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Abstract

In multicellular organisms metabolism is distributed across different organs, each of which has specific requirements to
perform its own specialized task. But different organs also have to support the metabolic homeostasis of the organism as a
whole by interorgan metabolite transport. Recent studies have successfully reconstructed global metabolic networks in
tissues and cell types and attempts have been made to connect organs with interorgan metabolite transport. Instead of
these complicated approaches to reconstruct global metabolic networks, we proposed in this study a novel approach to
study interorgan metabolite transport focusing on transport processes mediated by solute carrier (Slc) transporters and
their couplings to cognate enzymatic reactions. We developed a computational approach to identify and score potential
interorgan metabolite transports based on the integration of metabolism and transports in different organs in the adult
mouse from quantitative gene expression data. This allowed us to computationally estimate the connectivity between 17
mouse organs via metabolite transport. Finally, by applying our method to circadian metabolism, we showed that our
approach can shed new light on the current understanding of interorgan metabolite transport at a whole-body level in
mammals.
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Introduction

Metabolism is a vital process to support normal life in every

organism. In mammals, it is comprised of integrated cellular and

biochemical processes catalyzed by about 2000 enzymes [1]. The

vast repertoire of enzymatic reactions in combination with various

metabolite transport systems is required to convert small molecules

and other chemical substances into a variety of biomolecules

necessary to perform tissue- and cell-type specific functions.

During the past ten years, metabolism research has directed its

focus on the systems level, taking advantage of the advances

provided by genome-scale studies. The human metabolic recon-

struction models Recon 1 and Recon 2 [2,3] were aimed at

building a comprehensive network in order to facilitate studies of

metabolism, especially understanding systemic diseases using

systems biology approaches such as Flux Balance Analysis (FBA).

The Recon approach incorporated the greatest number of

biochemical reactions possible as well as transport processes to

model human metabolism. Based on the Recon1 model,

algorithms and applications for network reconstructions have

been published subsequently [4–11].

Such algorithms have been applied to high-throughput, -omic

data sets [12] defining tissue- or cell-specific metabolic networks

and further elucidating genotype to phenotype relationship for

single or multiple tissues [9,10,13,14]. But understanding systemic

metabolism requires not only individual tissues, but also their

interlinked interactions [8,15]. In complex organisms, different

organs or tissues work synergistically to achieve overall metabolic

homeostasis. This remarkable specialized division of labor among

tissues is reflected in tissue-specific expression of genes coding for

metabolic enzymes. On a whole-body level, the various tissues

operate independently to some extent but at the same time also

exchange metabolites through the circulation of body fluids

thereby maintaining an overall metabolic homeostasis. Thus,

metabolism of the whole organism has to be understood in terms

of integrating tissue-specific metabolic pathways with interorgan

metabolite transport. There have been several studies addressing

this issue using FBA approach in which interorgan metabolic

transports were inferred from the global analysis of tissue-specific

metabolic networks in multiple tissues [8,15]. In the present study,

we take a different approach to determine metabolite transports

based on the observation that transmembrane transporters and

cognate enzymes form tightly linked local clusters, the so-called

‘‘membrane transport metabolon’’ [16]. In this view, the local

couplings between transporters and their adjacent enzymes rather

than the global metabolic networks play a pivotal role in metabolic

transports. For this reason, we focus on solute carrier proteins

(Slcs), which are transmembrane proteins transporting hundreds of

polar metabolites required in many and diverse metabolic

reactions. Slc transporters are tightly coupled to the enzymes that

metabolize the transported solutes. Our interest is to seek evidence
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for Slc-mediated transport by its coupling with neighboring

enzymatic reactions for each organ. We resorted to a computa-

tional approach to score local active metabolism/transport clusters

based on gene expression, a strategy that is readily applicable to all

organs. We used a well-defined scoring function that has already

been applied in differential network analysis [17] to derive optimal

local clusters. This method takes into account the metabolic

connectivity and quantitative enzyme/transporter expression data.

Using this method, we first identified and scored local metabo-

lism/transport clusters for 17 major metabolically active organs in

mouse based on gene expression profiling data of metabolic

enzymes and metabolite transporting Slcs. We then estimated the

connections between the 17 organs via predicted transports that

would allow interactions between them through blood circulation.

Finally, we demonstrated the usefulness of our approach to the

understanding of whole-body metabolism by applying it to an

important biological process: circadian rhythm.

Results

Identification of local metabolism/transport clusters
This study is concerned with local coupling between metabolism

and the transport processes mediated by Slcs. The enzymatic

reactions are derived from Kyoto Encyclopedia of Genes and

Genomes (KEGG) database for mouse [18], which contains 1624

non-redundant reactions (Table S1) catalyzed by 1432 enzymes.

KEGG pathway maps provide major metabolites that these

enzymes act upon. Transport processes are derived from Slc Table

found in the BioParadigms database (http://Slc.bioparadigms.org)

containing the currently known Slcs and their transported

metabolites [19]. After manual curation, 132 Slcs that are located

on the plasma membrane are considered for interorgan transport.

These Slcs transport a total of 136 metabolites listed in Table S2.

Figure 1A makes the point that Slcs and metabolic enzymes can

be linked through common substrates to carry out metabolic

functions. Metabolic enzymes (enzymes E1 to E6 in Fig. 1A) and

the cognate Slcs (e.g. SlcA is linked to E1 in Fig. 1A) can generate

a local metabolism/transport cluster if Slcs and corresponding

enzymes are both expressed. The overall strategy of our approach

was to search for highly expressed clusters consisting of enzymatic

and transport reactions. Figure 1B shows a scheme of our

approach. Metabolic reactions (i.e. chemical conversion of

compound A into compound B, Fig. 1A) are represented by

rectangular nodes while transport processes (e.g. Aout to Ain in

Fig. 1A) are represented by circles. The nodes are connected by

edges whenever they share the same metabolite (Methods, Fig. 1B).

The nodes and edges constitute the network in our study.

We derived quantitative expression scores of genes encoding the

above mentioned components for a total of 17 metabolic organs in

mouse (Table S3, see Methods). These scores reflect the extent to

which a particular gene is specifically expressed in one of the 17

organs. Next, reaction scores were determined. If a single enzyme

or Slc mediates the reaction or transport, then the reaction score

was equal to the gene expression score. In the case of isozymes or

when multiple Slcs could transport a particular solute, the reaction

score was equal to the highest gene expression score (see Methods).

This yields a network topology consisting of connected nodes, each

with an assigned score. In Figure 1B (middle left scheme) the score

levels are reflected by different shades from red to blue. The

connected nodes in the network bearing scores above a given

threshold form local clusters defined as components (e.g G1 to G4

in Fig. 1B middle right). By progressively decreasing the threshold,

the clusters that were separated at a higher threshold will merge

thereby forming even larger groups. The set of nested clusters

under the series of decreasing thresholds is hierarchically ordered

and forms a component tree, which can be computed in linear

time [20]. The formation of this so-called component tree is

illustrated in Figure S1. For each component G of the network

topology (G is any one of the dashed ellipses in Fig. 1B middle

right), we defined the scoring function FG~ 1ffiffiffi
N
p
P
i[G

si, where si is

the expression score for node i in G and N is the number of nodes

in G. This scoring function takes into account the scores of

individual nodes and the size of the cluster. It has also been

commonly used in differential network analysis [21] to determine

the optimal subnetwork from a whole network. Then we searched

along each branch of the component tree from top-down for the

optimal local metabolism/transport clusters in all branches that

optimized the scoring function. As an example illustrated in

(Fig. 1B middle right), there are two branches to be searched in the

component tree. The left branch ends with G3 because the

calculated score of G3 (FG(3)) is larger than the score of G1 (FG(1)).

G2 becomes the optimal cluster with the higher FG (FG(2).FG(4))

in the other branches. Taken together, the collection of optimal

local clusters from all branches of the component tree is considered

as tissue-specific metabolism/transport clusters coupling enzymat-

ic reactions with Slc-mediated transports (e.g Fig. 1B lower right).

The objective is to obtain an organ-compound interaction matrix

and, ultimately, an organ-organ connectivity matrix (lower left

matrix in Fig. 1B) that can reflect the metabolic connections

between organs.

Evaluation of scoring function and local metabolism/
transport clusters

We examined the effectiveness of the scoring function approach

by computing the scores in each organ for 48 predefined reaction

groups corresponding to well characterized metabolic reaction

sequences (Table S4) using our scoring function. Table 1 lists the

top 20 groups with the highest scores and the organs in which the

groups would occur, based on their scores. Here the scoring

function correctly assigned high scores for the reaction groups with

known tissue-specific metabolic functions such as bile acid

synthesis in liver and cortisol synthesis in adrenal gland.

We evaluated the statistical significances and sizes of the

connected local metabolism/transport clusters in each organ. We

calculated the statistical significances of our clusters by comparing

their scores with the calculated scores from the same clusters of

reactions with randomly permutated scores [22]. The statistical

significances of all clusters with more than 20 reactions are listed in

Table S5. For the largest clusters in 17 organs, their scores (yellow

diamonds in Fig. 2A) are significantly higher than those calculated

from the network nodes with randomly permutated reaction scores

(p-value ,2.2E-16, Fig. 2A). From the predicted local metabo-

lism/transport clusters of organs, we observed that they fell into

two types: small isolated clusters containing less than 10 reactions

(enzymatic and transport) and large interconnected clusters

containing more than 100 reactions. The sizes of the largest

connected clusters, in some organs, such as adipose, kidney and

liver, huge clusters (yellow diamonds in Fig. 2B) with as many as

600–700 reactions were identified. In other organs that do not

have a prominent role in metabolism (eye, pituitary gland, and

spleen), connected clusters are much smaller. We randomly

permutated the scores of nodes for each organ for 100 times

and computed the local metabolism/transport clusters for such

simulated data. Although the numbers of nodes included in the

optimal clusters from simulated data are similar to the real data

clusters, the sizes of the largest connected simulated clusters were

significantly smaller than the real data clusters in all organs except
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for salivary gland. These results indicate that our real data clusters

are statistically significant and in general better connected than

randomly permutated ones.

Figure 3 illustrates all local metabolism/transport clusters for

liver and spleen that collectively represent substantial fractions of

the whole body metabolism/transport. The overview of 17 organs

is included in Figure S2. These metabolism/transport clusters can

be explored interactively using the Cytoscape software (see Data

S1). In this scheme, the dots on the outer and inner circles

represent the 136 Slc-transportable compounds that are sorted

and color-coded according to their chemical characteristics

(nucleosides, lipids etc.). The compounds located on the outer

Figure 1. A model of a metabolism/transport network between organs and strategy to develop tissue-specific metabolism/
transport clusters. (A) In each organ (T1 and T2) different metabolic processes may occur which are interconnected by interorgan metabolite
transport mediated by Slcs. Alphabetic letters (A–F) represent metabolites catalytically converted by enzymes E1–E6. SlcA/C/C’/F are Slc transporters
transporting metabolites A, C, F respectively. (B) Illustrates the procedure to derive tissue-specific metabolism/transport clusters. The reference
network consists of enzymatic reactions (rectangular nodes), Slc-mediated transport reactions (circular nodes) and metabolites (lines connecting
nodes). The score of a node is derived from the gene expression scores taken from microarray data and based on the Gene-Protein-Reaction (GPR)
association. For a given organ Ti, node colors reflect high (red) to low (light blue) scores (Figure S1). Nodes connected by shared metabolites can form
subclusters (dashed ellipses: G1, G2, G3, G4) based on a threshold for scores and each cluster obtains a score (FG(1) to FG(4)) according to the scoring
function (FG). With progressively decreasing thresholds, increasingly larger groups of reactions and transport processes emerge (G1 becomes a part of
G3 with lower threshold). After integrating all optimal subclusters (G3 and G2), tissue-specific clusters are obtained (lower right). Based on the derived
tissue-specific clusters, organ-organ connectivity matrix is constructed (lower left).
doi:10.1371/journal.pone.0100963.g001
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circle are only connected to their inner ring counterpart if a Slc is

expressed that can transport the compound in question. The

innermost area represents all enzymatic reactions that can convert

metabolites within a given organ. The scopes of transports and

enzymatic reactions significantly vary between the organs (see

Fig. 3). For example, liver, kidney and small intestine contain the

highest numbers of metabolites and are home of the largest

clusters of connected metabolites (Fig. 4A). Figure 4B illustrates

that the reaction score distributions vary significantly between

organs for these selected local metabolism/transport reactions. In

particular, kidney, small intestine, and liver possess 40% to 50%

highly expressed reactions with a score .3 (i.e. enzyme and/or Slc

transporter mediating a process is strongly expressed) that form

local metabolism/transport clusters. By contrast other organs,

Table 1. The 20 highest scoring predefined reaction groups.

Predefined reaction groups Description Organ Score

Cholesterol = .Bile Bile synthesis Liver 18.3

Cholesterol = .Cortisol Cortisol synthesis Adrenal gland 16.2

Tryptophan = .Acetyl-CoA Tryptophan degradation Liver 13.9

Cholesterol = .Cortisol Cortisol synthesis Ovary 13.4

Tyrosine = .Acetoacetate + Fumarate Tyrosine degradation Liver 13.4

Tryptophan = .NAD+ (de novo) de novo NAD+ synthesis Liver 13.4

Lysine = .Acetyl-coA + Glutamate Lysine degradation Kidney 13.2

Lysine = .Acetyl-coA + Glutamate Lysine degradation Liver 11.8

Histidine = .Glutamate Histidine degradation Liver 11.4

Tyrosine = .Adrenaline Adrenaline synthesis Adrenal gland 10.8

Glucose = .Pyruvate Glycolysis Muscle 10.8

NH3+ Ornithine = .Citrulline Citrulline synthesis Liver 10.4

Tryptophan = .Acetyl-CoA Tryptophan degradation Kidney 10.2

Betaine = .Sarcosine Sarcosine synthesis Liver 10.0

Glucose = .Pyruvate Glycolysis Testis 10.0

Fatty Acids = .Acetyl-coA Fatty acid oxidation Liver 9.5

Tyrosine = .Noradrenaline Noradrenaline synthesis Adrenal gland 9.3

Citrate + Acetyl-CoA = .Citrate+2CO2 TCA cycle Heart 9.2

Fatty Acids = .Acetyl-coA Fatty acid oxidation Kidney 9.1

Acetyl-coA = .Cholesterol Cholesterol synthesis Liver 9.0

Predefined reaction groups corresponding to metabolic reaction sequences were assessed by our scoring function in all 17 organs. The 20 highest scoring groups are
shown in this table with their substrates and products listed in column 1 followed by a short functional description (column 2) and the identity of the tissue (column 3)
with the highest score (column 4). For a comprehensive list of all predefined groups see Table S4.
doi:10.1371/journal.pone.0100963.t001

Figure 2. Evaluation of the statistical significance and the size of the largest connected local tissue-specific metabolism/transport
clusters. (A) The yellow diamonds mark the scores of the largest connected clusters. The distribution of simulated scores of the same cluster is
illustrated in the pink boxplot. (B) The yellow diamonds mark the sizes of the largest connected clusters. The sizes of the simulated largest connected
clusters are illustrated in the form of a blue boxplot. AG, adrenal gland; BM, bone marrow; PG, pituitary gland; SG, salivary gland; SI, small intestine. **
represents p,0.001 in Student’s t-test.
doi:10.1371/journal.pone.0100963.g002
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such as ovary, possess only 10% to 20% of highly expressed

reactions within their reaction clusters. Taken together, local

metabolism/transport clusters in different organs showed signifi-

cant differences not only in size but also with regard to the

expression levels of their constituents, the metabolic enzymes and

Slcs. A histogram (Fig. 4C) illustrates how often different organs

share the same reactions within their clusters. Essentially, the

number of reactions widely shared among organs is very limited.

Less than 2% of the reactions are common to all 17 organs.

We subdivided the histogram into three groups based on organ

specificity (red boxes in Fig. 4C) and asked which reactions

typically occur in each group. Group 1 contains 205 reactions that

appear in at least 10 organs. These reactions (Figure S3A) cover

purine metabolism (25 reactions), pyrimidine metabolism (13

reactions), glutathione metabolism (11 reactions), glycolysis/

gluconeogenesis (9 reactions), glycerolipid metabolism (9 reac-

tions), and the pentose phosphate pathway (6 reactions). Reactions

shared among 3–9 organs (group 2) are tabulated in Figure S3B.

They are involved in fatty acid metabolism, fatty acid elongation,

fatty acid biosynthesis, and the TCA cycle co-expressed by liver,

kidney as well as heart and muscle. These reactions/pathways

generally have central roles in metabolism, such as providing

starting materials for protein biosynthesis and energy generation.

Group 3 contains reactions occurring in only one or two organs

and represents highly tissue-specific functions such as steroid

hormone biosynthesis (35 reactions), bile acid biosynthesis (20

reactions), steroid biosynthesis (16 reactions), tryptophan metab-

olism (11 reactions), tyrosine metabolism (7 reactions), and glycine-

serine metabolism (6 reactions). Figure S3C shows several

examples of such reactions.

Classification of Slc-mediated transports
We next examined Slc-mediated transport processes that

connect the two outer circles of Figure 3 and Figure S2. These

processes play an important role in interlinking organs. We

observed that in many instances transported solutes can be directly

linked to an enzymatic reaction represented in the innermost area

that form local metabolism/transport cluster. In other instances,

such could not be observed. Therefore, we divided Slc-mediated

transport into two classes. Class 1 includes cases where transported

solutes are directly coupled to at least one enzymatic reaction

requiring that Slc and coupled enzyme are locally expressed in the

same organ. These coupled transports are responsible for

metabolic absorption for downstream metabolism or secretion

from upstream synthesis. In contrast, class 2 includes predicted

cases where the transport process is isolated. These cases are

responsible for directly solute transport, such as excretion and

reabsorption of metabolites in kidney. This class can also be due to

either the gaps between transports and enzymatic reactions in our

network or the coupling with enzymatic reactions of very low

expression in the organ of interest. For all analyzed organs the

distribution of these two classes of Slc-mediated transport is shown

in Figure 5. Transport processes are highly active in kidney, liver

and small intestine. The isolated transport reactions in class 2 are

enriched in epithelia tissues such as kidney and small intestine (see

Fig. 5 green parts). This indicates that our algorithm is effective in

identifying isolated transports from metabolism. Examples of class

1 and class 2 transports with top expression scores are provided in

Table 2. The table states the class of transport, the name of the

transported solutes, the organ and Slc with the highest expression

score for the transport, and in the case of class 1 also the enzymes

associated with one or several of the transported solutes.

An example for class 1 transport is that of fatty acids mediated

by Slc27a5 in liver and Slc27a2 in kidney. Both these organs have

high expression scores for downstream enzymes involved in fatty

acid metabolism. Amino acids such as histidine and alanine are

transported by Slc38a4 in liver where the appropriate metaboliz-

ing enzymes are also expressed (Table 2). Additional examples for

class 1 can be found in Table S6. To name just a few, there is (1)

the enzyme-coupled Slc transport of phenylalanine and tyrosine in

liver and kidney, where phenylalanine is taken up by Slc16a10,

Slc6a19, or Slc7a8 and converted by Pah to tyrosine which is then

exported by Slc16a10 or Slc7a8. (2) The transport and metabolism

of branched-chain amino acids which enter the brain via Slc6a15

and serve as a substrate for Bcat1. (3) The uptake of lysine in liver

by Slc7a2 or Slc38a4 followed by liver-specific degradation.

Class 2 transport is the type of transport processes that merely

transport solutes across an epithelial boundary (Fig. 5). For

Figure 3. Tissue-specific metabolism/transport clusters in liver and spleen. Each organ possesses its own unique metabolism/transport
clusters. The outer and inner circles line up all small molecule compounds that are transported by a Slc. Node color indicates compound types (see
legend). The dots representing compounds are connected by a red line, if an appropriate Slc is expressed in the organ in question. The circular area in
the center contains the reactions realized in each organ investigated. In these clusters, reactions that occur are marked with a red line. The above
diagrams can be interactively viewed using Cytoscape (Data S1).
doi:10.1371/journal.pone.0100963.g003
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example, transports belonging to class 2 are enriched in kidney,

which reflects the physiological function of kidney that is to excrete

waste products and to reabsorb essential nutrients such as glucose

and amino acids [23–26]. We found from our kidney metabolism/

transport clusters that asparagine, myristic and arachidic acid as

well as vitamins were reabsorbed by kidney. We also noted that in

small intestine there are transport processes for branched-chain

amino acids such as isoleucine and valine by Slc6a19 and lysine

and cysteine by Slc38a4 apparently without enzyme coupling.

A comprehensive list of Slcs, their transportable compounds and

whether they are engaged in class 1 or class 2 transports is found in

Table S6.

Estimation for interorgan metabolic connectivity
Based on the local metabolism/transport clusters for 17 organs

consisting of transport processes and enzymatic reactions, we tried

to infer the metabolic interactions between organs. We considered

the 136 Slc-transportable metabolites as possible linkage points

between organs. We first identified the local metabolism/transport

clusters involving the transport processes of these metabolites and

used their corresponding optimal scores of the clusters deriving

from scoring function as the measure of the transport capability of

the metabolites for the organs. The score is zero if the transport

process of the metabolite cannot be found in the local metabolism/

transport cluster of this organ. Thus we obtained a 17 by 136

matrix (TC17�136) to estimate the organ transport capability for all

transportable metabolites (Fig. 6A, Figure S4). It can be seen that

Figure 4. Comparing characteristics of tissue-specific clusters. (A) Shows the number of metabolites in the 17 tissue-specific clusters and the
number of metabolites in the largest connected subclusters (blue portion of the bars). (B) The color-coded percentages of different magnitude of
reaction scores in the tissue-specific networks for different organs. (C) The histogram indicates the percentage of reactions common to an increasing
number of tissue-specific clusters. The x-axis is the numbers of organs that a reaction is included in tissue-specific clusters across 17 organs.
Rectangles delineate groups of reactions that are tissue-specific (box marked as Group 3), reactions that are shared by a limited number of organs
(box marked as Group 2) and ubiquitously occurring reactions (box marked as Group 1). AG, adrenal gland; BM, bone marrow; PG, pituitary gland; SG,
salivary gland; SI, small intestine.
doi:10.1371/journal.pone.0100963.g004
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few metabolites can be transported in spleen but transports are

highly active in liver and kidney. The organ-organ connectivity

matrix T17�17 can be obtained by computing the product of

TC17�136 with its transposed matrix. Therefore, this connectivity

matrix between organs has taken into account all transports

mediated by Slcs and their coupled enzymatic reactions. Figure 6B

shows the connectivity matrix between organs in the form of

heatmap. The diagonal element of the matrix represents the

overall metabolism/transport activity of all Slc-transportable

metabolites for a given organ. We found that kidney, liver, and

small intestine have the highest scores while spleen has a very low

score. In terms of interorgan metabolite transports, we found that

kidney and liver as well as small intestine are closely interlinked

with each other through metabolic transports. In addition,

placenta is also highly connected with other organs potentially

representing the exchange of metabolites between fetus and

mother. But much lower exchanges were found between organs

such as spleen or heart. We further evaluated the organ

connectivity via different types of transportable metabolites by

dividing the metabolites in TC17�136 into sub-matrices for

metabolites of distinct types. The organ-organ connectivity

matrices for different types of metabolites are calculated accord-

ingly and shown in Figure S5. We found that there are significant

differences in interorgan metabolite transports between different

types of metabolites. For hormones including neurotransmitters,

testis and brain, the main producing organs, are connected with

kidney and liver that are main organs for excretion and

detoxification of hormones (Figure S5B). For lipid metabolites,

the main connection was found between adipose tissue, the organ

for lipid deposit, and liver, the organ for lipid catabolism (Figure

S5C). Taken together, the connectivity matrices in Figure 6 and

Figure S5 provide us direct and quantitative estimates of potential

metabolic interactions between organs.

From the predicted interorgan interactions, we found that some

have been previously known in the literature. For example, the

well known cori cycle [27] between skeletal muscle and liver can

be included by our method. Muscles absorb glucose from blood

and produce lactate that in turn is taken up by liver in order to

regenerate glucose through gluconeogenesis. The similarly orga-

nized glucose-alanine cycle exchanges glucose and alanine

between liver and muscle (Figure S6A). The urea cycle

[23,28,29] between liver, kidney and small intestine can also be

recapitulated in our organ interactions (Figure S6B). The synthesis

of tyrosine from phenylalanine, which has been observed in liver

and kidney [30–33], also occurs in our predictions. We further

observed that the product of tyrosine degradation can be used for

TCA cycle and fatty acid synthesis in liver and kidney, consistent

Figure 5. Distribution across 17 organs of the two classes of
Slc-mediated transport modalities. The blue bars represent the
number of enzyme-coupled Slc transport processes while the green
bars represent the number of Slc-mediated transport processes that are
not linked to an enzymatic reaction. AG, adrenal gland; BM, bone
marrow; PG, pituitary gland; SG, salivary gland; SI, small intestine.
doi:10.1371/journal.pone.0100963.g005

Table 2. Top scoring Slc-mediated transport processes by class

Class Transported solutes Organ Slc Score for Slc Coupled enzymes

1 Arachidonic acid, Linoleic acid, Myristic acid, Palmitic acid Liver Slc27a5 8.48 Acsl1, Cyp2c29, Cyp3a11, Fasn

1 Arachidonic acid, Linoleic acid, Palmitic acid Kidney Slc27a2 8.31 Acot3, Cyp2j5

1 Glucose, Galactose Small Intestine Slc5a1 7.99 Lct, Mgam

1 Aspartate, Glutamate Kidney Slc7a13 7.92 Acy3, Ggt1

1 Cholic acid, Glycocholate, Taurocholate Liver Slc10a1 7.56 Baat

1 Alanine, Arginine, Cysteine, Glutamine, Glycine, Histidine, Lysine,
Methionine, Serine

Liver Slc38a4 7.24 Aass, Agxt, Arg1, Cth, Gls2, Hal,
Mat1a

2 Mannose Liver Slc2a2 7.18

2 Estrone 3-sulfate Liver Slco1b2 7.07

2 Alanine, Methionine, Asparagine Placenta Slc38a4 7.04

2 Urate Kidney Slc22a12 6.92

2 Lysine, Cystine Small Intestine Slc7a9 6.91

2 Glucosamine, Mannose Kidney Slc2a2 6.75

Class 1 and class 2 are Slc-mediatesd transport processes with and without enzyme coupling, respectively. The six highest scoring transport processes of each class are
shown. The directly coupled enzymes for class 1 transpsort are listed in column 6. See also Table S6 for more examples.
doi:10.1371/journal.pone.0100963.t002
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with previous observations [34]. In addition to liver and kidney,

enzyme-coupled Slcs for tyrosine and phenylalanine were also

expressed in adrenal gland and muscle. In adrenal gland, the

transport of tyrosine can feed into the synthesis of adrenaline from

tyrosine. There are evidences for the release and uptake of

branched-chain amino acids in kidney under different conditions

[23,28,32]. From our prediction, their degradation with active

transports was specific in kidney, adipose and adrenal gland. Small

intestine only showed direct active transports of branched-chain

amino acids likely through absorption from food intake. But brain

and placenta can take up and metabolize the branched-chain

amino acids with enzyme-coupled Slc transport. These observa-

tions are consistent with the current knowledge that branched-

chain amino acids are only metabolized in extra-hepatic tissues.

From our prediction, we found that serine de novo synthesis by

Phgdh, Psat, and Psph was only expressed in adipose but absent in

liver and kidney. In contrast, enzymes involved in serine glycine

conversion, glycine degradation by glycine cleavage enzyme, and

glutathione synthesis from glycine were exclusively expressed in

liver and kidney. Therefore, we predict that serine may be

involved in an inter-organ transport in which adipose synthesizes

and releases serine as the precursor of glycine for liver and kidney

[32,35,36] (Figure S6C). Evidently, this novel pathway is still

hypothetical and needs to be experimentally validated using

isotope labeled compounds.

We examined the measured concentrations of Slc transportable

metabolites in human blood derived from Human Metabolic

Database (HMDB) [37]. As shown in Table S7, most of the Slc

transportable metabolites that we predicted for interorgan

metabolic transports were found in human blood. This supports

the notion that these metabolites can be transported between

organs through blood circulation. We compared our predicted

transports with the ones predicted from Bordbar’s work [15]

between liver, adipose and muscle based on global reconstruction

of metabolic networks. We found that 82.6%, 72.7% and 57.1% of

Slc transports occurred in Bordbar’s results can be recaptured by

our method in adipose, liver and muscle, respectively. In addition,

we found that a large amount of transports predicted from our

method are absent from Bordbar’s study (Figure S7A). Many of

these unique transports in our result have support from literature

and previous experiments (Figure S6). For example, hormones and

neurotransmitters such as serotonin and cortisol are known to be

actively transported into liver for deactivation [38]. These

transports can be identified from our result but absent from

Figure 6. Organ-Compound interaction matrix and Organ-Organ connectivity. (A) Rows are 17 organs. Columns are 136 transport
processes. Cell colors reflect high (dark green) to low (white) transport capabilities of corresponding metabolites for a given organ. (B) Cell colors
reflect high (dark green) to low (white) connectivity via Slc-mediated transports between organs. AG, adrenal gland; BM, bone marrow; PG, pituitary
gland; SG, salivary gland; SI, small intestine.
doi:10.1371/journal.pone.0100963.g006
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Bordbar’s result. The transports in these three organs exclusively

predicted by our method are provided in Table S8. We also

compared our result with Shlomi et al’s result [8], which derived a

global map of secretion and uptake of 249 metabolites across

different tissues when they reconstructed tissue-specific metabolic

networks. 46% of their 249 transportable metabolites are assigned

with known membrane transporters. 88 out of 115 metabolites are

transported by Slcs. Among these 88 metabolites, 75 of them have

been annotated by our compound-SLC relationship (Figure S7B).

Shlomi et al. predicted 81 and 71 transport processes for kidney

and liver respectively from these 249 metabolites. We inferred 116

and 90 transport processes for kidney and liver respectively, which

showed significant overlaps with Shlomi’s result (Fisher’s exact test,

p-value = 6.44e-08 for kidney, p-value = 1.09e-05 for liver) from

our 136 transportable metabolites. In short, our simple method

can not only recapture previously known Slc-mediated transports,

but also predict new metabolic transports compared to the results

from global reconstruction of metabolic network.

Application in circadian metabolism
Currently, many metabolomic studies have been conducted in

body fluids such as blood. Our method has the potential to link the

changes of metabolites in the blood with the changes of gene

expression in the tissues that are exchanging metabolites with the

blood. We chose a well-studied physiological process, circadian

rhythm, to test the applicability of our method. It has been known

that circadian clock plays a key role to control our daily

metabolism [39]. Circadian transcriptomic studies have provided

genome-wide circadian gene expression in various organs [40].

Minami et al.’s metabolomic study has found metabolites whose

levels showed circadian oscillation in the blood [41]. In the

circadian gene expression data collected from our own meta-

analysis study [40], we systematically searched for the genes

showing circadian gene expression among our predicted metab-

olism/transport clusters in liver, kidney, and adipose respectively.

Among the 26 identifiable metabolites that were found to oscillate

in blood in Minami et al’s data, 13 of them are transportable

metabolites included in our study. We have found circadian

oscillating enzymes or Slc transporters in our clusters linking to the

circadian oscillations of glutamine, proline, leucine, glycine and

methionine levels in the blood (Table 3). In our adipose and kidney

clusters, Glul synthesizing glutamine from glutamate showed

circadian oscillation with the peak at circadian time CT15

(circadian time 15). Glutamine is known to be synthesized in

extra-hepatic tissues. This result is consistent with the circadian

peak of glutamine level at CT18 in the blood. In our kidney

cluster, Slc7a7 peaking at CT6 can transport leucine for its

incorporation into protein by leucine-tRNA synthetase, Lars, also

peaking at CT7. In our adipose cluster, Bcat1 peaking at CT4 is a

key enzyme for leucine degradation. The circadian uptake of

leucine in kidney and adipose may lead to the depletion of leucine

at CT7 and the peak at CT19 in the blood. In our liver cluster, the

circadian uptake of glycine mediated by Slc6a9 peaking at CT13

coincides with the peak of glycine level at CT12 in the blood. This

may supply glycine for its later degradation catalyzed by Gldc

peaking at CT23. In addition, we have found that one of our liver

clusters is significantly enriched with circadian oscillating genes

(Fisher’s exact test, p = 0.006). In this cluster, two Slc transporters,

Slc22a1 peaking at CT6 for estradiol and Slco1b2 peaking at CT9

for estradiol-17beta 3-glucuronide, together with all enzymes

except one are circadian oscillating in liver. This liver cluster is

responsible for the degradation of estrogen-related steroid

hormones. It is known that the level of steroid hormone such as

cortisol is circadian oscillating [42]. Previous study only focused on

their circadian synthesis. Our result suggests that the circadian

absorption and degradation of hormones in liver may also be

important for their circadian turnover in the blood. In summary,

by applying our method to another dataset of circadian rhythm,

we show that our method is valuable to obtain new biological

insight of the inter-organ connectivity in metabolism.

Discussion

In this study, we estimated the metabolic connectivity between

17 major metabolic mouse organs using a simple computational

approach. The prediction is based on the local coupling between

metabolic enzymes and Slc transporters obtained from a

combination of quantitative expression data and the KEGG

metabolism/transport network. A computational method to derive

local metabolism/transport cluster was implemented by optimiz-

ing a scoring function along a data structure called component

tree. This was constructed by gradual lowering the threshold for

the expression scores of sub-networks. We calculated a score for

each constructed sub-network. We were able to obtain optimal

local metabolism/transport clusters linking metabolic reactions or

Slc-mediated transports according to the calculated scores for each

of the 17 organs. In these clusters, we found that metabolic

reactions were frequently tied to Slc-transporters that catalyze

metabolite uptake and release. Other Slcs, however, mediate

metabolite transport across epithelia without any association to

metabolic enzymes. The current knowledge about Slc transport

specificity is mostly obtained from in vitro studies in which a Slc is

overexpressed and solute affinity and rate of transport are

measured. These studies reveal a certain degree of promiscuity

of Slcs. Particular Slcs can transport several structurally related

solutes and, moreover, particular solutes can be transported by

several Slcs. The local metabolism/transport cluster associates Slcs

with enzymes of known substrate specificity. Such an association

helps in delineating the physiological solutes that Slcs will actually

transport in a given organ environment. Highly expressed Slc

transporters can be viewed as entry and exit gates controlling

metabolite exchange between organs and the body fluids. The

local coupling that we identified between Slcs and metabolic

enzymes is in line with the concept of membrane transport

metabolons proposed by Moraes et al. [16], in which transporters

and enzymes that metabolize the transported compounds may be

physically associated. Such linkage in combination with the law of

mass action may give rise to directionality of metabolic flux and

facilitate more efficient and selective transport in vivo.

Our local metabolism/transport clusters linking metabolism to

transport allowed the identification of previously uncharacterized

exchange of metabolites between organs. Physiologists have long

recognized the importance of interorgan metabolite transport

[27,43]. From the perspective of systems biology, the brain

metabolism reconstruction [44] and the host-pathogen interac-

tions of M. tuberculosis [45] have highlighted the importance of

analyzing intercellular interactions [13]. However, most of these

systems biology studies reconstructed metabolic network with data

taken from literature and enhanced by manual modification. The

FBA approach for reconstruction generally encounters 15% to

25% of highly expressed reactions to be isolated in each organ

when using the Recon 1 network. The missing information made

the interorgan network construction a daunting task. Here we

proposed a local approach to seek evidences for active transports

from highly expressed Slcs and adjacent metabolic enzymes. This

approach circumvents the global reconstruction of tissue-specific

metabolic networks. In this regard, KEGG is already sufficient to

provide highly reliable information of major enzyme substrates to
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be paired with Slcs. Based on the literatures and Slc Table, we

manually curated the relationship between Slcs and compounds.

This makes the Slc-compound relationship in our study more

accurate as compared to Shlomi et al’s study in which Slc-

compound relationship was obtained without further curation

from the global network in BiGG database [8]. In the present

approach, we can identify transports with scores that coupled with

only a few downstream or upstream enzymatic reactions or even

isolate transports. Such transports are often neglected or

considered as gaps because they are unable to generate fluxes in

FBA used for the global reconstruction of metabolic networks. Slc-

mediated transports provide an opportunity to extend our

knowledge of interorgan metabolite transport that has been

proposed years ago [43]. Furthermore, we used the scores of

local metabolism/transport clusters to systematically estimate the

metabolic interactions between organs (Fig. 6). From the organ-

compound interaction matrix, we can identify the well-known

cases where a compound synthesized in one organ and released by

this organ is then taken up by another organ via a Slc and then

funneled into enzymatic reactions within the second organ.

Besides some examples mentioned above, we also made many

interesting observations from our predicted clusters. For instance,

one of glucose transporters, Slc2a1, expressed in placenta is

probably responsible to bring in glucose to fetus. While the other

glucose transporter Slc2a3 expressed in brain, may function for

glucose uptake for neurons. We observed that fatty acid synthesis

genes are highly expressed in adipose whereas the genes for fatty

acid oxidation are expressed elsewhere such as liver, kidney and

muscle. The absorption and excretion of fatty acids are predicted

to be carried out by various Slc27a family transporters from their

expression. Conversion of testosterone to estradiol-17beta is

facilitated in ovary and testis. We can observe the significant

expression of transporter (Slc22a3) of estradiol-17beta in ovary.

Meanwhile, small intestine can convert estradiol-17beta to estriol

with the estradiol-17beta uptake mediated by Slc22a1 from our

prediction. This is potentially another inter-organ transport

between ovary and small intestine. Such transports of estradiol-

17beta may play an important role in the inactivation of the

hormones. Similar transports may also exist for neurotransmitters

such as serotonin synthesized in the brain then transported to liver

for inactivation.

In this study, we focused on Slc-mediated transport because this

transporter superfamily supplies cells with many of the basic

building blocks required by cell metabolism. Nevertheless, some

small molecules, critical for metabolism, use other means of

transport. For example, free diffusion is the major mechanism of

transport for gases, such as oxygen, and hydrophobic compounds

cross membranes by diffusion. Endocytosis and exocytosis are

other means of transport and translocate macromolecules such as

proteins, hormones (insulin) and signaling molecules (dopamine) in

and out of cells. ABC transporters are also a family of membrane

bound transporters that translocate substrates such as lipids, sterols

and drugs. In the present approach, these additional mechanisms

of transport are not included but can be eventually incorporated

using the same methodology developed for our study. Most

importantly, our study tried to reveal an extensive system of

interorgan metabolic transport and has shed light on the molecular

players therein. In the end, metabolism has to be understood not

only at the level of single organs but as an orchestrated process

involving the entire body. In the case of single cell organism this

issue does only arise at the level of intraorganelle transport; much

remains to be done to address interorgan and intertissue transport

in multicellular and multiorgan systems. Our work provides a

novel attempt to bring together physiology and cellular biochem-

istry to tackle this important problem.

Methods

Definition of reference network
We downloaded all enzymatic reactions and their associated

genes, i.e. Gene- Protein-Reaction (GPR) association, for mouse

included in the KEGG database. We obtained the major

metabolites participating in these reactions and the direction of

reactions by parsing the KEGG pathway maps. By literature

curation, we classified the Slcs by their subcellular localizations

into plasma membrane, mitochondrial membrane, vesicular

membrane, and other organelle membrane transporters. Only

Slcs located on plasma membrane are considered in this study. Slc-

mediated transport reactions were considered as reversible

Table 3. Circadian transportable metabolites in the blood with the corresponding circadian enzymes or transporters

Metabolites in the blood Reaction/Transport Adipose Kidney Liver

Glutamine (17.7) Glutamate-.Glutamine Glul(16.8) Glul(15.0)

Glutamine-.Carbamoyl-P Cad(10.3)

Glutamine transport Slc7a7(6.7)

Leucine (18.9) Leucine-.4-Methyl-2-oxopentanoate Bcat1(3.7)

Leucine-.L-Leucyl-tRNA Lars(5.7)

Leucine transport Slc7a7(6.7)

Glycine (12.1) Glycine-.CO2+S-Aminomethyldihydrolipoylprotein Gldc(15.8) Gldc(23)

Glycine ,-. Serine Shmt1(1.7)

Glycine transport Slc6a9(13.5)

Proline (18.3) Peptide-.Proline Lap3(4.8) Lap3(23.2)

Proline-.4-Hydroxy-L-Proline P4ha1(18.4) P4ha1(18.7)

Methionine (18.8) L-Homocysteine-.Methionine Bhmt(2.2)

Methionine-.4-Methylthio-2-oxobutanoate Tat(17.1)

The numeric numbers in the parentheses are circadian peak times in CT (circadian time) of circadian metabolites in the blood or circadian oscillating genes in adipose,
kidney, and liver.
doi:10.1371/journal.pone.0100963.t003
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reactions. We then integrated all enzymatic reactions and Slc-

mediated transport reactions into one reference network. In our

reference network of metabolite transport, the nodes represent

reactions including both enzymatic reactions and Slc-mediated

transport reactions.

Definition of scores for metabolism/transport reactions
To obtain reliable expression scores for metabolic enzymes and

Slc transporters across mouse organs, we integrated three adult

mouse organ microarray datasets from Gene Expression Omnibus

(GEO) database: GSE10246 (BIOGPS mouse4302 arrays),

GSE1133 (BIOGPS gnf arrays), and GSE9954 (mouse4302

arrays). We selected 17 organs that are common to all three

datasets: adipose, adrenal gland, bone marrow, brain, eye, heart,

kidney, liver, lung, musscle, ovary, pituitary gland, placenta,

salivary gland, small intestine, spleen, and testis. We averaged the

data from various brain regions in the first two datasets as the

expression data of the whole brain. Among the selected organs,

original expression values were first log10-transformed and then

subtracted from the median for each gene as the scores of organ-

specificity in every dataset, respectively. The total score of a gene

in a given organ is the sum of scores from three datasets (Table

S3). The score of a reaction, i.e. the node in reference network, is

the maximum score of the genes associated with the reaction. In

order to calculate the significance of predicted tissue-specific

metabolism/transport cluster, we randomly re-assign reaction

scores within an organ for 100 times to calculate the p-value.

Predefined metabolism/transport clusters for validation
To obtain predefined metabolism/transport clusters, we man-

ually curated KEGG modules corresponding to known anabolic or

catabolic functions. They were selected for well characterized

metabolic reaction sequences involving Slc transportable com-

pounds as either substrate or product. The redundancy in KEGG

modules caused by overlaps of reactions was removed. More

predefined metabolism/transport clusters containing at least two

consecutive reactions were added from literatures and their

reaction sequences were identified in KEGG. In total, we obtained

48 predefined metabolism/transport clusters as shown in Table

S4. We represented each predefined cluster by a summarized

overall reaction containing substrate and product.

The pseudo-code of our algorithm
A pseudo-code for the algorithm is described as follows:

The whole reference network can be represented by GN = (M,

Re), in which M is a set of edges (metabolites) and Re is a set of

nodes (reactions). E[RDReD�DT D is a matrix denoting the node scores

in T organs. Starting at a high score with threshold 3, we decrease

the threshold gradually with a step size E= 0.1. Each step

corresponds to a set of connected clusters (e.g in Fig. 1B middle

right, Set1 = (G1), Set2 = (G2), Set3 = (G3, G4)). For organ t:

For n = 0 to 26

threshold(n) = starting threshold –n � E (threshold from 3 to 0.4)

Groups(n) = ReactionGroup(GN, E(t), threshold(n))

The procedure ReactionGroup computes the sets of connected

subnetworks, defined as components, with node scores above

threshold(n).

For n = 1 to 26

Branch_Step(n) = traceback(Groups(n))

Return ComponentTree

The procedure traceback is to trace the components under

previous threshold for Groups(n). After tracing step by step, the

hierarchical relationship of components forms a data structure

called component tree (Figure S1). This structure simplifies

metabolic network topology, taking a group of consistently highly

expressed reactions as one component. It is aimed to reflect how

closely connected between nodes according to network topology

and expression.

For each branch l[ ComponentTree

set Fl = 0

For each component i from top to bottom

Fl(i)~
1ffiffiffiffiffi
N
p

XNli

j~1

ejt

if Fl(i)wFl

Fl~Fl(i)

NRl = Nodes belonging to component i

NR~NR1|NR2|:::|NRL (L is the number of branches).

Here ejt is the score for node j in organ t and Nli is the number

of nodes in the component i of branch l. We searched for the

component of branch l that possesses the largest F score in that

branch and then integrated the optimal components derived from

all branches to form the final set of tissue-specific network NR.

Organ-compound interaction matrix and organ-organ
connectivity matrix

We collected the Slc-mediated transport processes for each organ

according to the derived local metabolism/transport clusters. The

columns of organ-compound interaction matrix are the 136 Slc-

transportable metabolites. The value of each cell in this matrix is the

derived score of corresponding local metabolism/transport clusters

in that organ. Then we calculated the product of the organ-

compound interaction matrix and its transpose to represent the

organ-organ connectivity. This connectivity matrix shown in

Figure 6 considered all possible transportable metabolites between

two organs while connectivity matrix for a given type of metabolites

were derived similarly by restricting the columns in organ-

compound interaction matrix to only the metabolites in that type.

Supporting Information

Figure S1 A schematic representation of the component
tree. A component tree is a data structure representing the

hierarchical relationship between components (rectangular boxes)

obtained with the decreasing score threshold (see main Text).

Components are connected nodes in the reference network with

scores above a given threshold. The top of the component tree

consists of the nodes with highest scores. At each step of decreasing

threshold, new nodes are incorporated into the components and

new components are generated. The numbers indicated on the

components represent the numbers of nodes within the compo-

nents. The numbers next to the arrows represent the numbers of

new nodes added into the component as the threshold decreases.

The colors of components ranging from red to light blue represent

the decreasing threshold values of the scores.

(PNG)
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Figure S2 Complete overview of Tissue-specific metab-
olism/transport clusters. This is a complete collection of

tissue-specific metabolism/transport clusters of all 17 organs

investigated in our study. The detailed information of these

diagrams can be found in the legend of Figure 3.

(PDF)

Figure S3 Three different types of expression patterns
of reactions in metabolic pathways across organs. The

metabolic reactions that are ubiquitous in at least 10 organs (A),

restricted to 3–9 organs (B), or highly restricted to only one or two

organs (C). The score of each reaction in the 17 organs is provided.

The reactions are marked in red color for organs with high scores.

The reactions in (A) and (B) belonging to different metabolic

pathways form clusters (rectangular boxes with different colors)

such as purine metabolism, pyrimidine metabolism and so on. (C)

Heme biosynthesis pathway mainly occurs in bone marrow and

hormones such as estrone can be synthesized by the ovary and

adrenaline synthesis is restricted to the adrenal gland. The

synthesis of niacin (vitamin B3) from tryptophan is restricted to

liver. Calcidiol biosynthesis from vitamin D3 is specific for liver

while its conversions into calcitriol and secalciferol are specific for

kidney.

(PDF)

Figure S4 Organ transport capability for all transport-
able metabolites. Rows are 17 organs. Columns are 136

transport processes. Cell colors reflect high (dark green) to low

(white) transport capabilities of corresponding metabolites for a

given organ.

(PDF)

Figure S5 Organ-organ connections via specific trans-
portable metabolites. 136 Slc-mediated metabolites are

classified into seven categories: (A) Carbohydrates; (B) Hormones

and transmitters; (C) Lipids; (D) Nucleic acids; (E) Organic acids;

(F) Amino acids; (G) Steroid. Each heatmap matrix reflects organ-

organ connection through a certain type of transportable

metabolites. Cell colors reflect the degree of connectivity between

organs.

(PDF)

Figure S6 Selected examples of interorgan metabo-
lism/transport processes and predicted transporters.
(A) Cori Cycle and Glucose-Alanine Cycle between liver and

muscle. (B) Urea Cycle is realized in full in liver but only partially

in kidney and in small intestine. This leads to the transport of

citrulline and arginine between small intestine and kidney in the

so-called citrulline-arginine shunt. (C) Serine synthesis in adipose

and serine-glycine conversion in liver and kidneys may lead to the

transport of serine between adipose and liver and kidney. Gln,

glutamine; ORN, ornithine; CP, carbamoyl phosphate; CIT,

citrulline; ARG, arginine; AS, aspartate; 3-PG, 3-Phosphoglycer-

ate; 3-P-OH-Pyr, 3-Phosphonooxypyruvate; O-P-L-Ser, 3-Phos-

phoserine; Gly, Glycine.

(TIF)

Figure S7 Comparison of predicted Slc-mediated trans-
ports. (A)Comparison of predicted Slc-mediated transports

between Bordbar’s result [15] and ours in adipose, liver and

muscle. (B) Comparison of predicted Slc-mediated transports

between Shlomi et al’s result and ours in liver and kidney [8].

(PDF)

Table S1 Enzymatic reactions. Column 1 is the reaction

indexes assigned by us. Column 2 indicates the path numbers that

reaction belongs to. Column 3 shows the reaction direction.

Column 4 is the reaction ID assigned by KEGG. Column 5 and 6

are the main substrate and product of the reaction. And column 7

shows catalyzed enzymes of the reaction.

(XLSM)

Table S2 Transport reactions. Column 1 is the transport

indexes assigned by us. Column 2 (path: slc2cps) indicates the path

number that transport belongs to. All transports are considered as

reversible (Column 3). Column 4 and 5 are transportable

metabolite ID and its official name. Column 6 shows slcs that

can transport the metabolite.

(XLSM)

Table S3 Gene expression in organs. Column 1 and 2

indicate gene ID and gene symbol. The other columns are the

expression scores of the corresponding organs.

(XLSM)

Table S4 Scores for predefined sub-networks in 17
organs. Column 1 and 2 list the predefined sub-networks and

their functional descriptions. Column 3 shows kegg pathways that

each sub-network belongs to. Column 4 and 5 list involved

reactions (indicated by KEGG ID) and enzymes for each sub-

network. The remaining 17 columns are the calculated scores for

each sub-network in 17 organs.

(XLSM)

Table S5 Statistical significances of tissue-specific
metabolism/transport clusters. All clusters with more than

20 reactions are selected and listed according to organs. Column 2

lists the number of reactions involved in clusters. Column 3 is the

calculated score of the cluster. Column 4 is the mean calculated

score from 100 times permutations (randomly assign scores for

cluster reactions and calculate a score for this cluster). Column 5 is

the p-value obtained from t-test (column 3 v.s column 4).

(XLS)

Table S6 All transportable processes involved in tissue-
specific metabolism/transport clusters. Column 1 and 2

are the metabolite name and KEGG ID. Column 3 indicates the

organ where metabolite is predicted to be transported. Column 4

shows the class that this transport process belongs to (coupled (class

1) or isolate (class 2)). Column 5 and 6 are the highest expression

score and the corresponding slc that mediates the metabolite.

(XLS)

Table S7 Concentrations of Slc transportable metabo-
lites in human blood, urine, CSF and saliva derived from
Human Metabolic Database (HMDB). Column 1 indicates

metabolite ID. Column 2 and 3 shows the organ and

corresponding concentration.

(XLS)

Table S8 Exclusively predicted transports in adipose,
liver and muscle. Column 1 and 2 list the organ and exclusively

predicted transportable metabolite that can be transported in the

organ. Column 3 is the expression score mediated by slcs in that

organ. And column 4 is the transport type.

(XLS)

Data S1

(ZIP)
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