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ABSTRACT

Motivation: DNA segmentation, i.e. the partitioning of DNA in com-

positionally homogeneous segments, is a basic task in bioinformatics.

Different algorithms have been proposed for various partitioning cri-

teria such as Guanine/Cytosine (GC) content, local ancestry in popu-

lation genetics or copy number variation. A critical component of any

such method is the choice of an appropriate number of segments.

Some methods use model selection criteria and do not provide a

suitable error control. Other methods that are based on simulating a

statistic under a null model provide suitable error control only if the

correct null model is chosen.

Results: Here, we focus on partitioning with respect to GC content

and propose a new approach that provides statistical error control: as

in statistical hypothesis testing, it guarantees with a user-specified

probability 1� � that the number of identified segments does not

exceed the number of actually present segments. The method is

based on a statistical multiscale criterion, rendering this as a segmen-

tation method that searches segments of any length (on all scales)

simultaneously. It is also accurate in localizing segments: under

benchmark scenarios, our approach leads to a segmentation that is

more accurate than the approaches discussed in the comparative

review of Elhaik et al. In our real data examples, we find segments

that often correspond well to features taken from standard University

of California at Santa Cruz (UCSC) genome annotation tracks.

Availability and implementation: Our method is implemented in

function smuceR of the R-package stepR available at http://www.sto

chastik.math.uni-goettingen.de/smuce.
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1 INTRODUCTION

It has been observed a long time ago (Sueoka, 1962) that DNA

sequences are not composed homogeneously and that bases fluc-

tuate in their frequency. These inhomogeneities often have an

evolutionary or a functional interpretation, and can be relevant

for the subsequent analysis of sequence data. Because it correl-

ates with many features of interest, the GC content, i.e. the

relative frequency of the bases G and C, is one of the most

commonly studied sequence properties.
Large-scale regions, typically 300 kb (Bernardi, 2001), of ap-

proximately homogeneous GC content have been called iso-

chores. In view of the somewhat vague notion of ‘approximate

homogeneity’ and conceptual criticism in studies such as Cohen

et al. (2005) or Elhaik et al. (2010a), there is less interest in iso-

chores nowadays. However, there is no doubt about variation in

GC content along genomes, and search is done instead for do-

mains of any length exhibiting distinct local GC content; see, for

instance, Elhaik et al. (2010b). Several factors can influence the

GC content of a region. At larger scales, it correlates with the

density of genes, with gene-rich regions typically exhibiting an

elevated GC content compared with regions of low gene density.

At smaller scales, there is fluctuation in the GC content, for in-

stance, because of repetitive elements and GpC islands. The GC

content is also known to vary between exons and introns.

Especially for long introns, their lower GC content seems to

play a role in splice site recognition (Amit et al., 2012). There is

also a correlation between the GC content and the local recom-

bination rate (Fullerton et al., 2001; Galtier 2001). For a further

discussion of features correlated to the GC content, see

Freudenberg et al. (2009).

In gene expression studies, regions of homogeneous GC con-

tent are of interest because the GC content of a region affects the

number of reads mapped to this region. For DNA and RNA-seq

experiments with the Illumina Genome Analyzer platform, this

has been, for instance, investigated in Benjamini and Speed

(2012) and Risso et al. (2011).
Segmentation algorithms aim to partition a given DNA se-

quence into stretches that are homogeneous in their composition

but differ from neighboring segments. The classical approach of

using moving windows is simple and available, for instance, as an

option with the UCSC and Ensembl genome browsers. However,

it has some disadvantages. For instance, the choice of the

window size is difficult because it defines implicitly a fixed

scale at which segments primarily will be detected. Further, the

involved smoothing blurs abrupt changes. Without additional

statistical criteria, the method also does not tell us whether dif-

ferences between neighboring windows are statistically signifi-

cant. Therefore, several more sophisticated approaches have

been proposed. These methods include hidden Markov models

(Churchill, 1989, 1992) and walking Markov models (Fickett

et al., 1992). There are also change-point methods available;

see, for instance, Braun et al. (2000). A Bayesian approach*To whom correspondence should be addressed.
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that relies on the Gibbs sampler has been proposed by Keith

(2006). An older approach based on information criteria can

be found in Oliver et al. (1999). Furthermore, recently developed

methods based on entropy criteria have been shown to perform

particularly well; see Elhaik et al. (2010a) and Elhaik et al.

(2010b). A review of segmentation methods can be found in

the article by Braun and Müller (1998), and for a more recent

comparative evaluation of the more popular approaches, see

Elhaik et al. (2010a).
In this paper, we focus on binary segmentation, where the

four-letter alphabet of a DNA sequence is converted into a

two-letter code. For GC content, we set the response to be ‘1’

for G or C at a position and 0 for A/T; we use Yi to denote the

response at position i and summarize the responses for a se-

quence of length n by

Y ¼ ðY1,Y2, . . . ,YnÞ: ð1Þ

We model the responses Yi to be independent and Bernoulli

Binð1,�iÞ distributed, and also assume that there is a partition

0 ¼ �05�15 � � �5�K ¼ n into an unknown number K of seg-

ments on which the �i are piecewise constant, i.e. �i ¼ pj for

i 2 Ij. Here, Ij :¼ ð�j�1, �j� denotes the j’th segment with response

probability pj for 1 � j � K.
A segmentation algorithm provides estimates K̂ for the

number of segments, for the internal segment boundaries,

0 ¼ �̂05�̂15�̂25 � � �5�̂K̂�15�̂K̂ ¼ n, ð2Þ

and for the response probabilities, p̂j, on the estimated segments

Îj :¼ ð�̂j�1, �̂j�.
In the following, we will identify a segmentation with ðp, IÞ,

where p ¼ ðp1, . . . , pKÞ and I ¼ ðI1, . . . , IKÞ.
Our proposed algorithm provides a parsimonious estimate K̂

for K: K̂ will not exceed the actual number of segments K, except

for a small user-specified error probability �; as a default value,

we suggest � ¼ 5%, the error probability also chosen in our

simulations and data analyses. Relaxing this significance level

to a larger value, say � ¼ 20%, will typically lead to more iden-

tified segments but at the cost of statistical accuracy.

2 METHOD

Our proposed multiscale segmentation provides estimates for the number

of segments and their boundaries at the same time. We use a certain

multiscale statistic that will ensure that the estimator fits the data well

on all segments simultaneously, i.e. the number of segments is not under-

estimated with high probability. This estimator is based on Frick et al.

(2014) who proposed a general statistical multiscale change-point estima-

tor (SMUCE) for exponential family models. Exponential families in-

clude many classes of well-known distributions, such as the Gaussian

(normal) class, the Poisson class or the Bernoulli class, which is of par-

ticular interest for this article.

In the Gaussian setting, a related estimator has also been suggested in

Davies et al. (2012). Forerunners of SMUCE are based on a penalized

likelihood with a penality that depends on the number of jumps; see, e.g.

Yao (1988), Braun et al. (2000), Winkler et al. (2002), Boysen et al. (2009)

and the introduction in Frick et al. (2014) for a brief survey. The under-

lying multiscale statistic is based on the work of Düembgen et al. (2001);

see also Düembgen et al. (2008) and Walther (2010). For a general de-

scription of the approach underlying the present work, its statistical in-

terpretation, statistical optimality and theoretical results, we again refer

to Frick et al. (2014). To ease the understanding, in the following, we

elaborate in greater details on the case of binary Bernoulli observations

with success probabilities given as piecewise constant segments, as this

model underlies the methodology for the segmentation problem at hand.

In contrast to other approaches such as hidden Markov models, we re-

quire neither explicit nor implicit distributional assumptions on the seg-

ments and their lengths.

Let ‘ðYi,�iÞ denote the likelihood of Yi under the parameter �i, i.e.

‘ðYi,�iÞ ¼ �i if Yi ¼ 1 and ‘ðYi,�iÞ ¼ 1� �i else. We then define for a

fixed interval ði, j� with 0 � i5j � n the local likelihood ratio statistic

Tði, j�ðp0Þ ¼ log max
~p02½0, 1�

Yj
l¼iþ1

‘ðYl, ~p0Þ

‘ðYl, p0Þ

 !
: ð3Þ

Roughly, this statistic indicates how well the data on the subinterval

ði, j� are described by the constant response probability p0 2 ½0, 1� of some

segment under consideration as opposed to choosing some ~p0 2 ½0, 1�

freely for that subinterval.

As a goodness-of-fit measure for the segmentation ðp, IÞ, we consider

the scale-calibrated multiresolution statistic

Tnðp, IÞ ¼ max
1�l�K

max
ði, j��Il

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Tði, j�ðplÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log

e � n

j� i

� �s !
: ð4Þ

(Here ‘e’ denotes Euler’s number.) This statistic may be interpreted

as follows: for all segments Il in I, the response probability is

assumed to be constant, and for every interval ði, j� within such a segment,

Tnðp, IÞ measures whether the data are well described by the

constant response probability pl on that interval. It thus checks the

quality of fit on all scales simultaneously, hence the name. Note that the

log-penalty term depends on the length j – i of the interval that is currently

checked for deviations from the model. It takes the number of disjoint

intervals of the considered length into account, thereby adjusting for mul-

tiple testing. For our final estimate, we determine

(1) the minimal number of segments K̂, such that there exists a seg-

mentation ðp̂, ÎÞ with K̂ segments satisfying the multiresolution

constraint Tnðp̂, ÎÞ � q for some predetermined significance thresh-

old q, and

(2) the segmentation ðp̂, ÎÞ with maximal likelihood among all segmen-

tations having K̂ segments and satisfying the multiresolution

constraint.

To be more precise, let CK denote the set of segmentations with K seg-

ments. Then, our estimate in the second step is

ðp̂, ÎÞ ¼ argmax
ðp, IÞ2CK̂ ,Tnðp, IÞ�q

‘ðY; p, IÞ, ð5Þ

where argmax denotes a position ðp̂, ÎÞ at which the maximum is ob-

tained, and ‘ðY; p, IÞ denotes the likelihood of all data if the segmentation

ðp, IÞ with K̂ segments were true, i.e.

‘ðY; p, IÞ ¼
Y

1�l�K̂

Y
i2Il

‘ðYi, plÞ: ð6Þ

Following Frick et al. (2014), the general class of such estimators in ex-

ponential families has been denoted as SMUCE. We adopt this termin-

ology and will denote the estimator in (5) for the Bernoulli and binomial

case as B-SMUCE.

The threshold parameter q determines the parsimony of the estimator;

the larger q, the fewer segments will be included into B-SMUCE. Hence,

the choice of q is crucial. A statistically attractive feature of B-SMUCE is

that q can be chosen as the ð1� �Þ quantile of the distribution of Tnðp, IÞ

under the hypothesis that ðp, IÞ is the true model. In Frick et al. (2014), it

has been proven that this choice ensures that the number of segments is

not overestimated with probability at least 1� �.
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To be more precise, in Frick et al. (2014), Theorem 2.1 was shown

under some mild technical assumptions that for any ðp, IÞ the asymptotic

distribution of the multiresolution statistic Tnðp, IÞ can be bounded by the

asymptotic distribution of the statistic for a signal with only one segment.

Moreover, the latter distribution converges to the limit distribution of (4)

for the case of i.i.d. (independent and identically distributed) zero-mean

Gaussian observations. Therefore, we may (and we do in the following)

simply use Monte Carlo simulations with i.i.d. zero-mean Gaussian data

to determine bounds on the quantiles of the distribution of Tnðp, IÞ. In

simulations, we found the approximate quantiles thus obtained to be

rather conservative (i.e. the preassigned error probability � was not ex-

ceeded) even for small sample sizes. This adds support to the basic

inequality

PðK̂4KÞ � PðTnðp, IÞ4qÞ � � ð7Þ

in Section 1.2. of Frick et al., 2014, which renders SMUCE to be a

method that statistically controls the error to overestimate the number

of segments in the binary case, i.e. it provides the statistical validity of B-

SMUCE in the above sense (7). The other way around, Theorem 2.2 in

Frick et al. (2014) provides an exponential deviation bound for the error

to underestimate the true number of segments, which explicitly depends

on the smallest segment length and signal strength. Under prior informa-

tion on these quantities, these two inequalities together even allow to give

a guarantee for the probability PðK̂ ¼ KÞ of specifying the number of

segments correctly. Moreover, in the Gaussian case, it can be shown that

SMUCE attains optimal detection rates (and even constants) over a large

range of segment lengths; see Frick et al. (2014), Theorems 2.6 and 2.7.

Our simulations suggest a similar performance in the binary/binomial

case, although we do not have a rigorous proof of this statement.

2.1 Details of the algorithm

We follow Frick et al. (2014) and use a pruned version of dynamic

programming to compute our estimated segmentation Î and levels p̂.

This is possible because our multiresolution statistic Tn considers only

subintervals of the candidate segments of constant response probability.

For related ideas, where dynamic programming has been used for other

segmentation estimators, see Friedrich et al. (2008), Boysen et al. (2009),

Davies et al. (2012) and, in particular for pruning, Killick et al. (2012). To

describe the algorithm for computing B-SMUCE, we need the following

notation, identifying a segmentation with ðp, IÞ again: for an interval ði, j�,

we define the local costs of a response probability p0 2 ½0, 1� as

cði, j�ðp0Þ ¼
�
Qj

l¼iþ1 ‘ðYl, p0Þ ifTði, j�ðp0Þ � q,
1 otherwise:

�
ð8Þ

Let c�ði, j� ¼ minp02½0, 1� cði, j�ðp0Þ denote the minimal costs on ði, j� for a con-

stant response probability under the multiresolution constraint, whereas

pði, j� ¼ argminp02½0, 1�cði, j�ðp0Þ denotes the corresponding optimal estimate.

Let us, for the moment only, consider the observations Y1, . . . ,Yi for

fixed 1 � i � n, and denote by c�i,K, the optimal overall costs on ð0, i�

using K segments, i.e.

c�i,K ¼ argmax
ðp, IÞ2CK, i ,Tiðp, IÞ�q

Y
1�l�K

Y
j2Il

‘ðYj, plÞ, ð9Þ

cf. (5), where CK, i denotes the set of segmentations of ð0, i� with K seg-

ments; if no segmentation ðp, IÞ 2 CK, i fulfills the multiresolution con-

straint Tiðp, IÞ � q, we let c�i,K ¼ 1.

The algorithm for B-SMUCE is then based on the observation that for

K40

c�i,K ¼ min
1�l�i

c�l,K�1 þ c�ðl, i�

� �
: ð10Þ

In dynamic programming, this is called the Bellman equation; it is

the main ingredient for an efficient implementation; see line 11 in

Algorithm 1.

Algorithm 1: dynamic programming algorithm for B-SMUCE

1: K̂ 0, Î0  ;, p̂0  ;, i 1

2: while i � n do

3: if K̂ ¼ 0 then

4: l�  0

5: c�i, 0  c�ð0, i�
6: else

7: for l ¼ i� 1, . . . , 1 do

8: if cðl, i� ¼ 1 then

9: goto 14

10: else

11: cli  c�
l, K̂�1
þ c�ðl, i�

12: end if

13: end for

14: l�  argminl�j5ic
j
i

15: c�
i, K̂
 cl

�

i

16: end if

17: if c�
i, K̂
¼ 1 then

18: K̂ K̂þ 1

19: goto 3

20: end if

21: Îi  ðÎl� , ðl
�, i�Þ

22: p̂i  ðp̂l� , pðl� , i�Þ

23: end while

24: return K̂, În, p̂n

Note that we introduced two rules that permit for early stopping of

loops: if c�ðl, i� ¼ 1, i.e. if the hypothesis of constancy on ðl, i� is rejected,

then consequently, this also happens on any larger interval, i.e. for any

smaller l; this justifies lines 8–9. Similarly, if K segments are insufficient to

fulfill the multiresolution constraint on ð0, i�, then a fortiori so for any

larger i, whence lines 17–20. To the best of our knowledge, these shortcuts

that are possible because of the specific structure of the multiscale con-

straint have not been used so far. Additional improvements were used in

our implementation; these, however, are rather technical and thus

omitted from the present article.

3 RESULTS

We evaluated our segmentation approach both on simulated

data and on data taken from the human genome and the long-

known �-phage. In our simulations, we used the benchmark

scenarios proposed in Elhaik et al. (2010a). Because an extensive

comparison of popular DNA segmentation algorithms under

these benchmark scenarios is already available in Elhaik et al.

(2010a), we provide a comparison of our approach with the

method that performed best in Elhaik et al. (2010a), namely,

the one based on the Jensen–Shannon divergence. This recursive

approach (called DJS) splits one of the current segments in each

step. This is done by adding a new break point such that the

improvement in Jensen—Shannon divergence is maximized. The

algorithm stops when the improvement does not reach a thresh-

old value obtained via simulations. Here, we used the Matlab

implementation Djsegmentation.m of the algorithm, which is

publicly available as part of ISOPLOTTER 2.4 (http://code.

google.com/p/isoplotter/). There, 5:8� 10�5 is taken as a thresh-

old, a value obtained from simulating long (1Mb) homogeneous

sequences. Although this value seems to work well for the con-

sidered benchmark scenarios and might also be useful to prevent

false-positive findings when searching for long homogeneous se-

quences, it might be less suitable for balancing false-positives and

2257

Multiscale DNA partitioning

 at G
eneralverw

altung der M
ax-Planck-G

esellschaft on A
ugust 20, 2014

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

a little 
In fact, i
so 
the 
)
which 
,
,
Algorithm
since 
, for example,
 e.g.
while 
,
Dynamic 
Programming 
Algorithm 
due to
,
paper
Since 
-
-
treshhold
http://code.google.com/p/isoplotter/
http://code.google.com/p/isoplotter/
While 
http://bioinformatics.oxfordjournals.org/


false-negatives under other scenarios. Therefore, a modified

version (called ISOPLOTTER) of DJS has been proposed briefly

after (Elhaik et al., 2010b) that uses critical values

dependent both on the segment length and the standard

deviation of the GC content. Therefore, we also report on the

performance of ISOPLOTTER 2.4 (again under the default par-

ameter settings) and provide detailed results in the

Supplementary Material.

To facilitate the comparison and to accelerate the computa-

tions for longer sequences, we binned the data and applied our

algorithm to the resulting binomial frequencies. We choose the

bin size equal to 32, which is the default value with the DJS and

IsoPlotter software and has also been used in Elhaik et al.

(2010a). Although binning the data clearly improves the speed,

it should be noted that it is not essential for the algorithm to

work.

The first scenario considered there involves sequences consist-

ing of fixed-size homogeneous domains. Although not realistic in

practice, this setup has been proposed by Elhaik et al. (2010a) as

a minimum standard: a criterion that does not perform well on

such data cannot be expected to perform well under more com-

plex settings. The second scenario consists of sequences with

domains of random length generated according to a power-law

distribution. These sequences are reported to mimic mammalian

genomes well; see Clay et al. (2001).

3.1 Performance measures

We measured performance both by a qualitative criterion

proposed by Elhaik et al. (2010a) and by a new quantitative

criterion. For the qualitative criterion, we classify an identified

segment as true-positive if both segment boundaries are

identified correctly within an error margin of 5000 bases or

5% of the segment length, whichever is smaller. Thus, an identi-

fied segment is considered to be a false-positive, unless both

detected boundaries were within 5000 bases (or 5%) from the

boundaries of a true segment. Similarly, actual segments were

taken as false-negative findings if they were not detected

correctly within the permitted tolerance. Let now tp, fp and fn

denote the number of true-positives, false-positives and false-

negatives, respectively. Following Elhaik et al. (2010a), we

define a sensitivity rate as

rs :¼
tp

tpþ fn
, ð11Þ

and a precision rate as

rp :¼
tp

tpþ fp
: ð12Þ

We investigate the performance of our proposed approach based

on these criteria.
Furthermore, we defined two quantitative criteria that better

reflect the accuracy of detecting segment boundaries. We denote

them by false-negative sensitive localization error (FNSLE) and

false-positive sensitive localization error (FPSLE). To introduce

the FNSLE, consider a true segment Ij :¼ ð�j�1, �j�, and let

mj ¼
�j�1þ�j

2 denote the midpoint of the segment. We define the

best matching estimated segment as the segment Îl ¼ ð�̂l�1, �̂l�

with mj 2 Îl. The FNSLE for segment Ij is then defined as the

mean distance

e
ðFNSLÞ
j ¼

1

2
ðj�j�1 � �̂l�1j þ j�j � �̂ljÞ ð13Þ

between true and estimated boundaries.
The overall FNSLE is then defined as the mean FNSLE taken

over all true segments

eðFNSLÞ :¼
1

K

XK
j¼1

e
ðFNSLÞ
j : ð14Þ

Analogously, the FPSLE can be defined by measuring how

closely an estimated segment matches to one of the true seg-

ments. By starting with an estimated segment Îl and its midpoint

m̂l, we look for the true segment satisfying m̂l 2 Ij. With analo-

gously defined errors eðFPSLÞl , we call

eðFPSLÞ :¼
1

K̂

XK̂
l¼1

eðFPSLÞl : ð15Þ

the overall FPSLE.
These measures for the error may be interpreted as follows:

assume that the estimated segmentation agrees with the true seg-

mentation in the number of segments, and that all boundaries

have been determined with an error smaller than half the length

of each neighboring segment. Then, FPSLE and FNSLE agree:

they essentially give the average distance between true and esti-

mated boundaries. These error measures behave differently,

however, if the numbers of true and detected segments do not

coincide: assume that the estimated segmentation is the true seg-

mentation except that it has incorrectly split one true segment

into two estimated segments. Then, the FNSLE increases by the

length of that true segment minus the length of the longer esti-

mated segment divided by 2K, i.e. a spurious split is treated like

an error in localizing that boundary. The FPSLE, however, will

get rather large, as the length of that true segment divided by 2K̂

gets added. Similarly, if a true boundary is not detected, the

FNSLE will be larger.

3.2 Simulations

3.2.1 Segments of equal length We first implemented Scenario I
of Elhaik et al. (2010a). Thus, we simulated sequences that con-

sist of 10 segments of equal length. We considered the following

eight different segment lengths: 10kb, 50kb, 100kb, 200kb, 300kb,

500 kb, 1Mb and 5Mb. Thus, the longest sequences had total

length 50Mb. For each sequence, we selected a global probability
�pðtÞ for the response ‘1’ at a position according to a uniform

distribution on [0.1,0.9]. Then, we randomly modified this prob-

ability for each sequence segment j by taking

pj ¼ �pðtÞ þ �Zj: ð16Þ

Here Zj denotes a standard normal random number, and � was

chosen from f0, 0:025, 0:05, 0:075, 0:1g. The pj were conditioned

to lie within [0,1], i.e. if pj did not turn out to be a proper prob-

ability, a new random number was generated. The individual

observations Yi within a given segment Ij were then chosen as

independent Bernoulli random variables with expected value pj.
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We simulated 100 sequences for each combination of segment

length and heterogeneity � of the segment-specific response

probabilities.
In Elhaik et al. (2010a), a detection threshold was introduced,

and neighboring true segments for which the value of pj differed

by less than this threshold have been merged and considered as a

single segment in the subsequent performance analysis. We did

not use such a threshold, however, as we did not want to penalize

high sensitivity. A correct detection of two neighboring segments

with unequal but too similar levels of pj would be counted as an

error if such a detection threshold was used.
The average sensitivity and precision rates of B-SMUCE and

the method based on the Jensen–Shannon entropy (DJS) are dis-

played in Figures 1 and 2, respectively. Especially for shorter

segments, B-SMUCE performs better than DJS, with higher sen-

sitivity and precision. IsoPlotter performed worse than DJS

under the considered scenarios and gave up to 40 segments on

average for the long sequences. B-SMUCE is able to detect also

short segments, while controlling the number of spuriously

detected segments. However, notice that in the case of a homo-

geneous sequence without partitioning into segments (� ¼ 0),

DJS always obtained the correct answer, whereas B-SMUCE

sometimes introduced spurious segment boundaries. This is to

be expected, as the error of introducing spurious boundaries has

been set to � ¼ 5% under such a model. Furthermore, under all

scenarios, too many boundaries were estimated by B-SMUCE in

55% of the simulations, as predicted. We consider the ability to

control this error to be a particular strength of our approach.
Figures 3 and 4 show the average FNSLE (14) and FPSLEs

(15) that measure the accuracy of the segment detection. For

these quantitative criteria, we only consider sequences that are

non-homogeneous (�40). Again, B-SMUCE shows better per-

formance, leading to smaller errors on average. With increasing

heterogeneity �, there will be typically larger differences between

neighboring segments and thus smaller errors. The graphs also

seem to indicate that both FPSLE and FNSLE tend to get larger

with increasing sequence lengths. A closer inspection reveals that

this is mostly caused by outliers, as the median accuracy of de-

tection stays nearly the same for all segment lengths. These out-

liers occur when a segment is either missed or detected

incorrectly, and such events lead to larger errors when the seg-

ments are longer.

3.2.2 Segments according to power law In our second simula-
tion setup, we generated 100 sequences consisting of segments

Fig. 3. Logarithm (base 10) of average FNSLE, as defined in (14) for

DJS (*) and B-SMUCE (�). Results are based on simulations under

Scenario I (segments of equal length) for several values of �. The errors

encountered with the multiresolution criterion tend to be smaller. At the

simulated segment lengths, 95% confidence intervals are given as error

bars

Fig. 1. Average sensitivity rate as defined in (11) for DJS (*) and

B-SMUCE (�). Results are based on simulations under Scenario I (seg-

ments of equal length) for several values of �. The sensitivity obtained

with the multiresolution criterion tends to be higher. At the simulated

segment lengths, 95% confidence intervals are given as error bars

Fig. 2. Average precision rate, as defined in (12) for DJS (*) and

B-SMUCE (�). Results are based on simulations under Scenario I (seg-

ments of equal length) for several values of �. The precision rate obtained

with the multiresolution criterion tends to be higher. At the simulated

segment lengths, 95% confidence intervals are given as error bars
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with different lengths. As in Elhaik et al. (2010a), we chose the
segment lengths according to a power-law distribution:

pðxÞ ¼ Cx�a1½x4x0�, ð17Þ

with a ¼ 1:55 and x0 ¼ 10 000: The parameter a was chosen to

mimic segment lengths for mammalian, in particular, human
DNA sequences; see Elhaik et al. (2010a), Clay et al. (2001)

and Cohen et al. (2005). Notice that the minimal segment

length x0 ¼ 10 000 was introduced to avoid short segments
that are difficult to detect. The total sequence length was taken

to be n ¼ 106. For even numbered segments, we selected the

response probability pj according to a uniform distribution on
[0.6,1], whereas for odd segments, we took pj uniformly from

pj 2 ½0, 0:4�.
Qualitatively, it turns out that B-SMUCE performs better

than the Jensen–Shannon entropy criterion DJS both in terms

of sensitivity and precision rate; see Table 1. B-SMUCE detected
90% of all true segments within the desired margin of error.

Furthermore, 94% of all detected segments were correct, again,

within the desired level of accuracy. Because we used B-SMUCE
with a type I error probability of 5% for including too many

segments, this implies that almost all of the detected jumps were

detected within the required level of accuracy. Furthermore,
when incorrect, our method usually detected not more than

one spurious segment boundary. We also tried IsoPlotter on

the simulated sequences and got 85.23 detected segments on
average. Given an mean number of 27.51 true segments (see

Table 1), more than three times the true number of segments

has been detected on average. More detailed results on
ISOPLOTTER can be found in the Supplementary Material.

B-SMUCE also leads to good results in terms of the FPSLE
and FNSLE; see Table 2. Thus, on average, detected segments

and true segments match more closely with B-SMUCE than with

the DJS criterion.

3.3 Real data

We applied our segmentation algorithm to three data sets. The

first two examples, � phage and human major histocompatibility

(MHC) complex, have previously been studied in the context of

segmentation algorithms. As a further example, a 10Mb se-

quence chunk (hg19, chr1:50000002-60000000) has been arbitrar-

ily chosen from human chromosome 1.
The genome of bacteriophage � consists of 48 502 bases and

was one of the first completely sequenced genomes. Our segmen-

tation led to six segments with boundaries 1, 22501, 27829,

33186, 39172, 46367 and 48502. Notice that the same number

of segments, although with a bit different boundaries, has been

reported as the outcome of a segmentation using hidden Markov

models in Chapter 4 of Cristianini and Hahn (2007).
We next investigate human genome data from chromosome

6p21.3 and 6p22.1 (hg19, chr6:29 677 952–33 289874). This seg-

ment harbors the much studied humanMHC complex. We found

a number of segments even larger than that in Elhaik et al.

(2010b), contradicting once again the concept of homogeneous

isochores (from the UCSC browser for this example.)We recoded

G,C as ‘1’ andA,T as 0 and applied B-SMUCE and bothDJS and

IsoPlotter to these data. With DJS, we found 182 segments. With

B-SMUCE and a type I error probability of � ¼ 0:05, we identi-

fied 640 segments. (With � ¼ 0:01, 528 segments were obtained,

and choosing � ¼ 0:1 led to 716 segments.)
A natural question is whether the number of 640 or 182 seg-

ments is more appropriate. To address this issue, notice that the

Fig. 4. Logarithm (base 10) of average FPSLE, as defined in (15) for DJS

(*) and B-SMUCE (�). Results are based on simulations under Scenario

I (segments of equal length) for several values of �. The errors encoun-

tered with the multiresolution criterion tend to be smaller. At the simu-

lated segment lengths, 95% confidence intervals are given as error bars

Table 1. Sensitivity rate and precision rate under Scenario II for the

Jensen–Shannon divergence method (DJS) and B-SMUCE

Performance criterion DJS B-SMUCE

Average true number 27.51 (1.90) 27.51 (1.90)

Average number of true-positives 23.26 (1.69) 24.68 (1.80)

Average number of false-positives 2.51 (0.20) 1.60 (0.14)

Average number of false-negatives 4.25 (0.37) 2.83 (0.24)

Average sensitivity 0.83 (0.016) 0.87 (0.015)

Average precision 0.88 (0.013) 0.92 (0.013)

Note. Long and short segments were generated from a power-law distribution, and

the total sequence length was n ¼ 106. We provide averages (and in parentheses

standard errors) over 100 simulation runs.

Table 2. FNSLEs and FPSLEs under Scenario II for the Jensen–

Shannon divergence method (DJS) and B-SMUCE

FNSLE FPSLE

DJS 0.27 (0.436) 0.06 (0.103)

B-SMUCE 0.11 (0.164) 0.01 (0.014)

Note. Long and short segments were generated under a power-law distribution, and

the total sequence length was n ¼ 106. The results are averages (and standard

errors) over 100 simulation runs. The error rates were standardized according to

the average segment length.
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statistical error control associated with the multiresolution cri-

terion suggests that there are (except for a small error probabil-

ity) at least 640 segments. To check whether this finding is also

compatible with the DJS segmentation, we simulated the segmen-

tation with 640 segments obtained with B-SMUCE as our null

model. We simulated 100 datasets from this null model, and for

80% of all datasets, DJS led to a segmentation with the number

of segments at most 182. With the number of segments taken as

test statistic, this amounts to an estimated p-value of 0.80. Thus,

the segmentation based on the Jensen–Shannon (DJS) criterion

does not contradict the assumption of 640 segments, whereas the

hypothesis of 182 segments is rejected by the multiscale criterion

underlying B-SMUCE as not being compatible with the data.

We also applied IsoPlotter 2.4 to the data. With its adaptive

detection threshold, 227 segments were identified. The homogen-

eity test (one-sided F-test) provided with the IsoPlotter software

confirmed for 180 of these 227 segments that they are signifi-

cantly more homogeneous than the entire considered DNA se-

quence. Although this observation does not give us the number

of segments actually present, it seems interesting that the number

of sufficiently homogeneous segments found by IsoPlottor is

almost the same as the number of segments identified with the

DJS criterion.

Finally, we considered the region between 50 and 60Mb on

the human chromosome 1. Here, we tried bins both of size 10

and 32. It turned out that with the finer partition slightly more

segments were detected than with the larger bins of size 32, al-

though the difference (1096 versus 1041) was not large. It seems

plausible that fine-scale variation can be detected more easily

with shorter bins.

To illustrate the run-time behavior of the B-SMUCE algo-

rithm with our default significance threshold � ¼ 0:05, we con-

sidered several shorter sequences taken from the aforementioned

10Mb DNA sequence. Table 3 gives the run times of our algo-

rithm (in s) in dependence of the sequence length.
To give an idea about the run times of DJS and IsoPlotter, we

applied them on the same sequence pieces. With the standard

options (bin size: 32, shortest detectable domain size: 3008), the

run times for the longest sequence (107 bases) were 6.2 s (DJS)

and 9.6 s (IsoPlotter). However, notice that B-SMUCE is de-

signed to detect segments of any length, and the shortest segment

detected by B-SMUCE in the context of our run time analysis

was 80 bases long. Therefore, we also recorded the run times for

DJS and IsoPlotter with the minimum segment length changed

from 3008 to 80. For a bin width of 32 and a sequence length of

107, the run time for DJS remained unchanged, whereas the run
time for IsoPlotter increased to 329.1 s.
For the human genome data considered here, a cross-check

with the genome annotation revealed that several segments have
an interpretation in terms of genes/exons, repetitive elements or
CpG islands. Because the GC content may depend on several

functional and evolutionary factors, we do not expect simple
explanations for many of the identified segments. Nevertheless,
we explore the overlap of the identified segments with available

annotation in the Supplementary Material.

4 CONCLUSION

We introduced a new method (B-SMUCE) for the segmentation

of biological sequences. The segmentation is with respect to a
binary response; here, we have considered GC content, but it
might be interesting to apply the method to other applications

involving binary responses (such as ancestral/derived state of al-
leles in population genetic applications). Our approach provides
precise statistical error control and will produce a parsimonious

segmentation that does not contain more segments than there
actually are with a user-specified preassigned probability of
1� �. A comparison under the benchmark scenarios taken

from Elhaik et al. (2010a) suggests that the proposed method
B-SMUCE is more accurate than previously proposed

approaches.
Interestingly, the difference to the popular Jensen–Shannon

criterion in terms of the number of detected segments has been

particularly large for the human data.
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Dümbgen,L. and Spokoiny,V.G. (2001) Multiscale testing of qualitative hypotheses.

Ann. Stat., 29, 124–152.
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