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Key problem	

!
 Quantum confinement required for efficient MEG, but pushes electronic 	


  gap beyond solar spectrum	

!
 MEG observed in Si and Ge: gap/wavefunction engineering possible?	


  => investigate nanocrystals with high pressure core structures

M. Beard, JPCL 2, 1282 (2011)
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  nanostructures, e. g. nanocrystals
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!
 BC8 is semimetal in the bulk, quantum confinement opens small gap in 	


  BC8 nanocrystals => significantly reduced gaps compared to Si-I

 Ge ST12 features reduced gaps for d < 2.5nm, significantly increased 	


  electronic density of states at band edges
 Get realistic estimate of electronic gaps from quasiparticle calculations 	


  in GW approximation
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  bottleneck => spectral representation of ε (RPA)
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ṽi�iṽH
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Optimum gap for MEG in 4-8nm BC8 NPs
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[5] M. Hanna, A. Nozik, J. Appl. Phys. 100, 074510 (2006)

 GW calculations up to d=1.6nm (Si144H114) confirm trends observed in LDA	

!
 Optimum gap for PV cells employing MEG (Eg = 0.5-1.0 eV) [5] found for BC8 NPs 	



    within typical experimental size range of d = 4-8 nm (extrapolation of GW gaps)



Calculating Multiple Exciton Generation (MEG) Rates

�II
i =

2⇡

~
X

f

|hXi|W |XXf i|2 �(Ei � Ef )

!
 Impact Ionization (II) is dominating contribution to MEG [6]	


  => approximate MEG rates with II rates [7]	

!
 Calculate II rates from Fermi’s Golden Rule:

[6] A. Piryatinski et el., J. Chem. Phys. 133, 084508 (2010)	


     K. Velizhanin et al., Phys. Rev. Lett. 106, 207401 (2011)

!
 Approximate initial exciton (Xi) and final biexciton states (XXf) as singly and doubly 	



  excited Slater determinants, built up from DFT orbitals
!

 Screened Coulomb interaction W	


  calculated using same technique as	


  during GW calculations
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!
 BC8 NPs feature lower activation threshold on absolute energy scale & order of 	



    magnitude higher impact ionization rate at same energies and same NP size!
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Multiple Exciton Generation in Ge allotrope nanocrystals

ST12 II rates size-independent	

!
 Increasing EDOS at band edges counterbalances loss of confinement
 Simultaneously lower electronic gaps and higher relative II efficiency translate to 	


  significantly improved MEG on absolute energy scale

relative energy scale absolute energy scale



Summary

 (Metastable) high pressure phases of elemental semi-	


    conductors allow for gap engineering of nanoparticles, 	


    while retaining efficient MEG (Si-BC8 and Ge-ST12)	

!

 Nanoparticles with high pressure core structures can attain 	


    optimum gap range for MEG-based solar energy conversion	

!

 High pressure nanoparticles can be formed via the high 	


    pressure route or directly at ambient pressure in solution by 	


    chemical bottom-up synthesis from a precursor

Talk on Si NPs embedded in charge transport matrix today at 12:30pm, Tre Ma
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Optical properties (TD-DFT RPA)

 red-shifted optical absorption onset for high density phases (BC8, R8, Ibam)	

!
 less pronounced for ST12 and low density phases (bct, hd)
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cubic diamond vs. ST12
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=
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 cubic diamond: NP size increase reduces Coulomb 	


    interaction Weff, trion DOS almost constant	

!
            => impact ionization rate drops

 ST12: Weff reduced as for 	


    cubic diamond, but TDOS	


    increases	

!
  => impact ionization rate	


       remains almost constant 	


       with increasing size
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 Bottleneck: calculation, storage & inversion of dielectric matrix is very 


                   computationally demanding, involves large sums over empty 
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 Solution: spectral representation of RPA dielectric matrix; obtain matrix 


               from directly calculating eigenvectors and eigenvalues



!
!
!
               => no summation over empty states, no inversion, storage of 


               eigenvector/-value pairs only!
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ṽi�iṽ
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 Obtaining the eigenvectors/-values does NOT require explicit knowledge 


     of the matrix; knowledge of the action of the matrix on an arbitrary 


     vector is sufficient!

!

 in linear response:

!
 charge density response 



     to perturbation of self-consist.


     field            can be evaluated


     from density functional


     perturbation theory

!

 orthogonal iteration procedure to


     obtain eigenvectors/-values, using


                as trial potentials

!

 in RPA fast monotonous decay of


     dielectric eigenvalue spectrum

!

 single parameter       to control


     numerical accuracy
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[H. Wilson et al., PRB 79, 245106 (2009); D. Rocca et al., J. Chem. Phys. 133, 164109 (2010); H.-V. Nguyen et al., PRB 85, 081101 (2012)]

  


