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Propagation failure of excitation waves on trees and random networks
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Excitation waves are studied on trees and random networks of coupled active elements. Undamped
propagation of such waves is observed in those networks. It represents an excursion from the resting
state and a relaxation back to it for each node. However, the degrees of the nodes influence drastically
the dynamics. Excitation propagates more slowly through nodes with larger degrees and beyond
some critical degree waves lose their stability and disappear. For regular trees with a fixed branching
ratio, the critical degree is determined with an approximate analytical theory which also holds locally
for the early stage of excitation spreading in random networks.

INTRODUCTION

Distributed excitable media are found in a wide range
of natural systems including neural cells [I], heart tis-
sue [2] or chemical systems [3]. They consist of coupled
elements obeying an activator-inhibitor dynamics with a
single stable fixed point of rest where small perturbations
are damped out. However, a large enough perturbation
causes a burst of activity after which the elements return
back to their resting state. This results in propagation of
an excitation wave. Such media have been broadly stud-
ied with continuous reaction-diffusion equations and sup-
port a variety of self-organised spatiotemporal patterns
like pulses, expanding target waves, or rotating spirals
3.

Within the last decade, self-organisation of patterns
has been considered in networks, where reactions oc-
cur on the network’s nodes and diffusion is carried out
through the links connecting them. Such systems can
be formed by diffusively coupled chemical reactors [4],
biological cells [5] or dispersal habitats. The rapid devel-
opment in network science provides increasing insight on
the impact of their architecture upon the emerging col-
lective dynamics [6]. A variety of self-organisation phe-
nomena has been studied in such complex systems in-
cluding epidemic spreading [7, [§], synchronisation [9] [10]
and chimera states [T1], stationary Turing [12] and self-
organised oscillatory [13] patterns, as well as pinned
fronts [I4]. Collective phenomena induced by feedback
control [I5HI7] or by noise [I8] [I9] have also been anal-
ysed in networks.

Recent theoretical and experimental studies in net-
works of coupled excitable nodes have shown that self-
sustained activity [20, 2I] and spreading of excitation
waves [22] are possible and depend strongly on the net-
work architecture. However, propagation failure of exci-
tation waves, which is a very important aspect in neural
and cardiac physiology [2, 23H25], as well as in chemi-
cal systems has not yet been systematically analysed in
networks.

In this letter we show that propagation failure of ex-

citation waves is significantly influenced by the degree of
the nodes. Waves propagate more slowly through nodes
with larger degrees and beyond some critical degree they
disappear. For regular trees with fixed branching ratio a
numerical continuation method could be employed. It re-
veals that a wave loses its stability and dies out through a
saddle-node bifurcation that occurs at the critical degree.
For the trees with strong diffusive coupling a kinematical
theory [26], which allows for the analytical determina-
tion of the critical degree, could be developed. These
approximations hold locally for the early stage of exci-
tation spreading in random networks, where numerical
simulations have been performed.

EXCITABLE SYSTEMS ON REGULAR TREES

Let us consider a two-component excitable system,
where only the activator can diffuse and the inhibitor
varies slowly. Such a classical continuous medium is de-
scribed by,

w(x,t) = f(u,v) + DV2u(x, 1),
r[}(X7 t) = €g(u’ U) ) (1)

where u(x,t) and v(x,t) denote local densities of the
activator and inhibitor species, respectively. Functions
f(u,v) and g(u, v) specify local dynamics of activator and
inhibitor, respectively, parameter € represents the ratio
of their characteristic time scales and D is the diffusion
constant. The terms “activator” and “inhibitor” refer
here to the dynamical roles of variables which may have
different origins. As an example we choose the FitzHugh-
Nagumo (FHN) [I] system,

3
f(u,v)zu—%—v and g(u,v)=u—03, (2)
where the activator variable u represents fast changes of
the electrical potential across the membrane of a neural
cell, while the inhibitor variable v has no direct physi-
ological significance; however, it is related to the gating
mechanism of the membrane channels.
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FIG. 1. (Colour online) Snapshot of an excitation wave which
propagates from the root towards the periphery in a regular
tree of 10 shells with branching ratio 2 and N = 2047 nodes
(a). The wave can also be represented as a pulse by grouping
the nodes with the same distance from the root into a single

shell (b). The time evolution of a single node (or shell) is
shown in (¢). Other parameters: D = 0.04, 8 = —1.1, ¢ =
0.02.

If activator and inhibitor species occupy the nodes of a
network and the activator can diffusively be transported
over network links to other nodes, then the analog of
system reads,

N
’lli = f(ui,vi) + DZTZ '(u]‘ — uz) y
j=1

3)

’[)i = Eg('U/i, vi) )

where u; and v; are the densities of the activator and in-
hibitor in a network node i. The local dynamics on the
nodes is described by the functions f(u;,v;) and g(u;, v;).
Diffusional mobility of the activator is taken into account
in the summation term, where T;; is the adjacency ma-
trix determining the architecture of the network, whose
elements are 1, if there is a link connecting nodes i and
7 and 0 otherwise. Only undirected networks are consid-
ered here, i.e. T;; = T};. The degree k; = Zj T}; of node
i is the number of its connections and plays an essential
role in the dynamics of excitation waves.

Here we consider a hierarchical organisation of the sys-
tem (3)) on a regular tree with branching ratio k — 1. In
trees, all nodes with the same distance r from the root
can be grouped into a single shell [T4] [I7]. The activator
of a node which belongs to the shell r can diffusively be
transported to k — 1 nodes in the next shell r» 4+ 1 and to
just one node in the previous shell » — 1. Introducing the
densities u, and v, for the activator and the inhibitor in
the shell r, the evolution of their distribution on the tree
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FIG. 2. (Colour online) Space-time plots of the activator den-
sity u, shows the evolution of an excitation wave in the trees
with different node degree k. Other parameters as in fig.

can be described by the equations,

Uy = f(u'r‘a U’!‘) + D[u'f—l — kuy + (k B 1)U7-+1} ’

Op = £9(Up,vp) .

(4)

Note that although k is the degree of the nodes and thus
can take only integer values, it can be treated as a con-
tinuous parameter. In our approximation, instead of in-
vestigating propagation of excitation waves directly on a
tree network (fig. [1] (a)) we study it, using the sequence of
coupled shells (ﬁg (b)) described by egs. (). Contrary
to chains (k = 2), where both propagation directions (left
or right) of excitation waves are equivalent, propagation
from the root to the periphery of a tree (k > 2) is phys-
ically different from the propagation in the opposite di-
rection, i.e. towards the tree root. Here, only excitation
waves that start from the root which can — under appro-
priate conditions — propagate towards the periphery are
considered.

Excitation waves can be generated by applying a large
enough external perturbation to the root of the tree while
all other nodes are in the resting state. This perturbation
can excite the root. Subsequently, it is possible for exci-
tation to be passed from one node to another, due to the
diffusional transport of the activator and it reaches nodes
within the same shell at the same time. Thus, propaga-
tion of undamped excitation waves, which represent an
excursion from the resting state and a relaxation back to
it (fig.[1] (¢)) for each node of the tree, can be supported.
A snapshot of such a wave is shown for a particular tree
in fig.

Not all excitable trees can, however, lead to such prop-
agating waves. In fig. 2] we see for a given set of pa-
rameters that excitation waves can propagate from the
root towards the periphery in trees with £k = 4 and
k = 5. However, trees with larger branching ratio, e.g.
k = 6, fail to support the undamped propagation of
waves; starting from the root, excitation may be passed
to all nodes of some shells with short distance (shortest
path length) from the root, but then fails to propagate
further and vanishes (see fig. [2| for k& = 6). Numerical
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FIG. 3. (Colour online) (Left) Dependence of the propaga-
tion velocity ¢ on the degree k as calculated from numerical
simulations (dots) and from numerical continuation (curves)
on the ring of 50 shells for different . Solid curves show
stable solutions while dashed curves show the unstable ones.
The letters (a)-(e) denote selected solutions that are shown
in fig. 5| (Right) The location of the saddle-node bifurcation
points (LP) is shown in the (g,k) plane. Other parameters as
in fig.

simulations have revealed that excitation waves propa-
gate more slowly in trees with larger & (see fig. . As k
increases, it reaches a critical value where waves propa-
gate with the minimum (positive) velocity. In contrast to
bistable trees, where fronts can be pinned or retreated as
k becomes larger [14 [I7], excitation waves cannot stop or
reverse the direction of their propagation. They become
unstable and disappear beyond this critical degree (see
fig. [3). When £ is fixed, the same transition to unstable
waves occurs when some critical value of the time scale
separation constant ¢ is exceeded. The stability analysis
of these waves is performed with a numerical continua-
tion method.

For this purpose we assume a ring of shells, as de-
scribed by system . On this ring, each shell is coupled
with weight k — 1 to its neighbour in clockwise direction
and with weight 1 to its neighbour in counterclockwise
direction. Locally, such a ring of shells resembles the
shells of a tree, globally however, it cannot be mapped
to a tree. By locally we mean in this context that the
wave-like solutions we are examining are constrained to
such a small part of the ring that they do not interact
with themselves; or formulated differently, that the frac-
tion of nodes lying in the resting state is always large
enough to clearly separate the leading edge of one exci-
tation wave from the refractory phase of the preceding
wave. Therefore, in the regimes of parameters where the
wave-like solutions are localized within only a small frac-
tion of this ring, we expect to observe the same dynamics
as in the shells of an actual tree network.

For continuation purposes this construction has the ad-
vantage that a traveling wave on this ring of shells is
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FIG. 4. (Colour online) Dependence of the propagation ve-
locity ¢ on the parameter € as calculated from numerical sim-
ulations (dots) and from numerical continuation (curves) on
the ring of 50 shells for different k. Solid curves show stable
solutions while dashed curves show the unstable ones. The
letters (a),(b),(d) denote selected solutions that are shown in
fig. [} Other parameters as in fig. [I]

a periodic orbit of d x S ordinary differential equations
(ODE), where S is the number of shells of the tree and d
is the dimension of the local dynamics on each shell (2 in
the case of the FHN system), Such a system can easily,
but possibly at large numerical expense, be continued,
using a numerical continuation software, e.g. AUTO-07p
[27).

We consider such a ring consisting of S = 50 shells,
obeying the FHN dynamics and diffusively coupled with
strength D = 0.04. Thus, we proceed to the continuation
of the periodic solutions of a system of 100 coupled ODEs.
From the continuation, we directly obtain the stability
properties of the solution, as well as the location of the
limit points (LP) of the saddle-node bifurcations, which
are marked in fig. We see that the continuation of
periodic orbits in the ring of shells gives exactly the same
results for the propagation velocity ¢ and for the stability
as those obtained from the direct simulation on trees.
Clearly, the transition from undamped propagation to
unstable excitation waves in trees takes place through a
saddle-node bifurcation. Similar dynamical behaviour is
observed for a given value of the degree k as € increases
(see fig. .

The asymmetric coupling (weight 1 to the previous and
k—1 to the next shells) in combination with the discrete-
ness of the system affects also the shape of the excitation
waves. As can clearly be seen in fig. the trajectory
in the (u,v) plane followed by each shell, and thus the
corresponding timeseries of one shell r, appears with two
“dips” (see also supplementary moviel.avi). The reason
is that in egs. (4)), the diffusive coupling term for a shell r
whose current state is already moving on the slow man-
ifold and thus changing on the slow timescale, can vary
on the fast timescale, when shell r + 1 moves on the fast
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FIG. 5. (Colour online) Different solutions of egs. (4]) obtained
by continuation on the ring of 50 shells are shown: (a) stable
solution for k = 2 with ¢ = 0.1561 (T' = 320.349), (b) stable
solution for k = 5 with ¢ = 0.1006 (T = 497.047), (c¢) Limit
Point solution for k & 5.9766 with ¢ = 0.0631 (T' = 791.849),
(d) unstable solution for k = 5 with ¢ = 0.0392 (T" = 1274.64)
and (e) unstable solution for k¥ = 2 with ¢ = 0.0222 (T =
2256.39). Other parameters as in fig. In the upper right
panel, solution (b) is shown as the path of densities in phase
space (u,v) together with a snapshot of the state of all shells
at one instant of time (magenta crosses) and the nullclines
(grey) of system (2], while in the lower panel the evolution of
activator (red curve) and inhibitor (blue curve) densities on
one shell are shown. The upper left panel shows a comparison
of the solutions (a)-(e) as the paths of densities in phase space
(u,v). The location of the solutions is also marked in fig.
Other parameters as in fig. [T]

manifold from the rest state to the excited state (see up-
per right panel in fig. . Because shell r + 1 is coupled
to r with weight k£ — 1, whereas shell r — 1 is coupled to r
with weight 1, the “force” exerted by the coupling term,
“pulls” the shell r in the direction of the resting state,
when shell 7 4 1 is still close to the resting state. It does
so more strongly for larger k.

KINEMATICAL THEORY FOR EXCITABLE
TREES

The propagation velocity c¢ is unique in regular trees
with fixed branching ratio and depends on the parame-
ters k, €, D and cg; ¢g is the velocity of a bistable front
in the absence of inhibitor (c¢f. [14]). Here we calculate
an analytical expression for the dependence ¢ = ¢(k) by

extending for the trees the kinematical theory proposed
by Mikhailov and Zykov in [20].

Let us assume a regular tree with infinite hierarchical
levels and strong diffusive coupling (i.e., large D). In
such a tree, we can obtain an approximation for the con-
tinuous limit by substituting w,—; and u,4+1 in eqs. (4)
with their Taylor expansions u,_1 &~ u, — Vu + Au/2
and u,41 &~ u, + Vu+ Au/2. Then, in the continuous
limit, the system reads,

= f(u,v) + %Au—i— D(k —2)Vu,
0 =eg(u,v). (5)

By introducing the moving reference frame £ = r—ct and
by assuming that the profile of the wave is stationary in
this frame, we can reduce the system to a system of
two ODEs,

et D(k— 20} = fu0) + D,

—cv' = eg(u,v), (6)

where u = u(§) and v = v(§); prime denotes a derivative
with respect to the moving coordinate £. Subsequently,
if we replace € by the modified parameter €* in the latter
equation, where,

(7)

5*26[1+D(k_2)} )

c

we take the system of equations,

— [ Dk~ 2 = flu0) +

—[e+ D(k — 2)|v' = &*g(u,v), (8)

which describes the propagation of an excitation wave
from the root towards the periphery in the same tree as
system @, but with time scale separation parameter *
instead of . Therefore, the propagation velocity is

¢ =c+D(k-2). (9)
Substitution of ¢ from eq. @ into yields,

_ D(k—2)e

e*—¢ (10)

If we know the function ¢(¢) we can find the solution of
eq. [26]. Here we do not have an analytical expres-
sion for this function. However, we have found in the
numerical simulations that for very small ¢ the velocity
¢ depends linearly on this parameter, i.e.,

e(e) = eo(l = xe), (11)

where y is a numerical factor independent of €. Substi-
tuting expressions for e* and ¢* into eq. and solving
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FIG. 6. (Colour online) Propagation velocity ¢ vs. node

degrees k. Red curves correspond to the two branches of

eq. (12)), blue curves are obtained by continuation of the
egs. (15]), green dots have been calculated from the numer-

ical simulations. At the right edge of the figure, the leading
part of the spectrum A € C around the wave is shown for sta-
ble and unstable solutions at k = 2.0 (¥, V) and 2.2 (¢, ) as
well as for the limit point solution at k &~ 2.406 (e), including
the unstable eigenvalue and the zero eigenvalue correspond-
ing to the Goldstone mode of translation invariance. Other
parameters: € = 0.02, D =4, co = 2.178, x = 1.074.

the resulting equation we find an analytical expression
for the velocity,

e= 5 leo(l—x) = D (k~2) (12)
i% {ID(k = 2) = ¢ (1 = £ — deo Dex (k - 2)}1/2

The two branches of eq. are shown in fig. |§| (red
curves). The lower (dashed) and the upper (solid) branch
correspond to the unstable and the stable solution of ¢ =
c(k), respectively. As k increases both solutions move
toward each other and they merge at the critical value

2D+ (1 yE)°
cr — D Y

(13)

where the first derivative of ¢(k) tends to infinity. No
excitation waves can propagate in trees with k£ > k..
Note that at k.., waves can still propagate with their
minimum critical velocity,

Cer = co(v/EX — €X) -

As we see in fig. [6] our theory allows for a very good
estimate of the critical degree k.., however, it fails to
predict the exact critical velocity c.,. This disagreement
is a consequence of the additional assumption of the lin-
ear dependence of the velocity c of a wave on €. Such
dependence is approximately valid only for small values
of this parameter, i.e. if ¢ < 1. It should hold not only
for €, but also for ¢*. While ¢ = 0.02 and thus small,
the renormalised parameter €* increases with k and, at

(14)

the critical point in fig. [6] it reaches the value * = 0.14
which is not small enough. The accuracy of the kinemati-
cal theory can be further approved (see [26]) by using the
actual numerically calculated and nonlinear dependence
of the velocity on €, instead of equation .

At the continuum limit, we can calculate the velocity
and the stability of the excitation waves also by using
the profile equations, which are obtained by writing the
system @ as a system of first order ODEs,

/
u =w,

!/

o = —ceg(u,v),

w' = ~2(Dk) " {f(u,v) + e+ D(k — )] w} . (15)

The root of egs. is a fixed point of egs. (withw =
0). An excitation wave on an infinitely extended chain
of shells as described by eq. appears as a homoclinic
trajectory of eqgs. (15). But such a special trajectory
exists only at a definite value of the parameter ¢, which
is the propagation velocity of the excitation wave [3].

Here, instead of numerically continuing these ho-
moclinic trajectories, we continue periodic trajectories,
which are very close to the homoclinic ones for large pe-
riods. The stability analysis of these periodic trajectories
has been performed using Bloch expansion and continu-
ation to calculate the (essential) spectrum which deter-
mines the stability of these traveling waves. The method
is explained in detail in [28, 29]. We find that the desta-
bilisation of the excitation waves occurs through a saddle-
node bifurcation, where an isolated eigenvalue crosses the
imaginary axis exactly at the limit point. The rest of
the spectrum is always in the left half-plane, except for
one eigenvalue exactly at zero which corresponds to the
Goldstone mode of translation invariance. The spectra
for selected values of k , including k& ~ 2.406 which cor-
responds to the limit point solution, are plotted at the
right edge of fig. [0}

APPLICATION TO RANDOM NETWORKS

Propagation failure of excitation waves has also been
observed in random networks. Here we provide an exam-
ple of system on an Erdos-Rényi network, where the
hub node is initially set in the excited state as shown in
fig. a). Consequently, excitation propagates to certain
neighbouring nodes (see fig. [7b),(c)) and finally disap-
pears (fig. [7(d)). This behaviour can be understood by
our approximate theory for the trees, which holds also
locally, for the early stage of propagation, in random net-
works. For the parameters D = 0.04 and ¢ = 0.02 our
theory predicts that excitation waves become unstable
at ke ~ 5.9766 (see fig. [3). Indeed, we see in fig. [7] that
excitation can propagate only to the neighbouring nodes
with degrees k < 6. Once it reaches a node whose neigh-
bours have degrees k > 6, it cannot propagate further



and disappears. An interesting behaviour that appears
in random networks is that excitation may follow cer-
tain paths and not others, depending on the degrees of
the corresponding nodes. However, if excitation has al-
ready spread far from the origin and a large fraction of
network nodes have thus become excited, our proposed
theory does not hold for random networks.

DISCUSSION

Excitation waves have been analysed in trees and ran-
dom networks. They can be initiated at the root of ex-
citable tree networks and propagate towards their pe-
riphery, representing an excursion from the resting state
and relaxation back to it for each node. The propaga-
tion velocity decreases in trees with larger degrees until
a critical value k.. At this critical degree waves are still
stable and propagate, however, with their minimum ve-
locity. Once this threshold is exceeded, undamped prop-
agation is not possible. In contrast to the bistable fronts,
excitation waves cannot be pinned or reverse their prop-
agation direction. They become unstable and disappear.
The approximate theory we have developed for the trees
reveals that the destabilisation of the waves takes place
through a saddle-node bifurcation which occurs at the
critical degree. Same behaviour has been found in trees
of given degree, when parameter ¢ is increased.

The results of such analysis are also relevant for under-
standing the early stage of excitation spreading in ran-

FIG. 7. (Colour online). Evolution of the activator density
for an Erdos-Rényi random network with N = 50 nodes and
mean degree (k) = 10. Excitation is applied to the hub (a),
it consequently propagates to the neighbouring nodes with
degrees k < ker (b),(c), and finally dies out before the nodes
with degrees k > ker (d). The propagation path is shown with
thick green colour. Node labels denote their degrees. Other
parameters as in fig.

dom networks. When activation is applied to a node and
we look locally at its vicinity with its first neighbours,
activation propagates only to the nodes with degrees
smaller than the critical degree. Depending on the sys-
tem parameters, excitation may propagate through some
nodes or disappear before nodes with larger degrees. This
degree heterogeneity in random networks gives rise to
the appearance of some preferred paths where excitation
can propagate. In future studies this property should be
considered in the design of networks which might adapt
their links according to the emerging dynamics in order
to drive the excitation through desired paths and nodes.
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