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We demonstrate a two-dimensional time-domain spectroscopy method to extract amplitude and 

phase modifications of excited atomic states caused by the interaction with ultrashort laser 

pulses. The technique is based on Fourier analysis of the absorption spectrum of perturbed 

polarization decay. An analytical description of the method reveals how amplitude and phase 

information can be directly obtained from measurements. We apply the method experimentally 

to the helium atom, which is excited by attosecond-pulsed extreme ultraviolet light, to 

characterize laser-induced couplings of doubly-excited states. 

Studying the interaction of light and matter is one 

of the most active and fundamental research 

fields in modern physics. Since a few years, 

laser-driven high-order harmonic generation 

(HHG) provides a spectrally coherent light 

source in the extreme ultraviolet (XUV) with 

unprecedented spectral and temporal properties 

[1-3]. Perhaps the most fascinating aspect of this 

method is the generation of attosecond light 

bursts permitting close to atomic-unit temporal 

resolution in time-resolved experiments [4,5]. 

Here, the electronic properties of atoms [6,7], 

molecules [8-10], as well as solids [11-13] can be 

investigated on their natural attosecond time 

scale. So far, most attosecond experiments 

involve the generation and measurement of 

photoelectrons or ions, or focus on the harmonic 

generation process itself. Recently, an all-optical 

technique has gained increased attention, namely 

the so-called attosecond transient absorption 

spectroscopy [14-19], as an extension of 

femtosecond XUV transient absorption in the gas 

phase [20,21]. As compared to photoelectron 

detection, one key advantage of transient 

absorption is its intrinsic sensitivity to bound-to-

bound transitions of the investigated quantum 

system, which manifests itself by sharp 

spectroscopic signatures known as spectral line 

shapes [22]. Utilizing attosecond XUV pulses in 

combination with synchronized near-infrared 

(NIR) femtosecond fields, a general mechanism 

that allows for the conversion of symmetric 

Lorentzian into asymmetric Fano [23] line shapes 

has recently been understood and applied by laser 

controlling the time-dependent dipole-response 

function [24]. 

Figure 1. Schematic illustration of the two-

dimensional spectroscopy method. (a) When the 

initial phase of the dipole response  ( ) of an 

excited atom is modified (indicated by the red pulse) 

at time    , this leads to a characteristic change in 

the absorption spectrum  ( )      ̃( ). (b) 

Generalization to phase or amplitude modifications 

at arbitrary time delay   after excitation. 

Modifications occurring on time scales much shorter 

than the life time       of the state can be treated as 

an instantaneous amplitude and phase change of the 

dipole moment at time  . This is expressed by the 

complex quantity  , modifying the initial dipole 

response   ( ) to   ( )      ( ) at time  . 



Following the developments of femtosecond 

time-resolved spectroscopy, a technological 

revolution has occurred starting out from the first 

investigations on transient absorption in the mid 

1980s [25-27]. One impressive example is the 

extension to two-dimensional electronic 

spectroscopy [28-31], a powerful technique that 

provides access to time-resolved reaction 

dynamics in complex systems. Moving towards 

higher photon energies in the XUV and soft-x-ray 

spectral region — also allowing for shorter pulse 

durations in the attosecond temporal region — 

theoretical work suggests to investigate the 

fundamental electronic couplings and natural 

attosecond dynamics in small quantum systems 

[32,33]. This dream can be expected to be 

implemented soon at next-generation free-

electron-laser (FEL) light sources [34]. 

Here, we demonstrate a first experimental step 

towards two-dimensional spectroscopy with 

XUV attosecond-pulsed light. Based on the time-

domain understanding of spectral line shapes, we 

create a complex-valued two-dimensional 

spectroscopic representation, which we obtain 

from the XUV response of laser-coupled 

autoionizing states [35-37]. Supported by an 

analytical framework, we show how such a 

representation can be interpreted and understood 

as an effective two-color (XUV and NIR) 3
rd

-

order nonlinear spectroscopy scheme. As in 

traditional two-dimensional spectroscopy the 

here introduced representation—though 

implemented in a conceptually different 

manner—reveals the coupling between 

coherently-excited quantum states. These first 

steps provide the key to understand the 

underlying dynamics of transiently coupled 

systems and lay the foundation towards other 

multidimensional nonlinear spectroscopy 

schemes with XUV and soft-x-ray light. 

We start out by describing the temporal dipole 

response  ( ) of an isolated quantum-state 

resonance after a  -function-like excitation at 

t = 0, e.g. by an attosecond XUV pulse. Subject 

to an exponential decay rate  , and oscillating at 

a resonance frequency   , it is given by 

 (   )           
 
 
   (1) 

The associated spectral line shape is obtained 

after Fourier transforming the dipole response, 

and evaluating its imaginary part given by 

    ̃( )    [∫  ( )       
 

  

]
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This is a Lorentzian profile centered at    with 

its full width at half maximum equal to the decay 

rate   of the state [see figure 1 (a)]. For a dilute 

medium this quantity can be related to the 

experimentally measured absorption cross section 

[16,17,22,27] given by 

 ( )       [ ̃( )  ̃   ( )]  (3) 

Here,  ̃   ( ) represents the complex spectrum 

of the excitation pulse, which is a constant for the 

case of excitation with a  -pulse. The linear 

increase of   can also be safely neglected for the 

common case of       ⁄  and in the absence 

of close-lying neighboring resonances. 

    ̃( ) is therefore the observable quantity in a 

transient absorption spectrum for the short-pulse 

(impulsive) excitation case.  

The effective initial phase of the dipole response 

can be controlled by means of an ultrashort laser 

pulse (e.g. NIR), which impulsively interacts 

with the electron in the upper radiating state at 

time    , right after its population by the XUV 

attosecond pulse, as demonstrated in Ref. [24]. In 

the subsequently measured spectrum this leads to 

substantial modifications of the observed line 

shape. Controlling the phase with a tunable laser-

field strength, Lorentzian line shapes can be 

converted into Fano-like line shapes, and 

absorption can be turned into transparency or 

even gain. 

We now extend this framework to the control at 

arbitrary time delay   between the excitation 

attosecond XUV and the coupling NIR laser 

pulse. The spectral line shape     ̃( ) 
corresponding to such a perturbed polarization 

decay [38,39] is then parameterized by  , thus 

explicitly requiring a two-dimensional 

representation in   and  .  

The key idea is illustrated in figure 1 (b). In the 

temporal region I after the excitation by an 

attosecond XUV pulse (excitation at time    ; 

not shown) the system starts to radiate dipole 

emission, determined by its natural dynamics, in 

a field-free environment. Within the time window 

of duration      centered at   the system then 

interacts with an additional NIR laser field. 

Afterwards, in temporal region II the system 



again evolves in a field-free environment for the 

remainder of its natural life time      . Such a 

description is a general approach to describe the 

interaction of a system with a sequence of laser 

pulses of much shorter duration than th  syst  ’s 

natural dynamics (e.g. the decay). In order to 

arrive at analytical expressions, and to keep track 

of the physically relevant features, we will 

restrict our discussion to the limiting case of 

      , thus treating both XUV excitation and 

NIR coupling as  -function-like inter-actions. 

This approximation is justified when the duration 

     of the laser pulses is negligible compared to 

the life time       of the system. For this case we 

can write the time-dependent dipole response in 

its most general form as 

  (   )  {

    
  ( )      

    ( )    
 (4) 

 

where   ( ) d sc  b s th  syst  ’s natu a  

response, e.g.   ( )      
     

 

 
 
 for an isolated 

resonance of a two-level system.   is a complex-

valued number which accounts in all generality 

for light-induced phase and amplitude 

modifications of the system. In general,   will be 

a function of the time delay  :    ( ); with 

 (   )   . To obtain the absorption spectrum 

    ̃ (   ), we evaluate the Fourier transform of 

  (   ): 
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Assuming free decay, the Fourier transform is 

analytically given by 

 ̃ (   )

   
    (    )    ⁄  (   ( ))

 (    )    ⁄
  

(6) 

 

For convenience we introduce the frequency 

detuning        and the dipole spectrum 

 ̃ (   )   ̃ (      ) as well as      . 

Equation (6) then reduces to 

 ̃ (   )    
         (   ( ))

     
  (7) 

 

From equation (7) we already gain some insight 

into the spectral response of the system:  

For  ( )   , i.e. in the absence of the NIR laser 

pulse, the well-known Lorentzian line shape of 

the freely decaying two-level system results and 

is independent of   . For the case of non-zero 

interaction [ ( )   ], we identify several  -
dependent phase terms [note that  ( ) is 

generally complex-valued], which give rise to 

characteristic spectral interference patterns [see 

figure 3 (a), (e), and (i), explained in more details 

below]. 

In the following, we show that the Fourier 

representation (   ) of such a time-delay scan 

reveals amplitude and phase information on the 

laser-induced modification of the quantum state. 

The key quantity of interest is the complex 

Fourier transform of the time-delay scan 
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or alternatively 
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with respect to  . This quantity casts the time-

delay-dependent absorption spectrum into a two 

dimensional absorption spectrum (2DAS). The 

two spectral dimensions of the 2DAS are the 

frequency range   of an excitation pulse, and   

of a coupling pulse. In this work, we use an XUV 

Figure 2. The structure of the complex  , modifying 

the dipole response of a given quantum state in 

amplitude and phase. In general,   can be written as 

a product or a sum of complex terms. The product 

form is suitable to describe non-resonant processes like 

tunneling or non-resonant transient level shifts (e.g. 

AC Stark shift). The sum form applies for resonant 

processes, e.g. the perturbative coupling of states for 

small values of   , where    is the resonance 

frequency of the process. In general, the phase and the 

magnitude can be static or a function of the time delay 

  and other parameters, e.g. laser intensity, 

wavelength, or polarization. By constructing a 

composition of these basic building blocks of dipole 

control, more complex interactions can be described 

and understood.  



pulse for excitation and an NIR pulse for 

coupling, but the approach is entirely general and 

not limited to these spectral regions.  

To further understand the structure of the 2DAS 

it is necessary to evaluate equation (9) for 

specific  ( ). The form of  ( ) depends on the 

interaction process. Here, we restrict ourselves to 

two fundamental cases:  

1) A constant amplitude and phase modification 

factor       
   . This can be used to model 

nonresonant processes, for instance the AC stark 

shift or strong-field ionization, the latter also 

reducing the population of a state [40].  

2) Additive time-delay dependent amplitude and 

phase modification:         
       . This 

modification applies for perturbative resonant 

coupling to another coherently excited quantum 

state, where     is the energy difference 

between the two states. These examples are 

summarized in figure 2. The quantity   thus 

forms a key ingredient in this dipole-control 

model, as we will refer to it below. 

In the following, we discuss two realistic 

scenarios for the two fundamental interactions 

(non-resonant: case 1; resonant: case 2). We 

choose the energies and life times of the 

contributing states to match the situation of 

doubly-excited helium, for which we also present 

experimental results below. For case 1 the 

imaginary part of equation (7) reads 

    ̃   (   )  
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For the trivial situation      and     , i.e. 

   , the oscillatory term        vanishes, which 

results in a time-delay-independent Lorentzian 

profile. Otherwise, an explicit time-delay 

dependence arises, and a modification of the line 

shape due to spectral interference occurs. In case 

2 we obtain: 

    ̃   (   )  
 

     
 {        

    
 (    )      (    )}  c c  

(11) 

 

For     , i.e. vanishing perturbation, equation 

(11) also yields a time-delay-independent 

Lorentzian line shape. By contrast,      again 

results in a time-delay-dependent absorption 

spectrum. The Fourier transform [equation (9)] 

can now be evaluated analytically so that it is 

possible to identify the terms of interest in the 

final representation shown in figure 3. For case 1, 

substituting equation (10) into equation (9) yields 

the 2DAS 
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whereas for case 2 the respective result is 
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where   ( ) is the Dirac-  function. Figure 3 (a), 

(e), and (i) show the time-delay scans, i.e. the 

absorption spectrum     ̃ (   ) as a function of 

the delay, for some examples of non-resonant 

(case 1) and resonant (case 2) coupling. The 

observed structures closely resemble many recent 

attosecond transient absorption studies involving 

perturbed-polarization decay [14,39-46]. Figure 

3(a) reveals hyperbolic structures (    
 const.) accompanied by spectral broadening for 

   . This is a result of spectral interference of 

the two temporal regions [I and II in figure 1 (b)]. 

A physical example is the depletion of the 

excited state by means of a strong-field ionizing 

NIR laser pulse as considered in reference [40]. 

These strong hyperbolic features are suppressed 

in the other two examples [figure 3(e) and (i)] of 

weak resonant coupling. By contrast, they exhibit 

fast  -dependent rippling, which is due to 

quantum interference of the two coupled states, 

and thus characteristic for resonant coupling. The 

beating frequency    is given by the energy 

difference of the states. According to 

the   (    )  term in equation (11) the beating 

frequency along   is modified by  , such that 

only at the resonance position (   ) the beating 

frequency exactly equals the energy spacing of 

the states. A result of this effect is a tilting of the 

ripples with increasing  . 



 Figures 3 (b), (f), (j), and (c), (g), (k), show 

magnitude and phase of the corresponding 2DAS 

 ̃ (   ), respectively. The last column [(d), (h), 

(l)] exhibits the real part of the 2DAS, which 

reveals different structural symmetries according 

to the phase modification. The characteristic 

structures of the 2DAS magnitude plots are peaks 

and diagonals of slope 1, which arise from 

equations (12) and (13) for the non-resonant case 

1 and the resonant case 2, respectively. The two 

terms in square brackets represent complex 

Lorentzian profiles centered at the diagonal lines 

         in the two-dimensional 

representation for the resonant case 2. For the 

non-resonant case 1 the line is defined by 

      since the phase is not periodically 

modulated by  . This means that the vertical 

location of the peak at the resonance frequency, 

i.e.    , directly reveals the modulation 

frequency of the laser-induced phase, which is 0 

in case 1 and    in case 2. Thus, the resonant 

coupling of states can be identified with peaks 

located at the energy difference of the coupled 

states in the 2DAS. The tilt of the diagonal is 

such that it points towards the energy of the 

coupled state on the   axis. In contrast, non-

resonant features of laser–atom interactions like 

strong-field ionization and ponderomotive or 

Stark shifts usually contribute near    .  

Finally, figures 3 (c), (g), (k) and (d), (h), (l) give 

access to the phase of the complex quantity 

 ̃ (   ). From this representation, the constant 

phase shift      of the dipole moment right after 

interaction with the NIR laser pulse can be 

extracted. For the diagonals (        ) of 

the resonant interaction of case 2 equation (13) 

reduces to 

 

 ̃   (   )  
    (    )

 (     )
       (14) 

 

Figure 3. Structural building blocks of the XUV-2DAS (Dipole-control model results). Top row shows case 

1, a factor-like modification of an excited-state dipole moment at time-delay   after excitation (case 1:   
    

               ). The lower rows show two examples of case 2, i.e. sum-like modification at   (case 2: 

        
       ; (I):                      eV; (II):              ⁄            eV). We 

chose           eV as for the sp23+ state in helium. The first column (a), (e) and (i) displays the time-delay 

scans     ̃ (   ) as directly observable in experiments. The second column [(b), (f), (j)] contains the 

magnitude of the 2DAS  ̃ (   ) of (a), (e), and (i). The three graphs exhibit diagonal and peak structures in 

direct correspondence to the functional form of    Finally, the third [(c), (g), (k)] and fourth [(d), (h), (l)] 

column show phase and the real part of  ̃ (   ), respectively. The shape of      ̃ (   ) also allows for the 

retrieval of the laser-induced phase change. 



At the resonance frequency     the formula 

further simplifies to  ̃   (   )  
   

  
  (     ). 

The phase is then extracted as 

        ̃   (   )     (15) 

 
The same procedure can be applied to the non-

resonant interaction of case 1. On the diagonal 

(     ) equation (12) evaluates to 
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From the argument of this expression the phase 

   can also be retrieved.  

With the basic structure of the 2DAS understood 

in terms of the general dipole-control model, we 

now apply the technique to a non-perturbative 3-

level simulation of an absorption experiment in 

helium, and to a set of experimental data of the 

s 
   

 doubly excited state in helium. The 

experimental setup is shown schematically in 

figure 4. The s 
    state couples to the  s   state 

via a resonant two-NIR-photon transition (NIR 

laser intensity        W/cm
2
, pulse duration 

   fs, center wavelength 730 nm) via the 

intermediate     state. For additional 

experimental details see reference [24]. For the 3-

level simulation we considered the states  s   

(  ),    (  ), and s 
   
(  ). The XUV 

excitation of the states    and    is treated 

perturbatively (   cannot be accessed from the 

ground state), whereas the laser-coupling of all 

excited states was treated as a strongly coupled 3-

level system, for which we solved the time-

dependent Schrödinger equation  
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numerically. Here,    ( )          ( ) are the 

couplings in terms of the transition dipole 

moments     and the time-dependent laser field 

    ( ). To account for the autoionizing nature 

of these states, the diagonal matrix elements 

          incorporate decay by means of 

their imaginary part. In addition, the 

wavefunctions are multiplied with the 

corresponding Fano phase factor [24] to account 

for the originally asymmetric Fano line shapes. 

 

As discussed above, for case 2 of resonant 

coupling, we show in figure 5 how amplitude and 

phase information can be extracted from the 

measured and simulated data. The energy 

difference between the coupled states s 
    and 

 s   can be clearly identified from the vertical 

position of the diagonal structure at the resonance 

frequency     . It reads      (       ) 
eV in the experiment and       (         ) 
eV in the simulation, which agrees with the 

expected value     s       s        eV 

obtained from spectra using synchrotron light 

sources [47,48]. 

Figure 4. Schematic view of the experimental setup. The XUV light is generated by the NIR laser via HHG 

in a neon-filled gas cell. A split mirror is used to introduce a time delay 𝜏 between the co-propagating pulses, 

which are then refocused into the target gas cell containing helium. After reflection from a variable-line-space 

(VLS) grating the transmitted light is recorded with a CCD camera in flat-field geometry. An aperture and 

spectral filters are used to control the NIR intensity and to spatially separate the NIR from the XUV light, 

respectively. 



At this resonance frequency we read the phase 

jump    directly from the phase plot, which 

yields for the simulation    s   (      
   ) rad and for the experiment       (  
       ) rad. In addition to directly reading out 

the phase we can compare the structure of the 

phase and the real part of the 2DAS with the 

model data calculated for a certain phase   . In 

figure 5 we show the result for     , in good 

agreement with the experimental data. It is worth 

mentioning that the phase jump      depends 

critically on the definition and the exact 

knowledge of the relative timing of excitation 

and coupling pulses. This is of particular 

importance when comparing different sets of 

data, e.g. experiment and simulation, where a 

common time basis ('time zero') has to be 

established on a sub-fs scale. To circumvent this 

issue, data with a common definition of time zero 

is required, which then enables direct access to 

time-dependent phase shifts. 

Finally, figure 5 (k) shows the integrated 

magnitude of the Fourier peak versus the 

coupling laser intensity. For moderate intensities 

the relation is linear as expected from 

perturbation theory: For the two transition steps 

 s        (   ) and       s 
   

 (   ) the 

dipole coupling terms are         and        . 
Thus, the amplitude    (see figure 2) is 

proportional to                           .  

In summary, we introduced a general framework 

to understand resonant and non-resonant time-

delay-dependent dipole dynamics driven by short 

pulsed laser fields. In a two-dimensional 

representation (2DAS) resonant and non-resonant 

interaction pathways can be separated and 

analyzed. Furthermore, this method allows for 

the extraction of amplitude and phase 

modifications of atomic dipole moments of 

coupled states interacting with strong pulsed laser 

light. The analytical description provides 

physical insight into commonly observed features 

Figure 5. Comparison of a 3-level non-perturbative simulation, experiment, and dipole-control model for 

amplitude and phase retrieval. For (a) – (i) the rows indicate the shown quantity [magnitude, phase, and real 

part of  ̃ (   )] and columns indicate the data set [3-level simulation, experiment, and dipole-control model 

assuming  ( )        
       ]. All plots show the coupling feature of the sp23+ state. (j) shows an overview 

of the involved states in the 2d representation via      ̃ (   ) as observed in the experiment. (k) displays the 

integrated magnitude of the peak displayed in (b) versus the NIR laser intensity. It reveals the linear relation as 

expected from second-order perturbation theory. The linear fit does not intersect at the origin due to background 

in the 2DAS magnitude, which is caused by noise of the experimental data. 



in transient absorption spectroscopy of perturbed 

polarization decay. As a first application, we 

experimentally observed laser-induced coupling 

of quantum states in the benchmark system of 

helium using ultrashort laser pulses. The 

presented understanding allows for a qualitative 

and quantitative comparison between theory and 

experiment, and thus proves the validity and 

power of the introduced 2d spectroscopy method. 

In the future the technique can be applied to 

study multi-state coupling processes, where the 

Fourier analysis allows to disentangle the 

individual couplings between states. It may thus 

also be helpful for studying more complex 

systems such as many-electron atoms and 

molecules. By adding a precise in-situ intensity 

measurement and characterization of the coupling 

laser it would even become possible to quantify 

the coupling dipole-matrix elements. The two-

dimensional method introduced here allows to 

separate the contributing coupling pathways in a 

manner similar to—though qualitatively different 

from—traditional 2d spectroscopy [28], but 

allows for implementation in the XUV domain. 

The extension into the soft- and hard-x-ray 

spectral region at Free-Electron Lasers (FELs) 

appears feasible in the near future. 
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