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The successful miniaturization of extremely accurate atomic clocks invites prospects for satellite
missions to perform precise timing experiments. This will allow effects predicted by general relativity to be
detected in Earth’s gravitational field. In this paper we introduce a convenient formalism for studying these
effects, and compute the fractional timing differences generated by them for the orbit of a satellite capable
of accurate time transfer to a terrestrial receiving station on Earth, as proposed by planned missions. We
find that (1) Schwarzschild perturbations will be measurable through their effects both on the orbit and on
the signal propagation, (2) frame-dragging of the orbit will be readily measurable, and (3) in optimistic
scenarios, the spin-squared metric effects may be measurable for the first time ever. Our estimates suggest
that a clock with a fractional timing inaccuracy of 10−16 on a highly eccentric Earth orbit will measure all
these effects, while for a low Earth circular orbit like that of the Atomic Clock Ensemble in Space mission,
detection will be more challenging.
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I. INTRODUCTION

Atomic clock technology has improved dramatically
over the past decade. Present-day Earthbound atomic clocks
boast fractional timing inaccuracies of ∼10−18 [1–3]. The
most stable space-qualified clock, with stability of ∼10−16
has been built for the Atomic Clock Ensemble in Space
(ACES) mission, and will be placed on the International
Space Station in 2016. As we show in this paper, a variety of
relativistic effects are extremely important at these accuracy
levels. Optical time and frequency transfer over free space
has reached a residual stability of ∼10−18 over distances
of a few kilometers [4]. As such technology improves, it is
expected that highly accurate clocks on Earth will be
commonly used for orbit determination.
The theory of general relativity explains gravitation as a

geometrical phenomenon arising from a curved four-
dimensional spacetime. The Earth carrying mass and
momentum determines the trajectories—both spatially
and temporally—of satellites which fall freely around it.
The Einstein equivalence principle tells us that regardless
of the position or velocity of a freely falling satellite, its
onboard clock will tick routinely in equal intervals of time
in its frame. This paper simulates an experiment to test
gravitational physics by capturing this notion: a satellite
carries an ultraprecise atomic clock and broadcasts tick
signals to an Earth-based receiving station, whose arrival
times are compared with a local clock.

A direct consequence of the geometrical description of
gravity is that a clock in a shallow gravitational field
runs more rapidly than one wallowing more deeply in the
field. For Earth satellites, this affects the redshift at the
GM⊕=ðc2r⊕Þ ∼ 10−9 level (see Fig. 3). Thus a fractional
timing stability of 10−16 implies a sensitivity to gravita-
tional time dilation of 10−7. We show that at these
remarkable accuracy levels, higher-order relativistic effects
must be taken into account.
An experiment with a freely falling satellite, which

periodically sends tick signals to an Earth receiving station,
is sensitive to the full four-dimensional trajectory. This is in
contrast to Earth-based fixed clock experiments, which
probe gravity purely through its effect on time, and not on
space. State-of-the-art space-based atomic clocks, and
modern time transfer technology promise orbit tracking
to unprecedented accuracy. As the accuracy of clocks
increases, a host of relativistic effects become important.
In this paper we address the forward problem: calculat-

ing the relativistic observables from Earth-orbiting clocks.
Our calculations suggest that the Shapiro delay, Mercury-
like orbit precession, frame-dragging, and possibly even
spin-squared effects will be detectable by future satellite
timing missions. Our approach is general and applicable
to a multitude of orbits around any gravitating body.
An interactive computer program which calculates all
the effects discussed in this paper is available in
Supplemental Material [5].
As examples, we will consider an eccentric orbit, as

well as a low Earth circular orbit. An eccentric orbit is
particularly advantageous because it brings the clock*rangelil@physik.uzh.ch
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through various gravitational field strengths and thus
permits the relativistic effects to modulate. Also, we find
that the higher perigee velocities of the elliptical orbit boost
the relativistic orbit effects by about an order of magnitude,
but do not affect relativistic signal transmission effects.

II. CALCULATION OF RELATIVISTIC EFFECTS

Two tick signals emitted from the satellite’s non-
Keplerian trajectory are separated by an interval of local
proper time Δte. They travel on neighboring, typically bent
paths to the receiving station, which measures the gap
between their arrival times Δta in the local proper time at
the receiver. The redshift is then calculated from

z ¼ Δte
Δta

− 1: (1)

This transfer can occur as frequently along the orbit as
necessary. The clock enables this action by controlling Δte
of sequential emissions down to the clock accuracy.
Equation (1) naturally includes all special relativistic
effects.
To calculate the relevant trajectories, we use the standard

Hamiltonian formulation for freely falling bodies [6] with
the Hamiltonian given by

H ¼ 1

2
gαβpαpβ; (2)

where gαβ are the contravariant components of the metric
tensor, and pα is the canonical momentum conjugate to the
coordinates xα. Both the orbit of the satellite, as well as its
tick signals, share the same Hamiltonian, whose value is
conserved along all trajectories. For the case of signal
propagation it is null, and for the satellite, under our choice
of signature, negative. We compute the trajectories by
integrating the eight Hamilton equations for the generalized
coordinates xα and the momentum pα with respect to
proper time. Then at equal intervals of time in the space-
craft clock’s frame, we find the signal path which traverses
the spacetime to terminate at the receiver, which we place at
an arbitrary location on the Earth’s surface. Because space
is curved, these paths are not globally straight, necessitating
the solving of a boundary value problem in order to find the
particular null trajectories which terminate at the Earth
observer. Once we have the orbit solution, as well as the
tick-propagation solutions along the orbit, we have the tick
coordinate times of arrival. By taking the derivative with
respect to the proper time of emission [Eq. (1)], we get the
redshift. Further details on the calculation are described in
the Appendix. The same method has been used success-
fully to calculate analogous effects in [7,8] for stars in orbit
around the Galactic-center supermassive black hole.
In weak gravitational fields like the ones we encounter in

the Solar System, the equations of general relativity reduce

to those of Newtonian mechanics at order Oðr−1Þ plus some
small corrections at higher orders. Here r is the distance
that the satellite has from the origin, and is inversely
proportional to the strength of the field. The relativistic
perturbations are summarized in Table I, and
described here.

(i) At Oðr−3=2Þ, there are two effects, both due to space
curvature: namely its influence on the orbit and the
light paths. The orbital effect is the same one that
causes the orbit of Mercury to precess, and may
be observable in extrasolar planets as well [9]. But
rather than simply measuring a cumulative preces-
sion over many orbits, a satellite that carries a clock
would be sensitive to space curvature influencing the
spacecraft trajectory over the course of a single orbit,
especially near perigee. This space curvature also
bends the signal propagation paths. This light-path
effect is well known as the Shapiro delay. Both of
these effects are measurable in binary pulsars [10].

(ii) At Oðr−2Þ, the frame-dragging of spacetime due to
the Earth’s spin enters the picture. Frame-dragging
has been measured around the Earth by Gravity
Probe B via Lense-Thirring precession [11], and is
expected to be detected shortly by LaReS [12] via
frame-dragging-induced orbital precessional through
precise orbit determination.

(iii) At Oðr−5=2Þ, spin-squared effects arise. These are
several effects that are proportional to the square of
the Earth’s spin. They have counterintuitive effects

TABLE I. Hamiltonian terms for orbits and light paths, along
with the scaling of the fractional time delay Δt=t (redshift) with
orbit size r. Refer to [7] for the derivation. Note that we are using
geometrized units GM ¼ c ¼ 1. To put Δt and r in different
units, simply multiply by the appropriate powers of GM and c to
fix the dimensions.
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on both orbits and light paths, and though expected,
have never been observed.

The geometry is described by the weak-field Kerr metric,
a solution to the Einstein field equations, and relevant to
the Earth’s external field. Table I shows the Hamiltonian

expanded in powers of1=rwith the terms grouped according
to the order in which they affect the dynamics. While the
Hamiltonian for the satellite is identical to that for the photon
signals, the order at which various terms enter the dynamics
differs, due to the different behavior of the momenta. Any
terms may be parametrized. For example, the Oðr−3=2Þ
space-curvature terms are popularly adjusted through β
and γ, part of the parametrized post-Newtonian (PPN)
framework [14], by introducing them as coefficients to
the responsible Hamiltonian terms, although in this paper
they are implicitly set to the Einstein values: unity.
To calculate the signal on the redshift due to a particular

relativistic effect, we first calculate the redshift with the
corresponding Hamiltonian terms present, and then again,
without. The difference yields the signal. We examine two
orbits here. The first is a circular low Earth orbit, and the
second eccentric.
(1) Circular orbit. This circular orbit has semimajor

axis a ¼ 6; 800 km, and an inclination of 51° from
the observer. For a circular orbit, the gravitational
time dilation redshift is constant, implying a linear
time-delay drift due to this effect. The next-highest-
order relativistic effect is that due to space curvature.
The time delay and redshift signals due to space
curvature on this orbit are plotted in Fig. 2 for ten
orbit periods. Higher-order effects are unlikely to be
detectable on such an orbit because atmospheric
drag severely restricts integration times.

(2) Eccentric orbit. This orbit’s semimajor axis is
a ≈ 32; 000 km, and is eccentric with e ¼ 0.77. This

FIG. 1 (color online). Schematic of the system for an eccentric
orbit. Here we define the angles in Earth’s spin reference frame.
The two black points mark the satellite orbit’s perigee and the
Earth receiving station. Two angles appear negative, as they are
defined positively when measured from apogee. For computa-
tional simplicity, and without loss of generality, the Earth spin
axis is always along the z direction.

FIG. 2 (color online). The orbital space-curvature (Schwarzschild) signals from a clock on a circular low Earth orbit. This effect is
often parametrized through the PPN parameters β and γ. The integration begins at t ¼ 0, at which time the satellite is at perigee, and runs
forwards and backwards for five orbits in each direction. This is done with the effect turned off, and then turned on. The difference yields
the signals shown here. At t ¼ 0, the two line up, so no relativity is seen. Because the metric terms (third block down on the second
column in Table I) here affect the orbit, the effect builds up over many orbits. However, transient features also play a part. Effects that
enter at a higher order than this one are significantly weaker, and are unlikely to be detectable on a circular orbit.
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satellite has an inclination relative to the Earth’s spin
plane of sθ ≈ 63°, and longitude of the ascending
node sϕ ¼ 0° (the full system has rotational sym-
metry about this direction). Figure 1 shows the setup.
We choose to place the ground station on the Earth’s
equator—therefore with an inclination I ¼ −sθ with
ω ¼ 45°. (The observer’s angular elements are de-
fined relative to the orbital plane.) The Earth’s spin
parameter is s≡ J⊕=M⊕ ≈ 888. The results for four
and a half orbits of this geometrical configuration are
shown in Fig. 3, which plots the magnitudes of the
time delay and corresponding redshift signals.

Both orbits are similar to future spacecraft clock mis-
sions. The circular orbit is based on the ACES mission,
which will put an atomic clock on the International Space
Station that communicates with the best Earth clocks
available [15]. The eccentric case belongs to the proposed

Space-Time Explorer and Quantum Equivalence (STE-
QUEST) [16,17], a medium class mission proposed by
the European Space Agency. Relativistic effects on the
latter are more pronounced by factors of ∼10–100. The
peaks in the redshift due to relativistic orbit effects occur
during perigee passage, where the satellite is moving
fastest. The high perigee velocities offered by eccentric
orbits significantly boost relativistic effects, as expected
from the terms in the first column of Table I.
In both cases presented here, the receiving clock is

assumed fixed and does not follow the Earth’s rotation.
Were we to include the receiver’s motion, none of the
relativistic signals would change, as its effect on the redshift
is nonrelativistic, and so would be subtracted away. Its
inclusion will be necessary for solving the inverse problem.
Another simplification is that the Earth is penetrable by the
tick-propagation signals, whereas in reality, portions of the
integration period would miss data during occlusion. For
clarity, we do not exclude these portions from the plots,
however a single ground station would have< 50% satellite
visibility depending on the observer position and the orbit
geometry. Missing data during occlusion do not affect the
capability for performing long integration periods—
important for letting cumulative relativistic effects build
up. Missions like STE-QUEST and ACES plan to have
multiple ground stations, which will provide more complete
coverage, although a single ground station would suffice.

III. FURTHER REDSHIFT-INFLUENCING
FACTORS

Multiple other nonrelativistic sources can be expected to
influence the timing, which are not addressed here, yet will
become important for the inverse problem.

A. Variation of the fine-structure constant

Since interactions between electron fields and photon
fields are remarkably well understood through quantum
electrodynamics (QED), an atomic clock in space offers
more than timekeeping: it can test the equivalence principle
for QED to remarkable accuracy. For example, a modula-
tion of the clock’s intrinsic frequency ν0 with the strength
of the gravitational field 1=r would constitute a violation.
This would imply that QED, a nongravitational theory,
does not completely reduce to its conventional special
relativistic limit in a local, freely falling frame. One way to
approach a violation is by allowing the fine-structure
constant α (or the charge on the electron) to depend on
gravitational field strength. Satellite timing experiments
using clocks on eccentric orbits can test the gravitational
field strength invariance of QED by simply promoting ν0
from a known quantity to a to-be-determined function.
A natural way to examine QED-violating behavior is by
letting ν0ðrÞ ¼ ν∞ð1þ ΞðrÞÞ, and parametrize it with a
constant ξ via ΞðrÞ ¼ ξ=r. Assuming the intrinsic

FIG. 3 (color online). Relativistic timing signals (above) and
associated redshift signals (below) of the setup described, for
four and a half orbital periods. Solid curves correspond to orbit
effects, while the dotted ones to signal propagation. The black
dashed line corresponds to the 2 × 10−7 clock accuracy of planned
[13] space satellite missions. The right axes multiply the left ones
by c. For the timing delay, this corresponds to the induced position
shifts, and for the redshift perturbations, to the line-of-sight velocity
perturbation. However, this interpretation is valid only for relativ-
istic orbit effects—not those from tick signal propagation.
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frequency can be recovered to the clock stability of ∼10−16,
then its values at apogee and perigee can constrain this
possible violation of QED’s local position invariance to
Δξ=ξ ∼ 10−7. Mechanisms which give rise to equivalence
principle-violating behavior in atomic clocks (and therefore
affect redshift) are explored in [18].

B. Solar System bodies

Gravitational influences beyond those discussed in this
paper will affect the redshift. At accuracy levels of 10−16,
significant Newtonian contributions from geophysical mass
perturbations will become relevant. For example, the J2
value of the Earth gives a correction of 10−3 relative to the
Newtonian potential. Measurements of the Earth’s gravi-
tational field have been performed [19] and can be used to
remove these effects.
There are several other gravitational effects, due to the

tidal fields of the Sun and Moon, that are similar in
magnitude to the effects that are studied in this paper.
For example, the Moon will also contribute a relativistic
bending delay to the tick trajectories at the level of
Δz ∼ 10−16. Solar System ephemerides allow extremely
accurate modeling of the position of the Sun and the Moon,
and the planets, which can be used to model tidal effects.

C. Nongravitational forces

A critical factor influencing the extent to which relativ-
istic orbit effects may be recovered is the length of time
over which the satellite is freely falling, i.e., geodesic.
Nonballistic accelerations such as satellite reorientation
routines, thrusting maneuvers, and atmospheric drag will
limit integration times, suppressing the benefits offered
from effects which accumulate. A discussion on how
atmospheric drag affects satellite orbits is given in [20],
which suggests that a perigee altitude of ∼700 km corre-
sponds to drag accelerations as large as 10−6 ms−2,
although it drops exponentially with altitude. Solar radi-
ation pressure generates accelerations of ∼10−7 ms−2
assuming a spacecraft of mass of 2000 kg and an effective
area of 10 m2. An accelerometer aboard the satellite would
be insensitive to gravitational effects, but sensitive to
nongravitational accelerations. Its measurements can then
be used to correct for nongravitational accelerations.
Measuring these accelerations to the level of the clock’s
accuracy would require an accelerometer with an accuracy
of ∼10−12 ms−2. The accelerometers used in the GRACE
mission have an accuracy of ∼10−10 ms−2 and an accuracy
of ∼10−14 ms−2 should be achieved by the LISA
Pathfinder. Signal accumulation may be necessary to
resolve the frame-dragging orbit effect, and in particular
to resolve the spin-squared effects. Signal propagation
effects however are purely transient, and so their recovery
can be expected to be only marginally affected by such
lapses in falling freedom. Furthermore, these contributions
affect the orbit with different periodicities and characteristic

shapes, which should allow them to be separated from the
desired terms when inverting the measurements of the
timing residuals.

IV. OUTLOOK AND CHALLENGES

The approach taken in this paper generalizes trivially to
similar timing experiments. For example, such a mission
carried out around theSunwould benefit from field strengths
a few orders of magnitude stronger. Furthermore, resolving
the frame-dragging or the spin-squared signals would pro-
vide an independent measurement of the Sun’s total angular
momentum, heretofore measured reliably only from helio-
seismology [21]. Another possibility would be to replace the
ground-space clock pairwith a single Earth-based clock, and
let the satellite (whether orbiting the Earth or Sun) act as a
mirror either passively reflecting or actively retransmitting
incoming ticks back to the terrestrial station, to be compared
with the emitting clock. The physics relevant for such a
mission is almost identical to that discussed in this paper.
The observational strategy will play a crucial role in the

extent towhich the relativistic perturbations discussed in this
paper may be resolved. The existing formalism for orbit
determination [22] using the Global Navigation Satellite
System for positioning in effect includes only the first
four lines from Table I. Hence the orbit will need
to be refined using the timing signals themselves. Once
measurements are taken, simultaneous fits to timing data via
models which include a variety of both relativistic and
nonrelativistic influences will provide precise orbit deter-
mination, and by doing so reveal information on Earth’s
exterior gravitational field at unprecedented accuracy levels.
Up to now, timing experiments in Earth’s gravitational

field have been focused on testing gravitational time
dilation—a well-tested and understood consequence of
the Einstein equivalence principle. Experiments of the type
discussed in this paper probe higher-order terms of the
gravitational field equations offering the exciting prospect
of testing a wide range of alternative theories of gravity.
One class of such alternative theories are scalar-tensor
theories, where the gravity action contains a scalar field in
addition to the metric tensor of general relativity. These
theories are usually metric, and thus they respect the weak
equivalence principle, yet they predict a γ different from
unity. If the coupling function, unlike in Brans-Dicke
theory, is not constant, the β parameter also varies from
unity. Therefore by testing the precession of the orbit and
the Shapiro delay this class of theories can be tested.
Similarly, the PPN parameters α1 and α2 can enter in the
frame-dragging terms. In vector-tensor theories, for exam-
ple, these are expected to deviate from zero—their general
relativity value.
Up until now, the relativistic behavior of freely falling

bodies was probed by various usually unrelated experi-
ments, all in independent astrophysical systems. A different
effect (or box in Table I) has always asked for a different
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experiment. Precise timing experiments of the type
“possible with next-generation space-based clock technol-
ogy” will be simultaneously sensitive to all these effects,
as well as as-yet undetected ones, through the course of a
single experiment. However, definitive statements regarding
detectability can only be made by solving the mission-
specific comprehensive inverse problem through realistic
mock data generation, and Monte Carlo recovery of the
parameters.
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APPENDIX: CALCULATING
THE TRAJECTORIES

While the form of the Hamiltonian found in Table I helps
to provide an intuitive description of how relativity steers
freely falling bodies, in practice the spherical coordinate
system is less numerically stable than a pseudo-Cartesian
one.This is because the integrationofphotonpathswhichare
almost straight is trivial in the latter. It is therefore convenient
to canonically transform the Hamiltonian through

xμ ¼ ðt; r; θ;ϕÞ → ðt;xÞ;
pμ ¼ ðpt; pr; pθ; pϕÞ → ðpt;pÞ: (A1)

Under the generating function

S ¼ r sin θ cosϕpx þ r sinϕ sin θpy þ r cos θpz; (A2)

the canonical momenta in the two bases are related by

pr ≡ ∂S
∂r ¼ x × p2

r
; pϕ ≡ ∂S

∂θ ¼ ðx × pÞz;

pθ ≡ ∂S
∂ϕ ¼ −1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðz=rÞ2
p

�

pzr −
z
r
x × p

�

: (A3)

Inserting these into H, we have the Hamiltonian in pseudo-
Minkowskian coordinates,

H ¼ −
p2
t

2
þ p2

2
−
p2
t

r
−
ðx × pÞ2

r3
−
2p2

t

r2
−
2sptðxpy − ypxÞ

r3

− 4
p2
t

r3
þ s2p2

t

r3
x2 þ y2

r2
þ s2

2

1

r6
ðx2 þ y2Þðx × pÞ2

−
s2

2

1

r4
1

1 − z2=r2

�

pzr −
z
r
x × p

�

2
�

1 −
x2 þ y2

r2

�

−
s2

2

1

r2
ðxpy − ypxÞ2

x2 þ y2
: (A4)

The Hamilton equations corresponding to this Hamiltonian
are used to integrate both the satellite and the tick signal
trajectories. However, because photon paths have a null
inner product of the momentum, and satellite paths do not,
different terms in (A4) enter the dynamics of each at different
orders, hence thedifferent groupingsof terms inTable I.With
the appropriate initial conditions, the satellite orbit can be
calculated.To find the tick signal trajectorieswhichoriginate
on the orbit in equal intervals of proper time, and terminate at
a specific Earthbound position (the observer), a boundary
value problem must be solved. Were the tick signal trajecto-
ries straight, they could simply leave the satellite aimed in the
direction of the observer. However, because the tick signal
path momenta are not constant (they curve according to the
terms in the rightmost column of Table I), the correct initial
momentum must be calculated by shooting multiple times:
optimizing the initial momenta using the distance of the
trajectories’ termination point from the observer. This
procedure is thoroughly detailed in [7].
The program which makes the clock orbit the Earth, and

transmit tick signals to the Earth observer is available as
Supplemental Material [5] in the form of compilable source
code. The kernel is written in the C language and relies on a
few libraries [23,24], while the interactive user front end is
written with Python’s matplotlib [25]. The interface pro-
vides a schematic of the geometry, and allows the user to
adjust the orbital parameters, and choose which relativistic
effects to include.
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