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In this paper we present a data analysis approach applicable to the potential saddle-point fly-by mission
extension of LISA Pathfinder (LPF). At the peak of its sensitivity, LPF will sample the gravitational field in
our Solar System with a precision of several fm=s2=

ffiffiffiffiffiffi
Hz

p
at frequencies around 1 mHz. Such an accurate

accelerometer will allow us to test alternative theories of gravity that predict deviations from Newtonian
dynamics in the nonrelativistic limit. As an example, we consider the case of the Tensor-Vector-Scalar
(TeVeS) theory of gravity and calculate, within the nonrelativistic limit of this theory, the signals that
anomalous tidal stresses generate in LPF. We study the parameter space of these signals and divide it into
two subgroups, one related to the mission parameters and the other to the theory parameters that are
determined by the gravity model. We investigate how the mission parameters affect the signal detectability
concluding that these parameters can be determined with the sufficient precision from the navigation of the
spacecraft and fixed during our analysis. Further, we apply Bayesian parameter estimation and determine
the accuracy to which the gravity theory parameters may be inferred. We evaluate the portion of parameter
space that may be eliminated in case of no signal detection and estimate the detectability of signals as a
function of parameter space location. We also perform a first investigation of non-Gaussian “noise glitches”
that may occur in the data. The analysis we develop is universal and may be applied to anomalous tidal
stress induced signals predicted by any theory of gravity.
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I. INTRODUCTION

LISA Pathfinder (LPF) [1] is a technology demonstration
mission for future space-based gravitational-wave observa-
tories, such as the Laser Interferometer Space Antenna
(LISA). LPF is designed to test many of the challenging
technologies needed for space-based gravitational-wave
detectors and is planned to be launched in July 2015.
On the basis of the LISA concept, “The Gravitational
Universe” theme (with eLISA as foreseen implementation)
was proposed to the European Space Agency (ESA) [2] and
was selected as a science theme for the third large-class
mission [3] to be launched in 2034 within the ESA Cosmic
Vision science program. eLISA is a reduced version of
the original LISA design that will nevertheless be able
to observe numerous extremely interesting sources of
gravitational waves.
LPF is a compact version of one arm of eLISA, designed

to verify the ability to place test masses in free fall at
the required sensitivity level. It consists of two equal
test masses that are accommodated within one spacecraft.

The instrument measures the relative position of two free-
falling test masses with picometer precision using laser
interferometry, thus being sensitive to the differential gra-
dients of the gravitational potential. LPF will initially be
placed in a Lissajous orbit around L1, the Lagrangian point
of dynamically unstable equilibrium between the Sun and
the Earth, where the gravitational forces and the centrifugal
force cancel out in the noninertial rotating reference frame.
The transition from Earth to L1 will take three months and
will be followed by six months of experiments performed to
verify the on-board technologies and performance of the
satellite [4]. It was noted [5,6] that the combination of design
solutions for the mission, such as the sampling frequency
and the overall measurement sensitivity, would allow LPF to
probe anomalous gravity stress tensors, i.e. ones that deviate
from the Newtonian prediction, in the low gravity regime.
Anomalous stress tensors are predicted by various alternative
theories of gravity and high precision measurements of these
deviations would allow us to test such theories. To this end,
ESA scientists and members of the science and industrial
community have been studying a possible LPF mission
extension. Here we consider the data analysis methods for
such a scenario.*natalia.korsakova@aei.mpg.de
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In the Solar System, the low gravity regime can be
investigated at the saddle points (SPs) of two-body systems,
where the gradients of the gravitational potential of two
gravitating bodies are equal in magnitude and opposite in
orientation. For the Sun-Earth system, the SP is located
about 1231000 km away from L1 towards Earth. A SP is
not an equilibrium point, so it will only be possible to
perform a “fly-by” with LPF. When passing by the SP, LPF
will be sampling the gravity stress tensor in a low gravity-
gradient region. The measured variation of the distance
between the two test masses can be compared to the
theoretical predictions from Newtonian and alternative
theories of gravity. From these comparisons one can infer
(i) if any deviations from Newtonian dynamics occur, and
(ii) constrain alternative theories of gravity.
The data analysis approach developed in this paper

allows for a rigorous analysis of the test made during
the SP fly-by. It aims at exploring the possible deviations
from the Newtonian dynamics by analyzing the gravity
stress tensor measured by LPF.
We consider the class of alternative theories of gravity

that have modified Newtonian dynamics (MOND) in their
nonrelativistic limit. MOND emerged as a possible way
to explain the observations of rotational curves of spiral
galaxies [7–12]. The observations show that the rotational
curves of the galaxies stay constant and do not depend
on the distance from the galactic center, as expected
in Newtonian gravity. MOND (originally proposed by
Milgrom [13]) is a possible heuristic solution to this
problem, in contrast to the introduction of hidden mass
(i.e. dark matter). At the core of the theory is a characteristic
acceleration a0 ≈ 10−10 m=s2 at which a transition occurs,
from the regime accurately described by the Newtonian
field equation, to one in which the gravitational dynamics is
better described by a nonlinear Poisson equation. To embed
MOND into a consistent theory of gravity, we chose Tensor-
Vector-Scalar (TeVeS) as underpinning relativistic theory,
bearing in mind that other choices could be possible. The key
details are presented in Sec. IVB together with the rationale
behind our choice.
Generally speaking, alternative theories of gravity that

incorporate MOND as an additional scalar field can all be
parametrized in the same way. In addition to the function
that describes the transition from the MONDian to the
Newtonian regime, the contribution of the additional
scalar gravity potential introduced by these theories to
the overall physical potential will depend on two param-
eters. The first parameter is also inherited from initial
MOND heuristics and stands for the characteristic
acceleration a0 mentioned earlier. The other parameter
determines the coupling of the additional scalar field to
the overall physical potential. In this respect, the analysis
that is going to be performed here for the TeVeS theory
can be easily extended to the entire class of similar
theories.

In order to study the detection of a signal of a particular
shape in additive noise, as in the LPF SP fly-by scenario,
one must first determine the physical quantities that
influence the form of the signal itself. In our case, we
parametrize the signal in terms of two groups of physical
quantities. The first set of parameters is determined by the
way the stress tensor is sensed by the instrument and will
depend on the fly-by trajectory and the orientation of the
LPF sensitive axis joining the two free-falling test masses.
The second set of parameters is prescribed by the theory
of gravity that determines the anomalous stress tensor
under consideration and varies from theory to theory. The
parameters that come from the experiment setup, or mission
parameters, can be estimated during the flight independ-
ently of the main scientific measurement. The position of
the spacecraft in space as a function of time will be
determined using standard spacecraft tracking techniques,
and its orientation will be measured using on-board star
trackers. One of our goals is to determine whether and how
much the accuracy of these measurements will influence
our ability to detect a deviation from Newtonian gravity.
With this objective in mind, we quantify how mission
parameters variations will influence the measured signal
and how much this differs from the true signal, modeled
using fixed values obtained from other observations.
Primarily, we want to measure (or constrain) the second

group of parameters with LPF and, in case of no signal
detection, to draw conclusions about the validity of a
specific theory of gravity under consideration. We chose
to use a Bayesian approach to estimate the parameter
values. Further, we apply Bayes’ theorem to address the
problem of model selection, in which we must choose
between two models, one that predicts the presence of a
signal in the data and the other that assumes the data to be
noise only. For the analysis of the theory parameters, the
simulated data is constructed by summing Gaussian noise,
with a known amplitude spectral density, and an anomalous
tidal stress signal. We construct simulated signals by
solving the MOND nonlinear Poisson equation [see
Eq. (19)] numerically (with the help of the code provided
by our colleagues from Imperial College London [14]) in a
neighborhood of the Sun-Earth SP and by simulating the
passage of LPF along a given satellite trajectory and with a
fixed tidal stress sampling rate. We show the parameter
estimation results for several representative points in the
parameter space. We also show the outcome of the noise-
only scenario and determine the area of the parameter space
that will be ruled out in case of no signal detection.
Furthermore, we present model selection results for several
points in the parameter space. Finally, we apply the data
analysis framework to realistic data from an LPF test
campaign and discuss both parameter estimation and model
selection results. This data set is interesting as it contains a
noise artifact that can be misinterpreted by the data analysis
setup as a signal.
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An important remark regarding the example of applying
our data analysis framework to the MOND limit of TeVeS
must be made. Tests for alternative theories of gravity,
including TeVeS, are performed in the strong field regime
by measuring the orbital decay of the relativistic pulsar–
white dwarf binary PSR J1738þ 0333 [15]. The con-
straints imposed to the theory in its strong field limit,
however, differ from the ones that can be imposed in the
weak field limit [16]. The constraints that would follow
from the method described in this paper would therefore be
complementary to, say, the PSR J1738þ 0333 ones and
largely applicable to theories exhibiting the same scalar
field coupling mechanism as TeVeS.
The paper is structured as follows. In Sec. II we discuss

LPF and explain how it performs measurements. In Sec. III
we identify the mission parameters and discuss how the
trajectory of the spacecraft and the projection of the signal
on the LPF sensitive axis will influence the signal.
Section IVA describes the two approaches we develop
for the analysis framework of the mission and theory
parameters. In Sec. IV B, in order to fix an example against
which our data analysis tools may be tested, we briefly
describe the nonrelativistic limit of TeVeS theory of
gravity, and we report on the signal model construction
and the space of theory parameters for this scenario. We
present our results in Sec. V and gather our conclusions in
Sec. VI, where we also discuss possibilities of future work
for this experiment.

II. LISA PATHFINDER

The task of measuring the residual differential accel-
eration of two free-falling test masses is one of the main
objectives of the LPF mission and, therefore, the conver-
sion from the observed differential displacements to differ-
ential accelerations has been analyzed in depth [17,18].

A. LPF measurement

LPF measures differential displacements between
two free-falling test masses and is thus sensitive to their
differential acceleration [17]. Consider the relative motion
of two masses that follow the geodesics of the gravitational
field and let the vector ζ denote the separation between the
two test masses. The components of this vector may be
expressed as ζi ¼ xi1 − xi2, where x

i
f1;2g are the coordinates

of the two test masses. Working in Cartesian coordinates,
the equations of motion for the test masses in Newtonian
gravity are

d2xi1
dt2

¼ −∂ΦNðx1; tÞ
∂xi ð1Þ

and

d2xi2
dt2

¼ −∂ΦNðx2; tÞ
∂xi ; ð2Þ

where ΦN is the Newtonian gravitational potential.
The relative acceleration is thus given by

d2ζi

dt2
¼ d2xi1

dt2
− d2xi2

dt2

¼ −ζj ∂2ΦN

∂xi∂xj þ oðζiζiÞ ¼ −Ei
jζ

j þ oðζiζiÞ; ð3Þ

where summation over repeated indices is implied, the
gravitational potential is expanded in terms of the separa-
tion vector up to the first order, and Eij ¼ ∂2ΦN=∂xi∂xj is
the gravitational tidal field in Cartesian coordinates [19].
LPF has one sensitive axis that is oriented along the line

joining the two free-falling test masses. By projecting
Eq. (3) along this axis, one obtains

d2ζi
dt2

ζ̂i ¼ −ζ̂iζj ∂
2ΦNð~x; tÞ
∂xi∂xj ; ð4Þ

where ζ̂i ¼ ζi=∥ζ∥ is the ith component of the unit vector
in the ζ direction. The diagonal components of Eij
contribute to the relative acceleration of the test masses,
whereas the remaining components contribute to their tilts.
The diagonal components of the stress tensors are larger
than the nondiagonal ones, therefore we will consider only
the relative acceleration contribution.

B. Estimation of the differential test mass acceleration

LPF is designed to keep the distance between the two test
masses constant below 1 mHz by accounting for external
forces, whereas at the sensitivity frequencies of 1–30 mHz
the test masses are in free fall. Both test masses are
accommodated within one spacecraft and free fall is
achieved by controlling the position of the spacecraft
relative to one test mass. The position of the second test
mass is then controlled relative to the first outside the LPF
sensitive frequency band. The differential gravitational
force can thus be recovered from the measurement of
the differential displacement. An anomalous stress tensor
predicted by an alternative theory of gravity may therefore
be sensed by LPF as the differential force acting on the test
masses. This is performed by taking into account the
models [17,18] of the LPF subsystems in the equations
of motion for the test masses along the sensitive axis,
described by

a ¼ ½D−1I−1 þ C�o; ð5Þ

where o ¼ ðo1; oΔÞT is read interferometrically along the
sensitive axis of LPF by the two interferometers on board,
o1 being the position of the first test mass relative to the
spacecraft, and oΔ being the position of the second test mass
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relative to the first. a ¼ ða1; aΔÞT, with a1 ¼ d2x1=dt2 and
aΔ ¼ d2ζ=dt2 being the estimated residual acceleration of
the spacecraft and the estimated residual differential accel-
eration of the two test masses, respectively. D represents the
dynamics of the spacecraft, I the interferometer sensing
matrix, and C the controller transfer functions. More
specifically, the dynamics of the spacecraft is

D ¼

2
64

1
ðs2þω2

1
Þ 0

− ðω2−ω1Þ2
ðs2þω2

1
Þðs2þω2

2
Þ

1
ðs2þω2

2
Þ

3
75; ð6Þ

where s is a Laplace domain complex variable and
ω2
f1;2g ¼ kf1;2g=m. The mass of the test mass is m and

kf1;2g are the spring constants that model the gravitational
and electrostatic couplings between the test masses and the
spacecraft. Given the coupling factor δmodeling the degree
to which the differential interferometer picks up motion of
the spacecraft, the interferometer sensing matrix can be
written as

I ¼
�
1 0

δ 1

�
: ð7Þ

Finally, the controller matrix that converts the measured
signal into the commanded forces may be written as

C ¼
�
Hdf 0

0 Hsus

�
; ð8Þ

where Hdf and Hsus are the gains of the drag-free and
suspension control loops along the sensitive axis of LPF,
respectively. The drag-free control loop actuates on the
spacecraft via micro-Newton thrusters, while the suspen-
sion loop actuates on the second test mass by electrostatic
actuation.

C. Noise sources in the LPF measurement

LPF measurements are contaminated by the system
noise. The design of LPF is such that the sensitivity of
the instrument is expected to be limited by the interfer-
ometer shot noise at high frequencies and by force noise on
the test masses at low frequencies. Various tests of the flight
hardware, however, show that the real sensitivity of LPF is
expected to exceed the design requirements [1], as shown in
Fig. 1. The noise current best estimate for LPF is limited by
the electrostatic actuation noise on the second test mass at
low frequencies.

III. IDENTIFICATIONOFMISSION PARAMETERS

In order to parametrize the signals measured by LPF, we
must begin by defining a method to determine the space-
craft trajectory uniquely. Let us fix a right-handed Cartesian
coordinate system with its origin in the Sun-Earth SP, its x
axis aligned with the line connecting the Earth and the Sun,
and its z axis perpendicular to the ecliptic (see Fig. 2). The
trajectory of LPF in the neighborhood of the SP can be
approximated as a straight line. The direction of the
trajectory will be determined by two angles: η, the angle
between the z axis and the direction of the spacecraft
velocity, and φ, the angle between the x axis and the
projection of the velocity vector on the ecliptic. The unit
vector along the trajectory of the spacecraft in the direction
of motion is, therefore,

ðêx; êy; êzÞ ¼ ðsin η cosφ; sin η sinφ; cos ηÞ: ð9Þ

The point of the closest approach of the trajectory to the SP,
ðξx; ξy; ξzÞ, determines the impact parameter, i.e. the dis-
tance of the fly-by, which is the length of the perpendicular
dropped from the SP on the trajectory. The position of the
spacecraft may thus be written as

ðx; y; zÞ ¼ ðξx; ξy; ξzÞ þ ðêx; êy; êzÞr; ð10Þ

where r is the distance from the point of closest approach.
Given the distance to the saddle point, the position of

the closest approach becomes redundant. Therefore, to
avoid the uncertainty the two angles η⊥ and φ⊥ that define
the position of the perpendicular to the trajectory are
introduced:

ðξx; ξy; ξzÞ ¼ ∥ξ∥ðsin η⊥ cosφ⊥; sin η⊥ sinφ⊥; cos η⊥Þ;
ð11Þ

where ∥ξ∥ is the length of the vector ðξx; ξy; ξzÞ. Similarly
to the ðη;φÞ notation previously introduced, η⊥ denotes the
angle between the perpendicular and the ecliptic, while φ⊥
denotes the angle between the x axis and the projection of
the perpendicular on the ecliptic. Notice that the additional
condition,

FIG. 1 (color online). LPF sensitivity. Amplitude spectral den-
sities of the requirements and the current best noise estimates.
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sin η sin η⊥ðcosφ cosφ⊥ þ sinφ sinφ⊥Þ þ cos η cos η⊥ ¼ 0;

ð12Þ
holds for the four angles η, φ, η⊥, and φ⊥ as a consequence
of the orthogonality between the satellite trajectory and the
line of closest approach. This allows us to further reduce the
parameters that determine the perpendicular to the trajec-
tory of the satellite in the neighborhood of the SP down to
η⊥ and signðsinφ⊥Þ. The latter determines whether φ⊥ ∈
ð0; πÞ or φ⊥ ∈ ðπ; 2πÞ.
The signal measured by LPF can be simulated by

sampling the stress tensor along the trajectory with velocity
v and the instrument sampling frequency of 10 Hz. The
velocity of the spacecraft and the sampling frequency
determine the resolution at which the gravity stress tensor
is being sampled.
As a final step, we must define the projection of the stress

tensor on the sensitive axis of LPF. The projection is
determined by the two angles α and β that the sensitive axis
forms with the x axis and the y axis of the coordinate
system, respectively. However, since LPF is held oriented
so that its solar panel faces the Sun, and since we are
considering a neighborhood of the Sun-Earth SP, and
because the sensitive axis of LPF is parallel to the solar
panel, α can be fixed to α ¼ 90°. The projection of the
stress tensor on the sensitive axis is thus determined only by
the angle β, making LPF sensitive to the linear combination
of the two diagonal components of the stress tensor:

d2ζi
dt2

ζ̂i ¼ −∥ζ∥½Eyycos2ðβÞ þ Ezzsin2ðβÞ�: ð13Þ

All in all, the signal can be fully described in terms of the
following set of mission parameters:

λm0 ¼ f∥ξ∥; η;φ; η⊥; signðsinφ⊥Þ; ∥v∥; βg; ð14Þ

which are depicted in Fig. 2.

IV. DATA ANALYSIS

We now introduce the approach to the analysis of the
data that will be acquired with LPF in the vicinity of
the Sun-Earth SP. We describe the model of the data and the
derivation of a matched filter which will be designed to
study the mission parameters. Thereafter, we develop a
Bayesian approach to the analysis of the theory parameters.

A. Data model

The detector noise is modeled as having a frequency
dependent spectrum (see Fig. 1), hence it is more natural to
carry out the analysis in the frequency domain. Wewrite the
measured data as

~xðf; λ0Þ ¼ ~hðf; λm0 ; λt0Þ þ ~nðfÞ; ð15Þ

where ~hðf; λm0 ; λt0Þ and ~nðfÞ are the Fourier transforms
of the signal and the detector noise, respectively.
~λ0 ¼ ðλm0 ; λt0Þ, where λm0 and λt0 denote the mission and
the theory parameters that govern the signal: the former are
listed in Eq. (14), whereas the latter will be discussed in the
course of the paper. We model the noise as Gaussian, with
zero mean and two-sided noise power spectral density

FIG. 2. Schematic of the trajectory parameters. The coordinate system has its origin in the SP (S) and the x axis is parallel to the line
joining the Sun and the Earth and pointing in the direction of the Sun. The z axis is perpendicular to the ecliptic. The spacecraft velocity v is
aligned with the trajectory and represented by the vector OE. The direction of the trajectory is defined by the two angles η (the angle
between the z axis and v) and φ [the angle between x axis and projection of v on the ðx; yÞ plane, shown as the segment OD]. The position
of the spacecraft along the trajectory is determined by the variable r, the distance to the point A where the perpendicular dropped on the
trajectory intersects with it. The length of the perpendicular is given by the parameter ∥ξ∥. The position of the perpendicular is given by two
angles, η⊥ (the angle between the z axis and the perpendicular) and φ⊥ [the angle between the x axis and the projection of the perpendicular
on the ðx; yÞ plane, segment BS]. The angle β determines the projection of the gravity stress tensor on the sensitive axis of LPF.
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SðfÞ ≈ j ~nðfÞj2=Δf; ð16Þ

where Δf ¼ 1=T is the size of the frequency bin, whereas
T ¼ N · Δt with N the number of samples over the
measurement time interval ½0; T� and Δt the time domain
sampling interval. The Fourier transform of the noise
averaged over ensemble is the variance of the noise
σ2 ¼ hj ~nðfÞj2i. The noise models we use are defined by
the theoretical amplitude spectral density (ASD) shown
in Fig. 1.
In order to test our data analysis framework on artificial

data, we must choose a model to produce signal templates.
As anticipated in the Introduction, in this paper we consider
the stress tensor predictions obtained within the nonrela-
tivistic limit of Bekenstein’s TeVeS theory of gravity. This
theory embeds the heuristic description of the dynamics of
galaxies provided by MOND into a consistent relativistic
theory (see Appendix A).

B. Building signal templates

1. Nonrelativistic limit of TeVeS
As we are going to perform the experiment in the Solar

System, we must consider the quasistatic, weak potential,
and slow motion limit of TeVeS [20]. We may thus take the
metric to be time independent. Additionally, as we work in
a neighborhood of the Sun-Earth SP, far enough from both
bodies, we may set the metric to be flat. In the non-
relativistic limit, the full physical potential that determines
the test particle acceleration within TeVeS, ~a ¼ −∇Φ, is
given by the sum of the Newtonian vector potential ΦN and
the scalar potential ϕ, i.e.

Φ ¼ ΦN þ ϕþOðΦ2
NÞ: ð17Þ

Therefore LPF will be measuring Φ, which has to replace
ΦN in Eqs. (1)–(4). The Newtonian potential is given by the
familiar Poisson equation

∇2ΦN ¼ 4πG~ρ; ð18Þ

where ~ρ is the baryonic mass density, whereas the scalar
potential ϕ is determined by the nonlinear Poisson equation

∇ · ½μðkl2ð∇ϕÞ2Þ∇ϕ� ¼ kG~ρ; ð19Þ

where k is a dimensionless constant and l is a constant
length.
The μ function appearing in the last equation is a free

function that governs the transition from the Newtonian
regime to the MONDian one [see Eq. (A3)]. We can
reparametrize its dimensionless argument y≡ kl2ð∇ϕÞ2 in
terms of an acceleration parameter

a0 ≡ ð3kÞ1=2
4πl

; ð20Þ

thus obtaining

y ¼ 3

�
k
4π

�
2
�∇ϕ
a0

�
2

; ð21Þ

where the ratio between the MONDian acceleration and the
acceleration parameter is now manifest. The asymptotical
limits of the μ function must therefore obey the following
requirements:

μðyÞ → 1; for y → ∞;

μðyÞ ≈ ffiffiffiffiffiffiffiffi
y=3

p
; for y ≪ 1;

ð22Þ

where the first condition leads to the Newtonian regime.
The second condition ensures that in the low acceleration
regime, i.e. j∇Φj ≪ a0, the MOND modification originally
proposed by Milgrom [13] generates a different dynamics,
recovering, for example, the one exhibited by rotational
curves of galaxies.

2. Signal model and parameter space

As shown by Eqs. (19)–(21), within the example selected
for this paper, the signal models will be determined by
two parameters k and a0, and a free function, μ. For the
moment, we fix the μ function to the form that was
proposed in [20]. In terms of the notation introduced in
Eq. (15), therefore, λt0 ¼ fk; a0g. The nonlinear elliptical
differential equation which determines the scalar potential
ϕ and hence the tidal stress tensor, Eq. (19), can be solved
numerically [14] (the code that implements the numerical
solution was kindly provided by Imperial College London).
While in [20] the μ-function definition is

y ¼ 3

4

μ2ðμ − 2Þ2
1 − μ

; ð23Þ

the interpolating function μ in our numerical calculations is
fixed via the relation

μ̂ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ̂4

p ¼ k
4π

j∇ϕj
a0

; ð24Þ

where we used the notation μ̂ to explicitly distinguish this
function from the one appearing in Eq. (23). As shown in
Fig. 3, the two functions are in a good agreement. The
advantage of μ̂ is that it may be written out analytically as

μ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4x2

p

2x

s
; ð25Þ

where x ¼ y=3. In solving the nonlinear Poisson equation
numerically, the condition μ ¼ ffiffiffi

x
p

for x < 10−5 is used
[see Eq. (22)].
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To solve Eq. (19) numerically, other than fixing the μ
function, we must prescribe boundary conditions. We use
the rescaled Newtonian potential for this purpose. This is
readily obtained from Eqs. (18) and (19) by taking into
account that μ → 1 as j∇ϕj=ao → ∞ and by applying
Gauss’s theorem. This yields

∇ϕ ¼ k
4π

∇ΦN; ð26Þ

so that the gradient of the physical potential Φ reduces to
the usual Newtonian form with a renormalized gravitational
constant given by

GN ¼
�
1þ k

4π

�
G: ð27Þ

In order to produce signal templates for LPF, as a first
step we compute the spatial derivatives of ∇ϕ at each grid
point. This provides the nine stress tensor components,
namely, ∂2ϕ=∂xi∂xj, where xi;j ¼ x; y; z, at each point of
the lattice. Once this is done, we must prescribe values
for the set of mission parameters listed in Eq. (14) and
sample the stress tensor along the LPF trajectory [Eq. (10)].
The sampling points are determined by the spacings
∥ðΔx;Δy;ΔzÞ∥ ¼ ∥v∥Δt, with time step Δt ¼ 1=fsamp,
fsamp ¼ 10 Hz being the LPF sampling frequency. The
stress tensor components are calculated at each sampling
point by performing a trilinear interpolation on a three-
dimensional irregular grid. The interpolation procedure
starts with a linear interpolation in the x-axis direction.
This is followed by a linear interpolation along the y axis
employing the x-interpolated values. Finally, both the
x- and y-interpolated values are used to perform the linear
interpolation in the z direction.
Our goals are (1) to see how the signal templates change

when varying the two theory parameters k and a0, and (2)
to study their detectability in the noise. The value of the

dimensionless coupling constant k should be of the order
10−2 to be consistent with the cosmological expansion; k ¼
0.03 is chosen in [20]. The characteristic acceleration is
usually set to a0 ≈ 10−10 m=s2, in accordance with obser-
vations of rotational curves of galaxies [21]. We vary both
parameters within reasonable ranges around their “original”
values, so that k ∈ ½0; 0.12� and a0 ∈ ½0; 4 × 10−10� m=s2.
We cover this two-dimensional space of theory parameters
with a 9 × 9 uniform grid (see Fig. 14) and solve Eq. (19)
numerically in the neighborhood of the Sun-Earth SP for all
choices of ðk; a0Þ.1 We then fix a set of trajectory
parameters and produce LPF signal templates by projecting
the computed stress tensor as in Eq. (13), at all points
in the ðk; a0Þ parameter space. Additionally, we set
∂ϕ2=∂xi∂xj ¼ 0 along k ¼ 0 and a0 ¼ 0 m=s2, as pro-
posed in [20]. In order to obtain signal templates for generic
values of k and a0, we use a bicubic interpolation along both
directions. We interpolate the signal templates from the
knows solutions for the stress tensor on the two-dimensional
parameter space. The interpolation is performed for each
sample in the template time series. This is possible since, for
a given set of trajectory parameters, a sample in the template
time series represents the same position in time and in space
for a particular choice of a0 and k.
As a final remark, we note that in some instances the

choice of the theory parameters requires to extend the
templates outside the lattice where the MONDian stress
tensor is calculated. As this extension must be performed in
a Newtonian limit regime, we exploit the scaling relation
between the Newtonian stress tensor (analytically com-
puted, see Appendix B) and the MONDian one: these are
related by a factor k=4π [see Eqs. (26) and (27)], so that
projecting the rescaled Newtonian stress tensor along the
LPF sensitive axis allows us to extend the MONDian
template. An example of this is shown in Fig. 4.

C. Analysis of the mission parameters

In this section we study how the template of the predicted
signal changes when varying the mission parameters. This
knowledge will validate our choice in studying the theory
and the mission parameters independently. This greatly
simplifies the study of theories that predict signals that can
be measured with LPF. To investigate the mission param-
eter space we fix the theory parameters to k ¼ 0.03 and
a0 ¼ 10−10 m=s2, following [20]. In this section, for the
sake of simplicity, we also remove references to the theory
parameters from the notation.
We begin by introducing the concept of a linear filter. In

terms of our problem, it is a signal template with a certain
set of parameters. Its construction is based on the “true”
signal that has a fixed set of (mission) parameters λm0 . In
order to quantitatively assess the influence of parameter
variations, we estimate the response of the filter to “data”

FIG. 3 (color online). Comparison between the interpolating
function used for the numerical calculations and the one
originally proposed in [20].

1Calculations were performed using [22].
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generated using mission parameters λmv that have an offset
Δλm ¼ λmv − λm0 within the range of spacecraft navigation
errors reported in Table I. This table provides the accuracy
with which each parameter can be determined from
navigation system measurements. We report both the errors
on the mission parameters assigned before the flight
(Uncertainty before the flight) and the precision attainable
during the flight by spacecraft navigation system measure-
ments (Uncertainty after the flight) [23,24]. Notice that the
low precision on the angles φ and η before the flight follows
from the uncertainty on the trajectory which depends on
the departure conditions from the Lissajous orbit around
L1 [23] and they will be known better once the trajectory is
chosen.

The correlation between the data, ~x, and a signal
template, ~q, can be calculated as the output of a matched
filter via

Cðτ;ΔλmÞ ¼
Z

∞

−∞
~xðf; λmv Þ ~q�ðf; λm0 Þe−2πifτdf: ð28Þ

The signal at the output of the matched filter is the averaged
correlation function, for which h~xðf; λmv Þi ¼ h ~hðf; λmv Þi
since h ~nðfÞi ¼ 0. We do not take into account the time
delay τ of the signal arrival. We assume that the expected
time of the signal arrival, which is the time when the
spacecraft has its closest approach to the SP, is known.
The error on the time of the signal arrival is embedded in
the parameter that defines the distance from the SP to the
point where the measurement is made. The mean of the
correlation function between the data on the output of
the instrument and the linear filter ~q [26] thus reads

ĈðΔλmÞ ¼
Z

∞

−∞
~hðf; λmv Þ ~q�ðf; λm0 Þdf: ð29Þ

By setting the linear filter to the true template weighted
by the noise power spectral density, i.e.

~q�ðf; λm0 Þ ¼
~h�ðf; λm0 Þ
SðfÞ ; ð30Þ

the filter becomes optimal [27]. An optimal matched filter
is one that maximizes the (SNR)

ρ2 ¼ ĈðΔλm ¼ 0Þ ¼
Z

∞

−∞

~hðf; λm0 Þ ~h�ðf; λm0 Þ
SðfÞ df: ð31Þ

FIG. 4 (color online). Comparison between a template pro-
duced with a numerical calculation and the rescaled Newtonian
background analytically estimated using Eq. (B6). In this
example, k ¼ 0.03 and a0 ¼ 10−10 m=s2. The ∂Φ2=∂z2 and
∂Φ2

N=∂z2 components of the MONDian and Newtonian stress
tensors are plotted. This means that the sensitive axis is parallel to
the z axis of the coordinate system and, therefore, that β ¼ 0.

TABLE I. This table lists the seven mission parameters also shown graphically in Fig. 2 and provides estimates for their uncertainties,
the ranges in which their values are varied to produce Fig. 5, and the values assigned to them during our parameter estimation analyses.
These parameters can be determined from measurements of the spacecraft position which are based on the spacecraft navigation system
without involving the LPF optical readout [23,24]. The uncertainties on the navigation parameter values before the flight, i.e. before the
trajectory for the transition from L1 to SP is chosen, and those determined during the flight are provided in columns three and four,
respectively. The errors on the angle α that defines the orientation of the solar panel are below 1°: as explained in Sec. III, we set α ¼ 90°

and the error may be neglected within the scope of this paper. Additionally, the time of closest approach to the SP is not included in the
parameter list as it is of the order of several seconds and can be neglected with respect to the signal length. The values reported in the last
column are those used for the analysis of the theory parameters. These numbers are based on [25] and [23]. While, recent investigations
show that it may be possible to realize a trajectory directly through the SP, we have conservatively set ∥ξ∥ ¼ 20 km.

Parameter Description Uncertainty before flight Uncertainty after flight Range Value

∥ξ∥ Fly-by distance 5 km 5 km [0; 300] km 20 km
φ Trajectory polar angle 30° ≪ 1° [0; 360]° 30°
η Trajectory azimuthal angle 30° ≪ 1° [0; 180]° 70°
η⊥ Polar angle of the position of closest approach uniform ∥ξ∥ dependent [0; 180]° 90°
signðsinφ⊥Þ Hemisphere of the position of closest approach f−1; 1g � � � f−1; 1g þ1
∥v∥ Spacecraft velocity 0.1 km=s 1 cm=s ½1; 2� km=s 1.5 km=s
β Orientation of the LPF sensitive axis 300 300 [0; 360]° 0°
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In the case of optimal filtering, one searches for the filter
that best fits the data. This provides a way to estimate the
true signal template. In our study, fixing the true signal
template a priori and building a filter upon it allows us to
determine the dependency of the magnitude of the matched
filter response to a signal with its parameters offset by Δλm.
This is the measure generally used to quantify the reso-
lution with which we can distinguish one template from
another. With this in mind, we rewrite the filter in discrete
form,

cðΔλmÞ ¼ cðλm0 ; λmv Þ ¼
XN
j¼1

~hðfj; λmv Þ ~h�ðfj; λm0 Þ
SðfjÞ

Δfj;

ð32Þ
where frequency indices cover the instrument frequency
range and Δfj ¼ fjþ1 − fj, and we consider the ambiguity
function built upon the linear filter as follows:

ĉðλm0 ; λmv Þ ¼
cðλm0 ; λmv Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cðλm0 ; λm0 Þcðλmv ; λmv Þ
p : ð33Þ

The ambiguity function is normalized to yield unity when
the template matches the input signal and less than unity
otherwise.

1. SNR as a function of mission parameters

Estimating the SNR as a function of the mission
parameters provides insight into the optimal values these
should take and allows us to identify any peculiar behavior
of the templates over the parameter space. In turn, if no
peculiarities emerge, we assume that this allows us to
investigate the behavior of the signal in the neighborhood
of a single, representative point of our choice in the
parameter space and to extrapolate results over the whole
range of parameter values. At this location of our choice,
we investigate the behavior of the ambiguity function, as
this allows us to assess how much reduction in SNR would
be caused by deviations from the nominal mission param-
eter values.
We now compute the expected SNR for the two noise

models—current best noise estimate and requirements
noise—discussed in Sec. II C. The SNR values are calcu-
lated using Eq. (31) for 1000 different trajectories each with
random parameter values uniformly sampled within the
ranges given in the fifth column of Table I. As shown in
Fig. 5, the Gaussian fits to the histograms of the SNR
values peak at ρ≃ 23 and ρ≃ 5 for the current best noise
estimate and the requirements estimate, respectively.
When varying the mission parameters sequentially

within the predefined ranges, the remaining parameters
are fixed to the values given in the last column of Table I.
The first parameter we vary is the sensitive axis ori-

entation angle β. As seen in Fig. 6, the SNR is not very

sensitive to the choice of β and that the optimal value for β
for both noise realizations is β ¼ 0° or β ¼ 180°. We will
thus fix β ¼ 0° for the analysis and for the experiment
planning.
The SNR exhibits a smooth behavior also when the fly-

by distance and the spacecraft velocity are varied, as shown
in Figs. 7 and 8, respectively. We notice that, as is to be
expected, the closer LPF flies to the SP, the higher the SNR
is, because tidal stress deviations are stronger, whereas the
specific value of the spacecraft velocity is not very crucial
in the interval reported in Table I.
Similarly, the SNR is smooth in the φ-η subspace, as

shown in Fig. 9. These are the two angles that define the
orientation of the spacecraft trajectory. While the SNR is
flat in φ, it is maximum for η ¼ f90°; 270°g. In these
specific cases we see that more SNR is accumulated if LPF
flies within the ecliptic plane and that the direction of flight
within this plane has minimal influence.
As the range of values covered by η⊥ depends on the

combination of other parameter values via Eq. (12), η⊥

FIG. 5 (color online). Fraction of trajectories n with SNR value
specified on the horizontal axis. The SNR was calculated using
1000 trajectories with randomly varied parameters for both the
current best noise estimate and the requirements noise. The
parameter values were uniformly sampled over the ranges given
in the fifth column of Table I. The curves are the Gaussian fits to
the discrete distributions that were obtained.

FIG. 6 (color online). SNR as a function of the orientation angle
of the sensitive axis β for the two noise realizations. The
remaining mission parameters are fixed according to the set of
values given in the last column of Table I.
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cannot span the whole interval [0,180]° for a specific choice
of η and φ. Therefore, we do not present SNR estimates as a
function of η⊥. We note, however, that in the cases we
considered the dependence of the SNR on η⊥ is weak.

2. SNR loss due to mismatched mission parameters

Having established the dependence of the SNR on the
mission parameter space, we may now study the loss of
SNR as a function of parameter mismatch within the known
navigation uncertainties on the mission parameters. As
discussed previously, we fix β ¼ 0°. At the same time, even
though η has its highest SNR estimate for η ¼ 90°, we will
choose it to be η ¼ 70° in order to avoid performing our
analyses in the best case scenario. Contrary to the align-
ment of the LPF sensitive axis, the value of η depends on
the maneuvers that are necessary for LPF to leave the
Lissajous orbit around the first Lagrangian point. Further,
the option of multiple fly-by’s [23] implies different
estimates for the angle values. We therefore keep this
parameter away from its optimal value during our analyses
and avoid choosing a trajectory within the ecliptic plane.
Hereafter, we proceed by taking one-dimensional slices

through the parameter space, fixing six parameters out of
seven to the values listed in the last column of Table I. The
parameters are varied only around their true values, i.e. the
values listed in Table I, which we treat as the parameters of
the signal buried in the data. All parameters are varied
within intervals that include the spacecraft navigation errors
listed in Table I. Similarly to what we did for SNRs, we
estimate the ambiguity function [Eq. (33)] between tem-
plates with varied parameter values and the template with
all parameters set to the values listed in Table I. When the
ambiguity function varies very little, we can assume the
parameters are essentially exactly known and can be fixed
during the analysis of the theory parameters.
Our results for the fly-by distance ∥ξ∥ are shown in

Fig. 10. The true values of the mission parameters follow

FIG. 7 (color online). SNR as a function of the distance from
the SP ∥ξ∥ for the two noise realizations. The remaining
parameters are fixed according to the set of values given in
the last column of Table I.

FIG. 8 (color online). SNR as a function of the spacecraft
velocity v for the two noise realizations. The remaining param-
eters are fixed according to the set of values given in the last
column of Table I. We vary the values of velocity within the larger
range than given in the Table I, i.e. from 0 to 4 km=s, to observe
the maximum of SNR.

FIG. 9 (color online). SNR as a function of the angles φ and η
that determine the direction of the trajectory. The SNR estimates
are plotted for the current best noise estimate. The behavior for
the requirements noise is similar, but with magnitudes in the
range [8; 12]. The remaining parameters are fixed to the set of
values given in the last column of Table I.

FIG. 10 (color online). Ambiguity function for the fly-by
distance ∥ξ∥ for the two noise realizations. The true value of
the parameter is ∥ξ∥0 ¼ 20 km. The remaining parameters are
fixed according to the set of values given in the last column of
Table I.
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Table I, so that ∥ξ∥0 ¼ 20 km. Templates were evaluated
between ∥ξ∥ ¼ 10 km and ∥ξ∥ ¼ 30 km every 1 km and
the ambiguity function ĉð∥ξ∥0; ∥ξ∥Þ was calculated corre-
spondingly, using both LPF noise curves. We find that if the
fly-by distance is mismatched by less then 5 km, i.e.
the navigation error before the flight reported in Table I, the
ambiguity function is greater than 0.999. We conclude that
we can fix this parameter to 20 km for future analyses
and that it does not need to be estimated from the LPF
measurement, but can instead be determined via the
spacecraft navigation system.
The same conclusion holds for the spacecraft velocity v.

We set v0 ¼ 1.5 km=s to be the true value of the parameter
and calculate the ambiguity function ĉðv0; vÞ varying v
between 1.0 km=s and 2 km=s and sampling it every
0.1 km=s. The results are shown in Fig. 11 for both
LPF noise realizations. As is evident, templates are more
sensitive to velocity uncertainties and variations. However,
ĉðv0; vÞ > 0.998 for velocity variations within 0.1 km=s,
which is the value reported in Table I for the uncertainty
before the flight. Further, v may be determined during the
flight with an uncertainty of 1 cm=s, so we assume this
parameter to be fixed at 1.5 km=s during future analyses.
Next, we vary the angles φ and η that determine the

orientation of the spacecraft trajectory. Our results for the
ambiguity function are presented in Fig. 12. The true
parameter values are φ0 ¼ 30° and η0 ¼ 70°. We consider
an interval of 10° around both values and sample each
interval every 1°. The contours shown in the figure are for
the current best noise estimate. The elongation relative to
the ecliptic changes the template more than the angle that
defines the inclination to the line connecting the Earth and
the Sun. Despite the big uncertainty in these parameters
before the experiment (see Table I), the errors on the
determination of these parameters during flight are very
small (≪ 1°), so that they, too, may be assumed to be fixed
to their true values for future analyses. The result for the
requirements noise is very similar to the result for the

current best noise estimate, therefore we will not display
them here.
Finally we consider the position of the perpendicular

to the trajectory determined by signðsinφ⊥Þ and η⊥.
For signðsinφ⊥Þ there will be no uncertainty after the
flight and for the η⊥ the results are presented in Fig. 13.
They show that the signal templates are not sensitive to
variations of this angle.
To summarize, we picked a specific location in the

mission and theory parameter space and investigated the
behavior of the ambiguity function. Within the predicted
uncertainties on the mission parameters reported in Table I,
the ambiguity function drops minimally compared to the
case of exactly matching templates. By assuming that this is
the case for all other possible parameters space locations,
we make the accurate approximation that the mission

FIG. 11 (color online). Ambiguity function for the spacecraft
velocity v for the two noise realizations. The true value of the
parameter is v0 ¼ 1.5 km=s. The remaining parameters are fixed
according to the set of values given in the last column of Table I.

FIG. 12 (color online). Two-dimensional ambiguity function
for the angles φ and η that determine the direction of the
spacecraft trajectory. The results are obtained with the current
best noise estimate model. The true values of the parameters are
set to φ0 ¼ 30° and η0 ¼ 70° and the remaining parameters are
fixed according to the set of values given in the last column of
Table I. Both angles are varied with steps of 1°. The closed
contour indicates the location of ĉ ¼ 0.99998.

FIG. 13 (color online). Ambiguity function for the angle η⊥
which defines the position of the perpendicular to the trajectory
for the two noise realizations. The true value of the parameter is
η⊥ ¼ 90° The remaining parameters are fixed according to the set
of values given in the last column of Table I.
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parameters can be assumed to be “known” without any loss
of generality. They are no longer search parameters, which
leaves only the theory parameters as unknowns and as the
sole target of the search. The analysis of the theory
parameters will therefore not require the mission param-
eters to be measured, nor will it need them to be considered
during parameter estimation and model selection. In other
words, we can factor the mission parameters out of the
theory parameter analyses.
Additionally, we were able to determine the optimal

values of β—the LPF sensitive axis orientation—and η—
the angle between the spacecraft trajectory and the
perpendicular to the ecliptic plane. In the latter case, we
showed that the optimal trajectory lies in the plane of the
ecliptic.

D. Analysis of the theory parameters

We now discuss the data analysis framework to study the
signal predicted by various alternative theories of gravity. We
apply this framework to the case of the TeVeS theory. More
specifically, having fixed an interpolating function μ, we
study the ðk; a0Þ parameter space, where k is a dimensionless
coupling parameter and a0 is a characteristic acceleration
scale (see Sec. IVB 2). We introduce a parameter estimation
method based on a Bayesian approach. With this method,
information regarding the parameters of the theory can be
extracted from the data. Further, we exploit Bayes’ theorem
to perform model selection, choosing between the hypothesis
of having a signal in the noise and the null hypothesis
according to which the data consists of noise only.
We discuss how parameter estimation results can be

assessed in the case of absence of a signal and how this
allows us to rule out portions of the parameter space.
Finally, we show how model selection can be applied to
realistic data that contains noise artifacts. The results of this
study will show whether a glitch in the data can be
misinterpreted as a signal and where this will be localized
in the parameter space.

1. Bayesian parameter estimation

Following Bayes’ theorem, the posterior distribution
pðk; a0jf~xg; IÞ of k and a0 given the data f~xg and the
relevant background information I reads

pðk; a0jf~xg; IÞ ¼
pðf~xgjk; a0; IÞpðk; a0jIÞ

pðf~xgjIÞ ; ð34Þ

where pðk; a0jIÞ is the prior distribution on the parameters,
pðf~xgjk; a0; IÞ is the likelihood, and pðf~xgjIÞ is the
Bayesian evidence, which is the marginal probability
density of the data and normalizes the posterior. The data
model is the sum of a deterministic signal and Gaussian
noise and is computed in the frequency domain, as
described in Sec. IVA. We therefore write the likelihood
of the Fourier transformed data f~xg as

pðf~xgjk; a0; IÞ ¼
YN=2

j¼1

1

σ2j2π
exp

�
−
j~xj − ~hjðk; a0Þj2

2σ2j

�
;

ð35Þ

where N is the number of samples over the measurement
time interval. In this expression, the variance of the noise σ2j
is calculated from the (PSD) normalized by the width of the
frequency bin σ2j ¼ SðfjÞ=Δf [see Eq. (16)]. The noise
model is based on the theoretical estimates of the noise for
LPF (see Fig. 1). In writing the expression for the like-
lihood, we assumed that each frequency bin is statistically
independent, so that the likelihood can be written as the
product of bivariate Gaussian probability density functions.
As a result of the parameter estimation, we shall obtain a

joint posterior distribution for parameters k and a0.
However, we are also interested in estimating each param-
eter separately after performing the experiment. To obtain
the posterior distribution of each parameter separately, we
marginalize the joint distribution for the two parameters
over the other parameter, i.e.

pðkjf~xg; IÞ ¼
Z

∞

−∞
pðk; a0jf~xg; IÞda0; ð36aÞ

pða0jf~xg; IÞ ¼
Z

∞

−∞
pðk; a0jf~xg; IÞdk: ð36bÞ

These marginal distributions represent our belief in a
specific value of one of the two parameters and yield
the uncertainty on the parameter estimate following the
experiment.

2. Prior space

As a first step to set priors in the (k; a0) parameter space,
we restrict it using the following considerations. We
assume that, within some precision, the gradient of the
gravitational potential is Newtonian in the nonrelativistic
limit at a distance from the SP equal to the distance from
the SP to the Earth. The gradient of the non-Newtonian
potential at this distance depends on the parameters k and
a0 and allows us, therefore, to impose restrictions on the
combination of these parameters. Eq. (19), which governs
the non-Newtonian potential ϕ, depends on the μ function,
which goes to unity in the Newtonian limit, when its
argument becomes sufficiently large. Taking the definition2

of the interpolating function μ given in Eq. (23) and
expanding it in the j∇Φj=a0 ≫ 1 limit, when μ → 1, we
obtain

y ¼ 3

4ð1 − μÞ þOð1 − μÞ: ð37Þ

2We remark that the interpolating function used in the
numerical calculations defined in Eq. (24) and the one expanded
here correspond in the limit we consider, as shown in Fig. 3.
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Equations (17) and (26) can then be used to express the
argument of the μ function as

y≡ kl2j∇ϕj2 ¼ k3l2

16π2
j∇Φj2; ð38Þ

where higher order corrections in ðk=4πÞ are neglected.
Combining the last two results and expressing l in terms of
a0 as in Eq. (20) yield

μ ≈ 1 −
64π4

k4
a20

j∇Φj2 þOðy−2Þ: ð39Þ

If we fix an admissible error ε2 on deviations of μ from
unity, we readily obtain the constraint

a0
j∇Φj <

k2

8π2
ε: ð40Þ

Imposing this restriction allows one to exclude certain
combinations of k and a0.
In our analysis, we set ε ¼ 10−5, and the resulting,

restricted parameter space is shown in Fig. 14. This is a
conservative value compared to the latest boundaries
imposed on the precision of the additional acceleration
allowed in the Solar System [28]. We do not take into
account such stringent requirements, as we want to develop
and illustrate a data analysis scheme that does not auto-
matically depend on other astronomical restrictions of the
parameter space.
We consider a uniform prior parameter distribution

(known as flat or constant prior) for the theory parameters.
We thus set the prior for a0 and k to be flat in the admissible
portion of the parameter space P, the area of which is
given by

A ¼
Z

kmin

0

a00ðkÞdkþ ðkmax − kminÞðamax
0 − amin

0 Þ; ð41Þ

where kmin is the value for which a00ðkminÞ ¼ amax
0 ¼ 4 ×

10−10 m=s2 and a00ðkÞ is a solution of Eq. (40). Moreover,
the values of the modified stress tensor are set at the lower
boundary of the parameter space amin

0 ¼ 0 to ∂2ϕ=
∂xi∂xj ¼ 0. It reflects the (GR) limit of TeVeS that can
be obtained when l → ∞ [20]. Equation (20) shows that
this corresponds to a0 → 0. We therefore have

pðk; a0jIÞ ¼
�
1=A ðk; a0Þ ∈ P

0; otherwise:
ð42Þ

Flat priors depend on no underlying knowledge on the
parameters, except the assumptions made on their span. As
discussed in Sec. IV B 2, the ranges for the theory param-
eters are chosen here on the basis of astrophysical obser-
vations [21] and in order to keep the theory consistent [20].
As we consider a constant prior, with the exception of

the prior boundary constraints, the shape of the posterior
parameter distributions will be dictated only by the like-
lihood function. We note that our Bayesian analysis scheme
allows for more physically realistic priors which opens a
way for the future analyses of different theoretical models.

E. Model selection

The framework for model selection that we develop here
is based on the Bayesian approach to model selection and
can be applied to a variety of hypotheses. For example, we
can test a model that assumes the data is the sum of a signal
and Gaussian noise, a model that assumes that the data is
Gaussian noise only, a model that assumes the data is non-
Gaussian noise, a model that assumes Gaussian noise with
glitches, and so forth.
Any number of models Mi can be defined and Bayes’

theorem [see Eq. (34)] can be directly applied as follows:

pðMijf~xg; IÞ ¼
pðf~xgjMi; IÞpðMijIÞ

pðf~xgjIÞ : ð43Þ

This expression tells us how to determine the posterior
probability pðMijf~xg; IÞ, which is the probability of the
ith model Mi being correct, given the data f~xg and the
background information I. The denominator is the Bayesian
evidence, a normalization term that reads

pðf~xgjIÞ ¼
X
i

pðf~xgjMi; IÞpðMijIÞ; ð44Þ

where pðf~xgjMi; IÞ is the evidence for the model Mi and
pðMijIÞ is the model prior.
To properly normalize the model posterior distribution,

however, one must know all possible models in order to
compute Eq. (44) and hence Eq. (43). This may be avoided
by considering the ratio between model posteriors, usually
referred to as posterior odds ratio. For two models M1

and M2, this reads

FIG. 14. The ðk; a0Þ parameter space. The shaded area repre-
sents the part of the parameter space ruled out by Eq. (40).
Crosses indicate points where Eq. (19) was solved numerically.
Signal templates are built upon these solutions and are used, in
turn, to determine signal templates at a generic point (k; a0) via
bicubic interpolation.
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pðM1jf~xg; IÞ
pðM2jf~xg; IÞ

¼ pðf~xgjM1; IÞ
pðf~xgjM2; IÞ

pðM1jIÞ
pðM2jIÞ

: ð45Þ

The ratio between the evidences for the two models
appearing on the right-hand side of the equation is called
the Bayes factor. The second fraction on the same side
of the equation, pðM1jIÞ=pðM2jIÞ, is the prior model
odds. The posterior odds ratio represents our confidence in
one model against the other, based on the data and the
background information I. Here pðf~xgjM; IÞ is the like-
lihood marginalized over its entire parameter space for each
model.
As our goal is to quantify our confidence in signal

detection, we introduce two ways to model the measured
data. The first model, labeled S, describes the data as the
sum of a signal and of Gaussian noise, i.e.

~xj ¼ ~hj þ ~nj: ð46Þ

The second model, with label N , describes the data as
Gaussian noise only, that is,

~xj ¼ ~nj: ð47Þ

The ratio between the S and N model posteriors is thus

pðSjf~xg; IÞ
pðN jf~xg; IÞ ¼

pðf~xgjS; IÞ
pðf~xgjN ; IÞ

pðSjIÞ
pðN jIÞ : ð48Þ

The Bayesian evidence for a model is calculated by
integrating the joint probability density for the data and
parameters over the parameter space of the model. In our
MOND example, the evidence for the S model reads

pðf~xgjS; IÞ ¼
Z Z

P
pðf~xg; k; a0jS; IÞdkda0

¼
Z Z

P
pðf~xgjk; a0;S; IÞpðk; a0jS; IÞdkda0:

ð49Þ

This is a weighted integral of the likelihood, pðf~xgjλt0;S; IÞ
[see Eq. (49)], over the space of unknown parameters,
where the weights are set by the prior distributions of
the theory parameters, k and a0 in this case. The Bayesian
evidence thus depends on the volume of the parameter
space and on the priors. If the dimensionality of the
parameter space is large, or if the likelihood and/or the
prior are strongly localized, calculating this integral on a
uniform grid in the parameter space can become computa-
tionally costly. A more practical solution to the problem is
to randomly sample the parameter space. To compute the
integral in Eq. (49), we use the Nested Sampling algorithm,
which was specifically designed to calculate evidence
values [29].

For the N model, there are no theory parameters to
marginalize over, i.e. the theory parameter space is dimen-
sionless (λt0 ¼ f∅g). The evidence is thus simply the noise
likelihood,

pðf~xgjN ; IÞ ¼
YN=2

j¼1

1

σ2j2π
exp

�
−
j ~xjj2
2σ2j

�
: ð50Þ

The difference between the likelihoods for models S and
N , Eqs. (49) and (50), respectively, is that in the latter the
Gaussian noise is expressed as ~nj ¼ ~xj, while in the former
~nj ¼ ~xj − ~hj. The likelihood for model N can thus be
viewed as the likelihood for model S with the signal
amplitude set to zero. For the Bayes factor in Eq. (48), the
likelihood normalization terms cancel out, which simplifies
the calculations, leaving only the exponentials of the
likelihoods and the normalization due to the model priors.
The ratio of the model priors represents our confidence in
one model against the other, based on the background
information I. In the absence of preference for either
model, this ratio is set to unity, while if background
information is available, it can be included in the prior
odds ratio accordingly. We will not prioritize a model over
the other, so that the posterior odds ratio is simply equal to
the Bayes factor.
The posterior odds ratio discussed in this section can be

used to decide whether there was a signal buried in the data
gathered during the SP fly-by and to provide a quantitative
measure of our confidence in a signal detection.

V. RESULTS

We test our data analysis method on artificially simulated
data to assess the performance of the framework and
inspect the various possible outcomes of the experiment.
In order to justify the experiment feasibility, it is important
to establish what conclusions can be made on the basis of
data acquired during the LPF flight. More specifically, we
check the implementation of the parameter estimation and
model selection, and determine how well the parameter
values may be inferred and what choices about the model
that best describes the data may be made.
The artificial data is generated following the model

defined in Eq. (15) and consists of the signal with additive
Gaussian noise characterized by the known ASD of the
instrument noise (see Fig. 1). The real and imaginary parts
of the noise ~nðfÞ are treated as statistically independent and
drawn from a Gaussian distribution with the given σ2ðfÞ
providing

pð ~nðfÞÞ ¼ pðℜ½ ~nðfÞ�Þpðℑ½ ~nðfÞ�Þ

¼ 1

2πσ2ðfÞ exp
�
−
ℜ½ ~nðfÞ�2 þ ℑ½ ~nðfÞ�2

2σ2ðfÞ
�
: ð51Þ

For the signal model ~hðλm0 ; λt0Þ we chose a particular
theoretical prediction for the deviations of the gravity stress
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tensor from the Newtonian case, as discussed in Sec. IV B.
We test our data analysis setup on TeVeS, but we wish to
emphasize that this analysis framework is general and can
be used for any signal predictions.
As shown in Sec. IV C, the mission parameters can be

fixed and do not cause the signal to vary significantly once
they are defined and measured. Throughout the analysis of
the theory parameters, we fix a specific set of mission
parameters values in accordance with Table I. We may thus
write

~hðfj; λm0 ; λt0Þ ¼ ~hðfj; λm0 ; k; a0Þ ¼ ~hðfj; k; a0Þ: ð52Þ

The theory parameter space (k, a0) was discussed in
Sec. IV B 2 and SNRs are calculated following Eq. (31).
Figure 15 shows the SNRs for the chosen LPF trajectory as
a function of (k, a0). For large values of both k and a0 the
SNR reaches values of ∼100 for the current best estimate
and ∼20 for the requirements noise. This implies that the
posterior distributions for the parameter estimates will be
reasonably narrow in those high SNR regions. Conversely,
we expect signals residing in low SNR areas to have
correspondingly broader posterior probabilities.
Given the SNR estimates shown in Fig. 15, we choose a

number of representative points in the parameter space with
high, intermediate, and low SNR values, and estimate their
posterior probabilities. These points are listed in Table II.
We start with point 1, for which k and a0 take their
“standard” values [14]. This point belongs to the high SNR
region. To test the area with the loudest SNRs, we probe
point 2. A third interesting region, where the performance
of our interpolation must be checked, is the area near the
boundary that was imposed on the prior parameter space
[Eq. (40)]. We chose two points here: point 3 and point 4
for low and high SNRs, respectively. Further, we consider

two points with low SNRs: point 5 and point 6. They are
chosen relatively close to each other in order to assess the
area where the transition from the detectable to nondetect-
able signal might occur. Finally, we consider point 7, where
the Newtonian limit of the theory lies and we expect to
find no signal in the data. For each chosen point on the
parameter space we perform 200 simulations with different
noise realizations.

A. Parameter estimation

The experiment can give us insight into how well the
parameters of the theory can be recovered and constrained
from the data. This can be achieved by calculating the
posterior probability distribution for the parameters. We
have an initial prior assumption for the parameter values,
which in our case is a simple uniform distribution over the
predefined parameter space discussed in Sec. IV B 2. We
compute evidence values using a random sampling algo-
rithm (Nested Sampling [30,31]) as a mean to overcome
potential issues due to the sampling of the theory parameter
space, or to its high dimensionality. While the theory
parameter space is two dimensional in our example, we
must be ready to consider theories with a higher number of
parameters. The algorithm and its specific implementation
we used, MultiNest [32], are designed to efficiently sample
a parameter space and to output the samples from the joint
posterior parameter distribution and the Bayesian evidence.
To quantitatively summarize the information on the

posterior distributions of the parameters, it is natural to
use confidence intervals. These indicate the parameter
range within which the area enclosed under the posterior
has a certain probability. This provides an estimate on how
confident we are that the value of a parameter falls in that
range. As is customary, use the confidence interval values
68%, 95%, and 99%, which correspond to 1σ, 2σ, and 3σ
deviations of a parameter from its mean value in the
special case of a one-dimensional Gaussian distribution.
Accordingly, we define the confidence contours

Pððk; a0Þ ⊂ S; IÞ ¼
Z Z

S
pðk; a0jfxg; IÞdkda0

¼ ð68%; 95%; 99%Þ; ð53Þ

FIG. 15 (color online). SNR estimates for the current best noise
estimate (right panel) and the requirements noise (left panel). The
SNRs are calculated at the points in parameter space where the
TeVeS numerical calculations were performed. The triangles
correspond to the values of k and a0 for which the signal
templates were injected into the data (see Table II).

TABLE II. Values of k and a0 for which the signal template was
injected in the data to probe parameter estimation.

Number k a0½10−10 m=s2�
1 0.030 1.00
2 0.080 3.50
3 0.010 1.10
4 0.017 3.10
5 0.100 0.20
6 0.100 0.68
7 0 0
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where the space S corresponds to the minimal volume
underneath the posterior probability that integrates to
predefined probability. The resulting contours also re-
present lines of constant probability density. Figure 16
shows the contour plots of the joint posterior distributions
for the parameters k and a0 for simulated signals located at
selected parameter space positions.
The resulting estimates of the posterior probabilities are

shown in Figs. 16 and 17 for the current best estimate noise

and for the requirements noise, respectively. The results are
presented for a single noise realization. Estimates for the
standard deviation of the posterior distributions of k and a0
averaged over 200 noise realizations for the current best
noise estimate and requirements noise are given in
Table III. For signals with high SNRs (see Fig. 15) the
posterior likelihoods are narrow and exhibit low correlation
between the two parameters. This means that in the case of
signal detection it would be possible to estimate them with

FIG. 16 (color online). Joint posterior probability distribution for the parameters k and a0 using the current best estimate noise model.
Contours represent lines of constant probability density defining regions that enclose 68%, 95%, and 99% of the probability. The panels
represent six signal injections at the first six points in the parameter space listed in Table III.

FIG. 17 (color online). Same as Fig. 16 but for the requirements noise model.
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relatively small uncertainties. For lower SNRs, however,
the error on k is much larger than one on a0. In some cases
the error on k is limited only by the range of the parameter
prior. This scenario will be considered in more detail in
Sec. V B, which is dedicated to the case of noise-only
simulated data.
Using Eqs. (36a) and (36b) we determine the marginal

distributions for the parameters k and a0 and their expected
values. These marginalized posterior distributions allow us
to identify three types of results within our six signal
simulations. As shown in Figs. 18 and 19, for the first type
of result the joint posterior distribution is narrow and well
localized, especially for the current best estimate noise.
In this scenario the marginal distributions of both k and a0
can be estimated relatively well. Results for the second case
can be found in Figs. 20 and 21. This time the posterior is
near the boundary of the prior established in Sec. IV B 2.
The uncertainty on a0 is much broader than the one on k.
Finally, Figs. 22 and 23 show the third kind of result: the
marginalized distribution for k is very broad and is deter-
mined by the range that was imposed on it as a prior. In this
low SNR regime, it will be hard to make estimates for k.

B. The no signal injection case

No deviations from Newtonian gravity potential have
been observed so far in the Solar System. Hence, this is a
particularly important case for our analysis and corresponds
to a data set containing no signal. We consider this case as a
likely outcome of the experiment and wish to assess the
impact that a measurement of data with no signal would
have on the theory parameter space, i.e. which observation-
based restrictions can be placed on the ðk; a0Þ space.
In Figs. 22 and 23, we already saw the shape of the

posterior distribution in the case of low SNRs. We would
expect to have somewhat similar results for the case of a
noise-only data model, i.e. when we set ~hðfj; λm0 ; λt0Þ ¼ 0
in Eq. (15). On the basis of the theory proposed in [20], we
place the Newtonian limit of the theory at a0 ¼ 0, thus
setting the gravity stress tensor to be equal to the
Newtonian stress tensor for all templates on the k axis.

We perform 200 simulations, each with a different noise
realization, for both the current best estimate and require-
ments noise models. We determine 68%, 95%, and 99%
confidence interval for both of them. To visualize the
restriction on the parameter space that follows, we chose a
representative noise realization. The results in Figs. 24 and
25 show uncertainty on the determination of the parameter
k, meaning that a null measurement would not help us
constrain k at all, whereas a0 would be tightly bounded.
We note, however, that the point in the parameter space for
the standard choice of parameters k ¼ 0.03 and a0 ¼
10−10 m=s2 would be ruled out. The average error on
the marginalized posterior distribution of a0 for the current
best noise estimate is Δa0 ¼ 0.055 × 10−10 m=s2, while
for the requirements noise it is Δa0 ¼ 0.154 × 10−10 m=s2.

C. Model selection

We now follow Eq. (48) and compute the Bayes factor3

between our two candidate models S and N using the
signals calculated for the sets of parameters listed in
Table II. This gives a measure of the signal detectability
in noise, depending on the combination of the theory
parameters λt0 ¼ fk; a0g, allowing us to quantify the
confidence in one model relative to the other on the basis
of the outcome of the experiment. As discussed in Sec. IV
E, the S hypothesis assumes that the data is the sum of
noise and a signal that depends on k and a0, while the N
hypothesis assumes it to be noise only and to have no
parameter dependencies. As indicated in Eq. (49), the S
hypothesis requires us to integrate the joint probability
pðf~xg; k; a0Þ over the parameter space of the signal ðk; a0Þ,
whereas the evidence for the noise-only model is simply
given by the likelihood in Eq. (50).
In reality, we will have a single measurement yielding

one value for the Bayes factor which itself is a random
variable subject to variations between noise realizations. By
performing an analysis of the artificial data, however, we
can study the distribution of the Bayes factor and therefore

TABLE III. Average values of the standard deviations Δk and Δa0 of the one-dimensional posteriors of the
parameters. The values are given for the six points in the ðk; a0Þ parameter space where the true signal injections
were made. The averages are determined from 200 different noise realizations (using the current best estimate noise)
and posterior estimates truncated by our priors are artificially reduced.

Current best estimate Requirements noise

k a0½10−10 m=s2� Δk Δa0½10−10 m=s2� Δk Δa0½10−10 m=s2�
0.030 1.00 0.00203 0.096 0.0121 0.687
0.080 3.50 0.00306 0.117 0.0125 0.352
0.010 1.10 0.00087 0.225 0.0295 0.515
0.017 3.10 0.00066 0.422 0.0066 0.907
0.100 0.20 0.03053 0.084 0.0345 0.173
0.100 0.68 0.01838 0.137 0.0295 0.268

3We remind the reader that we set the prior model odds to unity.
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understand the interpretation of a single value measure-
ment. For the model selection we analyzed the same data as
for the parameter estimation. The Bayes factor distributions
dependence upon the theory parameters is found in Fig. 26
for the current best estimate noise model and in Fig. 27 for
the requirements noise. We show the logarithms of the
Bayes factor estimates at the seven representative points in
the parameter space collected in Table II. In five cases out
of seven the Bayes factor logarithms all have positive
values: this means that the S hypothesis will be strongly
favored over theN hypothesis. On the other hand, negative
logarithms of the Bayes factor imply that the noise-only
model N is favored. This occurs in two cases out of seven.
One of these is the noise-only ðk ¼ 0; a0 ¼ 0 m=s2) point,
where the data only contains noise: this behavior is

therefore expected. The second point is at ðk ¼ 0.1;
a0 ¼ 0.2 × 10−10 m=s2Þ. In this case, noise and signal
are mixed, but a rejection of the S hypothesis is likely.
The analysis just discussed shows a rigorous way of

determining the detectability of a signal. While we solely
considered a noise-only model and a signal model of
MONDian inspiration, we note that our analysis can be
extended to include other models, as, for example, models
with non-Gaussian noise or ones incorporating glitches that
could resemble the signal. In addition we can probe
whether the data will be best described by one theory or
another when it exhibits a deviation from the Newtonian
background.

D. Detector noise artifacts

So far we analyzed the simulated LPF data with noise
taken to be Gaussian and ASD defined by the theoretical

FIG. 18 (color online). Posterior probability distributions and
marginalized posterior distributions for the current best noise
estimate for the parameters of the injected signal at k ¼ 0.08 and
a0 ¼ 3.5 × 10−10 m=s2. The red lines indicate the true values at
which the simulated signal was injected.

FIG. 19 (color online). Posterior probability and marginalized
posterior distributions for requirements noise for the parameters
of the injected signal at k ¼ 0.08 and a0 ¼ 3.5 × 10−10 m=s2.
The red lines indicate the true values at which the simulated
signal was injected.

FIG. 20 (color online). Posterior probability distributions and
marginalized posterior distributions for the current best noise
estimate for the parameters of the injected signal k ¼ 0.017 and
a0 ¼ 3.1 × 10−10 m=s2. The red lines indicate the true values at
which the simulated signal was injected.

FIG. 21 (color online). Same as Fig. 20 but for the requirements
noise.
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amplitude spectral density of LPF. In reality, however, non-
Gaussian glitches might appear in the noise as shown in the
measurement of the differential displacements from the test
campaigns for LPF4 [33–35]. We now examine the
response of our data analysis framework to glitches by
performing parameter estimation and model selection on
the OSTT data. We keep working in the TeVeS ðk; a0Þ
parameter space and use the signal templates produced
within this theory.

FIG. 22 (color online). Posterior probability distributions and
marginalized posterior distributions for the current best noise
estimate for parameters of the signal modelled for k ¼ 0.1 and
a0 ¼ 0.68 × 10−10 m=s2. The red lines indicate the true values at
which the simulated signal was injected.

FIG. 23 (color online). Same as Fig. 22 but for the requirements
noise.

FIG. 24 (color online). Posterior probability density for the
current best estimate noise realization in the case of no signal
injection, i.e. ~hðfj; λm0 ; λt0Þ ¼ 0.

FIG. 25 (color online). Same as Fig. 24 but for the requirements
noise.

FIG. 26 (color online). Histograms of the logarithms of the
Bayes factor logB for the 200 noise realizations (current best
estimate) at the seven representative points in the parameter
space, where the signals were injected. These points are listed in
Table II.

4The LPF spacecraft is already being prepared for launch and
is undergoing several instrumental tests. To assess the impact of
noise artifacts, we took the data available from the LPF
On-Station Thermal Tests (OSTT) performed by Astrium Ltd.,
Astrium Satellite GmbH [Astrium Deutschland (ASD)] exten-
sively testing the end-to-end performance of the Optical Metrol-
ogy System (OMS). However, we would like to point out that the
noise artifacts might have been artificially caused by the test
environment.
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We shift the test campaign data so that a glitch occurs at
the expected signal arrival time, as shown in Fig. 28.
We then estimate the posterior probability distribution for
k and a0 for this data set. Results are presented in Fig. 29.
The posterior probability peaks at ðk ¼ 0.12; a0 ¼
1.34 × 10−10 m=s2Þ. The standard deviations for the two
parameters are given by Δk ¼ 0.001 and Δa0 ¼
0.07 × 10−10 m=s2, respectively. The recovered parameter
values are in the parameter space region that is inconsistent
with the noise-only model. Additionally, the estimated
value of the parameter k is on the boundary of the parameter
range defined by the parameter priors.
The logarithm of the Bayes factor is logpðSjf~xg; IÞ=

pðN jf~xg; IÞ ¼ 199, so that the S hypothesis is prioritized
over the N one. This can happen if the characteristic
frequency of the glitch is similar to the characteristic
frequency of the signal and highlights that, in order to
achieve confident signal detection, we must introduce more
realistic noise models. In particular, these should describe
non-Gaussianities in the noise, such as glitches. With such

noise models it would be possible to extend the model
selection described in Sec. IV E and distinguish between
noise artifacts and authentic signals. The question of the
nonstationarities and glitches in the data is particularly
important in the setup of this experiment because our
measurement relies on one or two repetitions at the most
(one or two SP fly-by’s). Multiple SP fly-by’s can signifi-
cantly increase our confidence in signal detection against
glitches in the data. However, distinguishing between noise
glitches and signal, and characterizing glitches are very
important topics that will need further investigation.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we developed a data analysis approach to test
alternative theories of gravity with LPF. As shown in Eq. (4),
the gravitational stress tensor affects the relative acceleration
between the two test masses onboard the spacecraft. The
tidal field can be sampled by LPF, allowing us to measure its
(dis)agreement with the Newtonian tidal field. The time
series that an LPF measurement will provide depends on the
trajectory of the spacecraft and on the orientation of its
sensitive axis via the seven mission parameters listed in
Eq. (14). The data analysis framework we built will allow for
quantitative statements on measuring the tidal field and
posing constraints on alternative theories of gravity.
Testing our data analysis approach required picking a

theory of gravity that predicts deviations from the
Newtonian tidal stresses within the Solar System, where
LPF will fly. As discussed in Sec. IV B, we considered the
example of the TeVeS theory. This choice is convenient as
we are able to calculate signal templates from it. In the
regime of our interest, the signal measured by LPF depends
on two theory parameters only, namely, a dimensionless
coupling constant k and a characteristic acceleration a0.
Having picked an alternative theory of gravity, we were
able to quantify how the signal is influenced by variations
of each of the mission parameters. We concluded that,

FIG. 27 (color online). Same as Fig. 26 but for the requirements
noise.

FIG. 28. Data from the test campaign with a glitch of unknown
origin bandpass filtered in the sensitive frequency band of LPF.

FIG. 29 (color online). Resulting posterior probability density
for the parameter estimation in case of the realistic data of Fig. 28.
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within the errors on the measurement of the position of the
spacecraft, the variations of the signal will be negligible.
This is a crucial result as it allows us to fix the values of
the mission parameters when building signal templates
in order to carry out a Bayesian analysis of the theory
parameter estimation and a model selection. However, the
impact of possible correlations between the mission and the
theory parameters on the conclusions drawn so far in our
study was not assessed. Nevertheless, we expect this
correlation to be insignificant and leave this investigation
for the future work.
The results of our Bayesian analysis are presented in

Sec. V in the form of posterior distributions for the two
theory parameters that determine the signal. These are
obtained by considering 200 different noise realizations.
Some combinations of the parameters (point 1 and point 2 in
Table II) yield a sharp and narrow joint posterior distribution,
indicating that it will be possible to estimate the theory
parameters with high precision in case of high SNRs. For
weak signals with low SNRs (point 5 and point 6 in Table II)
the parameter k can only be poorly estimated from the
posterior probability. The results for the current best estimate
of the noise systematically exhibit better parameter estima-
tion and better distinction between the noise and the signal
hypotheses (see Figs. 26 and 27) than the requirements
noise.As the formermodelwas built upon the estimates of the
noise from theflighthardware test campaigns (seeSec. II C), it
is a good approximation of the noise during flight.
We also considered the special case in which the data

consists of noise only, i.e. a modified gravity signal is absent.
This is a very important case as it is a priori the most likely
possible outcome of the experiment. In this scenario, the
parameter space outside the confidence area of the posterior
distribution can be ruled out. In the case of no signal
injection, we obtained an average error on the determination
of a0 which is Δa0 ¼ 0.055 × 10−10 m=s2 for the current
best estimate noise model and Δa0 ¼ 0.154 × 10−10 m=s2

for the requirements noise. This rules out most values of a0
except those that are close to 0 m=s2. At the same time, there
is a complete uncertainty on k, which means that we will not
be able to draw any conclusions on this parameter in case of
no signal detection.
In order to distinguish between signal detection and no

signal detection, we used the Bayesian approach to model
selection. We limited the choice to two models: one is the
sum of noise and signal (signal hypotheses), while the other
consists of noise only (noise hypothesis). We computed the
ratio of the probabilities for these two hypotheses given the
data and based on this number drew a conclusion on which
model is preferable. We estimated the expectation for a
signal in the artificial data by calculating Bayes factors for
200 different noise realization for several points in the
parameter space listed in Table II. On the basis of these
estimates, we were able to allocate areas in the parameter
space where the signal hypothesis could be strongly

prioritized over the noise hypothesis and areas where even
in the presence of a signal a confident statement on its
detection cannot be made. Notice that for a single fly-by the
experiment will provide us only with a single measured
data set and a single deduced Bayes factor. The estimates of
the Bayes factors for the artificial data gives a way to
compare the single Bayes factor estimated from the real
data to the expected values and judge the outcome of the
experiment on the basis of this comparison.
Finally, we studied the data from one of the test campaigns

for LPF. The importance of this study lies in the fact that in
reality the noise may have glitches and non-Gaussianities
(see Fig. 28). When applied to this data, our Bayesian model
selection can prefer the signal hypothesis over the noise
hypothesis because neither of them describes the data with
the glitch correctly. In order to adequately address the
problem of glitches, a separate model to be fed to the
Bayesian hypothesis selection approach must be developed.
In our analysis we investigated the influence of the

parameters k and a0 on the template, but we kept the
interpolating function fixed. As the interpolating function is
heuristically designed on the basis of astrophysical obser-
vations, it is not a smoothly varying parameter but a point
model. In a future work, we would like to apply the data
analysis framework we built to study a generalized,
phenomenological model of the interpolating function that
uses a finite set of parameters. This would allow us to
assess different theories that have MOND as their non-
relativistic limit. Ultimately, the more general goal is to
consider other theories that yield a phenomenology detect-
able with LPF and to be able to perform a model selection
among different models of gravity.
The significant issue left out of the scope of this paper is

the influence of the mission design and the mission timeline
on the experiment. We leave it to future work to study the
influence of the accuracy of the acceleration recovery from
the measurement of the displacement on the parameter
estimation. Finally, the question of how much data before
and after the SP fly-by needs to be gathered to perform an
accurate estimation of the acceleration and to assess the
possible non-Gaussianities in the noise is also left for
future work.
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APPENDIX A: TeVeS
TeVeS was the first consistent relativistic theory of

gravity reducing to MOND in the nonrelativistic limit. It is
built upon a nondynamical gravitational scalar field σ and
three dynamical gravitational fields, namely, the Einstein
metric tensor gαβ, a timelike 4-vector field Uβ, and a scalar
field ϕ. Accordingly, it was dubbed tensor-vector-scalar
theory. The physical metric may be obtained from the
dynamical fields via the relation ~gαβ ¼ e−2ϕgαβ−
2UαUβ sinhð2ϕÞ, where and Uα ¼ gαβUβ.
Within this theory, the total action takes the form

S ¼ Sg þ Sv þ Ss þ Sm; ðA1Þ

where Sg is the Einstein-Hilbert action for the metric tensor,
Sv is the action governing the timelike vector field, Ss is the
action for the dynamical and the nondynamical scalar
fields, and Sm is the action for the matter fields. The
equation for the dynamical gravitational scalar field may be
derived from

Ss ¼ − 1

2

Z �
σ2hαβϕ;αϕ;β þ

1

2
Gl−2σ4FðkGσ2Þ

� ffiffiffiffiffiffi−gp
d4x;

ðA2Þ

where g ¼ detðgαβÞ, hαβ ≡ gαβ −UαUβ, G is the gravita-
tional constant, k is a dimensionless constant, l is a constant
length, and F is a free dimensionless function. Varying Ss
with respect to the two scalar fields and using the equation
for σ yields [20]

½μðkl2hμνϕ;μϕ;νÞhαβϕ;α�;β ¼ kG½gαβþð1þe−4ϕÞUαUβ� ~Tαβ;

ðA3Þ

where ~Tαβ is the physical energy-momentum tensor, i.e.
built upon the physical metric ~gαβ, and the function μðyÞ
obeys

−μFðμÞ − 1

2
μ2

dFðμÞ
dμ

¼ y: ðA4Þ

APPENDIX B: NEWTONIAN STRESS TENSOR

The expression of the Newtonian potential ΦN for the
Sun-Earth two-body system is

ΦN ¼ −G
�
Me

r0 − de
der0

þMs
rse − r0 − ds
dsðrse − r0Þ

�
; ðB1Þ

where G is Newton’s gravitational constant,Ms (Me) is the
mass of the Sun (Earth), rse is the Sun-Earth separation,

r0 ¼
rse

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Me=Ms

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Me=Ms

p þ 1
¼ rseffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ms=Me

p þ 1
ðB2Þ

is the distance from the Earth to the SP, and ds (de) is the
distance from the point where the potential is calculated to
the Sun (Earth) respectively, i.e.

de ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 þ r0Þ2 þ x22 þ x23

q
; ðB3Þ

ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððrse − r0Þ − x1Þ2 þ x22 þ x23

q
: ðB4Þ

The gradient of the Newtonian potential is therefore

∂ΦN

∂xi ¼ GMe½xi − r0ci�
d3e

þ GMs½xi − ðrse − r0Þci�
d3s

; ðB5Þ

where êxiði ¼ 1…3Þ is the orthonormal unit vectors set of
the reference system and ci ¼ êx1 · êxi . The Newtonian
stress tensor reads

∂2ΦN

∂x2i ¼ GMe

�
1

d3e
− 3½xi þ r0ci�2

d5e

�

þGMs

�
1

d3s
− 3½xi − ðrse − r0Þci�2

d5s

�
;

∂2ΦN

∂xi∂xj
����
i≠j

¼ −
3GMe

d5e
½xi þ r0ci�½xj þ r0cj�

− 3GMs

d5s
½xi − ðrse − r0Þci�½xj − ðrse − r0Þcj�:

ðB6Þ
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