
  157
2014

Berichte zur Erdsystemforschung
Reports on Earth System Science

Scale interactions in high-latitude ecosystems

Fabio Cresto Aleina

Hamburg 2014



Hinweis

Die Berichte zur Erdsystemforschung werden 
vom Max-Planck-Institut für Meteorologie in 
Hamburg in unregelmäßiger Abfolge heraus-
gegeben.

Sie enthalten wissenschaftliche und technische 
Beiträge, inklusive Dissertationen.

Die Beiträge geben nicht notwendigerweise die 
Auffassung des Instituts wieder.

Die "Berichte zur Erdsystemforschung" führen 
die vorherigen Reihen "Reports" und "Examens-
arbeiten" weiter.

Anschrift / Address

Max-Planck-Institut für Meteorologie
Bundesstrasse 53
20146 Hamburg
Deutschland

Tel./Phone: +49 (0)40 4 11 73 - 0
Fax:  +49 (0)40 4 11 73 - 298

name.surname@mpimet.mpg.de
www.mpimet.mpg.de

Notice

The Reports on Earth System Science are 
published by the Max Planck Institute for 
Meteorology in Hamburg. They appear in 
irregular intervals.

They contain scientific and technical contribu-
tions, including Ph. D. theses.

The Reports do not necessarily reflect the 
opinion of the Institute.

The "Reports on Earth System Science" continue 
the former "Reports" and "Examensarbeiten" of 
the Max Planck Institute.

Layout

Bettina Diallo and Norbert P. Noreiks
Communication

Copyright

Photos below: ©MPI-M
Photos on the back from left to right:
Christian Klepp, Jochem Marotzke,
Christian Klepp, Clotilde Dubois,
Christian Klepp, Katsumasa Tanaka



  157
2014

Berichte zur Erdsystemforschung
Reports on Earth System Science

Scale interactions in high-latitude ecosystems

Fabio Cresto Aleina

Hamburg 2014



Fabio Cresto Aleina
aus Lanzo Torinese, Italien

Max-Planck-Institut für Meteorologie
Bundesstrasse 53
20146 Hamburg

Als Dissertation angenommen
vom Fachbereich Geowissenschaften der Universität Hamburg

auf Grund der Gutachten von
Prof. Dr. Martin Claussen
und
Dr. (habil.) Victor Brovkin

Hamburg, den 25. Juni 2014
Professor Dr. Christian Betzler
Leiter des Departments Geowissenschaften

ISSN 1614-1199



i

Abstract

Surface processes occur in various ecosystems and landscapes and at multiple spatial

and temporal scales. Because of their small-scale, surface heterogeneities are often not

represented or poorly parameterized in climate models. These local soil and vegetation

heterogeneities are often important or even fundamental for energy and carbon bal-

ances. This is of particular interest in high-latitude ecosystems, because of the large

amount of carbon stored in the soil of northern peatlands. Greenhouse gas fluxes, such

as methane, carbon dioxide and water vapor, vary largely within the environment, also

as an effect of the small-scale processes that characterize the landscape. Therefore,

a characterization of the effects of such small-scale features on high-latitude environ-

ments is needed in order to consistently assess the water, carbon, and energy balance

of these landscapes.

As a first example, I considered permafrost dominated landscapes in the Arctic

lowlands, such as the polygonal tundra. These landscapes display characteristic small-

scale features generated by contraction and expansion of water by freezing and melting

cycles. These small-scale surface heterogeneities may deeply affect the hydrology in

this environment. In the first part of my thesis I present a stochastic model for the

surface topography of low center polygonal tundra using Poisson-Voronoi diagrams and

I compare the results with available recent field studies. I analyze seasonal dynamics of

water table variations and the landscape response under different scenarios of precipi-

tation income. Using an idealized model for methane emissions, I can upscale methane

fluxes at the landscape level. Hydraulic interconnections and large-scale drainage may

also be investigated through percolation thresholds of the model. The model is able to

reproduce the statistical characteristics of the landscape, from the area distribution to

the water balance. This novel approach statistically relates large-scale properties of the

system to the main small-scale surface heterogeneities, which are generally neglected

in large-scale models.

In order to generalize the findings from the stochastic model, in the second part

of my thesis I present a surface model for small-scale surface heterogeneities in boreal

peatlands. Water table depth and dynamics are in turn regulated by the peatland

micro-topography, i. e. the elevated and drier hummocks, and the lower and wetter

hollows. A classical mean field approximation of a single bucket model may not be

adequate to describe land-atmosphere interactions in northern peatlands. I can as-

sess the potential effects of the representation of small-scale surface heterogeneities on

greenhouse gas fluxes by coupling this fine scale model with a process based model for

methane emissions. By partitioning of space in smaller subunits and then by analyz-
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ing the landscape-scale behavior of the system, I am able to resolve the small-scale

processes and to investigate their effects at larger scales. I not only investigate the

influence of the hummocky surface on greenhouse gas emissions, but I also simulate

how complex sub grid-scale hydrological interactions affect the average energy balance

of the peatland.

In the last part of my thesis I present a pattern recognition analysis in order to relate

the landscape-scale model to the working scale of General Circulation Models (GCMs).

This novel application of the pattern recognition analysis can describe the dynamics of

the patterns emerging from the small-scale models. Minkowski densities are a useful

tool to measure patterns, as they can help to quantify emergent landscape-scale prop-

erties arising from local, small-scale interactions. I can link the behavior of the surface

characteristics to the seasonal dynamics of greenhouse gases. In order to fill this scal-

ing gap I develop a simple and novel parameterization, which significantly improves

the output of the model running without micro-topography. This new parameteri-

zation is computationally analogous to the model running without micro-topographic

representation, and it has the potential to be included in large-scale models, such as

GCMs. It is a first step towards a comprehensive method to fill the general scale gaps

in climate-biosphere interactions.
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Chapter 1

Introduction

1.1 Motivation and open questions

Climate modeling involves representation of phenomena at a multiplicity of spatial and

temporal scales. This is particularly true in the case of land surface modeling, where

land-atmosphere interactions depend on surface heterogeneities with spatial scale gen-

erally varying between 100-102 m. Such scales are too small to be explicitly resolved

in a climate modeling framework, typically working at a scale of 50-100 km. Rietk-

erk et al. (2011) highlighted how climate models generally miss the representation of

small-scale land surface phenomena, and that a new parameterization of these surface

heterogeneities is needed. Even though from a climate modeling perspective neglect-

ing sub-grid scale surface heterogeneities may be a good first order approximation, it

is possible that these local surface patterns may generate local feedback mechanisms

able to modify the forcing itself. This not represented feedback loop can potentially

lead to miss ecosystem-climate interactions at regional or even global scales (Janssen

et al., 2008; Dekker and Rietkerk, 2007; Scheffer et al., 2005; Pielke, R. A., Sr et al.,

1998). In Fig. 1.1 I show examples of sub-gird scale heterogeneities in high-latitude

environments, which can potentially affect water, carbon, and energy balance in such

ecosystems.

Many studies focused on land surface small-scale patterns, in particular highlight-

ing mechanisms for pattern formation [i. e., ][](Schymanski et al., 2010; Rietkerk and

van de Koppel, 2008; Couwenberg and Joosten, 2005). Recent works linked some

spatial properties of vegetation patterning, particularly in water limited systems, to

situations where the system becomes more and more sensitive to perturbations. The

sensitivity of the system can become so large that the perturbations may lead to phase
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(a) (b)

(c) (d)

Figure 1.1: The Figure shows surface heterogeneities on high-latitude ecosystems, both in
permafrost and in permafrost-free environments. Panel (a), is a picture from the IPA (In-
ternational Permafrost Association) website. It shows a tessellated landscape consisting of
low-center polygons. The progressive drying of the polygon surface leads to an amplifica-
tion of the degradation of the ice wedges in the drier rims. This small-scale phenomenon
causes the large-scale outflow visible in the lake chain in the center of the picture. Panel (b)
shows an aerial photograph of a polygonal tundra landscape in Northern Seward Peninsula,
Alaska, in 2012. The interpolygonal water flow degrades the permafrost within the rims and
can initiate thermokarst lake formation. This phenomenon not only regulates the water flow
and the energy and carbon exchange between permafrost environments and atmosphere, but
it drastically changes the landscape and the ecosystem, transitioning a strongly organized
polygonal ground to a potentially expanding lake. Photo taken by Guido Grosse. Panel (c)
shows a picture from the Ust-Pojeg mire (Komi Republic, Russia) study site where the team
of the Institute of Soil Science of the Hamburg University conducted measurement campaign.
The sparse micro-topography shows how the water table position in respect to the surface
vary over a flat landscape such as the mire. This is due to the heterogenous elevation of
hummocks (small-scale relieves) and hollows (depressions). The picture is from the website
of the Institute of Soil Science of the Hamburg University. Panel (d), finally, shows the ele-
vation profile of the hummock-hollow stripe transition in a peatland near the Bothnian Bay,
Sweden. The different colors of the vegetation also indicate different types of biomes and
plant communities between the two micro-topographic features. Picture taken by the author.
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transitions in ecosystem states. Pattern properties can be used as early warning signals

for such catastrophic shifts in ecosystem states (i. e., Kéfi et al., 2007, 2013). Other

studies focused on the impact of climate on vegetation dynamics, demonstrating how

the climatic forcing is a key factor in determining characteristics of the small-scale veg-

etation patterns (Kletter et al., 2009; von Hardenberg et al., 2001; Dijkstra, 2011). As

mentioned, small-scale vegetation patterns may in turn feed back on climate, changing

the forcing. Baudena et al. (2013) showed how, by changing the shape and the type

of the vegetation pattern, land-atmosphere water fluxes can vary up to 10 %. Studies

that close the feedback loop from climate forcing on land surface, to the response of

climate to potential variations of land-atmosphere fluxes due to sub-grid scale hetero-

geneities are almost absent. Melton and Arora (2014) recently showed that sub-grid

scale variability plays an important role in the model response to a changing climate.

In their study, two different representations of sub-grid scale variability of plant func-

tional types (PFTs) lead to different effects on the magnitude of the global terrestrial

carbon sink.

This issue concerning sub-grid scale heterogeneity effects on fluxes is of particu-

lar interest and importance in northern peatlands and in periarctic environments in

general, as pointed out by Baird et al. (2009b). The total amount of carbon in the

circumpolar regions, both in permafrost and in permafrost-free organic soils, has been

recently estimated in 1672 Pg, which is approximately 50% of the world soil carbon

(Tarnocai et al., 2009; Hugelius et al., 2013). Northern peatlands, i. e. wetlands with

at least a layer of 30 cm of organic soil on top, despite covering only up to the 3% of

the land surface area, contain large amount of partially decomposed carbon, which is

susceptible to be emitted either as CO2 or CH4. Recent estimates by Yu et al. (2010)

computed the amount of carbon stored in boreal peatlands of about 547 (473-621)

Pg, significantly larger than previous estimates of 270-370 Pg (i. e., Turunen et al.,

2002). Such environments are likely to experience the largest increase in temperature

in the next 100 years due to the abrupt climatic change and due to the so-called Arctic

amplification (i. e., Pithan and Mauritsen, 2014). Therefore it is likely that local

changes in such a key region for the carbon cycle can have global effects. In order to

understand and project the soil carbon storages, one has to consider the controls on

land-atmosphere fluxes and the feedbacks arising from such interactions, which may

in turn depend on small-scale surface heterogeneities. Accounting for such informa-

tion may be fundamental, especially because nonlinear relationships are involved in

the processes driving greenhouse gas emissions (Stoy et al., 2009; Mohammed et al.,

2012). Recent efforts tried to reproduce permafrost, peatland and wetland extent and

carbon accumulation in various Dynamic Global Vegetation Models (DGVMs) and in
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Earth System Models (ESMs), which couple the land surface with atmosphere and

ocean dynamics, (i. e., Ekici et al., 2013; Schuldt et al., 2013; Kleinen et al., 2012;

Wania et al., 2009a,b). Regarding wetland extent, results of simulations with different

DGVMs are reassumed in the WETCHIMP intercomparison project by Melton et al.

(2013); Wania et al. (2013). Despite the large differences in process parameterizations

and representations among the DGVMs used in the intercomparison project, it is clear

that all of them lack representation of fine scale heterogeneities and sub-grid scale pro-

cesses. Because of the lack of such representations in the models, it is still unknown

the extent of the effects of surface heterogeneities on land-atmosphere fluxes in north-

ern peatlands. Considering the need to fill the gap among different spatial scales in

carbon-rich high-latitude ecosystems, I can formulate the overarching research question

of the present thesis as:

How do sub-grid scale surface heterogeneities influence climate-

biogeosphere interactions in high-latitude ecosystems?

In order to asses the potential effects in different environments, I start my investi-

gations in periarctic environments, focusing my attention on the ice-wedge polygonal

tundra, a typical ecosystem of the Arctic lowlands. Such patterned grounds play a

dominant role in determining surface morphology, drainage and patterns of vegetation

(French, 2007). In particular, low center polygonal tundra typically consists of elevated

and comparatively drier rims, and of lower and wetter centers. The environment dis-

plays a large variability, and several experimental studies focussed on the controls of

such sub-grid scale heterogeneities on greenhouse gas emissions (see e.g. Sachs et al.,

2008, 2010; Wille et al., 2008; Kutzbach et al., 2004), on hydrological properties (Boike

et al., 2008), and of surface energy balance (Langer et al., 2011b,a). Recent studies with

the help of remote sensing data were able to capture and analyze surface heterogeneities

(i. e., land cover and surface temperature). They highlighted the importance of small-

scale surface heterogeneities for the land-atmosphere water fluxes (Muster et al., 2012;

Langer et al., 2010). Langer et al. (2013) presented a satellite-based modeling study for

predicting temperature trends in such environments, but not all characteristics can be

detected by remote sensing. Therefore, a different modeling approach, able to combine

local data and statistical representation of the small-scale heterogeneities, is needed to

consistently model properties, such as the regional water balance. I therefore address

the following research questions:

How can we represent multi-scale phenomena in permafrost environments,

such as the polygonal tundra, from the single polygons to the landscape-

scale? How and to which extent do sub-grid scale surface heterogeneities

control the water balance in the polygonal tundra?



1.1 Motivation and open questions 5

Small-scale surface heterogeneities play an important role also in permafrost-free bo-

real ecosystem. Surface heterogeneities are typical in peatlands and consist of small and

relatively drier relieves, called hummocks, and of lower and wetter zones, called hollows.

Local mechanistic surface models suggested the potential role of the micro-topography

in boreal peatlands in regulating water and carbon balance (i. e., Nungesser, 2003;

Bohn et al., 2013). In northern peatlands the position of the water table is a fun-

damental control on greenhouse gas emissions, since it changes the depth of the oxic

zone, i. e., the region where methane fluxes coming from below can be oxidated and

therefore released as carbon dioxide (Waddington et al., 1996; Kettunen et al., 1999;

Moore and Knowles, 1989). As the two gases have different greenhouse properties, it

is difficult to estimate the climate impact of natural wetlands and peatlands without

precise estimate of methane emissions (Kirschke et al., 2013). In order to compute

a consistent greenhouse balance over the landscape, one should consider the small-

scale micro-topography and how water table and soil surface heterogeneously change

within the environment (Bellisario et al., 1999; Camill and Clark, 1998; Law et al.,

2002). Water table position can potentially also control other variables, such as the

ecosystem-scale energy balance, due to the different heat capacity between water and

peat. In order to understand all these processes and their links among each other, a

new modeling framework, combining micro-topography representation, methane emis-

sions, and a dynamical computation of peatland energy balance, is needed. Hence, I

address the following research question:

What are the effects of micro-topography on water, carbon, and energy

balance in a typical boreal peatland?

Land surface models such as JSBACH (Raddatz et al., 2007), the DGVM included

in the Earth System Model MPI-ESM, work at a spatial resolution of about 50 x 50

km at the finest scale. Even a geometric tessellation approach, besides the additional

computational cost it would carry, is unfeasible to be incorporated in a global model

because of consistency issues with the other model components. On the other hand,

prediction of greenhouse gas fluxes may be underestimated or generally wrongly rep-

resented by neglecting the information coming from the local surface heterogeneities.

The problem is similar to the one of coarse-graining in physics of complex systems.

Starting from a fine grained description of a system with a large number of elements

one tries to infer large-scale properties by coarsening the resolution of the model, ul-

timately finding an effective theory able to preserve the information useful for a final

prediction (i. e., DeDeo, 2011; Gell-Mann and Low, 1954). What is needed is there-

fore a theory able to describe observations, but explicitly without the claim that the

model represents the actual processes at play in the observed phenomena to which the
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theory is calibrated. The methodological framework is shown in Figure 1.2. In order to

develop such an effective theory, it is necessary to develop and use a method to consis-

tently identify and to quantify the larger-scale features of the patterns emerging from

sub-grid heterogeneities and from their interaction. To tackle this problem I formulate

the following research questions:

How can we identify the landscape-scale properties of the patterns emerg-

ing from sub-grid scale heterogeneities in boreal ecosystem? How can we

develop an effective theory, feasible to be incorporated in a DGVM, which

takes into account the information arising from such small-scale surface

heterogeneities?

Figure 1.2: A sketch of the methodological framework to tackle scale interactions in com-
plex systems. The construction of an effective theory is fundamental in order to relate
small-scale/plot measurements to large-scale/global predictions (DeDeo, 2011). The use of
simulations can link also a fine grained theory to full prediction, but the computational costs
between the fine and the coarse grained simulation differ substantially, and only the coarse
grained is feasible to be considered as (approximate) explanation of the observed phenomenon
in a large-scale model.
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1.2 Thesis outline

In the three following Chapters I present different approaches to identify and tackle

scale interactions in northern environments. I present the different models I developed,

and the applications of these novel tools. Each Chapter can be read independently.

In Chapter 2, I present a stochastic model for the polygonal tundra based on

Poisson-Voronoi Diagrams. In order to investigate micro-scale (m) effects on the

landscape-scale (km) and to compare the model results with local measurements, I

developed a stochastic representation of the geometrical features arising from complex

crack and growth processes. Geometrical properties of the low center polygonal tun-

dra, such as area of wetter and lower centers and of drier and elevated polygon rims,

are well represented, and water table dynamics is in agreement with observations.

The small-scale heterogeneities play a fundamental role in consistently representing

the landscape-scale properties, such as water and carbon balance. The results of the

model presented in this Chapter have been published in Cresto Aleina et al. (2013b).

In Chapter 3, I present a model for the identification of scale interaction issues

in another boreal ecosystem, i. e., a typical permafrost-free peatland. I initialize

the model with in site measures for micro-topography typical of boreal peatlands.

I show how the micro-topography representation controls the water table dynamics.

By coupling the micro-topography model with a process-based model for methane

emissions, and with a one-box atmospheric model I can quantify effects and feedbacks

on greenhouse gas emissions and energy balance from the micro-scale (m, hummocks

and hollows) to the landscape-scale (km, the whole peatland).

In Chapter 4, I use the outputs of the model I presented in Chapters 2 and 3 in

order to apply a novel analysis method, which makes use of Minkowski functionals and

densities (Mecke, 2000). This analysis framework gives information on the landscape-

scale pattern generated by the models presented in the previous Chapters. I also

show the first steps towards the development of a comprehensive parameterization

that takes into account the effects of micro-topography in northern peatlands. Such

a parameterization is computationally feasible to be incorporated in a DGVM such as

JSBACH, working at an ESM-scale (50-100 km).

In Chapter 5, I summarize the main results and the answers to the research ques-

tions, and I draw more general conclusions to the overall problem of scale interactions

in boreal ecosystems. I also discuss the main implications of the present thesis for

possible research in the future.
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Chapter 2

A stochastic model for the

polygonal tundra based on

Poisson-Voronoi diagrams

Sub-grid processes occur in various ecosystems and landscapes but, because of their

small scale, they are not represented or poorly parameterized in climate models. These

local heterogeneities are often important or even fundamental for energy and carbon

balances. This is especially true for northern peatlands and in particular for the polyg-

onal tundra where methane emissions are strongly influenced by spatial soil hetero-

geneities. We present a stochastic model for the surface topography of polygonal tun-

dra using Poisson-Voronoi diagrams and we compare the results with available recent

field studies. We analyze seasonal dynamics of water table variations and the landscape

response under different scenarios of precipitation income. We upscale methane fluxes

by using a simple idealized model for methane emissions. Hydraulic interconnectivi-

ties and large-scale drainage may also be investigated through percolation properties

and thresholds in the Voronoi graph. The model captures the main statistical charac-

teristics of the landscape topography, such as polygon area and surface properties as

well as the water balance. This approach enables us to statistically relate large-scale

properties of the system to the main small-scale processes within the single polygons.

2.1 Introduction

Large-scale climate and land surface interactions are analyzed and predicted by global

and regional models. One of the major issues these models have to face is the lack of
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representation of surface heterogeneities at sub-grid scale (typically, less than 100-50

km). How phenomena and mechanisms interact at different spatial scales is a chal-

lenging problem in climate science (see e.g. the review of Rietkerk et al., 2011). In

particular, the lack of cross-scale links in most general circulation models (GCMs) may

lead to miss nonlinear feedbacks in climate-biogeosphere interactions, as highlighted

by recent studies (Baudena et al., 2013; Janssen et al., 2008; Dekker and Rietkerk,

2007; Scheffer et al., 2005; Pielke, R. A., Sr et al., 1998). This issue may cause a

strong bias in climate models trying to compute accurate energy and carbon balances.

This is particularly true for methane emissions in northern peatlands that contribute

considerably to the Arctic carbon budget (Baird et al., 2009a; Walter et al., 2006). In

addition, thawing permafrost could lead to increased carbon decomposition and en-

hance methane emissions from these landscapes causing a positive feedback to climate

change (O’Connor et al., 2010; Schuur et al., 2008; Christensen, 1995).

One important driver of methane emissions, for example, is water level. In polyg-

onal tundra, the pronounced micro-topography leads to a tessellate pattern of very

contrasting water levels and hence strong small-scale variability of methane emissions.

Previously, typical process-based wetland methane emission models (e.g., Walter et al.,

1996; Walter and Heimann, 2000) were constructed based on plot-scale process under-

standing and emission measurements but have subsequently been used for upscaling

emissions to large areas using a mean water level. With water level often acting as a

on-off-switch for methane emissions (Christensen et al., 2003), the problem becomes

obvious: where methane is emitted at the inundated micro-sites and not emitted at the

dominating relatively drier sites, the mean water level in the model can either be near

the surface (as in the inundated sites), leading to large emissions throughout the area,

or it can be below the surface (as in the moist sites) leading to emissions close to zero.

Both results would not represent the differentiated emission pattern of the polygonal

tundra, also because water table position in respect to the ground surface is nonlinearly

related to methane emissions. Zhang et al. (2012) also used a process-based model to

upscale methane emissions from the plot to the landscape-scale but ran the model sep-

arately for each land surface class as derived from high-resolution aerial imagery. This

approach leads to a much better agreement with landscape-scale emissions as measured

by eddy covariance than previous upscaling attempts with process-based models that

ignored the spatial heterogeneity. The model representation of such heterogeneity is

currently usually driven by the pixel size of available remote sensing products or the

grid cell size of the respective model, but the real world functional or structural differ-

ences between individual components of a heterogeneous domain may actually be on

a very different scale. Preserving their information content becomes particularly im-
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Figure 2.1: Color-infrared aerial picture of polygonal tundra on Samoylov Island, Lena River
Delta, Russia. Dry rims appear light grey, open water appears black. Dark grey and reddish
areas indicate moist to wet areas.

portant where nonlinear relationships are involved in the represented processes such

as those driving greenhouse gas emissions (Stoy et al., 2009; Mohammed et al., 2012).

Arctic lowland landscapes underlain by permafrost are typically characterized by

patterned ground such as ice-wedge polygonal tundra. They cover approximately 5-

10% of Earth’s land surface, where they play a dominant role in determining surface

morphology, drainage and patterns of vegetation (French, 2007). Low center polygonal

tundra typically consists of elevated comparatively dry rims and lower centers that can

become wet if the water table rises to the ground surface level or above. Thermally

induced cracking in the soil during winters with large temperature drops generates the

polygonal patterned ground. When the temperature rises and snow cover melts, water

infiltrates in those cracks, and refreezes. Over the years, as this process is cyclically

iterated, the terrain is deformed due to the formation of vertical masses of ice, called ice-

wedges. Aside of the wedges, terrain is elevated because it is pushed upwards, forming

the elevated rims typical of this landscape. Incoming water (precipitation or snow melt)

is then trapped by the rims in the polygon center, resulting in a water table level which

dynamically responds to climate and weather. This environment is typical for high-

latitude permafrost areas of Alaska, Canada, and Siberia. Ice-wedge polygon features
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have been observed also on Mars (Haltigin et al., 2011; Levy et al., 2010). The surface

morphology of dry rims and wet centers determines drainage and vegetation patterns in

the polygonal landscapes. They have therefore been the focus of extensive field studies

on experimental sites on Samoylov Island in the Lena River Delta in Siberia (an aerial

picture of the study site is shown in Fig.1). Previous works involved closed-chamber

and eddy covariance measurements of methane fluxes (see e.g. Sachs et al., 2008, 2010;

Wille et al., 2008; Kutzbach et al., 2004), as well as measurements and modeling of

hydrological properties (Boike et al., 2008), and of surface energy balance (Langer et al.,

2011b,a) in this typical periglacial landscape. Recent studies with the help of remote

sensing data were able to capture and analyze surface heterogeneity (land cover and

surface temperature) and its importance for the land-atmosphere water fluxes (Muster

et al., 2012; Langer et al., 2010). Theoretical efforts have also managed to quantitatively

classify ice-wedge polygons and other permafrost patterns in Alaska using Minkowski

density functions, quantifying binary patterns from aerial photographs. (Roth et al.,

2005).

In general, stochastic models may be useful tools to link different scales. Such

an approach has been widely used in modeling physical, biological, and ecological

phenomena, seeking to represent only the main processes and observable properties,

and replacing complex dynamics with random processes (see e.g. Dieckmann et al.,

2000, and references therein). To model large-scale (e.g., 100 km2) seasonal dynamics of

the small-scale-driven greenhouse gas emissions from such a landscape, it is impossible

to limit the description to an accurate model for a single polygon (typical dimensions

in the order of 10 m in diameter), due to the wide internal variability of the landscape.

In particular, this mechanistic approach would require a large number of parameters

and computational power in order to represent polygon variability in size, water table

position with respect to the surface, and response to climatic forcing. In this work, we

provide a stochastic method that takes into account such variability, using properties

of Voronoi polygons.

Voronoi diagrams (or tessellations) have been applied to various fields, from as-

tronomy to biology, forestry, and crystallography. For comprehensive reviews, see e.g.

Lucarini (2009), Okabe et al. (2000), and reference therein. Their wide range of ap-

plications derives from the fairly simple concept of partitioning the space behind them

and from their adaptability. In ecology and Earth science, they have been used to

describe ecological subdivision of territories (Hasegawa and Tanemura, 1976), hydrol-

ogy and precipitation, geology, and recently also as a framework in order to integrate

climatic variables over an irregular geographic region (Lucarini et al., 2008).
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2.2 The model

We develop a stochastic model, which is able to reproduce the main statistical charac-

teristics of the low center polygonal tundra (i.e., surface topography, area of different

soil surfaces, water table height). With the present model we do not seek to explain

surface pattern formation: our aim is, instead, to find a robust way to upscale land-

atmosphere greenhouse gas fluxes and the landscape response to climatic forcings that

are coupled to these statistics. We limit our description to the landscape’s present-day

state, and we do not represent polygon formation nor degradation.

We tessellate the plane with random polygons which are able to reproduce the main

general features of ice-wedge polygons. The model represents, analyzes and considers

the statistical characteristics of a region covered by ice-wedge polygons and describes

the landscape-scale (about 1 km2 or more) response to climatic forcing. In order to

represent ice-wedge polygonal tundra we use a random tessellation of the plane, so-

called Poisson-Voronoi diagrams (Okabe et al., 2000).

2.2.1 Poisson-Voronoi diagrams

Let us populate a Euclidean plane with an at most countable number of distinct points.

We then associate all regions in that space with the closest member(s) of the point set

with respect to the Euclidean distance. The result is a set of regions that cover the

whole plane, and each one of them is associated with a member of the generating

points. This tessellation is called planar ordinary Voronoi diagram, generated by the

point set. The regions constituting the Voronoi diagram are the Voronoi polygons.

More rigorously, let P = {x1, . . . ,xn} be the generating point set, where 2 ≤ n ≤ ∞
and xi �= xj for i �= j, with i and j integers. The (ordinary) Voronoi polygon associated

with xi is defined as:

V (xi) = {x| ‖ x− xi ‖≤‖ x− xj ‖, i �= j} (2.1)

and the set given by

V = {V (x1), ..., V (xn)} (2.2)

is the Voronoi tessellation. In our case, the generating process P is a homogeneous

Poisson point process P (λ), where λ is the intensity of the process. Therefore, we call

the resulting tessellation a Poisson-Voronoi diagram (PVD). Parameter λ basically

controls the density of the Poisson process. On a square L × L, the intensity of the
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process is defined as:

λ =
E[n]

L2
(2.3)

where E[n] is the mean of the number n of generated points, which follows a Poisson

distribution. Parameter λ directly regulates the polygon sizes. We tuned this quantity

with data from image analysis of the landscape (Muster et al., 2012). From equation

(2.3), L = 1 km and λ = 7500. Since λL2 � 1 we are in the thermodynamic limit and

the boundary effects can be neglected. A model realization of PVD is shown in Fig. 2.

The area of polygons in a Poisson-Voronoi diagram has been widely analyzed by

numerous studies (Okabe et al., 2000). Direct numerical investigations showed that

3-parameter generalized gamma distributions fit quite well the statistical properties of

the PVD (Miles and Maillardet, 1982):

fA(x) =
rb

q
rxq−1e−bx

r

Γ
(
q
r

) , r > 0, b > 0, q > 0. (2.4)

Other distributions have also been used in the literature to describe the PVD area

distribution such as lognormal and 2-parameter gamma (from equation (3.31), one

obtains the 2-parameter gamma distribution if r = 1 ), as reported by Okabe et al.

(2000) and reference therein.

2.2.2 Idealized polygons

Ice-wedge polygons are composed of two main regions: elevated drier rims and lower

wet centers. In our model:

Apol = qApol + (1− q)Apol = r + C (2.5)

where Apol is the total polygon area, and r and C represent the area covered by elevated

rims and the one covered by low centers respectively. Parameter q is a random quantity

varying between 0.35 and 0.7, which we tune according to observation data (Muster

et al., 2012).

Each Voronoi-region represents an ice-wedge polygon and its vertical structure con-

sists of a column, which parameterizes the water table level Wt, the thaw depth TD,

and the low polygon center surface level S. Water table is a dynamical variable and

responds to climatic forcing, whereas thaw depth follows a prescribed behavior during

the seasonal cycle (see Section 2.3 for the parameterization dynamics). Surface level,

polygon depth, thaw depth and water table level are initialized randomly: we tune their
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Figure 2.2: Poisson-Voronoi diagrams: different colors represent different types of surfaces:
light green if the polygon center is moist (water table >10 cm below the surface), dark green
if it is saturated (water table < 10 cm below as well as < 10 cm above the surface) and blue
if it is wet (water table > 10 cm above the surface and the polygon is covered by open water).
Dimensions of polygon edges in the figure are not to scale, since in our model they cover up
to 70 % of the whole polygon area. Distances on x and y axes are in meters.

mean values with data from available field observations. All quantities are computed

from the top elevation of rims, as shown in Fig. 3.

If water table rises above the center surface, area C increases as well, following the

equation:

C ′ = π

(√
C

π
+

δW

tanα

)2

(2.6)

where C ′ is the polygon center area after the water table rise δW and α is the angle

between elevated rims and polygon center surface, parameterized as:

α =
π

4
log(10q)

which takes into account that the larger the rims, the steeper polygon walls become,

as suggested by observations. Factor π
4
is needed not to exceed the limit αlim = π

2
.

Computing water table (Wt) variations with respect to the polygon surface (S) is

essential to estimate methane emissions (Sachs et al., 2008; Wille et al., 2008; Kutzbach
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Figure 2.3: Cross section of a polygon. Surface is divided in drier elevated rims and in lower
wet centers. Both surface level and single polygon depth are randomly generated. Water
table level Wt and thaw depth TD are also randomly initialized but they dynamically variate
with external forcing (Wt) and seasonal cycle (TD). Angle α represents the slope of polygon
rims.

et al., 2004). We distinguish between three kinds of surface types, depending on the

position of the water table with respect to the polygon center surface. If:

S −Wt > ε ⇒ Wet centers

|S −Wt| ≤ ε ⇒ Saturated centers

S −Wt < −ε ⇒ Moist centers

where threshold ε = 10 cm has been inferred from observations of small-scale methane

emissions (Sachs et al., 2010). They are controlled by the site’s water table height, and

different surface types correspond to different emitting characteristics. In particular,

methane emissions from saturated centers are an order of magnitude larger than in the

case of moist centers or than emissions from dry rims.

2.2.3 Water table dynamics

We simulate water table variations at each time step (i.e., each day). The time period

we are looking at is the summer season (namely, from beginning of July till the end

of September), when the snow has already melted, and thaw depth deepens. The

prognostic equation for water table dynamics is:

dWt

dt
=

Peff − ET −R

s
(2.7)
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where water table height Wt responds dynamically to effective precipitation Peff , evap-

otranspiration ET , and lateral runoff R. Parameter s represents the drainable porosity.

We compute water table variations for each polygon at each time step. Water table po-

sition is then related to surface characterization, as described in the above paragraph.

Since we only focus on the effect of surface heterogeneity on GHG emissions, precip-

itation and evapotranspiration are parameterized as uniform over the whole area, i.e.

we do not apply any downscaling of climatic forcing. In particular, the two variables

follow a simple random parameterization. In this way, we are able to simulate both dry

and wet summers. We also take into account that the water income in polygon centers

does not only depend on precipitation income directly on the area C (Eq. 2.5), but

some of the precipitation falling on the rims r also percolates through the soil and has

an impact on the water balance. In particular, we assume that half of the precipitation

falling on the rims percolates or flows to the polygon centers. We therefore consider an

additional water income term. We generate a random number of rainy days (between

5 and 35). If the day t is a rainy day (r.d.), then:

Peff = P

(
1 + 0.5

r

Apol

)
−ΔSt. (2.8)

Where precipitation P is defined as:

P =

⎧⎪⎪⎨
⎪⎪⎩

Rp sin(
t+T
6Tπ

) if 30 < t < 90

10mm
day

sin( t+T
6Tπ

) else

(2.9)

where Rp is a randomly generated number, which tunes the amplitude of precipitation

events in the part of the summer season when main precipitation events are supposed

to occur, and it is computed in mm/day. In particular, changing Rp changes drastically

the amount of incoming water. T = 30 days is hereinafter a time constant. Term ΔSt

represents the amount of water stored in the unsaturated terrain in the rims that does

not contribute to water table variations at each time step. After large precipitation

events, not all the precipitation flows from the rims to the water table centers, but

part of it fills the unsaturated terrain of the elevated rims. This water balance term

has been observed in field campaigns and it is supposed to have a stronger influence

at the beginning of our simulation time slice (July), when the upper layer of the soil

is unsaturated, whereas storage capacity decreases with time until the whole terrain is
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saturated. In our model we parameterize storage as an exponential function:

ΔSt =

{
(P − ET )e−

t
τ if P ≥ 15 mm/day

0 else
(2.10)

where t is time and τ = 45 days is the characteristic time at which ΔS is reduced to

(P − ET )/e. We assume precipitation and evapotranspiration to be uniform over the

center and the rims.

We parameterize ET as:

ET = ETp sin(
t+ T

6Tπ
) (2.11)

where ETp follows:

ETp =

⎧⎪⎨
⎪⎩

5 mm d−1 if t = r.d. and 30 < t < 90

2.5 mm d−1 if t = r.d. and (t < 30 ∨ t > 90)

2 mm d−1 else

(2.12)

We chose parameterization of ET and P in order to reproduce data from observation

campaigns from Boike et al. (2008) and Langer et al. (2011a), which describe how

evapotranspiration is linked to the landscape’s energy balance.

Thaw depth, on the other hand, follows a seasonal trend: its level depends on

the time of the year the model is run at. With progress of the summer, the depth

of the seasonally thawed layer (frost table depth) increases, reaching its maximum at

the beginning of September. We keep thaw depth dynamics prescribed, i. e., we do

not consider how temperature variations may affect the environment. From available

observations, we assume thaw depth to behave as follows:

TD =

⎧⎪⎪⎨
⎪⎪⎩

15 t
T
cm if t < 30(

15 + 20 ∗
√

t−T
T

)
cm if 30 < t < 90

const else

(2.13)

During spring/early summer the ground is still frozen and water is kept inside the

polygons. With progression of thaw depth during summer, neighboring polygons can

become hydraulically connected. Field experiments show that water, which was re-

tained inside a polygon by the frozen elevated rims, may in this situation slowly flow

through the active layer of the rims themselves, from one polygon to another one or

from polygon center to the ice-wedge channel network (Boike et al., 2008). This phe-

nomenon is important for the water balance: in this case we assume a constant drop
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of the water table because of lateral runoff R:

R =

{
3 if Wt < TD

0 else
(2.14)

where R is computed in mm/day. Physically it represents both surface and subsurface

runoff.

We also consider that, due to soil porosity and water holding capacity, water table

rises differently inside and above the soil. We assume drainable porosity s to be 0.7 if

S −Wt < 0, and 1 if S −Wt ≥ 0. We base this assumption on field studies (Helbig

et al., 2013; Langer et al., 2011a).

We integrate the model for 90 days, which is approximately the duration of the

thaw season in northern Siberia (July-September). Our model does not include cold

months, when the surface is covered by snow. We also do not consider early summer,

when the thaw depth is still limited. External climatic forcings are precipitation and

evapotranspiration. We can vary precipitation intensity and its seasonal amount by

tuning parameter Rp (Eq. 4.15). In our simulation, we use: Rp = 30 mm/day for a

standard scenario, Rp = 15 mm/day for a dry scenario and Rp = 60 mm/day for a wet

scenario. For each scenario, we perform ensemble simulations, calculate the average of

30 ensemble members, and compute water table dynamics. We finally derive variations

on the amount of landscape area covered by different surface characteristics (i.e., moist

centers, saturated centers or wet centers).

Many studies showed the relationship between water table height and methane emis-

sions, such as Couwenberg and Fritz (2012); Zona et al. (2011); Sachs et al. (2010);

Strack (2004). In order to give an example of the influence of water table and surface

wetness on methane fluxes accounting for different climatic forcing, we multiply the

area covered by moist, saturated, or wet centers by values which represent the aver-

age August methane emissions from each surface type (Sachs et al., 2010). Average

methane flux (in mg d−1) from the total region at each daily time step is computed

following the equation:

Ftot = σCsaturated + ωCwet + δ(Cmoist + r) (2.15)

where σ = 94.1 mg d−1 m−2, ω = 44.9 mg d−1 m−2, and δ = 7.7 mg d−1 m−2. Values

are taken from Table 4 of Sachs et al. (2010). Area Ci of polygon centers with different

wetness and area r of relatively dry rims are computed in m2. In this simple model,

we assume polygon rims and moist centers to have the same emission coefficient δ.



20 A stochastic model for the polygonal tundra based on Poisson-Voronoi diagrams

2.2.4 PVD and percolation theory

Mathematical properties of PVD are also well suited to describe some landscape-scale

physical processes that have been observed in the field. In particular, we focus on

interconnectivity properties of the graph, applying percolation theory on PVD.

When water flows from polygon centers through the unfrozen top layers of the rims

(lateral runoff), it starts to flow into channels on top of the ice wedges between the

polygon rims (visible in Fig. 1). Due to thermal erosion, water does not stay confined

in the channel, but flows through a path of interconnected channels. If this path of

channels is large enough to connect polygons from one side of the landscape unit of

consideration to the other one, we can assume that water in the channels is able to

flow from one side to the other one. The system tested in this study is an island.

Consequently, water which was previously confined in the channels would likely run off

the island to the Lena river nearby. In our model we assume interpolygonal channels

(polygon edges in the PVD, or bonds, in percolation theory) to be active if the polygon

experiences lateral subsurface runoff. We also assume the polygon channel system to

be flat, or with a very small topological gradient, so that outflow due to landscape

slope is negligible.

Percolation theory describes the behavior of connected clusters in a random graph:

since its introduction in the late fifties (Broadbent and Hammersley, 1957), it has been

widely and successfully applied to a large number of fields, from network theory to

biological evolution, and from galactic formation to forest fires (Grimmett, 1999, and

references therein). Originally, the question to be answered focused on transport in

porous media. Let us imagine a porous stone touching some water on a side: what

is the probability that the water passes through the whole stone, coming out at the

other side? This simple question led to a basic stochastic model for such a situation

and gave birth to percolation theory. In our model, the question would be: what is the

probability that an open path of interconnected channels is formed? This is in fact the

probability that a giant cluster of channels with flowing water appears. On the PVD,

bonds connecting two points of the graph represent channels. Water flowing through

rims enters the channel network generated above the ice wedges between the polygons.

These channels are underlain by ice-wedges, and water flowing through them may also

cause thermo-erosion because of its mechanical and thermal effects on flowing water

on ice. In our simple model, if a channel is filled by water, we call it active. Since we

assume the environment not to have any slope, all edges of a polygon with Wt < TD

become active at the same time.

Percolation theory focuses on the probability θ(p) that a giant cluster exists. This
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probability is non zero only if the probability p that a bond is active exceeds the critical

threshold values pc. This value depends on the graph. Recent studies (Becker and Ziff,

2009) determined numerically the bond percolation threshold pc on a PVD:

pc = 0.666931± 0.000005

In order to reach percolation, the conditionWt < TD must be reached in a large enough

number of polygons. We simulate this result by keeping the thaw depth constant and

increasing the water table. We do not consider any physical process involved in water

table change, but we keep increasing its level until we reach the percolation threshold.

2.3 Results and discussion

In this section we analyze environment statistics by comparing model outputs with

available observations, both from field and from aerial photography. We analyze the

geometric characteristics of the polygonal tundra and the ones of PVD. We then present

and discuss results from 90 days of simulations, and the water table dynamics in differ-

ent simulated scenarios. Finally, we show results from our bond percolation realization.

Our results are qualitatively different from a mean field approximation approach, since

mean water table variations are computed considering processes taking place in each

single polygon.

2.3.1 Polygon statistics

We are interested in the distribution of areas covered by polygon centers C = (1−q)Apol.

As for the polygon area Apol, we compare the histogram of model output for C with

a generalized gamma distribution fA and a 2-parameter gamma distribution. Both

distributions are accepted by a Kolmogorov-Smirnov test at a 0.05 level of confidence.

Parameters of the distribution are taken from literature concerning the polygon area

distribution in a PVD (Okabe et al., 2000, and reference therein). Lognormal, expo-

nential, and normal distributions are rejected by the test for both Apol and C.

We then proceed to compare the model results with available data for the ice-wedge

polygons (Muster et al., 2012). We tuned the controlling parameter of the point process

λ and the random parameter q (equation 2.5) with observed mean values of polygon

and polygon center areas. Results show that comparisons between model outputs and

data are quite robust: not only the first two statistical moments are comparable, but
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Figure 2.4: Cumulative probability distribution of polygon center sizes. Observations (blue
line), and 100 model realizations (cyan lines) are compared. The figure displays area on the x
axis. Mean size of center area is 61.19 m2 in the observations and 61.36 m2 in the model on.
These values are comparable as confirmed by a Student’s T test. Distribution and standard
deviation of data and model output are also comparable. Red lines represent the confidence
bounds for the data cumulative distribution function at a 0.01 confidence level.

they also display a very similar distribution (as confirmed by a χ2 test at a 0.05 level

of confidence).

This result is central in our approach: it shows that PVD description of the land-

scape statistics is consistent with observations. In particular, we claim that our ap-

proach is able to consistently capture the topographic features of the landscape we an-

alyze. Even though the PVD are generated by a completely stochastic process (Poisson

point process), they represent area distribution of such a complex environment as the

low-center ice-wedge polygonal tundra. In order to test the robustness of this result,

we performed simulations on an other less random tessellation, i.e. a regular square

lattice, with polygon area Apol equal to the mean area from observation data (136 m2).

Again, polygon center area C = (1− q)Apol, with parameter q defined in the same way

as for the random case. Even though mean polygon and polygon center areas have

been tuned with observations, results do not fit polygon center distributions and fail

in particular to capture the skewness of the distribution, being therefore rejected by

Kolmogorov-Smirnov test.

2.3.2 Response to climatic forcing

Precipitation and evapotranspiration are the main inputs and outputs that drive water

level dynamics as described in equation 2.7. In order to test the model response to drier

and wetter conditions, we simulate different configurations by changing the amount of

incoming precipitation. We then compare the cumulative precipitation simulated by the
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(a)

(b)

Figure 2.5: Ensemble averages of 30 model simulations. The graph in panel (a) displays water
table variations over time. Assuming no runoff, and storage term equal to zero, water level
should correspond to the blue curve (cumulative precipitation minus cumulative evapotran-
spiration). Field datasets clearly show a drop in water table at the end of the season, due
to lateral runoff, when water table lies above the thaw depth. Panel (b) shows water table
dynamics in the three simulated scenarios: wet (blue line), dry (red line), and standard (black
line). Shaded areas represent the variance of the ensemble simulations, which increases with
the increase of the amount of water input.

model and the one measured in the field in order to have realistic scenarios comparable

with data from field campaigns (Boike et al., 2008; Sachs et al., 2008). Field studies

observed in particular the influence of lateral runoff and storage: water table drops in

the late summer season, since water table usually lies above thaw depth, and it leads

to lateral fluxes of water in the ice-wedge channel network. The model captures this

process (Fig. 5) as well as the water table variation magnitude.

Model results show that a decrease in precipitation will lead to a drastic drop in the

water table level, due to lateral runoff (Fig. 5b). Precipitation income is the only input

in equation 2.7. Scenarios of such dry seasons are likely to lead to drastically drier soil

conditions in the polygonal tundra landscape if there is not a parallel decrease in mean
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Figure 2.6: Ensemble averages of 30 model simulations in different scenarios. Panel (a)
displays seasonal variations of area covered by saturated centers in a wet (blue line), dry (red
line), and standard (black line) scenario. Saturated centers represent the major contribution
to methane emission in this area, and in our model their total area drops in both dry and
wet scenarios. Panel (b) shows modeled total methane emissions from the whole landscape
in the three scenarios. Despite a decrease in the number of high-emissive saturated centers,
our simple model shows increased methane emission in the wet scenario because of a drop in
the area covered by the relatively drier tundra (moist centers and elevated rims).

surface temperature, and consequently in thaw depth behavior. On the other hand,

an increase in precipitation with respect to the reference value used in the standard

scenario will not cause a flooding of the landscape. In the wet scenario we perform

simulations with a mean seasonal increase in precipitation of 100 mm/year with respect

to the reference value. In agreement with observations, mean water table changes its

position by lying slightly above the average polygon surface (i.e, Wt < ε = 10 cm).

Depending on Wt position in respect to the surface of the polygon center, soil

characteristics in polygon centers vary from moist to saturated and wet conditions.
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Field studies in this region showed a link between water table position and emissions

of greenhouse gases, with respect to methane (Kutzbach et al., 2004; Sachs et al., 2010)

and latent heat fluxes (Langer et al., 2011b; Muster et al., 2012). In particular, methane

fluxes vary up to an order of magnitude among different surface types. Therefore

dynamics of water table also influences dynamics of GHG emissions. Once again,

temperature variations and influences on thaw depth seasonal behavior are neglected.

If mean surface temperature rises, we expect lateral runoff to start earlier in the season

and therefore to be able to drain more water away from the environment. In our wet

scenario precipitation further increases. In this case, runoff is not sufficient to balance

the excess water, and the area covered by wet centers increases.

Our model is also able to calculate the seasonal dynamics of the landscape area cov-

ered by moist centers, saturated centers, and wet centers. These results are dependent

on thaw depth dynamics, which we here assume prescribed. Overall, in the ensemble

averages of simulations in the three different scenarios we used for precipitation in-

put, the fraction of area covered by saturated centers shows little seasonal dynamics

if compared to the fraction of surface covered by wet and moist centers. According to

our model, during the summer only extreme drops in water table, or very wet sum-

mers would lead to significant modifications of the fraction of the landscape covered

by saturated centers. We argue though, that coupling our simple approach to available

permafrost models, and thus with thaw depth behaviors dependent on climatic and en-

vironmental conditions, would enable more realistic predictions in different scenarios.

In particular, in warmer conditions, soil could thaw deeper and earlier in the season,

leading to further drops in the water table level and in the fraction of the landscape

covered by different terrains.

The simple model here introduced for computing methane emissions is directly

related to changes in soil wetness. We show the results of ensemble simulations in

different scenarios in the second panel of Fig. 5b. In particular, we observe that a de-

crease in precipitation (dry scenario) leads to a parallel decrease of methane emissions

with respect to the standard case, mainly because of spreading of relatively drier tun-

dra, which presents lower methane fluxes than wet and saturated centers. Water table

decreases and more and more centers become drier. According to equation (2.6), the

area of the lower centers decreases at the same time, thus increasing the area covered

by rims r, which in our model have the same emission properties of drier centers. If pre-

cipitation increases, our model predicts a corresponding increase in methane emission

from the landscape. In this extreme case, a more elevated water table would lead to an

increased number of wet centers, causing a retreat of the relatively drier tundra. Even

though area covered by high-emissive saturated centers decreases, in fact, the decrease
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of surface covered by relatively drier centers is even larger. This situation is likely to

increase methane emissions in respect to the standard scenario. In the wet scenario,

however, the decrease in the area covered by moist centers is counterbalanced by the

decrease of area covered by saturated centers in favor of wet ones. Therefore, methane

emissions, even if, as expected, larger in the wet scenario, do not increase significantly.

Our results are only qualitative, since we assume only a fixed average value for the

seasonal methane emissions. It is worthy to mention that the order of magnitude of

the methane emission is the same as the one found in eddy covariance measurements

in the study site (Sachs et al., 2010). This finding has been obtained without any fine

tuning and with a very simple methane emission model (Eq. (15)), but it nevertheless

proves the goodness of the model.

2.3.3 Percolation threshold

Fig. 7 shows a bond percolation realization. We reach the bond percolation threshold

by increasing the water table with a constant thaw depth. More and more polygons

experience lateral runoff. Consequently, their channels become active and water flows

into the channel network. The number of active channels needed to reach bond per-

colation is given by the theoretical findings described above, and it increases with a

rising water table. We expected the system to reach the percolation threshold if the

average water table level lies above the thaw depth, but the correlation between these

two phenomena is not trivial. In particular, the system does not reach the percolation

threshold at the same time as the average water level is above the average surface. In

the real system, if an interpolygonal channel is active, i.e. filled with water, water would

not stay confined in it, but would spread to other empty channels because of gravity.

This means that as only single polygons show lateral runoff, this drainage water would

be distributed to a certain number of other topographically connected channels, thus

the overall increase of water level within the channels would be dampened. If many

polygons experience lateral runoff, the number of empty channels would be drasti-

cally reduced. The water of the active channels could then spread in fewer channels.

Therefore, the average water level within the channel network would increase. In this

case, if a physical threshold somehow analogous to the percolation threshold on the

PVD would be reached, the water which was confined in the network channel is likely

to flow out of the system, namely into a near river, or sea. This phenomenon may

also have a significant impact on the carbon balance of the system since the outflow

of water from the channel is one of the most important phenomena for the exchange

of DOC (dissolved organic carbon) and DIC (dissolved inorganic carbon). Improving
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those features could be a future development of our approach, and the focus of further

studies, more specifically interested at landscape-scale processes of periglacial environ-

ment. Nevertheless, a simple application of mathematical properties of PVD is able to

capture landscape-scale behavior of the system. In particular, the number of polygons

needed to reach outflow can be easily computed through a bond percolation model.

At this stage, water can flow from the system into a near river, or to the sea and

would be lost. Consequences of strong runoff events are ignored in our model but field

observations suggest that thermoerosion and water runoff could be agents for polygon

degradation. We argue that the ability of PVD to simulate a physical process through

critical thresholds enhances the power and the theoretical predictive capability of our

approach.

(a) (b)

(c) (d)

Figure 2.7: Bond percolation realization: increase of Wt level and decrease of thaw depth
cause interpolygonal flow of water. Water flows into ice-wedge channel network, generated
by crack processes. In our model, channels become active, and polygons with Wt > TD
are colored in blue. In panels (a) to (d), the thaw depth becomes deeper and deeper. This
process happens seasonally, and with the deepening of the thaw depth, more and more chan-
nels become active, until a certain threshold is reached (panel (d)), when an open path of
interconnected active channels appears. The open path is colored in yellow, and it crosses
the whole region: water can flow from channels in the middle of the region to its borders as
outflow, and it is not kept in the environment any longer.
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2.4 Summary and conclusions

Our model provides a simple, stochastic, and consistent approach to upscale the effect

of local heterogeneities on GHG emissions at the landscape-scale. In particular, we

show how applications of Poisson-Voronoi diagrams can statistically represent the main

geometric and physic properties of the low-center ice-wedge polygonal tundra.

We describe the landscape using Poisson-Voronoi diagrams, tuning model charac-

teristics with field data. We show that the probability density function of modeled

polygon center areas is consistent with the one inferred by observations. Our approach

is therefore able to statistically upscale the terrain geometrical characteristics.

Dynamical water table variations in respect to the polygon surface are essential to

compute methane fluxes, and we compute such variations during the summer season

over the whole region, parameterizing processes within the single polygons. Results

of water table dynamics agree with observations. In particular, the stochastic model

is able to represent the water balance over the whole landscape. The model relates

then the water table position to different soil wetness levels. In particular, we are able

to compute for each time step the fraction of the landscape covered by moist tundra

(moist centers and polygon rims), saturated centers, and wet centers, under different

climatic forcing.

Our modeling framework enables us to investigate effects of large-scale intercon-

nectivity among ice-wedge channel network. Applications of percolation thresholds on

the PVD suggest possible explanations for water runoff from the landscape.

The stochastic parameterization of our model is far from the precision and accuracy

of a mechanistic model. Mechanistic models, however, can reach accuracy only at the

local scale whereas our approach accounts for landscape-scale properties and processes.

Our presented approach could be further improved by including parameterization of

hydrology, characterization of ice wedges and phenomena like thermokarst and poly-

gon degradation. In particular, we argue that linking this approach with available

permafrost models would enable even more realistic predictions of water table position

and the seasonal development of different surface types. Both variables are fundamen-

tal to consistently predict GHG emissions from polygonal tundra.

This model shows a new approach that could be successfully applied to other envi-

ronments and ecosystems where local processes and micro-topography play an impor-

tant role and a mean field approximation would fail in estimating large-scale features.

In order to achieve this goal, we need to gather information on the micro-topography of

the environment to which the tessellation approach will be applied. For environments
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such as peatlands, for instance, a characterization of the surface elevation (namely, the

amount of surface covered by lawns, hummocks, and hollows) in respect to the water

table is essential. In order to proper model other ecosystems, the point process gener-

ating the tessellation, which in the present study is a stochastic Poisson point process,

could also be substituted by a more regular one. For such a development, it is neces-

sary to adapt the vertical structure and the hydrology parameterization of the model

(which now represents polygonal tundra) to the new system under consideration. We

show such development in the next Chapter.

Flow network techniques, along with more information on the interpolygonal chan-

nel characteristics gathered in the field, could be useful tools to estimate and predict

the water flow in the channel network.

Further work will be focused on linking the stochastic model to existing mechanistic

surface models, such as Land Surface Schemes (LSS). We think that using the model

as an external module for characterizing surface micro-topography will improve the

variance of the mechanistic model, leading therefore to a qualitative improvement of

the mean field approximation for water table level, energy balance and greenhouse gas

emissions. One way to couple these two models is to use a LSS to compute the area

covered by such an environment and the climate forcing. The micro-topography model

driven by the LSS data will then be able to feed back to the LSS the response of local

soil features to such forcing for the given area.

Overall, the general agreement between field measurements and model in this study

results suggests that statistical methods and simple parameterizations, if accurately

tuned with field data, could be a powerful way to consider spatial scale interactions in

such heterogenous and complex environments.
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Chapter 3

Micro-topography controls on CH4

emissions and energy balance in

northern peatlands

A challenging problem in climate modeling is how to deal with interactions and feed-

backs across a multiplicity of spatial scales, and how to improve our understanding of

the role played by local soil heterogeneities in the climate system. This is of partic-

ular interest in northern peatlands, because of the large amount of carbon stored in

the soil. Greenhouse gas (GHG) fluxes, such as methane, carbon dioxide and water

vapor, vary largely within the environment, as an effect of the small-scale processes

that characterize the landscape. It is then essential to consider the local heterogeneous

behavior of the system components in order to properly estimate water and carbon

balances. We propose a novel method to fill the scaling gap from local mechanistic

models to large-scale mean field approximations. We developed a surface model for

peatlands working at the landscape-scale, which is able to show the impact of surface

micro-topography in modeling greenhouse gas fluxes and surface energy balance. We

tuned our landscape-scale model with data from a peatland site in the Komi Republic

of Russia. We simulate surface micro-topography and hydrology, and we couple it to

a process-based model for methane emissions. By partitioning the space in smaller

subunits and then analyzing the landscape-scale behavior of the system, we are able

to resolve the small-scale processes and to investigate their effects at larger scales. We

not only investigate the influence of the hummocky surface on GHG emissions, but we

are also able to simulate how complex sub-grid scale hydrological interactions affect

the average energy balance of the peatland.
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3.1 Introduction

The general issue of scale interactions in the climate-biosphere system is of particular

relevance in northern peatlands. Peatlands are wetlands where the terrain is covered

by at least 30-40 cm of partly decomposed organic matter (peat). Peatlands cover

only about 3 % of the global land surface (Wieder et al., 2009), but they play a

fundamental role in the global carbon cycle (Blodau, 2002; Limpens et al., 2008). This

is particularly true in boreal latitudes, where peatlands and wetlands are one of the

largest sources of natural methane (i. e., Bousquet et al., 2006). This is due to the fact

that during the Holocene peatlands constantly worked as a sink of atmospheric carbon

carbon (Smith et al., 2004), and recent estimations by Yu et al. (2010) computed the

amount of carbon stored in boreal peatlands of about 547 (473-621) Pg, significantly

larger than previous estimates of 270-370 Pg (i. e., Turunen et al., 2002). Recent

efforts tried to reproduce peatland and wetland extent and carbon accumulation in

various Dynamic Global Vegetation Models (DGVMs), (i. e., Schuldt et al., 2013;

Kleinen et al., 2012; Wania et al., 2009a,b), and the results are reassumed in the

WETCHIMP intercomparison project by Melton et al. (2013); Wania et al. (2013).

There are large differences among the different models in peatland representation and

in the parameterization of processes. It is nevertheless clear that all of them lack in

the representation of fine-scale heterogeneities and sub-grid processes.

In the previous Chapter we showed how local surface heterogeneities matter for

water balance in peri-arctic environments. In the present Chapter we propose a novel

method that takes into account sub-grid scale processes, and directly assess their impact

on the peatland ecosystems, from greenhouse gas emissions, to the energy balance.

Baird et al. (2009b) showed how fundamental small-scale features can be in the peatland

carbon cycle, as also highlighted by local surface models (i. e., Nungesser, 2003; Bohn

et al., 2013). As for peri-arctic peatlands (Sachs et al., 2010), the position of the water

table is a fundamental control on greenhouse gas emissions, since it changes the depth of

the oxic zone, i. e., the region where methane fluxes coming from below can be oxidated

and therefore released as CO2. As the two gases have different greenhouse properties,

it is difficult to estimate the climate impact of natural wetlands and peatlands without

precise estimate of methane emissions (Kirschke et al., 2013). In order to compute

a consistent greenhouse balance over the region, one should consider the small-scale

properties and how the water table and the soil surface heterogeneously change within

the environment (Bellisario et al., 1999; Camill and Clark, 1998; Law et al., 2002).

Water table position can possibly influence also the surface energy balance, because

of the different heat capacity between soil and open ponds. Langer et al. (2011b)
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showed how surface temperature heterogeneities can be observed in the Arctic tundra

under a large input of solar radiation, which increases the partitioning of latent and

sensible heat fluxes. This situation, especially after snow melt, where average water

table is generally very high, can have important impacts in boreal peatlands such as

the Ust-Pojeg mire complex in the Komi Republic, Russia.

We developed a mechanistic model working at the landscape-scale for a typical bo-

real peatland, in order to show the importance of surface micro-topography on green-

house gas fluxes. These small-scale surface heterogeneities are typical in peatlands,

and consist in elevated and relatively drier zones, called hummocks, and lower and

relatively wetter zones, called hollows. We tuned our landscape-scale model with data

from an elevated bog in the Ust-Pojeg mire complex. Many recent studies focused

on this study site, and provided measures of fluxes of water vapor, carbon dioxide

and methane, as well as energy and water balance (Runkle et al., 2014, 2012; Schnei-

der et al., 2012; Gažovič et al., 2010; Wolf, 2009). The Institute of Soil Science of the

Hamburg University measured also the micro-topographic elevation on the site, and we

use such extensive datasets to initialize the micro-scale elevation. We couple this hydro-

logical model to a process-based model for methane emissions (Walter and Heimann,

2000). We want to investigate how the complex hydrolological interactions happening

within the system at a sub-grid scale (∼ 100 m) are essential to correctly estimate the

landscape-scale land-atmosphere GHG fluxes (∼ 103 m). In order to compute methane

emissions, we force our model climatology with data from the CMIP5 (Coupled Model

Intercomparison Project Phase 5) output from the MPI-ESM model: temperature and

NPP (net primary productivity) are taken from the present day experiments. We also

want to investigate possible effects of micro-topography representation on surface en-

ergy balance, and therefore we need to dynamically compute surface and atmospheric

temperature. We couple our surface model with a simple one-box atmospheric model

originally developed by D’Andrea et al. (2006), and later coupled with a surface model

and dynamic vegetation and adapted for water limited environments by Baudena et al.

(2008); Cresto Aleina et al. (2013a). We modified the soil representation in order to

account for a dynamical water table.

We can then compare the GHG emissions from a model with a consistent micro-

topographic representation and the emissions from a single bucket model, which is the

classic way to represent such small-scale ecosystems in larger scale regional or global

models. Such a comparison can highlight the effects of micro-topography on various

peatland characteristics, from water, to carbon and energy balance.
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Figure 3.1: Representation of the model grid cell. Colors are function of the water table
position in respect to the surface level, going from green (water table below -10 cm), to
yellow (water table between -10 cm below the surface, and 10 cm above the surface), to black
(water table above 10 cm).

3.2 The model

We develop a model to consider peatland micro-topography, in the framework of a

squared lattice. The model works at a landscape-scale of 1 x 1 km, and each cell rep-

resents one type of micro-topography, either a hummock or a hollow, with dimensions

of 1 x 1 m. We compute for each grid cell both water table balance and methane emis-

sions. We are able to explicitly represent the micro-topography characterizing peatland

surface, and therefore we parameterize at the point-scale the heterogeneous hydrolog-

ical properties of the peatland soil (i. e., hydraulic conductivity, and parameters for

the surface and the subsurface water flow). Due to such an accurate representation

of the micro-scale, we can upscale emissions and water balance at the landscape-scale.

When coupling the model with the atmospheric box model, we compute for each grid

cell also the soil and the water temperature ad the point-scale. We then average the

local quantities over the whole landscape, aggregating the fluxes to interact with the

atmosphere. We compute the atmospheric dynamic quantities at the landscape-scale.

3.2.1 Micro-topography representation

We tune the model with micro-topographic data from a peatland of Northwest Russia,

the Ust-Pojeg mire in the Komi Republic (61o 56’N, 50o 13’E, 119 m a.s.l.). Many stud-

ies focused on this study site as typical boreal peatland, as the mire complex displays

different kinds of peatlands type, from an ombrogenous bog, to a minerogenous fen,
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Figure 3.2: Series of composite/ 360 degree panoramic images taken by the team from the
Institute of Soil Science of the Hamburg University (courtesy of B. Runkle). The images show
both the pace of snow melt (5 days) and the sparseness of the micro-topographic features.
All the dark spots in the top photo are the tops of hummocks.

to a transitional zone with the surrounding forest. Former studies provided measures

of fluxes of water vapor (Runkle et al., 2012), carbon dioxide (Schneider et al., 2012),

methane fluxes (Gažovič et al., 2010; Wolf, 2009), as well the energy balance (Runkle

et al., 2014), and we use these measures to evaluate the performances of the model.

The extensive studies on the site also allow us to represent peatland micro-topography

(i. e., hummocks and hollows). In order to consistently simulate small-scale surface

heterogeinities, we use field data to initialize the surface elevation in the model. We

focus our modeling framework on the bog, in order to exclude the influence of the

underground water flow that characterizes the fen ecosystem.

We use the dataset collected by expeditions organized by the Institute of Soil Science

of the University of Hamburg. It consists of elevation data measured over the whole

mire complex. We organize the elevation data in a histogram, in order to infer the

statistical distribution. We then randomly pick a value from the statistical distribution,

and we assign it to each grid cell. We assume that with this procedure we statistically

capture the peatland micro-topography. If the grid cell at the position i, j has an

elevation Hi,j above a surface level H0 = 20 cm then we assume that such a grid cell

is a Hummock, otherwise it is a Hollow (B. Runkle, personal communication). Along
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with the micro-topography, we initialize each cell with other two properties which affect

methane production and hydrology respectively: peat depth pd(i, j) and slope sl(i, j).

The peat depth roughly reproduces the peat profile of the bog in the Ust-Pojeg mire,

and it is modelled as:

pd(i, j) =
pdx(i, j) + pdy(i, j)

2
(3.1)

where ⎧⎪⎨
⎪⎩

pdx(i, j) = (0.3/250)x m if x(i, j) < 250

pdx(i, j) = 0.3 + (0.7/50)(x(i, j)− 250) m if 250 ≤ x(i, j) < 300

pdx(i, j) = 0.3 + (0.7/50)(x(i, j)− 250) m if 300 ≤ x(i, j) < 750

(3.2)

where x(i,j) is the longitudinal position of the grid cell, ranging from 1 to 1000 m, and

analogously:

⎧⎪⎨
⎪⎩

pdy(i, j) = (0.3/250)x m if y(i, j) < 250

pdy(i, j) = 0.3 + (0.7/50)(y(i, j)− 250) m if 250 ≤ y(i, j) < 300

pdy(i, j) = 0.3 + (0.7/50)(y(i, j)− 250) m if 300 ≤ y(i, j) < 750

(3.3)

where y(i,j) is the latitudinal position of the grid cell, ranging from 1 to 1000 m. Peat

depth basically gives information on the amount of carbon available for decomposition

and GHG emissions.

The second term sl(i, j) parameterizes the slope of the bog. We assume the slope

of the bog to have a uniform linear dependence on the y axis:

sl(i, j) = 3− y(i, j)/my m (3.4)

where my = 1 km is the longitudinal dimension of the landscape-box representing our

bog. The slope regulates water flow over the peatland due to the Manning’s Flow (see

Section 3.2.3).

3.2.2 Water table dynamics

We compute water table position at each time step. We start the simulations at the

end of March, i. e. when snow melt takes place, and we end it at the mid of October,

when the cold season starts. We also model snow melt explicitly since it represents one

of the main inputs in the water balance, and most of the landscape becomes inundated,

as we can see in the lower two snapshots of Figure 3.2. For each cell at position i, j we
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Figure 3.3: Schematics of a model grid cell, i. e., a hummock. The water table position
can variate due to precipitation P , evapotranspiration ET , and lateral runoff. Lateral runoff
is parameterized as the sum of the Manning’s and the Darcy’s flow. One further input to
water table is the snow melted at the beginning of the simulation (not shown). Height of the
acrotelm variates from cell to cell, following micro-topography representation.

compute the water balance following the equation:

dWi,j

dt
=

S + P − Ei,j +Ri,j

si,j
(3.5)

where Wi,j is the water table level in the cell at the position (i, j) relative to the

reference surface level, S is the snow melt input, P is the precipitation income, Ei,j is

the evapotranspiration, Ri,j is the lateral runoff, si,j is the drainable porosity, and t is

the daily time step.

Snow melt S represents the water input at the beginning of the warm season. The

cold season is not represented in the model, because we assume the snow to cover the

area (almost) uniformly. We simulate cumulative snowfall Sn using a gamma function,

and we assume that snowfall takes place in 180 days:

Sn =
180∑
n=1

γS(n) (3.6)

where γS is a random number following a 2-parameter gamma-distribution with shape

parameter α = 1, and scale parameter β = 1.

To simulate the snow melt, we use a melting-degree formula, which determines the
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amount of snow melting each day as a function of the air temperature:

S(t) =
RfSn−Ms(T (t)− T0)

δt
(3.7)

where Ms = 3 mm K−1 is a tuning parameter that regulates the snow melt input into

the system. T (t) − T0 takes into account when air temperature T at time t is above

T0 = 273.15 K, and δt = 1 day. Number Rf = 0.3 takes into account the difference in

water and snow volume.

Precipitation is the main water input, and it is a given forcing that, analogously to

what we did in Chapter 2, follows the formula:

P (t) = PrγP (t) (3.8)

where Pr = 10 mm regulates the amplitude of the precipitation events, and γP is

a random number following a 2-parameter gamma-distribution with shape parameter

α = 0.3, and scale parameter β = 1. We choose both γP and γS in order to fit the data

of local cumulative precipitation, and the cumulative amount of snow falling during

winter respectively. Evapotranspiration on the other hand is dependent on the soil

dryness and patchiness. We refer to former studies (Nichols and Brown, 1980), which

extensively analyzed the evaporation rate from sphagnum moss surface. We made the

evapotranspiration dependent on the day of the season, the surface wetness, and on

the micro-topographic features.

ETi,j =

⎧⎨
⎩

ETmin
i,j

fr(Wi,j)
sin( (t−4T )π

6T
) if 180 < t < 300

ETmin
i,j

fr(Wi,j)
otherwise

(3.9)

where t is the time step in days of Gregorian calendar and ETmin
i,j depends on the

micro-topographic features for the cell at the position i, j:

ETmin
i,j =

{
6 mm d−1 if Hummock

3 mm d−1 if Hollow
(3.10)

and fr(Wi,j) takes into account the fact that evaporation takes place at a higher rate

if water table is above the surface:

fr(Wi,j) =

{
1 if Wi,j above the surface level

2 if Wi,j below the surface level
(3.11)

Term si,j is the drainable porosity, and it variates spatially both horizontally and
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vertically. If water table is above the surface level, si,j = 1, whereas if the water table

is below the surface, we assume it to follow:

si,j =

{
0.8 if Hummock

0.5 if Hollow
(3.12)

By dynamically representing the water table at the micro-topographic level, we are able

to distinguish the subsurface water flow in hummocks and hollows. We expect that the

statistical distribution of the spatial pattern of the water table depth will change over

the season, as the subsurface water flow changes among the different micro-topographic

units.

3.2.3 Lateral runoff

Lateral runoff term R computes the water flux among the different grid cells, and it

allows the water exchange. We compute it as RIN
i,j −ROUT

i,j , where R
IN/OUT
i,j is the sum

of Darcy’s and Manning’s flows D and M :

R
IN/OUT
i,j = D

IN/OUT
i,j +M

IN/OUT
i,j (3.13)

Where Darcy’s Law and Manning’s flow represent the underground water flow and the

overland water flow respectively. They are parameterized as:

D
IN/OUT
i,j = Di,j

ΔWi,j

m
x/y
i,j

(3.14)

M
IN/OUT
i,j =

⎧⎨
⎩

(
k

Mci,j

)
Rad

2
3
i,jΔSl

1
2
i,j if Wi,j > 0

0 otherwise
(3.15)

Both terms are computed in mm/day.

Term m
x/y
i,j , instead, is the distance between the centers of cells i and j. In respect

to the classical expression for Darcy’s Law, we the consider the term Di,j to represent

the hydraulic conductivity, and its units are lengths per time. It is spatially dependent,

since we assume a different value for hummocks and hollows:

Di,j =

{
0.005 mm if Hummock

0.01 mm if Hollow
(3.16)

Manning’s formula describes the velocity of an overland flow driven by gravity.
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It is also dependent on the soil heterogeneity because we assume a difference in the

hummock-hollow surface roughness. In the equation, this term is represented by the

dimensionless number Mci,j:

Mci,j =

{
4 if Hummock

0.4 if Hollow
(3.17)

k is a conversion factor of 1 m1/3s−1. ΔSl
1
2
i,j represents the difference in slope

between the cells i and j. The term Rad
2
3
i,j is the hydraulic radius, defined as

Radi,j =
Ai,j

Pi,j

(3.18)

where Ai,j is the cross sectional area of flow, in our model:

Ai,j = m
x/y
i,j (Wi,j −Hi,j) (3.19)

and Pi,j is the wetted perimeter, or the perimeter of the cross sectional area Ai,j at

contact with water, in our model:

Pi,j = 2(Wi,j −Hi,j)m
x/y
i,j (3.20)

where Wi,j −Hi,j is the elevation of water table in respect to the surface and m
x/y
i,j is

the lateral extent of the grid cell.

Manning’s flow occurs on only if the water table is above the surface level, whereas

Darcy’s flow is always occurring. Hydrology representation is the one of main differ-

ences between this new approach and the classical bucket model, and the main driver

of water seasonal dynamics. The heterogenous surface and the interactions among the

different grid cells represent at a fine spatial scale actual interaction among hummocks

and hollows in actual peatlands. Values for parameters are displayed in Table 3.2.

3.2.4 Coupling with a process-based methane emissions

In respect to Chapter 2, here we propose a more explicit parameterization of methane

fluxes, by coupling the micro-topographic model to a process-based model for methane

emissions, in order to more consistently quantify the effect of surface heterogeneities

on GHG fluxes. The model developed by Walter and Heimann (2000) is an accurate

and quite general model for methane emissions, which can be applied to peatlands
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in different environments. In particular, it is the same model which is built in some

DGVMs, such as JSBACH (Schuldt et al., 2013), and LPJ (Kleinen et al., 2012).

We tune the model to perform in a typical peatland at the latitude of the Ust-Pojeg

mire complex. In Table 3.1 we show the list of parameters used to force the methane

model. We couple the methane model at each cell, and we compute methane fluxes

locally. We average over the whole landscape in order to upscale the local fluxes at the

landscape-scale. The process-based model for methane emissions provides an output of

methane fluxes F i,j
CH4

as a function of water table, carbon available, daily net primary

productivity (NPP), and temperature:

F i,j
CH4

(t) = f(Wi,j,(t), S
oil
i,j (t), NPP d

i,j(t), T
d
i,j(t)) (3.21)

Where Wi,j is the water table depth in respect to the surface computed at each position

i, j, Soil
i,j is the soil depth, NPP d

i,j the daily NPP of the ecosystem, T d
i,j the daily

temperature. The water table depth is a fundamental control on methane emissions,

since it regulates the depth of the oxic zone, where methane coming form below the

water table horizon can be oxidate as CO2. The soil depth takes into account that

each grid cell has a different peat depth. We sum the peat depth to the height of the

acrotelm (the part of peat containing living plants, which we assume being Hi,j). This

quantity Si,j controls the amount of carbon available:

Soil
i,j = pdi,j +Hi,j (3.22)

We force the model with prescribed time series of of NPP and temperature. The time

series are computed from simulations performed for the CMIP5 experiments with the

MPI-ESM model. We extracted temperature and NPP for the grid cell with latitude

and longitude corresponding to the one of the Ust-Pojeg mire. Both time series are

adapted for each time cell i, j taking into account that NPP and temperature vary if

water table lays above or under the soil surface. In particular, we assume:

NPP d
i,j(t) =

{
0 if Wi,j(t) > 15 cm

NPP (t) otherwise
(3.23)

where NPP (t) is the net primary productivity from the MPI-ESM model at the time

step t. For the temperature dynamics we assume:

T d
i,j(t) =

{
T (t)− 5 K if Wi,j > 15 cm

T (t) otherwise
(3.24)
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Parameter Meaning Value
Sdepth Soil depth 150 cm
rdepth root depth 70 cm
R0 Tuning parameter 0.30

Table 3.1: Table of parameters used in coupling the micro-topographic model to the process-
based model for methane emissions (Walter and Heimann, 2000)

where T (t) is the atmospheric temperature from the MPI-ESM model at the time step

t. We assume that the atmospheric temperature and the soil temperature are the same

if the water table is below the threshold of 15 cm. If water is above the threshold,

we assume that due to the different heat capacity of water, the soil is cooler than the

atmosphere.

Tuning parameter R0 in the model, tuned depending on climatic condition, is set

to 0.30, following references in Walter and Heimann (2000). We assume the vegetation

of the peatland to consist only of sphagnum and not to vary in space or in time.

3.2.5 Coupling with an atmospheric box model

The equation of the coupled soil-atmosphere system for the potential air temperature

tendency is modeled as following:

ρahacpa
dθ

dth
= G− ρahacpa

Δθ

δth
+ εSεaσ < TS >4 +RL (3.25)

Where θ is the PBL potential temperature, th the hourly timestep, G the sensible heat

flux, ρa the air density, ha the PBL height, cpa the specific heat of air, Δθ the con-

vective adjustment, RL the lateral relaxation of temperature, εS and εa the emission

- absorption coefficients of soil and air respectively, and σ the Stefan-Boltzmann con-

stant. The emission temperature in the third term r.h.s., < TS >, is the average over

the whole landscape of the heterogeneous soil temperature Ti,j computed for each cell

in the soil surface module. Convective adjustments and precipitation are computed

following D’Andrea et al. (2006).

As we showed above, the influence of micro-topography can be evaluated by coupling

an accurate dynamical description of water table with a process-based methane model.

On the other hand, the effect of local surface heterogeneities on the energy balance can

be investigated by coupling the model for micro-topography with a dynamical model

for the atmosphere. We use a one-box model for the convective boundary layer, with
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Figure 3.4: Schematics of the micro-topographic model coupled to the atmospheric box model.
Lateral processes are not shown.

parameterizations of convection and precipitation. We modified the model developed

in D’Andrea et al. (2006), and coupled to soil and vegetation in Baudena et al. (2008),

and in Cresto Aleina et al. (2013a).

The model also computes dynamically specific humidity, following the equation:

ρaha
dq

dth
=< E > −ρaha

Δq

δth
+ FL (3.26)

Where q is the specific humidity, Δq the convective adjustment, FL the lateral moisture

influx, and term < E > the aggregated evaporation flux, averaged over the whole

landscape from heterogeneous fluxes Ei,j. Evapotranspiration follows the Penman-

Monteith equation:

Ei,j = Emin
i,j

Δ(Fr −G) + ρacpa(q)ga
Le(Δ + γ(1 + ga/gs))

(3.27)

Where Δ is the rate of change in saturation specific humidity (in Pa K−1), Fr is

the incoming solar radiation (W m−2), G the sensible heat flux at the ground (W

m−2), ρa the dry air density, cp is the specific heat capacity of air (J kg−1 K−1), ga
and gs (measured in m s−1) the conductivities of air and soil respectively, and Le

is the volumetric latent heat of vaporization. Parameters for this equation are fixed

accordingly to Runkle et al. (2014).
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We compute the surface temperature at each time step th as:

Soil
i,j [q(ρScpS) + (1− qf )(ρW cpW )]

dTi,j

dth
= (1− αi,j)Fr −G− LeEi,j − εSσT

4
i,j−

− ρScpS
hS − hSD

τT
(Ti,j − TD)−

− δWρScpS
hS −Wi,j

τTw

(Ti,j − TWi,j)

(3.28)

Where Ti,j is the soil temperature, ρS the density of peat (assumed constant), cpS the

specific heat of peat, ρW is the density of water, cpW the specific heat of water, and qf

is a free parameter that describes the mixture of water and peat in soil. In our model,

qf = 0.2. On the r.h.s, αi,j the albedo, Fr the incoming shortwave radiation, Le the

latent heat of evaporation, Ei,j the water flux due to evaporation. The last two terms

on the r.h.s. represent the heat conduction between soil and the deeper soil, and soil

and water layer respectively: TD is the fixed temperature of the deeper soil, TWi,j is

the dynamical temperature of the water standing above the soil layer. hSD and Wi,j

are the heights of the deep soil layer and of the water table in respect to the surface

respectively. In particular, Wi,j is a quantity that we compute dynamically in Equation

3.5. Term δW is a step function that allows the last term to be not zero only if the

water table is above the surface level:

δW =

{
1 if Wi,j − surfi,j > 0

0 otherwise
(3.29)

Therefore, if water table lays below the surface level, we assume it does not influence

the temperature of the soil. In wetlands and peatlands it is not unusual that water

table lays above the surface layer, in particular during the snow melt period. This

affects energy balance as well as GHG fluxes, since latent heat fluxes are different from

open ponds to saturated or unsaturated terrain, and water heat capacity is different

from the one of peat. If Wi,j > 0, we add a further tendency equation, which is the

one for open water temperature.

δWρWWi,jcpW
dTWi,j

dt
= (1− αi,j)Fr −G− LeEi,j−
− 2εWσT 4

Wi,j + εSεWσT 4
i,j+

+ ρScpS
hS −Wi,j

τTw

(TSi,j − TWi,j)

(3.30)

While for the other quantities the initial conditions are initialized at the beginning

of the simulation, we assume the water to be at the same temperature of the soil at
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Symbol Meaning Value Units

ρa Air density 1.2 kg m−3

ρS Soil density 1300 kg m−3

ρW Water density 1000 kg m−3

ha Height of PBL 1000 m
hSD Deep soil layer depth 2.5 m
εS Emissivity of PBL 0.2 −
εa Emissivity of soil 0.8 −
εW Emissivity of water 0.9 −
σ Stefan-Boltzmann constant 5.6× 10−8 W m−2 K−4

ga Air conductivity 0.00135 m s−1

gs Stoma conductivity 0.00148 m s−1

γ Psychometric constant 66 Pa K−1

Le Latent heat of vaporization 2.501 ×106 J kg−1

cpa Air specific heat 1005 J kg−1 K−1

cpS Soil (dry) specific heat 2000 J kg−1 K−1

cpW Water specific heat 4200 J kg−1 K−1

Table 3.2: The Table shows the parameter values for the atmospheric model.

the time at which Wi,j > 0. We keep vegetation cover constant over the season, since

we assume this approximation does not represent a large bias for the purpose of this

model.

Lateral fluxes of heat in soil are not considered, because we assume them to be of

order of magnitudes smaller than the vertical heat exchanges. Values for parameters

are shown in Table 3.2. We conducted tests on parameter values in realistic ranges and

the behavior of the model does not change qualitatively.

3.3 Results and discussion

The model we developed allows us to consistently represent the micro-topographic effect

on hydrology and methane emissions in a typical northern peatland. We first study the

possible effects with a stand-alone model and a prescribed external temperature. By

coupling the model with a simple dynamic representation of the convective boundary

layer instead, we are able to remove this prescription and to dynamically compute the

effect of micro-topography on the peatland energy balance.
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We first discuss the statistics of the micro-topographic representation, as well as

the properties of the methane emissions. We then present the results of the stand-alone

model, comparing the novel approach to a classical bucket model, and finally we show

the results for the coupling with an atmospheric box model.

3.3.1 Micro-topography statistics

Figure 3.5: Comparison between the Ust-Pojeg mire elevation data collected by the team of
the University of Hamburg and a generalized 3-parameters gamma distribution multiplied by
maximum number of counts in the histogram. The good visual agreement is confirmed by
the positive results from a Kolmogorov-Smirnoff test at 5% confidence (P≥0.5).

We initialize soil surface elevation with elevation data collected in the field. In order

to be sure to consistently represent the surface elevation, we try to infer the statistical

distribution of the field data. The histogram appears skewed on the right tail, as we

show in Figure 3.5. We fitted the histogram with a generalized 3-parameters gamma

distribution multiplied by maximum number of counts in the histogram:

fA(x) = Nmax
1

2

bqxq−1e−bx

Γ (q)
, b > 0, q > 0. (3.31)

The visual fit is good, and we run a Kolmogorov-Smirnoff test at a level of confidence

of 5%. The test shows that the population has no significant difference to the function
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fA(x). We tested also other distributions, such as normal distribution, exponential, and

lognormal, but none of them passed the Kolmogorov-Smirnoff test. We then assume

that fA(x) fits our data well enough to be used for our purposes as parameterization

of the distribution for micro-topographic elevation, and we proceed to initialize the

microtopogrpahic model by assigning at each grid cell a value randomly picked from

fA(x). Parameters in Equation 3.31 are:

• b = 5.8

• q = 8.9

• r = 1.5

The distribution of surface elevation is not bimodal, as showed in (Eppinga et al.,

2008). Even though the histogram shows two peaks they are too near to be resolved

in a bimodal distribution. In Figure 3.5 we show the good agreement between the field

elevation data (histogram) and fA(x) (red line).

3.3.2 Micro-topography controls on hydrology and methane
emissions

Previous studies suggested that micro-topography may influence GHG emissions (Baird

et al., 2009a). An accurate description of the complex hydrological processes happening

at small scales in peatlands is necessary to consistently model GHG emissions. We do

not simulate winter season, but we randomly compute snowfall, namely the amount of

water available water for the ecosystem at the beginning of the season. How this water

flows through the system depends on the hydrology representation of the system itself.

We expect that a more physically based representation of these process would affect and

improve the dynamics of methane emissions. We performed ensemble simulations with

30 ensemble members and we compared two versions of the model. In the standard

model version (hereafter Microtopography) we simulate accurately micro-topography

as discussed in the previous Sections. In order to be able to investigate the micro-

topographic effect, we realized a second version of the model (hereafter Single bucket),

in which the whole peatland is represented by a simple bucket. Its height and peat

depth are the same over the whole region.

In Figure 3.6 we show the dynamics of the water table averaged over the whole

region. As expected, the differences on the water table dynamics is significant. In the

model version version Single bucket, after the snow melt period and the large income of
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Figure 3.6: The figure shows ensemble simulations of water table dynamics. We show a
comparison between the sub-grid tessellation approach (black line) and the single bucket
(red line). The micro-topography affects water table position by delaying the runoff, because
of the complex interactions among the grid cells, which we resolve in a finer scale model. The
shaded areas represent the standard deviation over 30 simulations.

water which basically floods the system, the water flows out. As a result, water table

drops early in the warm season, increasing the oxic zone depth. In the Microtopography

version, instead, the complex sub-grid scale interactions delay the runoff. The large

decrease in water table position at the beginning of the season in Single bucket version

disappears if one takes into account the flow among the different micro-topographic

units. In particular, small elevated spots (hummocks) can delay the strong Manning’s

flow (Equation 3.15), making the decrease in water table almost linear. This dynamics

is similar to the observations, which show a much smoother water table decrease, as in

?Schneider et al. (2012).

The water table position affects the oxic zone depth, i. e. the depth of the zone

where methane emitted by the deeper soil, in the anoxic zone, can be oxidated and

therefore emitted as carbon dioxide. Figure 3.7 shows how important effects the differ-

ences in water table representation can have. In particular, the Single bucket version,

because of the deeper oxic zone during most of the season, shows much smaller methane

fluxes than the Microtopography version. The visual difference is even more striking if

one considers the cumulative methane emissions over the whole simulation, which differ

by a factor of 2. The Microtopography version performs much better in comparison to

chamber measurement data (Wolf, 2009, Master thesis). The large peak toward the

end of August in Figure 3.7 can be explained by the high temperatures in the CMIP5

time series.
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Figure 3.7: The figure shows ensamble simulations of methane emissions. Methane emissions
are computed by coupling the model with a process-based model. As in Figure 3.6, we
compare the Microtopography version of the model (black line) with a Single bucket version
without microtopgraphy representation (red line). We show the average of 30 ensemble runs
(solid line) and the standard deviation among the runs (shaded areas). Because of a different
representation of hydrology, the micro-topography deeply affects the methane emissions, as
the Single bucket version emits much less methane. The shaded areas represent the standard
deviation over 30 simulations. The superimposed dots and the triangles represent in situ
chamber measurements from Wolf (2009). The order of magnitude of the local data is better
captured by the model with micro-topography. Some differences still exist because of the
different climatology between model and measurements. Moreover, both black and red lines
are averages over the whole landscape, whereas the measurements represent single plots.

3.3.3 Spatial representation of water table and methane emis-
sions

We compute water table position and methane emissions for each cell of the squared

lattice. Due to the heterogeneous pattern of soil properties, water table variates not

only over the season, but also spatially. We show the impact of such an heterogeneous

pattern on hydraulic properties in Figure 3.8, where we plot in histograms the water
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Figure 3.8: Histograms of water table distribution over the landscape at different days of
simulation We simulate water table position relatively to the surface level for all cells. As
expected, the distribution shifts towards negative values towards the end of the season. The
two peaks emerging by July coincide with the peak in water table distribution of hummock
and hollow grid cells respectively, as shown in Figure 3.9. The distribution shape does not
change qualitatively after the emergence of the second peak, but its position shifts as the
water balance changes. In particular, the peak near to the 0 level constantly decreases.

table depth relative to the surface elevation for each grid cell. In particular, we see

how the one peak at the beginning of the simulation splits in two peaks from July

onwards. This is due to the strong Manning’s flow, that washes the water which stays

above the surface out of the system. This explains how by the end of July no grid cell

displaysWt > 0, where the 0 level is fixed at the grid cell surface level. The second peak

emerging as the simulation proceeds coincides with the peak in water table distribution

in the hummocks (panel (a) in 3.9). Analogously, the peak near to the surface level

coincides with peak of the water table distribution in hollows (panel (b) in 3.9).
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(a)

(b)

Figure 3.9: Histograms of water table position in hummocks and hollows. The two micro-
topographic classes we take into account in this study show different spatial distribution of
water table depth relatively to the surface. The drier hummocks maintain the distribution
shape over the simulation, whereas the histogram of water table in hollow grid cells becomes
peaked around the 0 level surface). This is due to the strong Manning’s flow, that makes
water above the surface run off.

We can also investigate what is the relative water table distribution among hum-

mocks and hollows (Figure 3.10). As expected, the position of the water table relative

to the surface level is lower in the drier hummocks than in the hollows, where it is often

above the surface level. At the beginning of the season, the peaks of hollow water table

distribution and hummock water table distribution are in a similar position in respect

to the surface. As the simulation proceeds and water table drops, both hummocks
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and hollows become drier, but relative water table position drops differently in the two

micro-topographic classes. The shape of hummock water table distribution does not

change over the season, and its position shifts towards more and more negative values.

In the case of hollows, instead, the large peak in proximity of the 0 level (surface)

decreases only at the end of the season, when still many grid cells display a water table

at the surface level.

In Figure 3.10 we show histograms of methane emissions at different time steps, and

we separate the contributes of the two microtopogrpahic classes, i. e., hummocks and

hollows. Hollows as expected contribute more than hummocks on methane emissions,

being generally wetter and thus displaying a shallower oxic zone. This feature is well

displayed in the histograms as the shape of the total histogram is basically dominated

by the contribution of the methane emissions of hollows. Methane emissions increase

drastically at the end of July and at the beginning of August as also shown in Figure 3.7,

due to a higher temperature forcing. By the end of August, instead, water table drops

in average at a level lower than 100 mm from the surface, causing a significant decrease

in methane emissions (note the different scale of the horizontal axis in the figure).

We can conclude that hollows are the methane hotspots, and hummocks basically

reduce the emissions. On the other hand, the presence or the absence of hummocks

determines the shape of water table distribution, which in turn regulates the oxic zone

depth. micro-topography representation takes into account these characteristics and

correctly represents the ecosystem. Results are similar in magnitude of fluxes to the

chamber measurements shown in Wolf (2009).

3.3.4 Micro-topography effects on the ecosystem-scale energy
balance

In the previous Sections we explored how micro-topography affects methane emissions.

Such a control is quite straight-forward, since position of water table regulates the oxic

zone depth. The impact of micro-topography on the local energy balance has been in-

stead less explored by past studies. We introduce therefore a novel approach combining

a simple theoretical box model for the lower troposphere (i. e., the Planetary Boundary

Layer) to the surface elevation model, once again in both versions, Microtopography

and Single bucket. The results we show do not aim to give a comprehensive and quan-

titative investigation on possible feedbacks between peatland micro-topography and

atmosphere, but it is rather a fist step in a so far unexplored direction.

In Figure 3.6 we show how an improved representation of the water table due to

complex hydrological interactions affects the energy balance. The atmospheric poten-
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Figure 3.10: Histograms of methane emissions over the landscape. We show methane emis-
sions for all cells (blue histograms), hummocks (red histograms), and hollows (green his-
tograms) at different time steps. We chose to show snapshot of methane fluxes between the
mid of july and the end of August because this is the time slice at which changes in methane
emission dynamics are more rapid and dramatic. Let us note the different scale of the x
axis. Methane emissions increase of almost an order of magnitude in few days, because of
temperature forcing and water table position, which, by the end of August is in average below
the -10 cm level. This leads to an increase in the oxic zone, where the carbon can be oxidated
and released as carbon dioxide.

tial temperature of the planetary boundary layer is affected by sensible and latent heat

fluxes. Sensible heat fluxes increase significantly if water table is below the surface, as

the latent heat fluxes decrease. Plus, the heat capacity of soil (peat) is different from

the one of water. Another factor which may cause difference is the surface albedo.

Water is darker than the soil surface, and hollows, wetter, have generally lower albedo

than the relatively brighter and drier hummocks. We compare our results with eddy

covariance in situ measurements. In Figure 3.11 we show how the soil temperature is

affected by micro-topography. The water table in the Microtopography model version

lays for longer time above the surface (in average).

In the Single bucker model version, instead, the water quickly runs off out of the

system. The drier soil of the bucket model responds differently to the radiative forcing,

due to a different heat capacity of peat and water, and a different albedo. This causes

the soil temperature to rapidly increase as soon at the water table drops below the

surface. The same phenomenon happens in the Microtopography, but later on in the

simulation. The increase in temperature is thus dumped, and it reaches its maximum

(�15oC) later. The dynamics of the temperature is significantly nearer to the eddy

covariance measurements than the dynamics of the soil temperature driven by the
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Figure 3.11: Dynamics of soil temperature. The figure shows a comparison between the
Microtopographic version of the model (black line), and the classical Single bucket version
(red line), coupled with an atmospheric box model. The soil temperature therefore changes
as the soil characteristics do. In particular, the dynamics of the water table influences heat
capacity and albedo of the soil, which in turn change latent and sensible heat fluxes between
soil and atmosphere. The soil representation including micro-topography enables the model
to better represent atmospheric temperature.

bucket soil model, if we compare the results with Runkle et al. (2014).

3.3.5 Sensitivity analysis

We test our model with a different set of parameters. We call Standard configuration

the parameter values we used in the previous Sections.

We first test our model varying the grid size. In the previous paragraphs we com-

pared the Standard configuration with number of grid cells N = 106, and a classical

single bucket model, i. e. N = 1, and because of different water table behaviors we

explained large differences in methane emissions. We gradually increase the number of

grid cells, and compute the cumulative methane emissions over the whole season. In

Figure 3.12 we show how the cumulative emissions increase almost linearly if N ≤ 10. If

we increase further the number of cells, the cumulative emissions stabilize, even slightly
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decreasing if 10 < N ≤ 100. We explain this difference in behavior as the water table

position dynamics changes if the number of grid cells increases. In particular, the water

is retained within the system as the number of hydrological interactions between the

different grid cells increases, and the water table lays more and more in proximity of the

average soil surface. This change explains the drastic increase in emissions as N ≤ 10.

By N > 10, instead, the water table behavior asymptotically approaches water table

dynamics for N = 106, i. e. for model resolution of 1 m, hence changes in cumula-

tive emissions are not significant anymore. We nevertheless chose this resolution in

the Standard configuration, because such resolution is approximatively the dimension

of the micro-topographic features in the field, and the purpose of our model was not

only to compute greenhouse gas emissions, but also to infer the general influence of an

accurate micro-topographic representation on peatland properties.

Figure 3.12: Figure shows the dependence of the cumulative methane fluxes computed over
the whole warm season on the grid size of the microtopogrpahic model. The x axis shows the
squared root of the number of cells N , as

√
N = mx = my. Let us note that x axis is on a

logarithmic scale. We see how the cumulative methane emissions change greatly if
√
N ≤ 10,

but they quickly stabilize as the number of grid cells increases. This phenomenon is mirrored
by the average position of the water table dynamics, which by increasing N asymptotically
approaches the water table dynamics for N = 106.

Among other parameters, drainable porosity si,j in Equation 3.5 has a direct impact

on water table position and therefore indirectly on methane emissions. We chose the

amount of water the peat soil can retain in the Standard configuration baed on Kolka
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et al. (2011). This parameter can vary greatly in different peatlands, and therefore

the values in our Standard configuration are a susceptible assumptions we need to test.

In order to assess the model sensitivity to this parameter we make drainable porosity

uniform over the whole region, i. e., not we do not distinguish between hummocks and

hollows. We changed si,j uniformly at steps of 0.1 from 0.5 to 1.0, and we see how

water table changes its position. Average position is generally lower in respect to the

Standard scenario dynamics, but the differences are not significant, nor we can see any

effect in methane emissions.

3.4 Summary and conclusions

We presented a novel model for peatland micro-topography working at 1 m resolution,

fine tuned with field data from the Ust-Pojeg mire complex in the Komi Republic,

Russia. In order to correctly represent the peatland characteristics we use elevation

data collected on site of by a team of the Institute of Soil Science of Hamburg University.

We fit the histogram of the elevation data with a generalized 3-parameters gamma

distribution, fA(x) in Equation 3.31, and a Kolmogorov-Smirnoff test does not reject

the null hypothesis, i. e. the hypothesis that data and fA(x) belong to the same

distribution. We initialize the model elevation randomly picking a value from fA(x),

and we also assign to each grid cell other quantities inferred from site data, such as

peat profile and slope. We compute the water balance for each grid cell, taking into

account different hydrological features, such as parameters for Manning’s and Darcy’s

later flow (Equations 3.15 and 3.14 respectively). By computing the water balance at

1 m resolution, the complex hydrological interactions affect the average water balance,

as we show by comparing results of the model with micro-topographic representation

and the results of model in a simple single bucket configuration, where all quantities

are averaged over the whole peatland surface. By comparing the two models with field

data we see how the model with micro-topography representation performs better in

representing the peatland water balance.

We couple the surface model with a process-based model for methane emissions

(Walter and Heimann, 2000). Water table directly influences the depth of the oxic

zone, i. e. the zone where methane fluxes can be oxidate, and therefore released as

carbon dioxide. Hence, changing the water balance has a direct effect on fluxes, and

we show how accounting for micro-topography representation changes dramatically

the ecosystem-scale methane fluxes. The methane emission responses to water table

position are highly nonlinear, and therefore slight differences in water table depth

may lead to dramatic changes in fluxes. By not accounting for micro-topography in a
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classical single bucket model, as the water table depth drops faster, methane emissions

are much lower than in the configuration with micro-topography.

We also couple the model with a simple one-box model for the planetary bound-

ary layer, modified from D’Andrea et al. (2006), in order to assess possible micro-

topographic influences on local energy balance. In the uncoupled configuration we

forced the model with CMIP5 time series of temperature and NPP. By coupling the

model with an atmospheric model, instead, we dynamically compute both atmospheric

and surface temperature, and we substitute the external forcing with in situ measure-

ments of solar incoming radiation. Once again, the difference in water table position

affects the energy balance if we consider micro-topography or simply a classical single

bucket model. The persistently higher (in average) water table in the configuration

with micro-topography, due to the difference in water and soil heat capacity, leads to

large differences in the local energy balance. In particular, the earlier drop in water

table leads to an early increase in soil temperature, being the surface drier and exposed

to incoming solar radiation. The sudden increase of soil temperature happens instead

later in the season in the model with micro-topographic representation.

We also performed a sensitivity analysis on model parameters. The model resulted

particularly sensitive, as expected, to grid cell size. In particular, we see how the

cumulative fluxes depend on this key parameter. The model is size dependent for a

number of cells N lower than 100, i. e. for grid size lower than 100 m. Using a finer

grid cell the computational time for calculation increases, but there is no evidence

of any real improvement or change in water table dynamics and therefore in methane

emissions or in energy balance. On the other hand, we chose to keep the grid size of 1 m

because it is approximatively the size of micro-topographic features in real peatlands.

In order to upscale fluxes from the peatland one way could be to reduce the compu-

tational expensiveness of the model by increasing the grid size. On the other hand, the

amount of parameters would still be quite large, and for consistency issues integrating

a micro-topography model in a larger land surface model, or a DGVM, even drastically

coarsening the grid-size, is not feasible. Another way involves the use of pattern rec-

ognizers, such as Minkowski densities (Mecke, 2000), and their properties which could

be of help in identifying the main processes relating the micro-topographic features to

the landscape-scale methane emissions. We will explore the possibility to develop such

a parameterization in the next Chapter.

The model we presented could be further developed, in order to answer further

research questions. One interesting development would involve expanding the model

to the fen system which in the Ust-Pojeg mire complex lays near to the elevated bog
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ecosystem we modeled in the present Chapter. The fen system has different ecological

features. A model able to describe the interactions between the two ecosystems could

definitely help to investigate properties of the water flow, as pointed out by recent

studies (Runkle et al., 2012, 2014). The model could further explore the relations

among ecosystems by modeling also the transition zone between the proper peatland

and the forest. Other research areas of great interest are the implementation of nutrient

flow, as well as a more consistent modeling plant ecological communities.

Other directions of developments include expanding the array of climatic forcing.

It is of interest the generalization of the findings presented in this Chapter to future

projections. This is possible by forcing the model with the output of the CMIP5

runs from the MPI-ESM model for both temperature and NPP, in order to investigate

the response of the micro-topographic model coupled to the process-based model for

methane emissions. Changes in temperature would likely lead to an increase in methane

emissions, but the magnitude of this effect is still unknown, and in order to tackle such

a complex problem a fine tuned micro-scale model working at the peatland-scale is a

valuable tool. Analogously, we could force the model with different climatic conditions

in order to adapt it to different peatlands in different environments. The flexibility

of the approach has its limitation in the amount of small-scale data needed for the

calibration, and therefore further developments in generalizing the results to other

ecosystems shall be supported by analogous efforts in field measurements. On the

other hand, a more general initialization could lead to less precise results, but they

could still be interesting on the statistical and qualitative point of view. In this respect,

it could be interesting to couple the model with a carbon accumulation model, and to

explore also possible large-scale effects on carbon storage in peatlands, e. g. using

extensive datasets for not boreal peatlands, such as the ones developed by Loisel and

Yu (2013). The next step in this direction involves the coupling of the model to a

peatland development module, similar to the one developed by Baird et al. (2012);

Morris et al. (2012).

In general, we think that the overall good agreement between the micro-topographic

model and data show how fundamental effects small-scale surface heterogeneities can

have in predicting landscape-scale hydrology, methane emissions, and energy balance.
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Chapter 4

Upscaling micro-topography using
Minkowski functionals

Minkowski functionals are a useful tool to measure patterns, as they can help to quan-

tify emergent landscape-scale properties arising from local, small-scale interactions. In

the previous Chapters we showed how such small-scale interactions can be fundamental

in reproducing large-scale properties. In Chapter 2 we showed that the overall water

balance and the climatic response of the system can be better represented by taking

into account the heterogeneities of the system with the help of a stochastic model.

In Chapter 3, instead, we developed a model for local micro-topography for a typical

boreal peatland and we showed how the small-scale interactions affect the hydrologi-

cal representation, and in turn, greenhouse gas emissions and energy balance. In this

Chapter we extensively analyze the spatial output of the previously presented models

with the tools we derive from the Minkowski functional theory, and we are able to

identify large-scale pattern properties. We are also able to link the behavior of some

local features to the seasonal dynamics of greenhouse gases. Regarding the model for

peatland micro-topography, we develop a simple and novel parameterization which is

computationally feasible and significantly improves the output of the model running

without micro-topography. This is a first step towards a comprehensive method to fill

the general scale gaps in climate-biosphere interactions.

4.1 Introduction

A challenging problem in climate modeling is how to deal with interactions and feed-

backs across a multiplicity of spatial scales, and how to improve our understanding of

the role played by small-scale phenomena in the climate system. In the general frame-

work of biogeosphere and climate interactions, many studies tackled the complex effects
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of climate forcing on small-scale features of soil and vegetation, from self-organized veg-

etation patterns to early warning signals for critical transitions (Scheffer et al., 2009).

Simple reaction-diffusion equations forced by different precipitation levels, along with

other disturbances, are thought to be some of the mechanisms which drive pattern

formation in arid and semiarid ecosystems (von Hardenberg et al., 2001; Kletter et al.,

2009; Dijkstra, 2011), or that induce pattern formation along with self organization

(Sheffer et al., 2013). Also in other ecosystems, many studies proposed such a top-

down approach to explain local small-scale characteristics of the biogeosphere, with

climatic forcing influencing and driving formation and evolution of different soil sur-

face heterogeneities and small-scale vegetation patterns (Shur and Jorgenson, 2007;

Couwenberg and Joosten, 2005; Rietkerk and van de Koppel, 2008). Other studies

tried to address the complex problem of feedbacks across different spatial scales in

various ecosystems: how do the small-scale features, whose formation depends on the

climatic conditions, influence the local and regional climate (Rietkerk et al., 2011)?

Many efforts addressed the water cycle in drylands, where water recycling from vegeta-

tion may play an important role in the local water budget (Dekker and Rietkerk, 2007;

Janssen et al., 2008). In particular, Baudena et al. (2013) showed that the amount of

water transferred through transpiration may change up to 10% if one considers different

vegetation patterns, even with the same biomass and the same spatial scale.

Such nonlinear behaviors also influence the carbon cycle of northern peatlands,

as we showed in Chapter 3. In Chapter 2 we addressed this issues of scale interac-

tions in permafrost environments, such as the polygonal landscape in some tundra

ecosystems, and in Chapter 3 we showed how micro-topography affects methane emis-

sions in a typical northern peatland, with the model tuned with data from the Ust-

Pojeg mire complex in the Komi Republic, Russian Federation. Recent studies showed

how the greenhouse gas fluxes (in particular methane) strongly depend on the micro-

topographic features of such environments (Sachs et al., 2010; Couwenberg and Fritz,

2012). This property of methane emissions could potentially constitute a large local

and even regional feedback to the climate system, which is neglected in the current

Global Circulation Models (GCMs), as shown e. g. in Baird et al. (2009a). The issue

is of particular interest in northern peatland ecosystems, because of the large amount

of carbon stored in the soil. It is essential to consider the local heterogeneous behavior

of the system components in order to properly estimate water and carbon balances,

but it is computationally feasible to represent such micro-scale features only in local

mechanistic models (i. e., Nungesser, 2003), with a fine grained resolution (10−2− 100

m), and therefore able to resolve both the small-scale features responsible for the non-

linearities in fluxes and the local processes which arise by considering such small scales.
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Land surface models such as JSBACH (Raddatz et al., 2007), the Dynamical Global

Vegetation Model (DGVM) included in the Earth System Model MPI-ESM, work at

a spatial resolution analogous to the atmospheric one, which is of about 50 x 50 km

at the finest feasible scale. Even a geometric tessellation approach, such as the one

presented in Chapter 2 is computationally too expensive, because of the complexity

of the features represented at the working scale of the model. A more complex model

including explicit representation of hydrology, as the one presented in Chapter 3, is

computationally even more demanding, and therefore it is not feasible to be included

directly in any DGVM. Another reason is that an improvement in the resolution of

some particular model features (i. e., the polygonal tundra or the micro-topography in

peatlands) would lead to inconsistencies in the spatial representation of the rest of the

grid cells, which still would work at the grid cell spatial scale, and have a very coarse

spatial representation (e. g., the tiling approach). On the other hand, we showed how

the predicted fluxes of greenhouse gases may be underestimated or generally wrongly

represented by neglecting the information coming from the small-scale surface hetero-

geneities.

The problem is similar to the one of coarse-graining in physics of complex systems,

where starting from a fine grained description of a system with a large number of

elements one tries to infer large-scale properties by coarsening the resolution of the

model, ultimately finding an effective theory able to preserve the information useful

for a final prediction (DeDeo, 2011). Because of the small-scale interactions that drive

the hydrological behavior of the system, it is difficult to upscale the local dynamics

neglecting those local interactions. We propose a novel method to fill the scaling

gap from local mechanistic models to large-scale mean field approximations, using the

output of the local fine grained model to tune and modify the coarse grained bucket

model, in order to upscale the local information (100 − 101 m) to the landscape-scale

(103 m) and above.

Minkowski numbers and functionals (Mecke, 2000) are useful geometric measures

for quantification of patterns in images. They have been widely used in the analysis of

images of heterogeneous soil patterns, to quantify properties resulting from crack pro-

cesses in the soil (Vogel et al., 2005), to quantify soil structure in different generic soils

(Vogel et al., 2010), and to describe properties in porous media (Lehmann et al., 2006).

They have been first introduced in the analysis of Arctic and Subarctic patterns by

Roth et al. (2005), where they have been applied in the analysis and the quantification

of pattern properties at different scales in aerial images from the polygonal landscape

in Howe Island, off the Alaskan Arctic coast. In comparison to other methods for image

analysis (i. e., Skurikhin et al., 2013) they provide not only information on the area
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covered by different surface classes, but also quantification of other properties of the

patterns, such as for example the interconnectivity of the pattern patches. What we

propose here is a method which could potentially be applied to every kind of surface

heterogeneity, being it independent on the physical processes generating the pattern.

We analyze the Minkowski densities of black and white patterns we obtain by

running the models we presented in the previous Chapters, and we show how to obtain

different and further information on the pattern dynamics. As we analyze patterns from

the models, we are able to investigate properties which are not directly evident from

analyzing photographs and satellite images, i. e., water table position within the soil, or

even greenhouse gas fluxes. We also show an example of a possible upscaling method,

where we compute the Minkowski functionals for black and white images from the

output of the micro-topographic model we described in Chapter 3. We use the position

of the water table relatively to the surface as a variable, and thus we identify three

different surface classes, analogously to what we did to infer methane emissions from

the polygonal tundra in Chapter 2. We then show how a simple parameterization of

pattern properties inferred from the Minkowski functionals dynamics can significantly

improve the representation of methane fluxes. Such an example is a first step towards

a comprehensive representation of the micro-topography effect in northern peatlands

under different climatic forcing.

4.2 Theory

We aim to analyze the output of the models presented in the previous Chapters with

Minkowski functionals (and densities in particular) at each time step of the model.

We therefore use two models as input sources. The first model is a stochastic spatial

tessellation representing a typical low-centered polygonal tundra landscape, and it is

able to compute spatial patterns of water table variations over the 90 days of the warm

period in such high-latitude environments. The latter model, which represents an ide-

alized peatland at a resolution of 1 × 1 m, computes water table level, surface wetness,

methane and energy fluxes, thus resolving surface microrelieves, such as hummocks and

hollows. For both models, we plot the model output for each measured quantity, such as

the water table level, for the whole region considering what happens at the micro-relief

scale. Looking at the Minkowski functionals we are able to infer spatial characteristics

and to quantify pattern properties. It can also be a way to transfer information of

the temporal dynamics of spatial patterns across scales. In this Section we present the

theory and the concepts of Minkowski functionals, the normalization leading to the
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Figure 4.1: Modified from Rietkerk et al. (2011). The figure shows a schematics of the main
challenges of scale interactions in climate modelling. In the previous two Chapters we were
able to develop robust tessellation models, which work at the landscape-scale (first square
below, in panel (b)). Such models, while able to upscale local feedbacks and fluxes, can not
be directly linked to a model working at regional or global atmospheric scale, because of their
intrinsic complexity, and because of consistency issues with the other processes described in a
GCM. What we propose in this Chapter is a characterization of the local patterns described
by the tessellation models, which can lead to a consistent and feasible general upscaling
technique.

definition of Minkowski densities, and the description of a novel parameterization of

surface wetness based on the Minkowski densities analysis.

4.2.1 Minkowski Functionals

Geometric functionals, known as Minkowski functionals or intrinsic volumes (curvature

integrals) in integral geometry, may be introduced as integrals of curvatures using

differential geometry of smooth surfaces. Let X be a compact domain in R
d with

regular boundary ∂A ∈ C2 and d − 1 principal radii of curvature Ri(i = 1, ...d − 1).

The functionals Wν(X), with ν ≥ 0, can be defined by the surface integrals

Wν+1(X) =
1

(ν + 1)
(

d
ν+1

) ∫
∂A

Sν

(
1

R1

, ...,
1

Rd−1

)
dS (4.1)

where Sν denotes the ν-th elementary symmetric function and dS the (d − 1)-

dimensional surface element. Although the Minkowski functionals are introduced as

curvature integrals, they are well defined for polyhedra with singular edges. Therefore,
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one can define these functionals naturally for lattice configurations. It is convenient to

normalize the functionals

Mν(X) =
ωd−ν
ωνωd

Wν(X), ν = 0, ..., d (4.2)

using the volume ωd of a d-dimensional unit sphere: ωd = πd/2/Γ(1 + d/2), namely

ω0 = 2, ω1 = π, and ω1 = 4π/3. We are interested in a 2-dimensional problem, and

more concretely, we are interested in 2 dimensional images: ν = 0, 1, 2. In this case the

first member of the family of Minkowski functionals is simply the mass of the structural

unit, which in 2D is its surface area:

M0(X) = A(X). (4.3)

The other Minkowski numbers are defined through integrals over the boundary ∂X of

the object X. For d = 2 the first integral measures the total length of the boundary,

M1(X) =

∫
∂X

ds = L(X) (4.4)

and the second integral measures the total curvature of the boundary

M2(X) =

∫
∂X

1

r
ds = C(X) (4.5)

where ds is the boundary element and r is its radius of curvature, positive for convex

and negative for concave shapes. Notice that the curvature integrals equals 2π for each

closed convex boundary (objects) and −2π for each closed concave boundary (holes).

Thus, M2 is closely related to the Euler number χ which counts the number Nhole of

holes within the objects, which are also referred to as loops. In particular:

χ(X) = Nobject −Nhole =
1

2π
M2(X). (4.6)

This last quantity is a dimensionless number, that measures the connectivity of the

pattern, while M1 and M0 represent physical quantities, and have therefore units [L]

and [L2] respectively.

Minkowski densities have some advantages if compared to other pattern charac-

terizes. According to Hadwiger’s theorem (Hadwiger, 1957) cited in Mecke (2000),

all other properties of a given pattern, which are motion invariant, continuous, and

additive, can be directly derived by the Minkowski functionals. This characterization

theorem asserts that any additive, motion-invariant and continuous functional that de-

pends on the form of the object alone, φ(X), can be derived as a linear combination
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of the d+ 1 Minkowski functionals:

φ(X) =
d∑

k=0

ckMk (4.7)

where coefficients ck ∈ R depend on the particular property φ(X), but not on the object

X. The completeness of the Minkowski functionals is the theoretical background for

using these quantities as pattern characterizers and not other ones. The most important

property for our purposes is additivity, i.e., the functional of the union A plus B of two

domains A and B is the sum of the functional of the single domains subtracted by the

intersection

Mν(A ∪B) = Mν(A) +Mν(B)−Mν(A ∩B). (4.8)

This relation generalizes the common rule for the addition of the volume of two domains

to the case of a general morphological measure, i.e. the measure of the double-counted

intersection has to be subtracted.

Other properties of the Minkowski functionals are motion invariance and continuity.

Such properties assure that results of the computations do not change if the analyzed

object is moved or rotated (motion invariance), and that small changes of the analyzed

objects correspond to small changes in the measure (continuity). In order to eliminate

the influence of the area of the image one can introduce a normalization with respect

to the total area A(Ω), defining then the so called Minkowski densities mν as:

mν :=
Mν(X ∪ Ω)

A(Ω)
(4.9)

In this Chapter we use the Minkowsi densities to analyze the spatial pattern we obtain

by running the two models we presented in Chapter 2 and 3, in order to describe the

large-scale properties of the landscape-scale patterns. In Table 4.1 we show a summary

of the Minkowski densities we will use later in the next Sections.

The Minkowski densities are integral quantities, and therefore they only deliver

information over the whole domain. In order to investigate what happens at the smaller

scale, as well as to explicitly distinguish between different spatial structures, we need

to use different methods of mathematical morphology, namely erosion and dilation

processes. Using such techniques one could define other quantities, called Minkowski

functions (Vogel et al., 2010), but such further applications go beyond the scope of the

present Chapter. We show an insight on the Minkowski functions in Appendix B.

In Appendix A we describe the algorithm we use to compute the Minkowski den-

sities, which we modified from the original C++ algorithm developed by H. J. Vogel
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Symbol Meaning Units

m0 Area density [L−2]
m1 Boundary length density [L−1]
m2 Euler number −

Table 4.1: The Table shows the Minkowski densities in 2D. Minkowski functionals are normal-
ized over the image domain obtaining the Minkowski densities, allowing possible comparisons
between densities from different images.

(QuantIm library, available at www.quantim.ufz.de).

4.2.2 Minkowski densities and upscaled methane emissions

The general purpose of the new method we introduce is to upscale information from

the local to the atmospheric scale (as in Figure 4.1). With a mechanistic and local

model we are able to simulate the dynamics of local observables in specific environ-

ments. We showed how the local behavior and micro-topographic surface properties are

important for methane emissions in northern peatlands in Chapter 3, and in particular

we demonstrated how better hydrological parameterization can reproduce water table

measurements. Methane emissions depend on water table position. We can identify

different surface types, as we did in Chapter 2, depending on the relative position of

the water table Wt and the surface S:

S −Wt > εa ⇒ Wet surface

− εb ≤ S −Wt ≤ εa ⇒ Saturated surface

S −Wt < −εb ⇒ Dry surface

where, analogously to what we did for the polygon centers in Chapter 2, following

Couwenberg and Fritz (2012), we assume:

εa = 15 cm (4.10)

εb = 10 cm (4.11)

because of the importance of such thresholds for methane emissions. By performing

image analysis of black and white patterns from the micro-topographic model, we are

able to describe the dynamics of the so-defined surface classes. In particular, the first
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(a) (b)

(c) (d)

Figure 4.2: Figure shows the black and white image processing before the computation of
Minkowski densities. The original image is the output from the model described in Chapter
3. Panel (a) shows a zoomed region (100 x 100 m) of a greyscale image of the water table
position in respect to the surface for each grid cell. From this figure we can identify different
surface classes, i. e. Dry surface in panel (b), Saturated surface in panel (c), and Wet surface
in panel (d). We then analyze the white phase for each surface class, computing the three
Minkowksi densities for each image.

Minkowski density m0 provides the fraction of the total surface covered by a certain

pattern. We assume the Saturated surface to be the surface class which dominates the

methane emission dynamics, as the water table being approximatively at the surface

level prevents most of the oxidation to happen.

After obtaining the seasonal behavior of the desired surface class, we aim to pa-

rameterize the dynamics of m0 for the Saturated surface class with a fractional number

q(t), which represents the fraction of the total surface which is saturated at each time

step. In Chapter 3, we showed how a single bucket model is inadequate to represent

methane fluxes because of the lack of representation of complex hydrological interac-

tions. This information translates in a different water table behavior which in turns

controls methane emissions and energy balance. By knowing the fraction q of satu-

rated surface at each time step t we could implicitly subdivide the surface of the bucket
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model A in unsaturated surface USat and saturated surface Sat:

A = (1− q)USat + qSat (4.12)

We know the position of the water table in Sat being between −εb <= W sat
t <= εa,

which is given by the definition of the saturated surface, and therefore we assume:

W sat
t = −εb + (εa + εb)r (4.13)

where r is a random number. The position of the water table in USat, instead, we

assume to be the one computed by the single bucket model without micro-topography,

i. e., Wt. Therefore, we compute the methane fluxes as function of the water table

assuming a linear relationship between emitting area and methane fluxes:

FCH4 = (1− q)F uns
CH4

(Wt) + qF s
CH4

(W sat
t ) (4.14)

where FCH4 are the methane fluxes from the whole region, F uns
CH4

the fluxes from the

unsaturated area USat, and F s
CH4

the fluxes from the saturated area Sat. We only

consider methane fluxes as function of the water table position, since the other variables

on which FCH4 depends are the same in F uns
CH4

as in F s
CH4

. Fluxes are computed using

the process based methane emission model developed by Walter and Heimann (2000).

4.3 Results and discussion

We use the algorithm computing Minkowski densities developed by Roth et al. (2005),

and later modified by Overduin in 2009 in a MATLAB code. We use as input images

from spatially explicit models. The methodological difference from the approach used

by Roth et al. (2005) is that we compute the Minkowski densities not from a photograph

of the actual system, but from model output. This approach allows us not only to

identify patterns in processes by looking at particular snapshots, but also to analyze

the seasonal dynamics of the pattern itself. On the other hand, we are also able to

investigate some patterns which can not be necessarily directly evident in photographs,

i. e. the water table position in the soil, which we showed in Chapter 2 and 3 to be an

important indicator of greenhouse gas emissions.

4.3.1 Minkowski measures and the polygonal tundra

We start our analysis of model output with the geometrical patterns in the polygonal

tundra we presented in Chapter 2. In Figure 4.3 we show a realization of the Poisson-
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(a) (b)

(c) (d)

Figure 4.3: Figure shows the Minkowski densities for the white phase of the binary repre-
sentation of water table pattern of a northern peatland. In panel (a) we show a gray scale
image of a snap shot for the Voronoi diagrams representing low-center polygonal tundra. We
compute the Minkowski densities for each surface class for the polygon centers, Wet, Moist,
and Saturated. In panel (b) we show the seasonal dynamics for m0, or the area density.
Analogously, we show m1, the boundary length density, and m2, the Euler number, in panels
(c) and (d) respectively. The dynamics of the m1 for Wet and Saturated centers, displayed
in panel (c) are similar.

Voronoi Diagram where the different colors reflect different positions of the water table

relative to the surface. In particular, as we discussed in Chapter 2, we discretize the

position of the water table in respect to the surface in three different classes for the

polygon centers, which we can recall as being:

S −Wt > ε ⇒ Wet centers

|S −Wt| ≤ ε ⇒ Saturated centers

S −Wt < −ε ⇒ Moist centers
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where, following Sachs et al. (2010), we assume ε = 10 cm. We analyze the dynamics of

the densities over the 90 days of simulation, and in Figure 4.3 we show the results for

Wet centers (dashed lines), Saturated centers (solid lines), and Moist centers (dotted

lines). Panel (b) shows the area density dynamics of the different surface classes. The

pronounced variations depend on the precipitation events, which occur sparsely during

the season. As we see in the more explicit computation in Chapter 2, the area covered

by saturated centers stays pretty much constant over the whole season, with a relative

increase towards the end of the simulation. It is worthy to notice that we show here

the analysis of images from one particular realization, whereas lines in panel (b) in

Figure 2.6 are ensemble averages of 30 model simulations.

Relative area of Wet centers increases almost constantly till the end of the season,

when a drastic reduction in the area covered by this surface class takes place, as the

water table drops because of lateral runoff. Recalling the physical properties of the

model, towards the end of the season the water table is in average above the thaw

depth. This property increases the lateral runoff from the polygonal centers to the

rims, and it becomes an important feature in the the water balance. The Moist centers

dynamics, conversely, displays a constant decrease in the 90 days of simulation, which

stops as the thaw depth averagely drops below the water table level. The dynamics of

the boundary length density m1 for Saturated and Wet centers are very similar, even

though the dynamics of the two area densities are quite different. We can explain this

phenomenon by considering that most of the polygonal centers belong either to the

Saturated or to the Wet surface class. Therefore, the length of the boundary has to

be similar, as the two patterns almost cover the whole landscape. On the other hand,

the boundary length for Moist centers drops because of the constant decrease of the

relative density area. This feature is confirmed by the dynamics of m2, which measures

the connectivity of the patches belonging to the analyzed pattern. m2 for Moist centers

lays consistently above the 0 line, as there are never enough polygons belonging to the

Moist surface class to reach connectivity. This phenomenon is clear in the dynamics

of m2 for Wet centers. The decrease in m2 for Wet centers parallels the increase in

area density m0, before the water table depth drops at the end of the simulation. This

phenomenon causes some Wet polygons to change class becoming Saturated. On the

other hand, m2 for Saturated centers stays above the 0 line (as well as m2 for Moist

centers), because, even though many polygonal centers are Saturated, they never reach

a number large enough for the m2 to change sign.
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4.3.2 Permafrost patterns under different climatic forcing

As we did in Chapter 2, we changed the climatic forcing and looked at the system

response to different precipitation levels. The precipitation input is the main input of

water in the water balance, and it is defined by Equation 2.9, which we recall here:

P =

⎧⎪⎪⎨
⎪⎪⎩

Rp sin(
t+T
6Tπ

) if 30 < t < 90

10mm
day

sin( t+T
6Tπ

) otherwise

(4.15)

where Rp is the size of the the maximum rainfall in the central part of the season.

We choose three different values for three scenarios: in the Standard scenario Rp = 30

mm/day, whereas Rp = 60 mm/day and Rp = 15 mm/day in the Wet scenario and in

the Dry scenario respectively. In Figure 4.4 we show the comparison of the Minkowski

density dynamics in the three different scenarios for the three surface classes of the

polygon centers. The first row displays the seasonal dynamics for m0, the second one

the seasonal dynamics for m1, and the third row the seasonal variations of m2. The

first column displays the complete Minkowski densities analysis for Saturated centers in

the three different precipitation scenarios, the second column the Minkowski densities

for Wet centers, and analogously the third column the Minkowski densities for Moist

centers. In the Dry scenario, the Saturated centers seem to be more numerous than

in the other scenarios. This is not in contradiction with the results of Chapter 2,

where the Standard scenario showed a larger amount of Saturated centers. This can be

explained by the fact that in Figure 4.4 we only show results from one single realization,

whereas in Chapter 2 we showed the dynamics of the average of 30 ensemble runs. The

trend of the Wet scenario shows almost the disappearance of both Saturated and Moist

centers, as in most of the polygons water table lays above the surface. The boundary

length dynamics of Saturated and Wet centers are very similar, as we see in panels (d)

and (e) especially in the Standard and in the Wet scenarios. This phenomenon can

be explained by the fact that most of the polygons belonging to the Saturated class

become Wet and vice versa. In the dry scenario we can observe a significant difference

between the m1 dynamics of Saturated and Wet centers, and this is because of the

larger number of Moist centers that influence the boundary length of the pattern. In

panels (f) and (c) we see how the dynamics of m0 for moist centers in the dry scenario

(red dotted line) leads to an increase also in the boundary length for both Standard

and Dry scenarios at the end of the season.
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Because of the same reason the m2 dynamics of Moist center, shown in panel (i),

stays above the 0 line in all three scenarios. It reaches 0 only in the Wet scenario,

because there are almost no Moist centers in the landscape, as we see in panels (c) and

(f) (blue dashed line). It is similar to the Wet center dynamics in the Dry scenario and

of Saturated center dynamics in all scenarios (panel (g)), as most of the polygons belong

to other surface classes. In the Wet scenario (blue dashed line) the m1 length density

of the pattern boundary reaches very low values in both panels (d) and (e) (Saturated

and Wet centers respectively) because almost the whole landscape is tessellated by

Wet polygons, as the m0 dynamics shows in panel (b). The dynamics of Wet centers

in the Wet scenario is confirmed by the dynamics of the m2 dynamics in panel (h),

which in the second half of the simulation stays constantly below the 0 line, meaning

the patches belonging to the pattern are interconnected.

In general, the amount of information we infer even from a qualitative analysis of

the Minkowski densities completes the analysis of Chapter 2 of the modeled polygonal

pattern.

4.3.3 Minkoski measures and northern peatlands

We repeat the experiment by using the spatial output of the micro-topographic model

described in Chapter 3. Water table controls methane emissions since it modifies the

depth of the oxic zone. By modelling this essential control more accurately, we aim

to significantly improve the carbon cycle representation at different spatial scales. We

start by analyzing the Minkowski densities for the 2D greyscale images of the water

table patterns in respect to the surface for different days of the season. We vary the

segmentation threshold g0 at which we transform the greyscale image into a binary

representation of the pattern. This process is quite straight-forward, since we perform

the transformation by assigning a 0 value for the grid cells with g < g0 (white pattern,

or white phase), and 1 to the other ones (black pattern, or black phase). We compute

the Minkowski densities using the algorithm we show in the Appendix A at each value

of g0, obtaining information on the pattern depending on the segmentation threshold.

By increasing the threshold we increase the numbers of grid cells belonging to the white

phase of the pattern.

The results shown in Figure 4.5 describe qualitatively how the pattern evolves

during the season. We selected three representative snapshots within the 209 days of

simulation at which we variated the g0 threshold, and we computed the Minkowski

densities. The number m0, which represents the area density of the white phase,

increases (as expected) monotonically by increasing g0. The dynamics is similar in the
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(a) (b)

(c)

Figure 4.5: Figure shows the Minkowski densities for the white phase of the binary represen-
tation of water table pattern of a northern peatland. The different patterns are represented
changing the segmentation threshold value g0 Quantities m0, m1, and m2 are shown in panels
(a), (b), and (c) respectively. We chose 3 snapshots at three representative time steps in order
to compare the dependence on the g0 threshold.

three different snapshots, but it seems that the the saturation is reached earlier for the

snapshot at the day 45 (dashed line) than what happens in the two other snapshot

taken later in the simulation. This can be explained by the fact that at the beginning

of the simulation the water table is generally largely above the surface because of the

large water input from the snow melt. On the other hand, towards the hand of the

simulation, the water table is generally below the surface. Instead, as we are explaining

more extensively in the next section, the pattern is more complex towards the mid of

the season, when water table can be above, below, or at the level the surface, depending

also on the micro-topography.

The density m1 represents the length density of the interface between the black and

the white phase. It increases monotonically as long as the patches stay isolated, but it

decreases when they start to merge (i. e., for larger values of g0). The maximum value
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of m1 progressively decreases as the season progresses because the pattern becomes

more and more structured due to the directional flow. The quantity m2, instead, is

proportional to the Euler number of the white phase. For extreme values of g0, we

expect the pattern to consist predominately of isolated patches, namely large black

patches for small values, representing isolated objects, and large white patches for

large values. Thus, m2 is expected to be positive for small values of g0 and negative

for large ones, as shown in Figure 4(c).

In order to investigate the dynamics of the water table influenced by micro-

topography at a landscape-scale we have to repeat the analysis with the Minkowski

densities at each time step of the simulation. This procedure can help to develop

a parameterization that can bridge the spatial scale gap from the 1 m scale of the

micro-topographic features to the 1 km scale of the landscape dynamics. We show the

procedure in the following two sections.

4.3.4 Water table dynamics at landscape-scale

We analyze the dynamics of the different Minkowski densities over the whole season.

At each time step we produce a binary image of the water table position in respect to

the surface. As we described in Section 4.2.2, we discretize the surface depending on

the position of the water table relatively to the surface of the grid cell. We therefore

obtain thee surface classes defined as:

• Wet surface

• Saturated surface

• Dry surface

At each time step t, i. e., and for each image, and for each surface class, we compute

a Minkowski densities mν(t), with ν = 0, 1, 2. We are therefore able to compute the

dynamics of the Minkowski densities. Results are shown in Figure 4.6. Panel (a) shows

the dynamics of the density area m0(t) for the three surface classes. Note that if we

sum up the densities for the three classes at each time step, we always obtain 1. The

dynamics of the densities shows a general drastic decrease in the area covered by the

Wet surface after the snowmelt (dashed line). This result agrees with the water table

dynamics we showed in the previous Chapter, which displays an almost linear decrease

over the summer season if averaged over the whole region. In particular, we see how

the line approaches 0 as the simulation proceeds and no grid cell belongs to this surface
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(a) (b)

(c)

Figure 4.6: Figure shows the Minkowski densities for the white phase of the binary represen-
tation of water table pattern of a northern peatland. The different patterns are represented
during the summer season, analyzing the dynamics of the water table level. We chose three
different levels for surface wetness: Wet if water table is more than 15 cm above the surface
level, Saturated if water table lays between -10 cm and 15 cm in respect to the surface level,
and Dry if water table lays more than - 10 cm below the surface. Quantities m0(t), m1(t),
and m2(t) are shown in panels (a), (b), and (c) respectively.

class by the end of May. This dynamics is also confirmed by the analysis of the spatial

distribution of water table in Chapter 3. After snowmelt, when a large amount of

water is released on the peatland, and most of the grid cells become inundated, water

starts to flow out of the system. At the beginning of the season, virtually only Wet

and Saturated surface classes are present, and conversely Saturated (solid line) and Dry

(dotted line) classes are represented at the end of the season. Because of this general

drying, more and more of formerly Wet grid cells, become Saturated. This property

is reflected in the solid line dynamics in panel (a) of Figure 4.6, which grows as the

dashed line decreases. The amount of Saturated cells increases as much as 85 % of all

cells at the beginning of May, before constantly decreasing as the water table drops.

At the end of the season, most of the landscape becomes relatively drier, and more

than 70 % of the grid cells belong to the Dry surface class.
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Minkowski densities, as we mentioned in the Theory section, are integral quantities,

therefore they do not give any information on the local patterns, but they give only

information on the pattern properties at the landscape-scale. In panel (b) of Figure

4.6, we show the dynamics of m1(t) for the three surface classes. This Minkowski

density represents the perimeter of all the patches captured by the binary image. For

the Wet class (dashed line), we see how the perimeter of the patches decreases sharply

as the number of Wet grid cells decreases. Similarly to what happened in the analysis

of surface classes in the polygonal model, after May the landscape is covered only

by grid cells belonging to two surface classes, Saturated and Dry. Towards the end

of the season, then, the perimeter length of these two classes is the same because

they represent the white phase and the black phase of the pattern we analyze. As

the water table continues to drop, the number of Saturated grid cells decreases (solid

line). The perimeter length reaches its minimum around the same time when the area

density reaches its maximum, as most of the grid cells belong to one single pattern.

Symmetrically, at the end of the season, the perimeter density of Dry grid cells (dotted

line) reaches its minimum as the m0 for the same surface class peaks.

Dynamics of both m0(t) and m1(t) are mirrored by the Euler number m2(t), dis-

played in panel (c) of Figure 4.6, which in in turn gives information on connectivity

of the patches belonging to a certain pattern. Negative values of this quantity mean

that most of the patches are interconnected (i. e., two grid cells share a side with each

other). As we expected the Saturated surface class (solid line) displays a high degree

of connectivity at the beginning of the season, when most of the patches are Saturated,

and therefore they have to be strongly interconnected. The Euler number changes sign

(i. e., there are less interconnected patches than connected ones), when the number

of patches is less than 58 %. This property emerges also by the analysis of the solid

(Saturated), and dotted (Dry) lines: as the number of cell belonging to a certain surface

class reaches 58 %, the corresponding Euler number m2(t) approaches 0. In partiuclar,

in the case of the Dry surface class, the Euler number changes sign only at the end

of the season, when the number of grid cells exceeds the 58 % threshold. Let us note

that this number is not the percolation threshold for the squared lattice, which is in

fact exactly 50 %. This mismatch is explained by the intrinsic nature of the Minkowski

densities, which are once again integral quantities. In the percolation theory we look

for an open path from one border of the domain to an other one. As the number of

connected patches increases, this threshold must be smaller than the number of patches

necessary for the Euler number to become negative.
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4.3.5 Upscaling greenhouse gas emissions from northern peat-
lands

We want to use the output we obtain from the Minkowski density dynamics in order to

describe the dynamics of methane emissions from northern peatlands. In particular, we

want to upscale the information from the micro-topography model, relating the surface

class we analyzed in the previous Sections to greenhouse gas emissions. We show here

a first example of the upscaling power of the method involving Minkowski densities.

We link the first density m0(t) of the Saturated surface class and the greenhouse gas

emissions. As described in the Section 4.2.2, according to Eq. 4.12 and 4.14, we assume

that by parameterizing the behavior of the highly emissive saturated area we can better

capture the methane fluxes and their dynamics.

Figure 4.7: Comparison between m0(t) (black solid line) and parameterization of saturated
area q(t) (red dashed line). We assume the parameterization with a simple linear function to
be a good enough fit to the modeled saturated grid cells dynamics in the micro-topographic
model described in Chapter 3.

In order to achieve this result, we analyze the dynamics of the Minkowski density

m0(t) for the Saturated grid cells, which gives us information on the area covered by

this surface class. We parameterize the m0(t) with a simple linear function q(t) which
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Symbol Meaning Value Units

t0 Initial day of simulation 0 days
t1 Day of maximum saturation 110 days
t2 Day of minimum saturation 245 days
qin Initial saturation area density 0.6 −
qmax Maximum saturation area density 0.85 −
qfin Saturation area density at the end of sim-

ulation
0.2 −

Table 4.2: Table showing parameter values for Equation 4.16. We infer the values from the
dynamics of the first Minkowski density m0(t) for grid cells belonging to Saturated surface
class. The output of the model is obtained from the micro-topographic model described in
Chapter 3 at 1 m resolution.

at each time step gives the amount of Saturated grid cells:

q(t) =

⎧⎪⎨
⎪⎩

qin +
qmax−qin

t1−t0 (t− t0) if t ≤ t1

qmax +
qfin−qmax

t2−t1 (t− t2) if t ≥ t1

q(t− 1) otherwise

(4.16)

where t is the daily time step of the simulation, and the parameters ti and qj, with

i = 0, 1, 2 and j = in,max, fin, are tuned quantities we obtain according to the

dynamics of m0(t), and their values are listed in Table 4.2. Figure 4.7 shows the

agreement between q(t) parameterization and m0(t) dynamics of Saturated grid cells.

Both q(t) and m0(t) are area densities, therefore their values are between 0 and 1.

The amount of methane which is emitted by each kind of surface class changes

according to the relative position of water table and surface. In the process-based

methane emission model developed by Walter and Heimann (2000), the water table

is a key variable in methane fluxes, because of the oxidation processes simulated as

the water table drops below the surface and as the oxic zone deepens. The micro-

topographic representation allows us to better represent the methane fluxes, because

the hydrological interactions at the finer scale influence the average position of the wa-

ter table. Combining the assumptions of Section 4.2.2, Equations 4.12 and 4.14, and

parameterization of q(t) in Equation 4.16, we obtain a new fluxes dynamics. We show

the comparison among classical single bucket model, model with micro-topography

representation, and the new flux with the tuned m0(t) information in Figure 4.8. The

figure shows ensemble simulations of methane emissions from the different configura-
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Figure 4.8: Ensemble simulations of methane dynamics and upscaled micrtopographic effects.
The lines represents the simulated methane emission dynamics from the Ust-Pojeg mire com-
plex in the Komi Republic, Russia. The red line represents emissions from a classical single
bucket model, which ignores the micro-topographic representation. The black line shows
emissions from the same region, but considering micro-topography at 1 m resolution. The
difference in fluxes is largely dependent on the different position of the water table in respect
to the surface in the two model configuration. The blue line represents methane emissions
from the bucket model tuned with the upscaled information from the m0(t) dynamics of the
saturated grid cells. The shaded areas are the standard deviation from the ensemble means
(solid lines).

tions of the model. The solid lines represents the ensemble mean of the 30 ensemble

members, and the shaded areas represent the standard deviation from the ensemble

mean. The classical single bucket model (red line) underestimates the methane emis-

sions, because of the rapid drying of the surface due to the lacking of a physically

sound hydrological representation. The model with micro-topography representation

at 1 m resolution (black line), instead, correctly simulates methane emissions, but it is

computationally much more expensive. Using the tuning we described above, we ob-

tain the new flux dynamics from the modified single bucked configuration (blue line),

which is computationally analogous to the classical single bucket, but improves quite

substantially the methane emissions if compared to the black line.

The main difference between the single bucket configuration and the one with micro-

topography representation is the fact that the single bucket largely underestimates

emissions in the central part of the summer season, i. e. in July and August, and we

manage to improve this feature. The improvement is visually good, and it strikes to be

even better if we compare the cumulative emissions of the three different configurations,

as shown in Table 4.3. With the q(t) parameterization of the saturated surface we

effectively change the average water table level, coming closer to the output from the

configuration representing the micro-topography.
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Symbol Meaning Value Units

CHsin
4 Cumulative emissions from the classical

single bucket configuration (no micro-
topography)

1.7× 104 mg m−2

CHmic
4 Cumulative emissions from the model

with micro-topography at 1 m resolution
3.7× 104 mg m−2

CHtun
4 Cumulative emissions from the single

bucket configuration tuned with the q(t)
parameterization (no micro-topography)

3.5× 104 mg m−2

Table 4.3: The table shows the cumulative emissions from different model configurations.
The single bucket produces less than the half of the cumulative methane emissions in respect
to the model with micro-topography representation. By inserting a simple parameterization
of the saturated surface dynamics, we improve significantly the seasonal methane emissions.
The values are averages over 30 ensemble members in each configuration.

The parameterization of q(t) is therefore fundamental in forecasting cumulative

emissions, and the linear function we inferred from the m0(t) is dependent on the

particular climatic conditions we simulated, which are described in details in Chapter

3. In order to obtain a working procedure that can be inserted in a larger scale model

such as a DGVM, we would need to explore different climate regimes, and different

surface properties. Such a forcing and parameter exploration of the model described in

Chapter 3 could potentially produce an array of parameterization functions qi(t), with

i depending on climatic conditions and terrain properties. Such procedure could lead

to a global upscaling of micro-topography in different peatlands.

4.4 Summary and conclusions

We presented Minkowski functionals and densities as a useful instrument to analyze

and quantify pattern dynamics at a landscape-scale. Patterns emerging from local

interactions can influence larger scale properties of the ecosystems, which in turn influ-

ence land-atmosphere interactions. In particular, greenhouse gas emissions depend on

heterogeneous landscape properties, and only local mechanistic or statistical models

can correctly represent the small-scale behavior of local properties as we showed in
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Chapter 3 and 2 respectively. By the means of the Minkowski densities we can analyze

and compare pattern properties emerging from the model output, obtaining informa-

tion at the landscape-scale, due to the integral nature of the densities. We used the

spatially explicit outputs from the models we presented in the previous Chapters to

understand landscape-scale properties of the emergent patterns.

We initially applied the analysis to the stochastic model for the polygonal tundra,

which is based on the structure of the Poisson-Voronoi Diagrams. We discretized the

surface of the polygonal centers in three classes, depending on the relative position of

the water table in respect to the surface. Translating the outputs in black and white

images we are able to distinguish the different dynamics of surfaces with different mois-

ture characteristics. Most of the polygons display a water table either approximatively

at the surface level, or above the surface, which seems to be the dominating pattern

under standard levels of precipitation. If we increase precipitation input further, the

landscape becomes tessellated mostly by small ponds, and the patches constituting the

pattern rapidly become interconnected. Such a phenomenon, due to the very coarse

and simplistic representation of both thaw depth dynamics and hydrology, does not

aim to explain or represent realistic or actual phenomena, but it might be an interesting

starting point for further investigations.

In the latter sections, we applied the Minkowski densities to the model for peatland

micro-topography we developed and showed in Chapter 3. In this case, we described

more explicitly the hydrology and the micro-scale properties of the system, coupling it

with the process-based model for methane emissions developed by Walter and Heimann

(2000). We analyzed the pattern response visualized in greyscale images at different

levels of segmentation threshold, applying this procedure at three different representa-

tive time steps. We showed the dependence on the analyzed pattern on such threshold

g0, and we showed how it changes in the three snapshots we chose. In order to better

understand the information, we needed to repeat the the procedure developed for the

analysis of the permafrost patterns, discretizing the surface in three classes based on

the position of the water table in respect to the surface. By doing so, we were able to

capture the dynamical characteristics of surface classes with different wetness and dif-

ferent emitting properties. In Chapter 3 we showed how the position of the water table

affects and regulates the emissions, and how the water table position depends on the

micro-topography. Therefore we developed a novel simple parameterization in order

to take into account these effects in the single-bucket model. We showed how such a

simple parameterization of the area covered by the highly emissive saturated grid cells

could significantly improve not only the overall cumulative amount of emissions from

the landscape, but also the dynamics of the pattern.
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In the examples we showed, we made mainly use of the information of the m0

density, namely the area density. This is because the particular problem of greenhouse

gas emissions from northern peatlands can be tackled, as we showed in Section 4.3.3,

only by considering the dynamics of the area covered by a particular surface class. The

dynamics of m1 and m2 are useful to quantify some of the pattern properties, which

we can indeed describe better by considering also these quantities. Such information,

though, is neglectable in the direct computation of fluxes. We nevertheless argue

that other research questions could be investigated and successfully tackled by further

applications of all the densities to pattern analysis. In particular, we think at the

problem of surface heterogeneity triggering convection. Moreover, in order to grasp the

full potential of the Minkowski numbers one would need to tackle the problem not on a

landscape-scale level through integral quantities, but one would need tools which could

resolve also local pattern variations. Therefore, one would need to expand the concepts

of Minkowski functionals and densities to Minkowski functions (Vogel et al., 2010), as

we extensively show in Appendix B. Such tools can not only provide properties like the

size distributions of the patches, but they can also theoretically provide the variance of

the average properties we analyze with the Minkowski densities. As for the applications

to the polygonal model, it could also be possible to link the connectivity of the patches

with the bond percolation threshold. A further analysis involving Minkowski functions

would directly provide a link between the two methods. It would be necessary to

use field data to tune and adapt the model to better describe the water flow in the

ice channels. This phenomenon of multichannel flow and interconnectivity has been

observed in recent studies (i. e., Fortier et al., 2007; Boike et al., 2008) and it has

been suggested a connection between landscape-scale channel interconnectivity and

thermokarst lake formation due to channel degradation because of thermal erosion

(A. Liljedahl and G. Grosse, personal communication). As for the applications to the

peatland model, recent works (i. e., Morris et al., 2013; Larsen et al., 2012) highlighted

how directional connectivity could provide information on landscape-scale properties,

such as environmental degradation and peatland development. These phenomena are

worthy to be investigated with applications of m2 to photographs and possibly to

expansions of the micro-topographic model.

The parameterization of the q(t) dynamics (equation 4.16 and table 4.2), at almost

no computational cost qualitatively changes the system response for methane emissions.

This is just an example, but it is a first significant step towards a full parameterization

of the micro-topographic impacts on such complex systems at the DGVM-scale. In

order to fulfill such a task, though, we would need a comprehensive and statistical

analysis on the response of the mechanistic local-scale model to climatic forcing, such
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as change in precipitation, net primary productivity (NPP), or temperature. Such

a study would be able to construct a consistent array for the parameterization of

saturated area dynamics, ultimately leading to a climate-dependent parameterization,

feasible to be introduced in a DGVM such as JSBACH.

Introducing the analysis of spatial patterns produced by different mechanistic mod-

els in multiple ecosystems can be a powerful method to infer landscape-scale dynamics

a characteristics of patterns. It can potentially be applied to outputs of models investi-

gating vegetation patterns in water limited ecosystems, in peatlands and in Periarctic

environments, and also to models describyng spatial gaps in forests.

This procedure could be repeated using other mechanistic models working in dif-

ferent ecosystems, possibly filling the scale gaps in climate-biosphere interactions iden-

tified by Rietkerk et al. (2011).
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Chapter 5

Summary and Conclusions

5.1 Synthesis and answers to the research questions

In Chapter 1, I outlined the main research questions I tackled in the present thesis.

In Chapter 2, I focused my modeling efforts of sub-grid scale heterogeneities on the

polygonal tundra. In Chapter 3, I generalized my multi-scale investigation to a typical

boreal peatland, before applying the Minkowski density analysis in Chapter 4, in order

to identify emerging pattern properties of the two models I developed. I now proceed to

summarize the answers to the research questions. More complete and detailed answers

can be found in the main Chapters. I will first answer to the last, more specific

questions formulated in Chapter 1, before tackling the overarching research question.

How can we represent multi-scale phenomena in permafrost environments,

such as the polygonal tundra, from the single polygons to the landscape-

scale?

By tessellating the surface with Poisson-Voronoi diagrams, I was able to represent with

stochastic polygons the small-scale heterogeneities in the low center polygonal tundra.

The terrain geometrical characteristics are statistically consistent with data from an

aerial image of the polygonal tundra in the Lena river Delta, Russia.

Modeled water table variations in single polygons include both large-scale climate

forcing, such as precipitation P , and small-scale phenomena, such as evapotranspiration

ET and lateral runoff R. The stochastic representation is fundamental to parameterize

the phenomena at different scales and to correctly compute the area covered by surfaces

with different wetness, even though it is far from the precision and the accuracy of a

mechanistic model.

I demonstrated that a stochastic parameterization, such as the one involving a

subdivision of space through Poisson-Voronoi diagrams, is a powerful tool to upscale
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small-scale surface heterogeneities. Such a parameterization can represent the ecosys-

tem across different scales, from the single polygons (100 - 101 m) to the landscape-scale

(103 m).

How and to which extent do sub-grid scale surface heterogeneities control

the water balance in the polygonal tundra?

The sub-grid scale surface heterogeneities, even in the simple parameterization I pre-

sented, appear to be fundamental in the representation of water table dynamics, par-

ticularly towards the end of the season. When the water table lays above the thaw

depth level in single polygons, lateral runoff is triggered and water table drops. By

taking into account the surface heterogeneities, the water balance changes from the

simple average P − ET to P − ET − R. The modeled dynamics is consistent with

observations. Such a difference between the simple P −ET balance and the water ta-

ble dynamics with local runoff becomes even more pronounced under extreme climatic

regimes, i .e., if precipitation is doubled or halved.

What are the effects of micro-topography on water, carbon, and energy

balance in a typical boreal peatland?

I compared the simulations performed with an accurate representation of the micro-

topography with a single bucked model for boreal peatlands to assess the effects of

small-scale features on water, carbon, and energy balance of the ecosystem.

In the single bucket version of the model, all features are averaged over the peat-

land dimensions. In the version with micro-topographic representation, instead, the

model runs at a 1 m resolution, resolving the micro-topographic relieves that char-

acterize the surface of the peatlands, i. e., hummocks and hollows. The small-scale

micro-topography directly affects the system hydrology and the water table dynam-

ics. After the snowmelt, a large amount of water flows in the system and most of the

landscape becomes inundated. As the simulation proceeds, in the single bucket case

the water flows quickly out of the system, and the water table drops below the surface

level. In the model version with micro-topography representation, instead, complex

small-scale hydrological interactions influence water table position as the outflow is

delayed, in agreement with observations. Other effects, such as heterogeneous albedo

and heterogeneous drainable porosity, do not affect the model behavior qualitatively.

Water table affects in turn both carbon and energy balance of the system, as it

changes the amount of greenhouse gas emissions and the heat capacity of the surface.

Hydrology changes the depth of the oxic zone in peat soil, influencing the amount

of methane which can be oxidated and then emitted as carbon dioxide. I show how

neglecting small-scale interactions may lead to an underestimation of cumulative emis-
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sions over the warm season by a factor of two.

Water table dynamics also influences the energy balance of the surface, as water and

peat have different heat capacities. The water table lasts longer above the surface in the

model version with micro-topographic representation and it affects the soil temperature

allowing an increase in temperature only after the water table drops below the soil

surface.

Some kind of micro-topographic representation is needed to correctly grasp not only

the magnitude, but also the dynamics of water, carbon, and energy balance.

How can we identify the landscape-scale properties of the patterns emerging

from sub-grid scale features in boreal ecosystem?

Minkowski densities are useful tools to quantify patterns emerging from the small-scale

interactions. I used such geometric functionals in the analysis framework I developed

in order to infer characteristics of the spatial structures of the landscape-scale patterns

in the two models I presented in Chapters 2 and 3. Minkowski densities are integral

quantities, which give information only on the overall behavior of the pattern. By

analyzing images generated by model output, I was also able to identify the dynamics

of the pattern properties over the season.

Applications of Minkowski densities to the model for low center polygonal tundra

reveal that the saturated polygons are the dominant pattern in the landscape. With

water table dropping, transitions of small ponds into saturated polygons become more

frequent. If the precipitation increases, the dominant pattern of the landscape becomes

the one constituted by small ponds, as the water table increases accordingly. Therefore,

the transition described above changes sign, i. e., saturated centers become small

ponds. The drainage network of the system is not sufficient to outflow the water and

polygons with small ponds become a highly interconnected pattern.

I then applied the Minkowski density analysis to the spatially explicit output of

water table elevation relative to the surface from the peatland micro-topographic ver-

sion of the model. By discretizing the surface in three different classes, depending

on the relative wetness, I was able to identify the seasonal behavior of wet, dry, and

saturated surface classes in a typical boreal peatland and to identify the properties of

the emerging pattern.

How can we develop an effective theory, feasible to be incorporated in a

DGVM, which takes into account the information arising from such small-

scale features?

I used the general framework of effective theory development in order to parameterize
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important variables in greenhouse gas emissions for northern peatlands. I identified

the hydrology as the main physical process affected by presence or absence of micro-

topography, and I developed a novel simple parameterization, representing the micro-

topographic effect on water table.

As the saturated patches are hotspots for methane emissions, I modified the param-

eterization for water table dynamics in a classical bucket model, using the information

from the pattern dynamics of saturated grid cells. Such parameterization, although

computationally analogous to the bucket model dynamics, reproduces the seasonal be-

havior of water table similarly to the computationally expensive model with explicit

micro-topographic representation. Methane emissions are comparable, demonstrating

that also nonlinear processes, such as carbon emission dynamics, can be captured by a

simple linear parameterization, such as the one that I described in the present thesis.

Parameterizations of water table dynamics can be inferred by taking into account

the information emerging from small-scale interactions. Process-based or stochastic

models, working at the landscape-scale (103 - 104 m), can be used in order to develop

such computationally feasible parameterizations, which can in turn be included in

DGVMs soil modules.

After the specific investigations conducted in the main Chapters, I can finally tackle

the overarching research question:

How do sub-grid scale surface heterogeneities influence climate-

biogeosphere interactions in high-latitude ecosystems?

Hydrology is one of the main ecosystem controls in high-latitude ecosystems. In peat-

lands, it controls the form in which greenhouse gases are emitted (i. e., carbon diox-

ide or methane). Sub-grid scale surface heterogeneities, from permafrost-generated

polygons to self-organized vegetation patterns, can directly influence the hydrologi-

cal properties of the system by adding variability to soil surface parameters, i .e.,

hydraulic conductivity, albedo, drainable porosity, etc. The small-scale interactions

at spatial scales of typical length ≤ 100 m deeply affect not only the small-scale hy-

drological response to external forcing (such as precipitation, snowfall, etc.), but also

ecosystem-scale runoff and other quantities with a typical scale of ≈ 103 m.

By affecting the hydrology, the sub-grid scale surface heterogeneities have also a

secondary effect on the land-atmosphere fluxes of water, carbon, and energy. As I

explained in details in Chapters 3 and 4, changes in water table depth affect the

methane flux dynamics. It is possible to capture the magnitude and the dynamics of

greenhouse gas emissions only by taking into account the small-scale topography of

soil surface either explicitly (with a process-based model), or with a parameterization
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that effectively describes the emergent behavior of the system. Methane emissions,

for example, respond in a highly nonlinear way in respect to water table position,

and small changes in water table depth may lead to large variations in flux responses.

Drier and wetter surfaces, heterogeneously distributed over the landscape (or over the

DGVM grid cell), regulate latent to sensible heat flux ratio and affect both soil and air

temperature. This phenomenon is particularly pronounced after the snowmelt in boreal

peatlands, where a large amount of water flows into the system, regulating the whole

warm season hydrology. The spring water flow dominates the hydrological properties

in the ecosystem and it influences directly the energy balance, depending on how long

the surface ponding lasts and how fast the water flows out of the system.

These parameters vary at scales much finer than the typical scale of an atmospheric

model (typically > 30 km). I showed in this thesis how the lack of any representation of

sub-grid scale heterogeneities in global model may lead to misrepresentation not only

of hydrological features, but also of land-atmosphere water and carbon fluxes.

5.2 Outlook to future research

The present thesis constitutes a first step towards an analysis of the interactions across

multiple scales between land, biosphere, and climate in boreal ecosystems. Further

developments are possible in different directions, from local model development, to ex-

pansions of the developed techniques, to the integration of this work to global models.

I will briefly outline the limitations of this study before highlighting the possible im-

plications of the present study for the formulation and the answer to further research

questions.

5.2.1 Limitations of the study

The models I presented in this thesis have some limitations that have to be highlighted.

For example, I needed to formulate some necessary assumptions for the models to work

at the small scales of surface heterogeneities, which I will now briefly describe.

In the case of the stochastic model for polygonal tundra, many process are pre-

scribed. Precipitation, evapotranspiration, thaw depth dynamics, and runoff are sim-

ply parameterized. These assumptions are useful for the model purposes in this study,

but they hinder the predictive power of the model, since results may depend on such

prescribed dynamics. In order to increase the range of applications of the model, i. e.

to apply the model to other environments, a more physically-based approach is needed.
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The stochastic tessellation is tuned on the Lena river Delta site I analyzed. In order

to represent other sites, the tessellation has to be recalibrated. The model represents a

snapshot of present day low center polygonal tundra, and it does not consider polygon

formation and degradation. I also do not simulate snowfall and snowmelt, hence the

maximum number of days of simulations must be limited at tmax =90, in order to

exclude the period of time when the snowmelt dominates the landscape hydrology.

The model for peatland micro-topography is instead finely tuned with elevation

data for hummocks and hollows collected in the Ust-Pojeg mire complex in Komi

Republic, Russia. Therefore, the quantitative results on methane emissions and energy

balance are limited on the specific site, I analyzed in Chapter 3. The qualitative

difference between model versions with and without micro-topographic representation,

instead, is robust and not site-specific. The process-based model for methane emissions

only outputs methane emissions, but it can be interesting to investigate also carbon

dioxide emissions, in order to complete the carbon balance of the environment. Another

possible limitation is the absence of vegetation dynamics. Even though the modeling

of these processes goes beyond the scope of this study, these features can also have an

influence on greenhouse gas dynamics.

Both models are not feasible to be included in DGVMs. Even the faster, stochastic

approach has a large number of parameters representing small-scale processes. In order

to implement the effects of sub-grid scale heterogeneities, one needs another, simpler

and computationally more feasible parameterization.

The models, even if tuned for specific environments, propose novel methods, which

are general enough to be applied to different ecosystems. The Poisson-Voronoi tes-

sellation, in particular, as a stochastic subdivision of space is a powerful technique to

tackle small-scale problems, from spatially explicit thermokarst lake modeling to forest

management. Further possible applications of the models will be discussed in the next

Sections.

5.2.2 Stochastic models for scale interactions in permafrost
landscapes

The model I presented in Chapter 2 proposes a novel method to tackle the representa-

tion of small-scale features in permafrost ecosystems. One possible development of the

model is the description and characterization of other landscapes displaying analogous

low-center polygonal patterned grounds, such as Barrow, Alaska (described, i. e., in

Lachenbruch, 1972). Different sites with similar ecosystems, located in different parts
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of the Arctic, may display different properties at the landscape-scale, and such changes

can be identified by analyzing the networks representing the different sites. One can

repeat the analysis performed in Chapter 2 by fitting the Poisson-Voronoi area dis-

tribution to the ice-wedge polygon area distribution. It could be possible to compare

the new findings with the results I showed in this thesis for Samoylov Island in the

Lena Delta, Russia. Such a comparison can provide information on the landscape-scale

differences between the different sites that local measurements would not be able to

grasp. Other developments involve inserting more physical processes in the stochastic

model. Thaw depth development, for example, is simply prescribed in the model I

presented. In order to get more quantative information and to increase the predictive

power of the model, a better parameterization of this process is needed.

Recent studies, such as Liljedahl et al. (2012), showed how the snowmelt dominates

the water flow input in permafrost regions, and therefore it is a process one needs to in-

clude in the model in order to extend the timespan of simulations. Other processes yet

not included could improve model physics and model response to climatic forcing. Ex-

amples of them are hydrological properties of the system and a better characterization

of the channel network. Potentially, such an improved model will be able to describe

the response of the drainage network on precipitation or on temperature variations.

A further step would be the physical modeling of thermo-erosion of the interpolygo-

nal channels due to water flow, or a stochastic parameterization of this phenomenon.

Thermokarst development of small lakes can be initiated by progressive degradation of

polygonal rims, due to thermo-erosion. The erosion of interpolygonal channels could

trigger possible changes of environmental properties, such as large-scale transitions.

The transformation of the low-center polygonal landscape to a high-center polygonal

tundra system, and finally to a thermokarst lake, has not yet been investigated with

models. However, it is a dominant process that shapes the Arctic environment that

has been at work since the last glacial. New modeling efforts are necessary to better

understand such a long term process.

Another direction of model expansion and generalization is the application of the

stochastic tessellation as a subdivision space at larger scales, in order to model water

body area distribution using datasets as the one developed by Muster et al. (2013). One

can potentially assign stochastic differential equations to each Voronoi polygon to model

transitions from permafrost-dominated landscape to thermokarst lake. Combining this

technique with a physically-based model for thermokarst lake expansion over time

can be a further potential development to tackle major uncertainties in permafrost

environments.
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5.2.3 Applications of the peatland micro-topographic model

I developed the model for surface micro-topography in boreal peatlands tuning it with

data from the Ust-Pojeg mire complex, in Russia. It is an interesting question how

the model works if tuned with other elevation data from different peatlands, but in

order to perform such a task more fine-scale elevation data from other peatlands are

needed, and extensive field campaigns are necessary to provide them. By focusing on

the same peatland, it can be interesting to explore other properties, which are still

beyond the scope of this thesis. It is an interesting possible development the expansion

of the model through the implementation of information on the nutrient flow inside

the system. One could potentially make use of measurements collected by the Institute

of Soil Science of the Hamburg University in order to identify the possible effects of

micro-topography on nutrient and carbon flow in the peatland.

It is also possible to force the model with other data from CMIP5 experiments,

in order to investigate the importance of temperature and NPP changes on methane

emissions. Coupling the model with a carbon accumulation model can also help inves-

tigating the potential effects of micro-topography on long term peatland evolution as

carbon source and sink.

5.2.4 Spatial pattern analysis in different ecosystems

Another implication of the present thesis for possible future research is the use of

the Minkowski analysis techniques on other spatial patterns, expanding the range of

applications to other environments at lower latitudes. Quantifications of spatial pattern

properties, such as interconnectivity and size distribution of the patches can give further

insights to ecosystem properties. I applied the analysis to the relative position of water

table in respect to the surface, as influenced by surface heterogeneities in peatlands.

An interesting development is the analysis of the spatial output of other models,

such as the ones developed by von Hardenberg et al. (2001); HilleRisLambers et al.

(2001), or modifications of them. This analysis can be performed not only by the means

of Minkowski functionals and densities, but also with the application of Minkowski

functions in order to identify not integral properties, as outlined in Appendix B.

It would be theoretically possible also to look for a dynamics in the pattern prop-

erties, in order to find out which characteristics change if the system catastrophically

collapses. Patch-size distribution have been identified as a warning signal for desertifi-

cation onset in water-limited ecosystems, as highlighted by Kéfi et al. (2007). Critical
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slowing down has been suggested to be a key phenomenon to quantify distance from

bifurcations and catastrophic shifts in ecosystems (Scheffer et al., 2009; Dakos et al.,

2008), but recent studies pointed out some limitations of such powerful method (Kéfi

et al., 2013; Dakos et al., 2011). Exploring the behavior of interconnectivity of patches

and other properties, from size to perimeter length in the proximity of a catastrophic

shift may give some more insights in the complex issue of critical transitions in ecosys-

tems.

5.2.5 Global and regional scale impacts of sub-grid hetero-
geneities

A complete and consistent parameterization of sub-grid heterogeneity effects on hy-

drological features, which I identified as one of the key controls on land-atmosphere

fluxes in high-latitude ecosystems, is still missing. I proposed in Chapter 4 a novel

parameterization which takes into account cross-scale information, but I only showed

and analyzed the functioning of such method under one realization of climatic forcing.

In order to explore the full array of feedbacks emerging from small-scale interac-

tions, it is necessary to force the model with different input data, using possible forcing

scenarios with different ranges of climatic forcing. For example, one could potentially

vary levels of precipitation, snowfall, and temperature. The values of the linear param-

eterization I developed and showed in Chapter 4, will change depending on the forcing.

Such a sensitivity study could potentially produce a parameterization with climate-

dependent parameters can be finally inserted in a global modeling framework, allowing

a possible evaluation of large-scale effects and feedbacks originating from small-scale

features on regional, or even global climate.

Theoretically, similar parameterizations could be developed for other surface hetero-

geneities in other environments, in the theoretical framework highlighted by Rietkerk

et al. (2011). The upscaling of different features, from land-atmosphere water exchanges

in drylands, as shown by Baudena et al. (2013), to scale-dependent land-atmosphere

carbon fluxes, as shown by Baird et al. (2009a), could then be feasibly implemented

in global parameterizations, which would consistently take into account interactions

across multiple scales in the climate-biogeosphere system.
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Appendix A

Computation of the Minkowski
densities

In order to compute Minkowski functionals and densities we modify and use a MAT-

LAB algorithm developed by Paul Overduin (2009), which in turns translates the orig-

inal C++ code developed by H. J. Vogel, available in the QuantIm library for image

processing at the website www.ufz.de.

We give the algorithm a black and white image as input, where pixels can have a

binary value (0 or 1) in respect to the background. The computation of the Minkowski

densities derives from the analysis of a 2 × 2 neighborhood for each point. There are

n = 24 = 16 possible configurations c, if each edge (pixel, in the case of our images)

of the square identified by the neighborhood can assume 2 values. In Figure A.1 we

show an example of the 2 × 2 neighborhood and of the 16 possible configurations c.

Each configuration c contributes differently to the values of the Minkowski functionals

as described in Table A.1, i. e., each configuration contributes differently. The contri-

bution to M0 is related to the number of vertices (pixels) in the neighborhood which

belong to the object. In Figure A.1, we represent the contribution to M0 with the left

top vertex. If the left top vertex is full, it belongs to the object we want to analyze

and its contribution is 1, otherwise its contribution is 0. The number of transitions

1 ↔ 0 within the object boundary is instead related to M1. We take into account

the transitions over the edges incident in the vetex, and the . For the calculation of

M2 = 2πχ we use the Euler formula:

χ = Nv −Ne +Nf (A.1)

where Nv is the number of vertices, Ne the number of edges, and Nf the number

of faces belonging to the object. We call each contribution Iν(c), where ν = 0, 1, 2

The Minkowski dentisites can be computed using the frequency of occurrence of each
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Figure A.1: The figure shows the 16 configurations c for the 2 × 2 neighborhood. For the
computation of the Minkowski functionals in this example we consider the circle (pixel) on
the top left of the squares. The contributions to the Minkowski functionals are described in
detail in Table A.1. The shaded area represents the relative position of the object X we want
to analyze and the pixel we consider. The contribution to M0 is either 0 or 1 if the pixel
is respectively full or empty. The contribution to M1 is the number of thick lines, which
show the transition from full to empty pixels and vice versa, evaluating only the edges of
the square incident to the circle (pixel) at the top left corner and the square diagonals. The
contribution to M2 is computed according to equation A.1.

configuration inside the image we analyze, following:

f(c) =
N(c)∑16
c=1 N(c)

(A.2)

where we indicate with N(c) the number of of 2 × 2 neighborhood displaying the

configuration c. We compute the Minkowski densites as:

mν = ωnu
16∑
c=1

Iν(c)f(c) (A.3)

where again ν = 0, 1, 2, and

ω0 =
1∑16

c=1 f(c)
(A.4)

ω1 =
1

3π

1

(λ+
√
2λ)

∑16
c=1 f(c)

(A.5)
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ω2 =
2π

λ2
∑16

c=1 f(c)
(A.6)

where λ is the side length of 1 pixel. The weights ων are correct only if pixels are

squares, otherwise they need to be adapted to other shapes.

Mν 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M0 0 1 1 0 0 0 0 1 0 1 1 1 0 1 0 1
M1 0 3 3 2 1 2 3 3 3 1 2 2 3 2 2 0
M2 0 +1 0 0 0 0 0 0 0 -1 0 0 0 +1 0 0

Table A.1: The table shows the contributions Iν(c) of the Minkowski functionals Mν , where
again ν = 0, 1, 2, for the configurations c shown in Figure A.1.
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Appendix B

Mathematical morphology and
Minkowski Functions

In order to identify some local effects of patterns emerging from micro-scale interac-

tions, information describing average quantities is not enough. This is particularly

true in the case of land-atmosphere interactions, where phenomena such as convec-

tion are often triggered by spatial variance of surface heterogeneities, (as shown in,

e. g., Avissar and Liu, 1996; Garcia-Carreras et al., 2010). Minkowski functionals

are integral measures of the pattern, and therefore they only provide information on

mean quantities, i. e., in 2D size, perimeter and mean connectivity. Other statistical

properties of the pattern, such as size distribution of the patches or local connectivity,

must be investigated through a different method, and therefore we introduce the use

of Minkowski functions (Vogel et al., 2005). Minkowski densities can be computed as a

function of a morphological transformation. Mecke (2000), introduced the Minkowski

functions as based on a transformation used in mathematical morphology, morpholog-

ical erosion and dilation (Serra, 1982). Mathmatical morphology is an approach for

analysis of geometrical properties based on set theory, and it constitutes the basis for

image transformation.

Morphological erosion/dilation is a technique that consists in probing a binary

image with a shape, computing how the probe modifies the binary structure by fitting

or missing the original image. The probe must be also a binary image, and it is called

structuring element. Let us assume E to be an Euclidean space in R
2. A is a binary

image of E, and B is the structuring element. The erosion process is then described

by:

A� B = {z ∈ E|B(r) ⊆ A} (B.1)
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where B(r) is the translation of B by the vector r:

B(r) = {b+ r|b ∈ B}, ∀r ∈ E. (B.2)

We can think at the resulting object of an erosion process Xe(r) of A from the struc-

turing element B(r) (in this case, a disk of radius r), as the locus reached by B(r)

moving in A. In other words, Xe(r) is the set of points z where the circular structuring

element B(r), moving in A, is still a complete subset of A:

Xe(r) = {z : B(r) ⊂ A} (B.3)

The eroded object is then smaller than the original object, and its area depends on the

radius r of the structuring element B(r). The definition of dilation is analogous:

A⊕ B = {z ∈ E|(B(r)s) ∩ A �= ∅} (B.4)

where B(r)s is the symmetric of B(r). The resulting object of a dilation process Xd(r)

of A from the structuring element B(r) is defined as:

Xd(r) = {z : B(r) ∪ A �= ∅} (B.5)

One can variate the size of the structuring element B(r) and apply the Minkowski den-

sity analysis at different values of r (namely, at different pixel size): mν(r), ν = 0, 1, 2,.

This analysis is referred to as Minkowski functions with respect to r, following Vogel

et al. (2010). Such an analysis provides not only averaged quantities, but also infor-

mation on the local structure of the pattern. The area density function m0(r) gives

information on the size distribution of the patches in the original pattern, while the

length density m1(r) reflects both size distribution and the connectivity among the

patterns. The number m2(r) which, as we have seen, is the Euler number, gives infor-

mation the connectivity of the patches. Combinations of the functions can therefore

describe local properties with local information, improving the integral description of

the pattern we obtained with Minkowski densities.
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List of Figures

1.1 The Figure shows surface heterogeneities on high-latitude ecosystems, both in
permafrost and in permafrost-free environments. Panel (a), is a picture from
the IPA (International Permafrost Association) website. It shows a tessellated
landscape consisting of low-center polygons. The progressive drying of the
polygon surface leads to an amplification of the degradation of the ice wedges
in the drier rims. This small-scale phenomenon causes the large-scale outflow
visible in the lake chain in the center of the picture. Panel (b) shows an aerial
photograph of a polygonal tundra landscape in Northern Seward Peninsula,
Alaska, in 2012. The interpolygonal water flow degrades the permafrost within
the rims and can initiate thermokarst lake formation. This phenomenon not
only regulates the water flow and the energy and carbon exchange between
permafrost environments and atmosphere, but it drastically changes the land-
scape and the ecosystem, transitioning a strongly organized polygonal ground
to a potentially expanding lake. Photo taken by Guido Grosse. Panel (c)
shows a picture from the Ust-Pojeg mire (Komi Republic, Russia) study site
where the team of the Institute of Soil Science of the Hamburg University con-
ducted measurement campaign. The sparse micro-topography shows how the
water table position in respect to the surface vary over a flat landscape such
as the mire. This is due to the heterogenous elevation of hummocks (small-
scale relieves) and hollows (depressions). The picture is from the website of
the Institute of Soil Science of the Hamburg University. Panel (d), finally,
shows the elevation profile of the hummock-hollow stripe transition in a peat-
land near the Bothnian Bay, Sweden. The different colors of the vegetation
also indicate different types of biomes and plant communities between the two
micro-topographic features. Picture taken by the author. . . . . . . . . . . . 2

1.2 A sketch of the methodological framework to tackle scale interactions in com-
plex systems. The construction of an effective theory is fundamental in or-
der to relate small-scale/plot measurements to large-scale/global predictions
(DeDeo, 2011). The use of simulations can link also a fine grained theory to
full prediction, but the computational costs between the fine and the coarse
grained simulation differ substantially, and only the coarse grained is feasible
to be considered as (approximate) explanation of the observed phenomenon in
a large-scale model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Color-infrared aerial picture of polygonal tundra on Samoylov Island, Lena
River Delta, Russia. Dry rims appear light grey, open water appears black.
Dark grey and reddish areas indicate moist to wet areas. . . . . . . . . . . . . 11
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2.2 Poisson-Voronoi diagrams: different colors represent different types of surfaces:
light green if the polygon center is moist (water table >10 cm below the sur-
face), dark green if it is saturated (water table < 10 cm below as well as <
10 cm above the surface) and blue if it is wet (water table > 10 cm above the
surface and the polygon is covered by open water). Dimensions of polygon
edges in the figure are not to scale, since in our model they cover up to 70 %
of the whole polygon area. Distances on x and y axes are in meters. . . . . . 15

2.3 Cross section of a polygon. Surface is divided in drier elevated rims and in
lower wet centers. Both surface level and single polygon depth are randomly
generated. Water table level Wt and thaw depth TD are also randomly ini-
tialized but they dynamically variate with external forcing (Wt) and seasonal
cycle (TD). Angle α represents the slope of polygon rims. . . . . . . . . . . . 16

2.4 Cumulative probability distribution of polygon center sizes. Observations (blue
line), and 100 model realizations (cyan lines) are compared. The figure displays
area on the x axis. Mean size of center area is 61.19 m2 in the observations
and 61.36 m2 in the model on. These values are comparable as confirmed by
a Student’s T test. Distribution and standard deviation of data and model
output are also comparable. Red lines represent the confidence bounds for the
data cumulative distribution function at a 0.01 confidence level. . . . . . . . 22

2.5 Ensemble averages of 30 model simulations. The graph in panel (a) displays
water table variations over time. Assuming no runoff, and storage term equal
to zero, water level should correspond to the blue curve (cumulative precip-
itation minus cumulative evapotranspiration). Field datasets clearly show a
drop in water table at the end of the season, due to lateral runoff, when water
table lies above the thaw depth. Panel (b) shows water table dynamics in the
three simulated scenarios: wet (blue line), dry (red line), and standard (black
line). Shaded areas represent the variance of the ensemble simulations, which
increases with the increase of the amount of water input. . . . . . . . . . . . . 23

2.6 Ensemble averages of 30 model simulations in different scenarios. Panel (a)
displays seasonal variations of area covered by saturated centers in a wet (blue
line), dry (red line), and standard (black line) scenario. Saturated centers
represent the major contribution to methane emission in this area, and in
our model their total area drops in both dry and wet scenarios. Panel (b)
shows modeled total methane emissions from the whole landscape in the three
scenarios. Despite a decrease in the number of high-emissive saturated centers,
our simple model shows increased methane emission in the wet scenario because
of a drop in the area covered by the relatively drier tundra (moist centers and
elevated rims). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
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2.7 Bond percolation realization: increase of Wt level and decrease of thaw depth
cause interpolygonal flow of water. Water flows into ice-wedge channel net-
work, generated by crack processes. In our model, channels become active, and
polygons with Wt > TD are colored in blue. In panels (a) to (d), the thaw
depth becomes deeper and deeper. This process happens seasonally, and with
the deepening of the thaw depth, more and more channels become active, until
a certain threshold is reached (panel (d)), when an open path of interconnected
active channels appears. The open path is colored in yellow, and it crosses the
whole region: water can flow from channels in the middle of the region to its
borders as outflow, and it is not kept in the environment any longer. . . . . 27

3.1 Representation of the model grid cell. Colors are function of the water table
position in respect to the surface level, going from green (water table below
-10 cm), to yellow (water table between -10 cm below the surface, and 10 cm
above the surface), to black (water table above 10 cm). . . . . . . . . . . . . . 34

3.2 Series of composite/ 360 degree panoramic images taken by the team from the
Institute of Soil Science of the Hamburg University (courtesy of B. Runkle).
The images show both the pace of snow melt (5 days) and the sparseness of
the micro-topographic features. All the dark spots in the top photo are the
tops of hummocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Schematics of a model grid cell, i. e., a hummock. The water table position
can variate due to precipitation P , evapotranspiration ET , and lateral runoff.
Lateral runoff is parameterized as the sum of the Manning’s and the Darcy’s
flow. One further input to water table is the snow melted at the beginning of
the simulation (not shown). Height of the acrotelm variates from cell to cell,
following micro-topography representation. . . . . . . . . . . . . . . . . . . . 37

3.4 Schematics of the micro-topographic model coupled to the atmospheric box
model. Lateral processes are not shown. . . . . . . . . . . . . . . . . . . . . . 43

3.5 Comparison between the Ust-Pojeg mire elevation data collected by the team of
the University of Hamburg and a generalized 3-parameters gamma distribution
multiplied by maximum number of counts in the histogram. The good visual
agreement is confirmed by the positive results from a Kolmogorov-Smirnoff
test at 5% confidence (P≥0.5). . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 The figure shows ensemble simulations of water table dynamics. We show a
comparison between the sub-grid tessellation approach (black line) and the
single bucket (red line). The micro-topography affects water table position
by delaying the runoff, because of the complex interactions among the grid
cells, which we resolve in a finer scale model. The shaded areas represent the
standard deviation over 30 simulations. . . . . . . . . . . . . . . . . . . . . . 48
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3.7 The figure shows ensamble simulations of methane emissions. Methane emis-
sions are computed by coupling the model with a process-based model. As in
Figure 3.6, we compare the Microtopography version of the model (black line)
with a Single bucket version without microtopgraphy representation (red line).
We show the average of 30 ensemble runs (solid line) and the standard devia-
tion among the runs (shaded areas). Because of a different representation of
hydrology, the micro-topography deeply affects the methane emissions, as the
Single bucket version emits much less methane. The shaded areas represent
the standard deviation over 30 simulations. The superimposed dots and the
triangles represent in situ chamber measurements from Wolf (2009). The order
of magnitude of the local data is better captured by the model with micro-
topography. Some differences still exist because of the different climatology
between model and measurements. Moreover, both black and red lines are
averages over the whole landscape, whereas the measurements represent single
plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.8 Histograms of water table distribution over the landscape at different days of
simulation We simulate water table position relatively to the surface level for
all cells. As expected, the distribution shifts towards negative values towards
the end of the season. The two peaks emerging by July coincide with the peak
in water table distribution of hummock and hollow grid cells respectively, as
shown in Figure 3.9. The distribution shape does not change qualitatively
after the emergence of the second peak, but its position shifts as the water
balance changes. In particular, the peak near to the 0 level constantly decreases. 50

3.9 Histograms of water table position in hummocks and hollows. The two micro-
topographic classes we take into account in this study show different spatial
distribution of water table depth relatively to the surface. The drier hummocks
maintain the distribution shape over the simulation, whereas the histogram of
water table in hollow grid cells becomes peaked around the 0 level surface).
This is due to the strong Manning’s flow, that makes water above the surface
run off. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.10 Histograms of methane emissions over the landscape. We show methane emis-
sions for all cells (blue histograms), hummocks (red histograms), and hollows
(green histograms) at different time steps. We chose to show snapshot of
methane fluxes between the mid of july and the end of August because this is
the time slice at which changes in methane emission dynamics are more rapid
and dramatic. Let us note the different scale of the x axis. Methane emissions
increase of almost an order of magnitude in few days, because of temperature
forcing and water table position, which, by the end of August is in average
below the -10 cm level. This leads to an increase in the oxic zone, where the
carbon can be oxidated and released as carbon dioxide. . . . . . . . . . . . . 53

3.11 Dynamics of soil temperature. The figure shows a comparison between the
Microtopographic version of the model (black line), and the classical Single
bucket version (red line), coupled with an atmospheric box model. The soil
temperature therefore changes as the soil characteristics do. In particular,
the dynamics of the water table influences heat capacity and albedo of the
soil, which in turn change latent and sensible heat fluxes between soil and
atmosphere. The soil representation including micro-topography enables the
model to better represent atmospheric temperature. . . . . . . . . . . . . . . 54
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3.12 Figure shows the dependence of the cumulative methane fluxes computed over
the whole warm season on the grid size of the microtopogrpahic model. The
x axis shows the squared root of the number of cells N , as

√
N = mx = my.

Let us note that x axis is on a logarithmic scale. We see how the cumulative
methane emissions change greatly if

√
N ≤ 10, but they quickly stabilize as the

number of grid cells increases. This phenomenon is mirrored by the average
position of the water table dynamics, which by increasing N asymptotically
approaches the water table dynamics for N = 106. . . . . . . . . . . . . . . . 55

4.1 Modified from Rietkerk et al. (2011). The figure shows a schematics of the
main challenges of scale interactions in climate modelling. In the previous two
Chapters we were able to develop robust tessellation models, which work at
the landscape-scale (first square below, in panel (b)). Such models, while able
to upscale local feedbacks and fluxes, can not be directly linked to a model
working at regional or global atmospheric scale, because of their intrinsic com-
plexity, and because of consistency issues with the other processes described
in a GCM. What we propose in this Chapter is a characterization of the local
patterns described by the tessellation models, which can lead to a consistent
and feasible general upscaling technique. . . . . . . . . . . . . . . . . . . . . . 63

4.2 Figure shows the black and white image processing before the computation
of Minkowski densities. The original image is the output from the model
described in Chapter 3. Panel (a) shows a zoomed region (100 x 100 m) of a
greyscale image of the water table position in respect to the surface for each
grid cell. From this figure we can identify different surface classes, i. e. Dry
surface in panel (b), Saturated surface in panel (c), and Wet surface in panel
(d). We then analyze the white phase for each surface class, computing the
three Minkowksi densities for each image. . . . . . . . . . . . . . . . . . . . . 67

4.3 Figure shows the Minkowski densities for the white phase of the binary repre-
sentation of water table pattern of a northern peatland. In panel (a) we show
a gray scale image of a snap shot for the Voronoi diagrams representing low-
center polygonal tundra. We compute the Minkowski densities for each surface
class for the polygon centers, Wet, Moist, and Saturated. In panel (b) we show
the seasonal dynamics for m0, or the area density. Analogously, we show m1,
the boundary length density, and m2, the Euler number, in panels (c) and (d)
respectively. The dynamics of the m1 for Wet and Saturated centers, displayed
in panel (c) are similar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 The figure shows the seasonal dynamics of the Minkowski densities m0,1,2 for
the three surface classes Saturated, Wet, and Moist for the polygon centers,
depending on the position of the water table level in respect to the surface level.
We compare the dynamics of the quantities under three different scenarios of
climatic forcing, changing the precipitation input. The maximum amplitude
of the rainfall events of the Standard scenario is doubled in the Wet scenario,
whereas it is halved in the Dry scenario. . . . . . . . . . . . . . . . . . . . . . 72
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4.5 Figure shows the Minkowski densities for the white phase of the binary repre-
sentation of water table pattern of a northern peatland. The different patterns
are represented changing the segmentation threshold value g0 Quantities m0,
m1, and m2 are shown in panels (a), (b), and (c) respectively. We chose 3 snap-
shots at three representative time steps in order to compare the dependence
on the g0 threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6 Figure shows the Minkowski densities for the white phase of the binary repre-
sentation of water table pattern of a northern peatland. The different patterns
are represented during the summer season, analyzing the dynamics of the wa-
ter table level. We chose three different levels for surface wetness: Wet if water
table is more than 15 cm above the surface level, Saturated if water table lays
between -10 cm and 15 cm in respect to the surface level, and Dry if water
table lays more than - 10 cm below the surface. Quantities m0(t), m1(t), and
m2(t) are shown in panels (a), (b), and (c) respectively. . . . . . . . . . . . . 76

4.7 Comparison betweenm0(t) (black solid line) and parameterization of saturated
area q(t) (red dashed line). We assume the parameterization with a simple
linear function to be a good enough fit to the modeled saturated grid cells
dynamics in the micro-topographic model described in Chapter 3. . . . . . . . 78

4.8 Ensemble simulations of methane dynamics and upscaled micrtopographic ef-
fects. The lines represents the simulated methane emission dynamics from the
Ust-Pojeg mire complex in the Komi Republic, Russia. The red line repre-
sents emissions from a classical single bucket model, which ignores the micro-
topographic representation. The black line shows emissions from the same
region, but considering micro-topography at 1 m resolution. The difference
in fluxes is largely dependent on the different position of the water table in
respect to the surface in the two model configuration. The blue line represents
methane emissions from the bucket model tuned with the upscaled information
from the m0(t) dynamics of the saturated grid cells. The shaded areas are the
standard deviation from the ensemble means (solid lines). . . . . . . . . . . . 80

A.1 The figure shows the 16 configurations c for the 2 × 2 neighborhood. For
the computation of the Minkowski functionals in this example we consider the
circle (pixel) on the top left of the squares. The contributions to the Minkowski
functionals are described in detail in Table A.1. The shaded area represents
the relative position of the object X we want to analyze and the pixel we
consider. The contribution to M0 is either 0 or 1 if the pixel is respectively full
or empty. The contribution to M1 is the number of thick lines, which show the
transition from full to empty pixels and vice versa, evaluating only the edges
of the square incident to the circle (pixel) at the top left corner and the square
diagonals. The contribution to M2 is computed according to equation A.1. . 96
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