the rate constant in
our results is shifted from about 7 (Ref. 27) to 30 K and the
decrease with increasing temperature beyond the maximum is
much less pronounced.

The present result of the inadequacy of Eq. (1.1) is prob-
ably general and it is of considerable practical importance for
rate constants of capture-controlled radical–radical reactions
at temperatures below room temperature. As measurements in
this range often are difficult and results sometimes are contro-
versial, calculations of the present type can help to improve
the situation. Except for particularly low temperatures, the
present approach will mostly lead to rate constants which are
higher than obtained with Eq. (1.1). The reason for the differ-
ences between the present NBO and conventional single BO
treatments (SACM or CT) are easily traced. There is, first, the
marked difference between the conventional electronic factor
fel(T) and its analog, the rotronic factor frotr(T), see Sec. IV.
A much larger number of adiabatic channels in the NBO ap-
proach correlate with the electronic ground state of the adduct
than in the BO treatment (e.g., in the NBO approach the low-

est rotronic states arising from C(3P1), in contrast to the con-
ventional BO treatment, lead into the ground electronic state
of the adduct). Second, the overall capture rate constant for
capture into any of the electronic states of the adduct in the
NBO approach is smaller than the corresponding BO rate con-
stant, see Fig. 5. In the language of the BO treatment one
might explain this by the more attractive lowest SBO poten-
tial in comparison to an effective overall potential in the NBO
treatment. The effect of adiabatic vs diabatic dynamics at the
few narrowly avoided crossings of the channel potentials was
shown to be unimportant at the considered temperatures. On
the whole, the difference between the factors fel(T) and frotr(T)
obviously is the dominant reason for the marked difference
between kBO

cap,X (T ) and kNBO
cap,X (T ).
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APPENDIX: INTERREACTANT SYSTEM, ASYMPTOTIC
INTERACTIONS, PESs, AND ASYMPTOTIC ADIABATIC
CHANNEL POTENTIALS

1. Frames and momentum projections

Space-fixed frame. z-axis: along the interreactant axis R
(from center of mass of OH to C), x-axis: along the reactant
orbital momentum �; Euler angles for transformation to the
body-fixed (molecular) frame: ϕ, θ , χ .

Body-fixed (molecular) frame. ζ -axis along the molecu-
lar axis r (from O to H), ξ -axis in and η-axis orthogonal to the
plane of the atom–diatom system; polar and azimuthal angu-
lar coordinates with respect to ζ -axis: ϑ , φ.

TABLE I. Projections of momenta onto the axis of the body- and space-
fixed frames.

Projections onto the axis of the body-fixed frame:

� of total rotronic (NSO) momentum K of OH onto ζ -axis
� of total rotronic momentum JOH onto ζ -axis

Projections onto the axis of the space-fixed frame:
� of total momentum J of the system (� ≈ J) onto x-axis
ML of electronic (NSO) momentum L = 1 of C onto z-axis
M

JC
of total spin electronic momentum JC of C onto z-axis

MS of total spin (NSO) momentum S of the
system

onto z-axis

MK of total rotronic (NSO) momentum K of OH onto z-axis
N = ML + MK of total rotronic (NSO) momentum of the

system
onto z-axis

P = N + MS of total rotronic momentum of the system onto z-axis
M of rotational momentum Jrot of linear rotor

OH
onto z-axis
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2. Long-range interaction terms Ulr(R) for C + OH

The electronic functions of C(2p2, 3P) are given by

〈L = 1,ML = 1| = −{
C11

11,10Y11 (1) Y10 (2)

+C11
10,11Y10 (1) Y11 (2)

}
R21,

〈L = 1,ML = 0| = {
C10

11,1−1Y11 (1) Y1−1 (2)

+C10
1−1,11Y1−1 (1) Y11 (2)

}
R20, (A1)

〈L = 1,ML = −1| = {
C1−1

1−1,10Y1−1 (1) Y10 (2)

+C1−1
10,1−1Y10 (1) Y1−1 (2)

}
R21

(see Ref. 52) where the R2 M
L

are products of two one-electron
radial p-wave functions, and the Y1m(i) = Y1m(ϑ i, φi) are one-
electron spherical harmonics with polar, ϑ i, and azimuthal, φi,
electronic spherical coordinates (referred to the interreactant
axis z and the azimuthal ξζ -plane of the adduct including this
axis, see Subsection A 1 of the Appendix). Upon reflection
of the electronic coordinates in the ξζ -plane, the functions in
Eq. (A1) transform as

〈L = 1,ML| → (−1)ML 〈L = 1,−ML|. (A2)

The phase factor (−1)ML(ML
+1)/2 included in Eq. (A1) guar-

antees the standard form of the transformation of Eq. (A2)
(see, e.g., Ref. 48).

The multipole expansion of the electrostatic interac-
tion up to R−6 terms corresponds to the interaction of the
quadrupole moment of C(3P) with the dipole, quadrupole, and
octupole moments of OH(2�). The matrix elements of the
quadrupole moment of C(2p2, 3P) are expressed as

〈
L = 1,M ′

L

∣∣Q(C)
2 m

∣∣L = 1,ML

〉
= (−1)

(
M

L
+M

L
2+M ′

L+M ′
L

2
)
/2

(
C

1 M ′
L

1 M
L
,2 m/C1 0

1 0,2 0

)
Q

(C)
0 ,

(A3)
Q

(C)
0 = −2

〈
Y11

∣∣P2

∣∣Y11

〉 〈
r2

C

〉 = −2
〈
r2

C

〉
/5,

where
〈
r2

C

〉 = 3.8950 corresponds to the square of the elec-
tronic radius averaged over the radial p-wave function. The
matrix elements of the multipole moments of OH(2�) are
calculated using molecular orbitals from Ref. 53 (except for
the dipole moment for which its experimental value of 0.651
is taken from Ref. 54). Table II lists the matrix elements of
the electrostatic moments of OH which are used as reference
values. These are defined as55

q+
lm = 〈x| Q+

lm |x〉 , m ≥ 0,

〈x| = (〈� = 1| − 〈� = −1|) /
√

2, (A4)

Q
p

lm = i(1−p)/2
{
p (−1)m Qlm+Ql−m

}
/

√
2
(
1+δm,0

)
, p=±1

TABLE II. Reference matrix elements of the multipole electrostatic mo-
ments of OH.

l m q+
lm

1 0 0.702
2 0 1.202
2 2 − 0.738
3 0 2.175
3 2 0.044

and can be converted into the matrix elements of the multipole
moments of OH by

〈1| Q1 0 |1〉 = 〈−1| Q1 0 |−1〉 = q+
1 0 = d,

〈1| Ql 0 |1〉 = 〈−1| Ql 0 |−1〉 = q+
l 0, l = 2, 3,

(A5)
〈1| Ql −2 |−1〉 = 〈−1| Ql 2 |1〉 = c q+

l 2, l = 2, 3,

c−1 = 1

2π

2π∫
0

Y 2
l (φ) + Y−2

l (φ)√
2Y 2

l (0)

×
[

Y 1
1 (φ) − Y−1

1 (φ)√
2Y 1

1 (0)

]2

dφ

=
(

2
√

2/2π
) 2π∫

0

cos 2φ cos2 φ dφ = 1/
√

2,

where the integration variable φ is the azimuthal angle of the
orientation of the multipole moment relative to the axis of OH
(the specification of the polar angle variable in the spherical
harmonics here is omitted).

The matrix representation of Uelst (see, e.g., Ref. 28) in
the basis of the functions of Eq. (2.9) is given by〈

L,M ′
L, S ′,M ′

S,�
′∣∣U elst

∣∣L,ML, S,MS,�
〉

= δS ′,SδM ′
S ,M

S

∑
l=1,2,3

(−1)l R−l−3

√(
2l + 4

4

)

×
∑
m

Cl+2 0
2 m,l −m

〈
L = 1,M ′∣∣Q(C)

2 m

∣∣L = 1,ML

〉
×〈�′|Ql �′−� |�〉 dl

−m,�′−� (θ ) , (A6)

where dl
−m,�′−� (θ ) is the Wigner function of the polar angle

θ .
In the linear configurations of the system OHC/COH (θ

= 0 or π , respectively), the main contributions come from
the dipole–quadrupole (∝R−4) and quadrupole–quadrupole
(∝R−5) terms which determine the energetic sequence of the
electronic states. (The corresponding terms are given in Table
S.1 of the supplementary material.60) In the T-shaped config-
uration (θ = π /2), the energetic sequence of the six, spin-
degenerate (SO interaction neglected), electronic states con-
sists of 3 groups which are split due to the axial symmetry of
the quadrupole-quadrupole interaction into lower A′ and up-
per A′′ subcomponents. (The corresponding terms are given
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in Table S.2 of the supplementary material.60) We note full
agreement with the results of Ref. 28.

The induction (Uind) and dispersion (Udisp) terms
are proportional to R−6and originate from the static
and dynamical anisotropic dipole polarizabilities of the
reactants.28, 55 Repeating the procedure of Ref. 28, we calcu-

lated state- and anisotropy-specific coefficients indV
M

L
M′

L
,��′

6, L
b
M

a
M

b

and dispV
M

L
M′

L
,��′

6, L
b
M

a
M

b

of the expansion of the matrix elements of

Uind and Udisp, respectively,

〈
L,ML, S,MS,�

∣∣U ind + U disp
∣∣L,M ′

L, S ′,M ′
S,�

′〉
= −R−6δS,S ′δM

S
M ′

S

∑
L

b
,M

a,
M

b

×
(

indV
M

L
M ′

L,��′

6, L
b
M

a
M

b

+ dispV
M

L
M ′

L,��′

6, L
b
M

a
M

b

)
d

L
b

−M
a
,M

b
(θ ) .

(A7)

The results were in agreement with Ref. 28. They are shown
in Table III. Octupole–quadrupole, induction, and dispersion
interactions in first order lead to additional contributions to
the PESs in the form A6(θ )/R6. In the linear configurations (θ
= 0 and π ), there are no other than these additional contribu-
tions ∝R−6. In the T-shaped configuration, the contributions
A6(π /2)/R6 to the asymptotic PESs consist both of first order
octupole–quadrupole, induction, and dispersion terms as well
as of second order terms from the quadrupole–quadrupole in-
teraction. (These terms are given in Table S.4 of the supple-
mentary material.60)

TABLE III. State- and anisotropy-specific coefficients for induction and
dispersion terms in Eq. (A7), bold type – from this work, in parentheses –
from Ref. 28.

mL m′
L �, �′ Lb Ma Mb

indV
M

L
M′

L
,��′

6, L
b
M

a
M

b

−1 − 1 ±1, ±1 0 0 0 5.081 (5.106)
−1 − 1 ±1, ±1 2 0 0 5.368 (5.407)
−1 0 ±1, ±1 2 − 1 0 −0.498 (−0.522)
−1 1 ±1, ±1 2 − 2 0 0.352 (0.369)
0 − 1 ±1, ±1 2 1 0 0.498 (0.522)
0 0 ±1, ±1 0 0 0 4.650 (4.654)
0 0 ±1, ±1 2 0 0 4.075 (4.051)

mL m′
L �, �′ Lb Ma Mb

dispV
M

L
M′

L
,��′

6, L
b
M

a
M

b

±1 ±1 ±1, ±1 0 0 0 36.357 (36.529)
±1 ±1 ±1, ±1 2 0 0 2.859 (2.871)
±1 0 ±1, ±1 2 ±1 0 ±0.164 (−0.168)
±1 ∓1 ±1, ±1 2 ±2 0 −0.116 (0.119)∗

0 ±1 ±1, ±1 2 ∓1 0 ∓0.164 (0.168)
0 0 ±1, ±1 0 0 0 34.609 (34.737)
0 0 ±1, ±1 2 0 0 2.432 (2.435)
±1 ±1 ±1, ∓1 2 0 ±2 −1.523 (1.532)∗

±1 0 ±1, ∓1 2 ±1 ±2 ∓0.106(−0.109)
±1 ∓1 ±1, ∓1 2 ±2 ±2 0.075 (0.077)
0 ±1 ±1, ∓1 2 ∓1 ±2 ±0.106 (0.109)
0 0 ±1, ∓1 2 0 ±2 −1.247 (1.248)∗

TABLE IV. Parameters of the asymptotic orbital wave functions of
Eq. (2.13)

q Orbital γ q Aq

1 C,2p 0.9097 1.6
2 OH,1π 0.9775 1.6
3 C,2s 1.1043 2.0
4 OH,3σ 1.1012 2.0

3. Asymptotic exchange interaction terms
Uex for C + OH

In the linear configurations of the system, OHC or COH,
the contributions from the exponentially small exchange inter-
action can be expressed through the exchange integral func-
tions. Table S.5 of the supplemental material60 shows the
corresponding contributions which are symmetric with re-
spect to the transformation θ → π − θ (the sum γ q + γ q′

of parameters from Eq. (2.13) here is replaced by μ(q, q′)).
One notices that mainly the exchange interactions with the
inner orbital of OH (q′ = 4) contribute to the repulsion
in the linear configurations (we focus here on the contri-
butions from the leading exchange integral functions with
k = n = 0).

In the T-shaped configuration of the system at large R,
the transformation to the diagonal form of the leading dipole-
quadrupole component of Ulr (see Eq. (2.12)) also allows
one to estimate the additional, exponentially small, first order
contributions of Uex. (This is illustrated in the lines (a) of Ta-
ble S.6 of the supplemental material.60) In the table only the
terms including the leading exchange integral functions with
k = n = 0 are retained, while the main contribution from Ulr

to the PESs here can be extracted from Table S.2 of the sup-
plementary material.60 The additional attraction in this con-
figuration is due to the exchange interaction of the outer shells

TABLE V. Fitting coefficients for the exchange integral functions (see
Eq. (2.15)).

q q′ k n 100a
(q,q′)
kn 10b

(q,q′)
kn c

(q,q′)
kn d

(q,q′)
kn

1 2 0 0 0.1690 −0.5275 −1.1452 1.2501
1 2 1 0 0.1690 −0.5275 −1.1456 0.6145
1 2 1 1 0.1690 −0.5284 −1.1175 1.187
1 2 1 − 1 0.1692 −0.5283 −1.1735 1.1071
1 2 2 0 0.1690 −0.5275 −1.1461 −0.0209
1 4 0 0 0.1461 −0.4352 −1.3471 1.6914
1 4 1 0 0.1462 −0.4348 −1.3504 0.9898
1 4 1 1 0.1459 −0.4463 −1.2658 1.6444
1 4 1 − 1 0.1512 −0.4405 −1.4316 1.4493
1 4 2 0 0.1463 −0.4346 −1.3538 0.2899
3 2 0 0 0.1349 −0.4116 −1.4835 1.7033
3 2 1 − 1 0.1345 −0.4157 −1.4288 1.6005
3 4 0 0 0.1157 −0.3639 −1.6985 2.1608
3 4 1 − 1 0.1157 −0.3639 −1.6971 1.9666
1 4 2 0 0.1463 −0.4346 −1.3538 0.2899
3 2 0 0 0.1349 −0.4116 −1.4835 1.7033
3 2 1 − 1 0.1345 −0.4157 −1.4288 1.6005
3 4 0 0 0.1157 −0.3639 −1.6985 2.1608
3 4 1 − 1 0.1157 −0.3639 −1.6971 1.9666
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FIG. 8. Contour plots of the PES of the lowest electronic state (X2A′) of
COH (calculations without SO-coupling; coordinates as in Fig. 1; energies
in eV; outer part from this work, inner part from the ab initio calculations of
Refs. 26 and 29), see text in Sec. II B.

(q = 1, q′ = 2), being maximal in the 22A′ state. In the
ground state X2A′ at large R this interaction even produces
a repulsive contribution, see Table S.6 of the supplementary
material.60 Because we could not make an analytical predic-

FIG. 9. As Fig. 1, for higher electronic states of the adduct, see text in
Sec. II B.

FIG. 10. As Fig. 1, for higher electronic states of the adduct, see text in
Sec. II B.

tion for the T-shaped configuration in a situation of compara-
ble long-range and short-range exchange contributions, here
we designed a hypothetical model. In this model the exchange
interactions prevailed and non-exchange contributions were
neglected. We kept again the leading exchange integral func-
tions only. The results are given in the lines (m) of Table S.6
of the supplementary material.60 For the T-shaped configu-
ration this model showed maximal attraction in 12A states.
Nevertheless, it made no difference between the PES compo-
nents of different reflection symmetry. In order to sort these
states by their energy, one has also to consider the exchange
integral functions with n or k different from zero and to take

TABLE VI. Leading terms of the lowest adiabatic channel potentials
(K = 1) in the NBO(NSO) approximation.

|N| V|N | (R) − B

2 − 3d
〈
r2
C

〉
10R4 ,

3d
〈
r2
C

〉
10R4

1 − 3
(√

2+1
)
d
〈
r2
C

〉
10R4 , − 3

(√
2−1

)
d
〈
r2
C

〉
10R4 ,

3
(√

2−1
)
d
〈
r2
C

〉
10R4 ,

3
(√

2+1
)
d
〈
r2
C

〉
10R4

0 − 3
√

3d
〈
r2
C

〉
10R4 , − 3

√
3d

〈
r2
C

〉
10R4 , 0, 0,

3
√

3d
〈
r2
C

〉
10R4 ,

(
3
√

3d
〈
r2
C

〉
10R4

)
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TABLE VII. R−6 and R−8 coefficients of AC potentials used in Eqs. (3.4) and (3.5).

6V|P |= 3
2

= −R−6
(

2
3

indV
−1 −1,−1 −1
6,0 0 0 + 1

3
indV

0 0,−1 −1
6,0 0 0 + 2

15
indV

−1 −1,−1 −1
6,2 0 0 + 1

15
indV

0 0,−1 −1
6,2 0 0 +

+ 2
3

dispV
−1 −1,−1 −1
6,0 0 0 + 1

3
dispV

0 0,−1 −1
6,0 0 0 + 2

15
dispV

−1 −1,−1 −1
6,2 0 0 + 1

15
dispV

0 0,−1 −1
6,2 0 0

)
,

6V|P |= 1
2

= −R−6
(

2
3

indV
−1 −1,−1 −1
6,0 0 0 + 1

3
indV

0 0,−1 −1
6,0 0 0 − 2

15
indV

−1 −1,−1 −1
6,2 0 0 − 1

15
indV

0 0,−1 −1
6,2 0 0 +

+ 2
3

dispV
−1 −1,−1 −1
6,0 0 0 + 1

3
dispV

0 0,−1 −1
6,0 0 0 − 2

15
dispV

−1 −1,−1 −1
6,2 0 0 − 1

15
dispV

0 0,−1 −1
6,2 0 0

)

8V|P |= 3
2

= − 6d2
〈
rC

〉2
25R8

⎧⎨
⎩

[
C

3/2 −3/2
3/2 −3/2,1 0

]2
([

C
3/2 1/2
3/2 3/2,1 −1

]2+3
[
C

3/2 3/2
3/2 3/2,1 0

]2
)

6a

+
2
[
C

5/2 −3/2
3/2 −3/2,1 0

]2
([

C
5/2 1/2
3/2 3/2,1 −1

]2+3
[
C

5/2 3/2
3/2 3/2,1 0

]2
)

3(6a+5B)

⎫⎬
⎭

= − d2
〈
rC

〉2
625R8

(
198
6a

+ 52
6a+5B

)
,

8V|P |= 1
2

= − 6d2
〈
rC

〉2
25R8

⎧⎨
⎩

[
C

3/2 −3/2
3/2 −3/2,1 0

]2
([

C
3/2 −3/2
3/2 −1/2,1 −1

]2+3
[
C

3/2 −1/2
3/2 −1/2,1 0

]2+
[
C

3/2 1/2
3/2 −1/2,1 1

]2
)

6a

+
2
[
C

5/2 −3/2
3/2 −3/2,1 0

]2
([

C
5/2 −3/2
3/2 −1/2,1 −1

]2+3
[
C

5/2 −1/2
3/2 −1/2,1 0

]2+
[
C

5/2 1/2
3/2 −1/2,1 1

]2
)

3(6a+5B)

⎫⎬
⎭

= − d2
〈
rC

〉2
625R8

(
102
6a

+ 108
6a+5B

)

into account the second order repulsion, producing the largest
contribution to the splitting. The corresponding splitting � is
given by

� = E
(
12A′′,θ = π/2

) − E
(
12A′,θ = π/2

)

= 54

(
1 + 1

2μ(1,2)

)2 (
I

(1,2)
10

)2

R
(
3I

(1,2)
00 + 2I

(3,2)
00

)

+
(

4 + 3

μ(1,2)

+ 1

μ2
(1,2)

)
I

(1,2)
20

R

−
(

4 + 3

μ(1,4)

+ 1

μ2
(1,4)

)
I

(1,4)
20

R
> 0. (A8)

4. Properties of the lowest adiabatic channel
potentials

See Tables VI and VII for details.
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