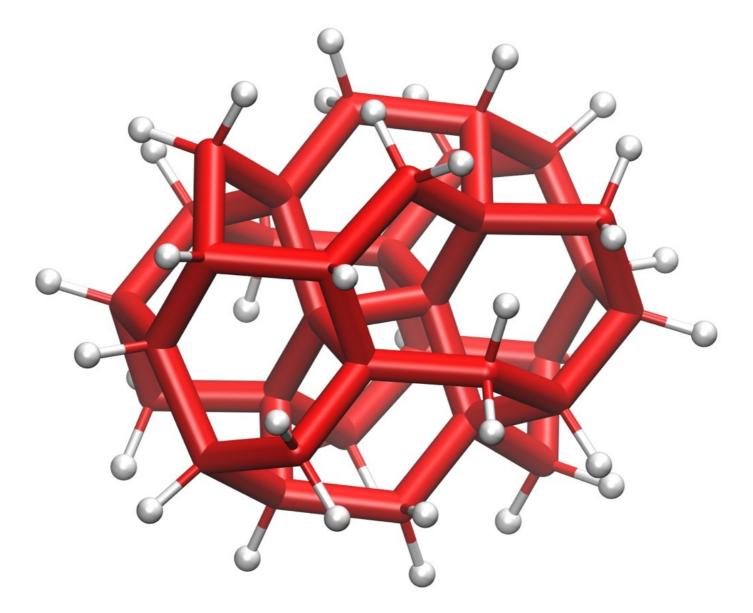


Multiple Exciton Generation in Si and Ge Nanoparticles with High Pressure Core Structures <u>S.Wippermann</u>, M.Vörös, D. Rocca, A. Gali, G. Zimanyi, G. Galli

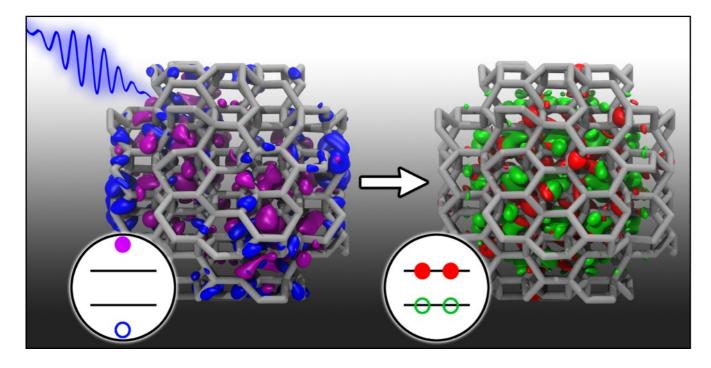


NanoMatFutur

Bundesministerium für Bildung und Forschung

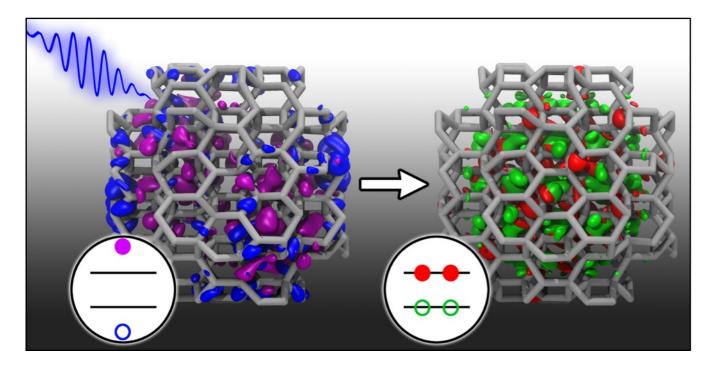
DPG-2014, 04/03/2014

Multiple Exciton Generation (MEG)

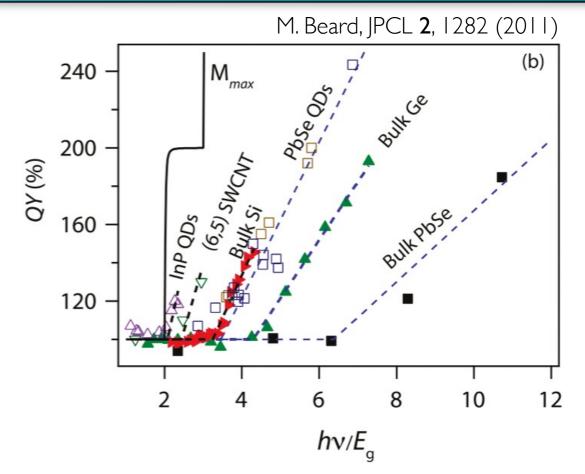


- MEG: hot exciton relaxes by exciting another exciton
- Promising pathway to exceed Shockley-Queisser limit in 3rd generation solar cells

Multiple Exciton Generation (MEG)

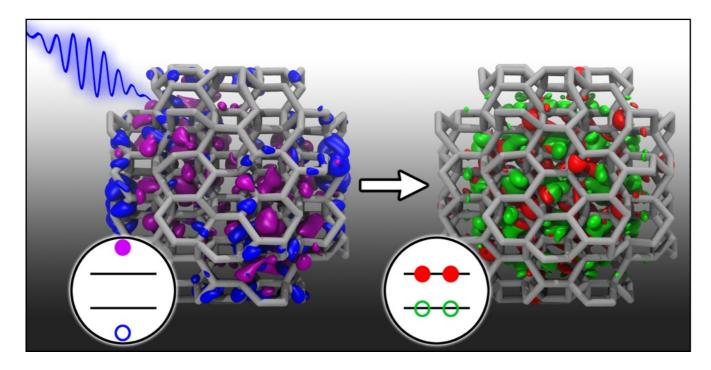


- MEG: hot exciton relaxes by exciting another exciton
- Promising pathway to exceed Shockley-Queisser limit in 3rd generation solar cells

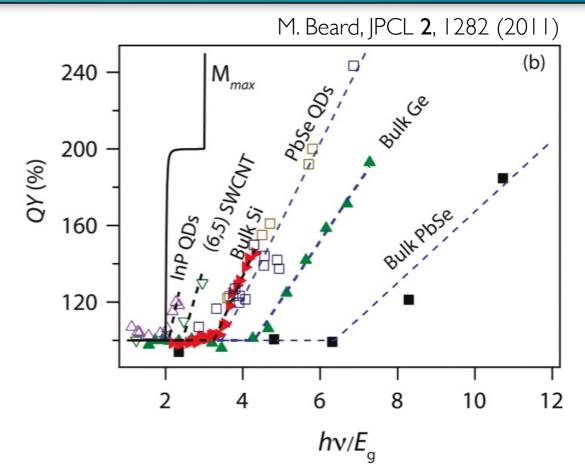


enhanced MEG in quantum-confined nanostructures, e. g. nanocrystals

Multiple Exciton Generation (MEG)



- MEG: hot exciton relaxes by exciting another exciton
 - Promising pathway to exceed Shockley-Queisser limit in 3rd generation solar cells



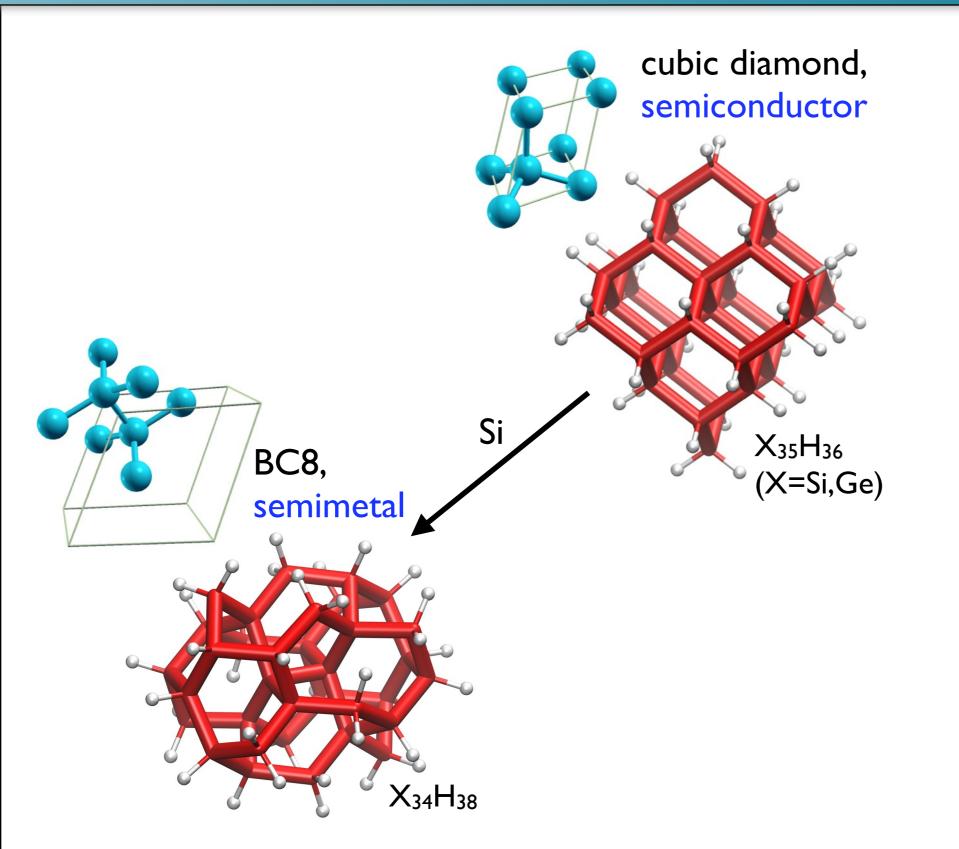
enhanced MEG in quantum-confined nanostructures, e. g. nanocrystals

Key problem

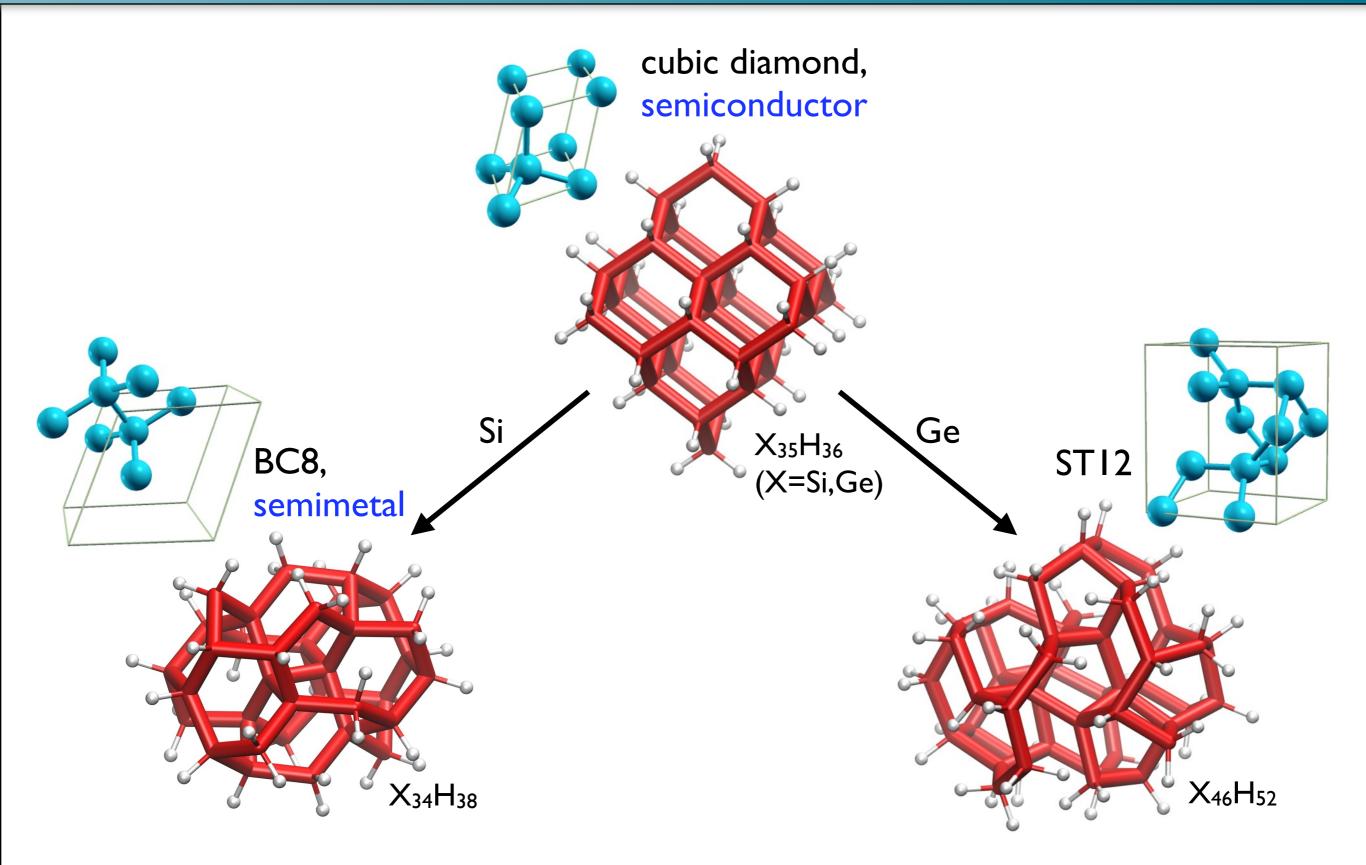
- Quantum confinement required for efficient MEG, but pushes electronic gap beyond solar spectrum
- MEG observed in Si and Ge: gap/wavefunction engineering possible?
 => investigate nanocrystals with high pressure core structures

Allotropes of Si and Ge

Allotropes of Si and Ge

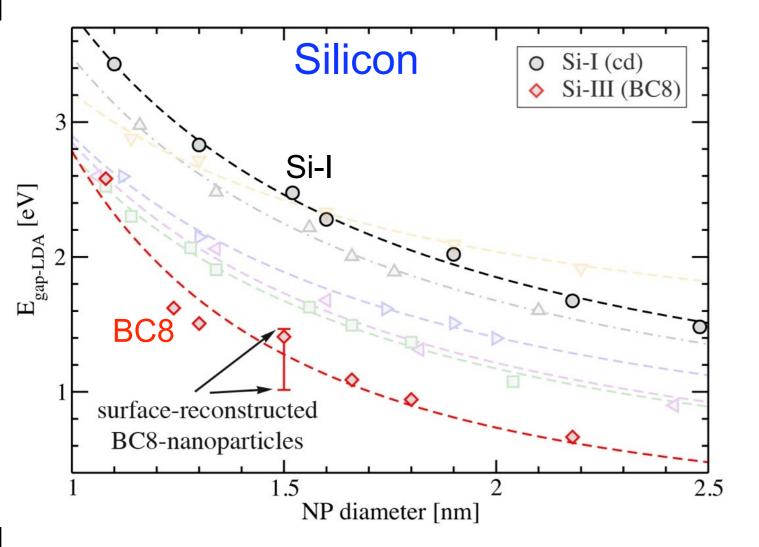


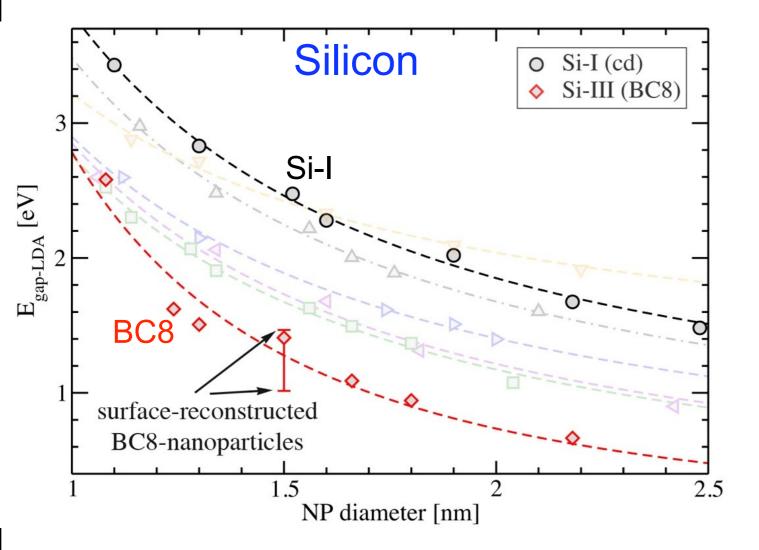
Allotropes of Si and Ge



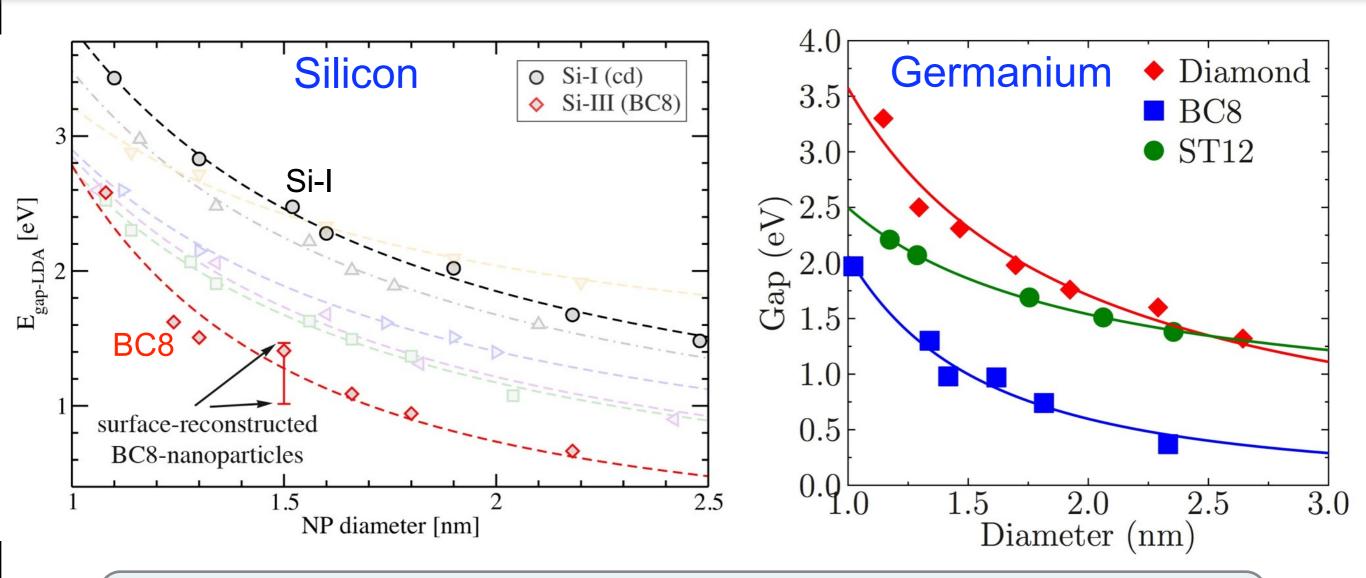
[2] S. Ganguly et al., J. Am. Chem. Soc. 136, 1296 (2014)

[3] S. J. Kim et al., J. Mater. Chem. 20, 331 (2010)

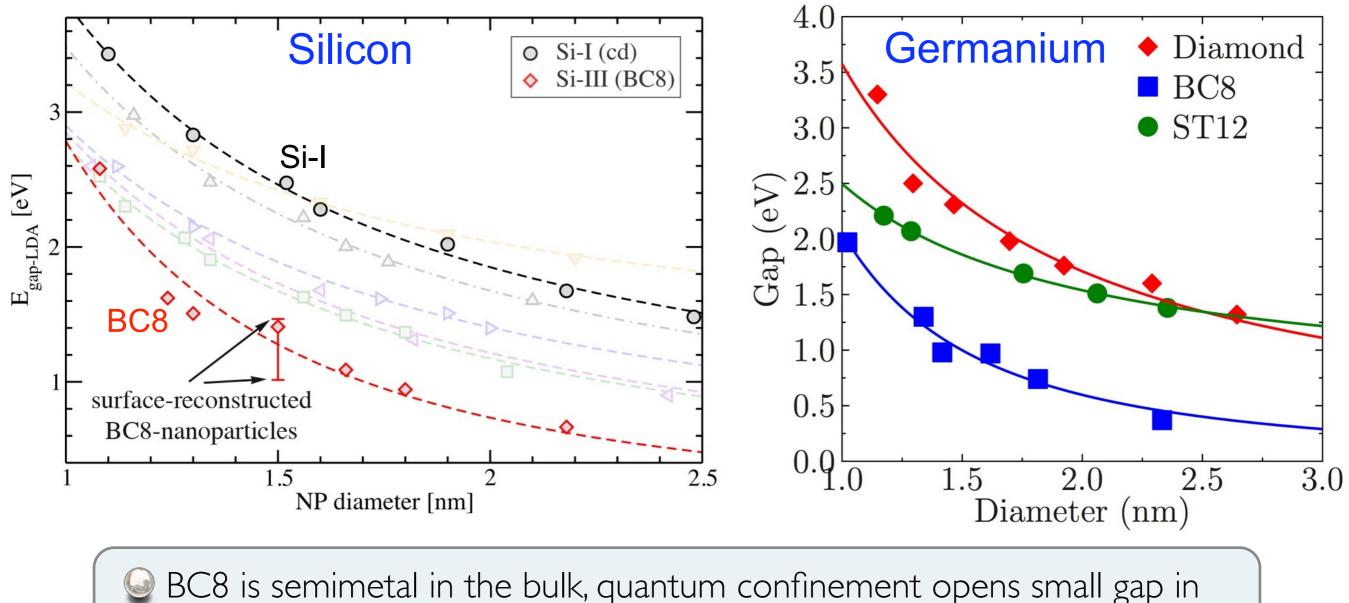




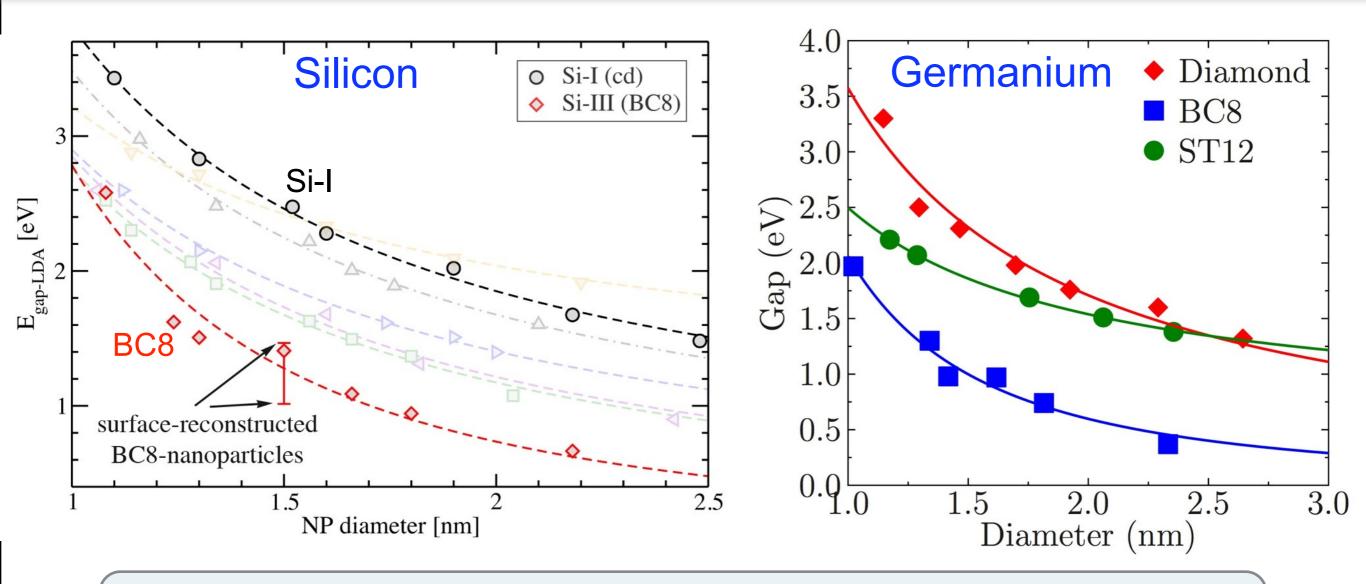
BC8 is semimetal in the bulk, quantum confinement opens small gap in BC8 nanocrystals => significantly reduced gaps compared to Si-I



BC8 is semimetal in the bulk, quantum confinement opens small gap in BC8 nanocrystals => significantly reduced gaps compared to Si-I



- BC8 nanocrystals => significantly reduced gaps compared to Si-I
- Ge STI2 features reduced gaps for d < 2.5nm, significantly increased electronic density of states at band edges



- BC8 is semimetal in the bulk, quantum confinement opens small gap in BC8 nanocrystals => significantly reduced gaps compared to Si-I
- Ge STI2 features reduced gaps for d < 2.5nm, significantly increased electronic density of states at band edges

Get realistic estimate of electronic gaps from quasiparticle calculations in GW approximation

Solution, storage & inversion of dielectric matrix ϵ is major computational bottleneck => spectral representation of ϵ (RPA)

$$\tilde{\epsilon} = \sum_{i=1}^{N} \tilde{\mathbf{v}}_i \lambda_i \tilde{\mathbf{v}}_i^H = \sum_{i=1}^{N} \tilde{\mathbf{v}}_i (\lambda_i - 1) \tilde{\mathbf{v}}_i^H + I$$

 ΛT

Calculation, storage & inversion of dielectric matrix ε is major computational bottleneck => spectral representation of ε (RPA)

$$\tilde{\epsilon} = \sum_{i=1}^{N} \tilde{\mathbf{v}}_i \lambda_i \tilde{\mathbf{v}}_i^H = \sum_{i=1}^{N} \tilde{\mathbf{v}}_i (\lambda_i - 1) \tilde{\mathbf{v}}_i^H + I$$

 ΛT

Solution of the matrix \mathbb{O} is sufficient when the matrix is sufficient of the matrix \mathbb{O} is sufficient is sufficient in the second seco

$$\odot$$
 In linear response: $(\epsilon-I)\Delta V_{SCF}=-v_c\Delta n$

Charge density response Δn to perturbation of self-consistent field ΔV_{SCF} can be evaluated from density functional perturbation theory

 ΛI

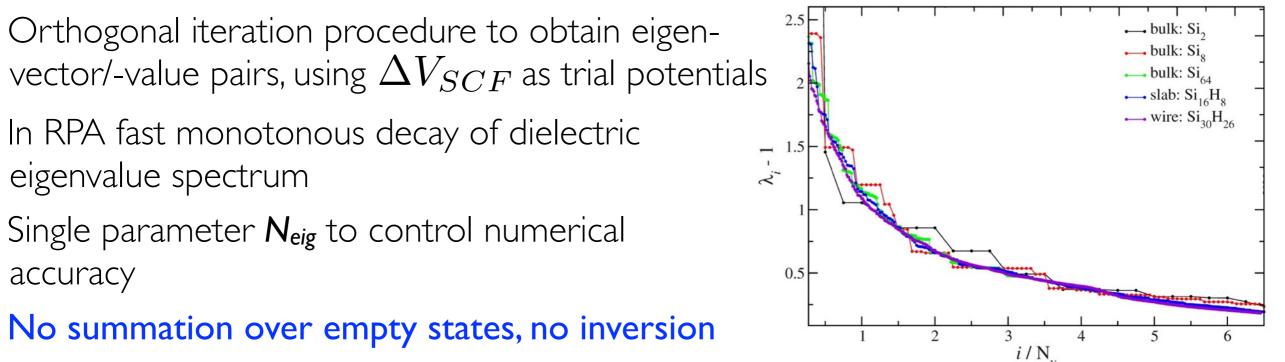
Calculation, storage & inversion of dielectric matrix ϵ is major computational bottleneck => spectral representation of ϵ (RPA)

$$\tilde{\epsilon} = \sum_{i=1}^{N} \tilde{\mathbf{v}}_i \lambda_i \tilde{\mathbf{v}}_i^H = \sum_{i=1}^{N} \tilde{\mathbf{v}}_i (\lambda_i - 1) \tilde{\mathbf{v}}_i^H + I$$

Solution of the matrix \mathbb{O} is sufficient with the matrix of the matrix is sufficient of the matrix is sufficient is sufficient in the second seco

$$\odot$$
 In linear response: $(\epsilon-I)\Delta V_{SCF}=-v_c\Delta n$

Charge density response Δn to perturbation of self-consistent field ΔV_{SCF} can be evaluated from density functional perturbation theory



[4] H.-V. Nguyen, T.A. Pham, D. Rocca, G. Galli, PRB 85 081101 (2012), PRB 87, 155148 (2013)

Calculation, storage & inversion of dielectric matrix ε is major computational bottleneck => spectral representation of ε (RPA)

$$\tilde{\epsilon} = \sum_{i=1}^{N} \tilde{\mathbf{v}}_i \lambda_i \tilde{\mathbf{v}}_i^H = \sum_{i=1}^{N} \tilde{\mathbf{v}}_i (\lambda_i - 1) \tilde{\mathbf{v}}_i^H + I$$

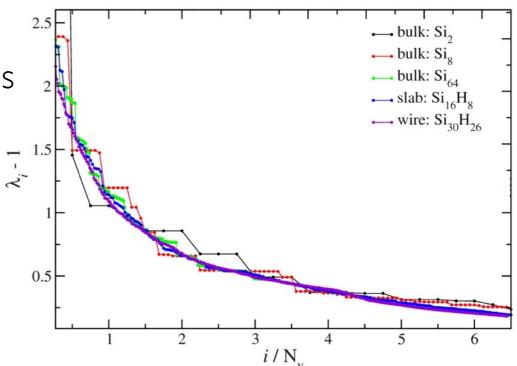
D. Rocca, H.-V. Nguyen, T.A. Pham (UCD)

Solution of the matrix \mathbb{O} Calculating eigenvectors/-values does \mathbb{NOT} require explicit knowledge of the matrix itself; knowing the **action of \epsilon on an arbitrary vector** is sufficient

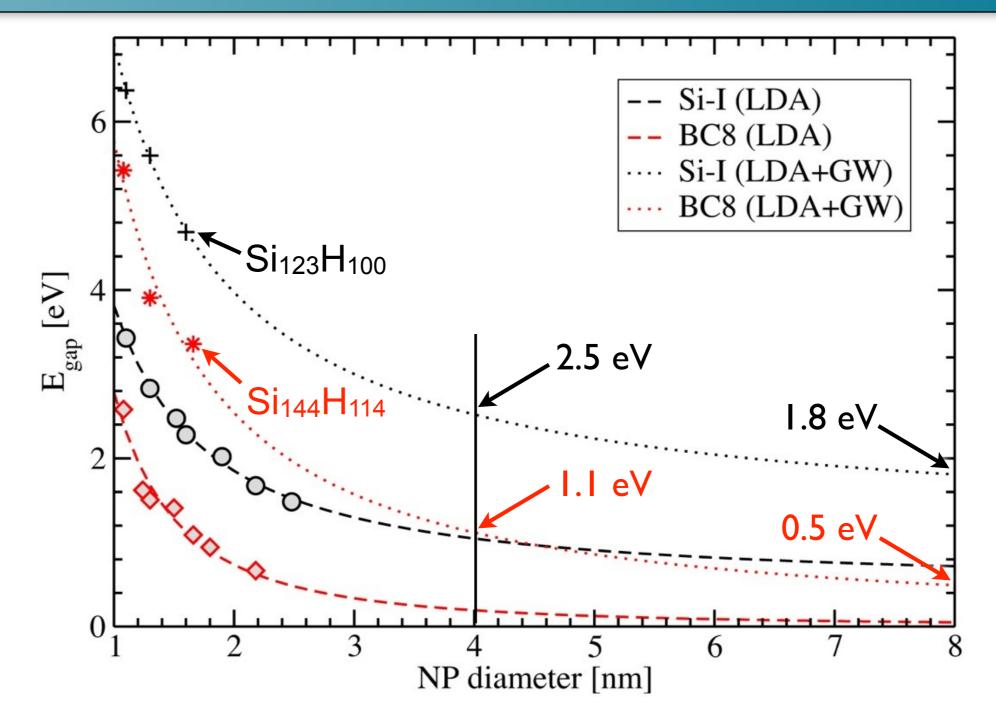
$$\odot$$
 In linear response: $(\epsilon-I)\Delta V_{SCF}=-v_c\Delta n$

Charge density response Δn to perturbation of self-consistent field ΔV_{SCF} can be evaluated from density functional perturbation theory

- In RPA fast monotonous decay of dielectric eigenvalue spectrum
- Single parameter N_{eig} to control numerical accuracy
- No summation over empty states, no inversion



Optimum gap for MEG in 4-8nm BC8 NPs



 \mathbf{W} GW calculations up to d=1.6nm (Si₁₄₄H₁₁₄) confirm trends observed in LDA

Optimum gap for PV cells employing MEG ($E_g = 0.5-1.0 \text{ eV}$) [5] found for BC8 NPs within typical experimental size range of d = 4-8 nm (extrapolation of GW gaps)

[5] M. Hanna, A. Nozik, J. Appl. Phys. 100, 074510 (2006)

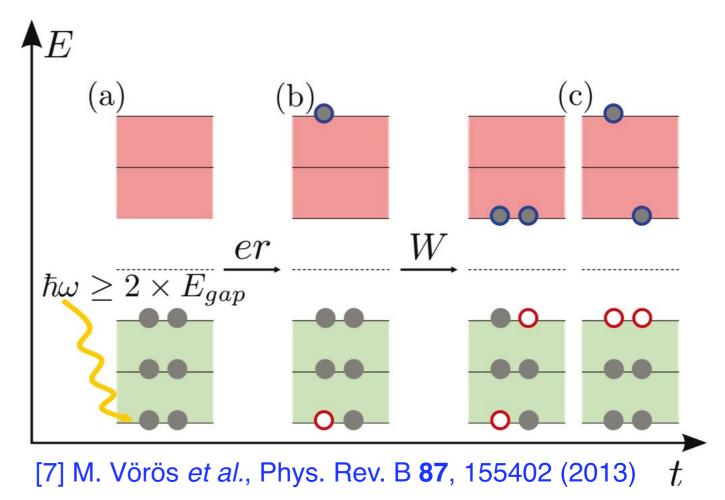
Calculating Multiple Exciton Generation (MEG) Rates

Impact Ionization (II) is dominating contribution to MEG [6]
=> approximate MEG rates with II rates [7]

Calculate II rates from Fermi's Golden Rule:

$$\Gamma_i^{II} = \frac{2\pi}{\hbar} \sum_f \left| \langle X_i | W | X X_f \rangle \right|^2 \delta(E_i - E_f)$$

- Approximate initial exciton (X_i) and final biexciton states (XX_f) as singly and doubly excited Slater determinants, built up from DFT orbitals
- Screened Coulomb interaction W calculated using same technique as during GW calculations



[6] A. Piryatinski *et el.*, J. Chem. Phys. **133**, 084508 (2010) K.Velizhanin *et al.*, Phys. Rev. Lett. **106**, 207401 (2011)

Calculating Multiple Exciton Generation (MEG) Rates

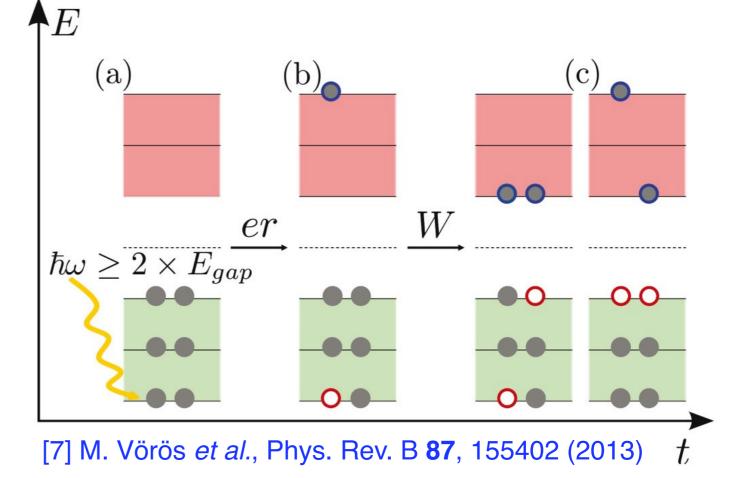
Impact Ionization (II) is dominating contribution to MEG [6]
=> approximate MEG rates with II rates [7]

M.Vörös (UCD)

Calculate II rates from Fermi's Golden Rule:

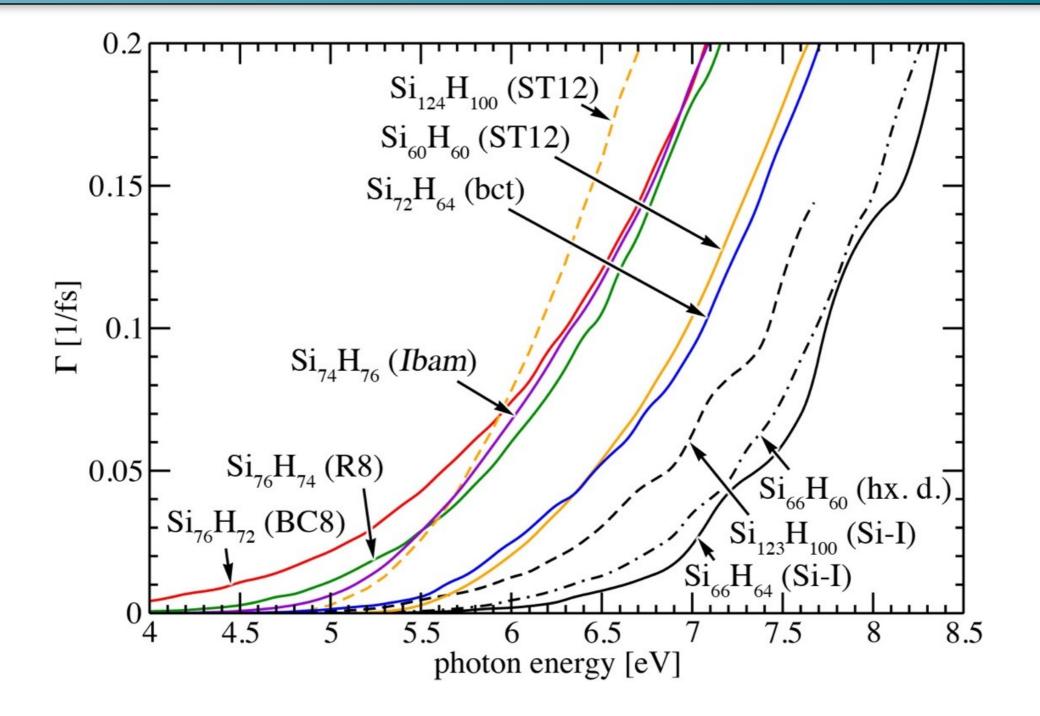
$$\Gamma_i^{II} = \frac{2\pi}{\hbar} \sum_f \left| \langle X_i | W | X X_f \rangle \right|^2 \delta(E_i - E_f)$$

- Approximate initial exciton (X_i) and final biexciton states (XX_f) as singly and doubly excited Slater determinants, built up from DFT orbitals
- Screened Coulomb interaction W calculated using same technique as during GW calculations

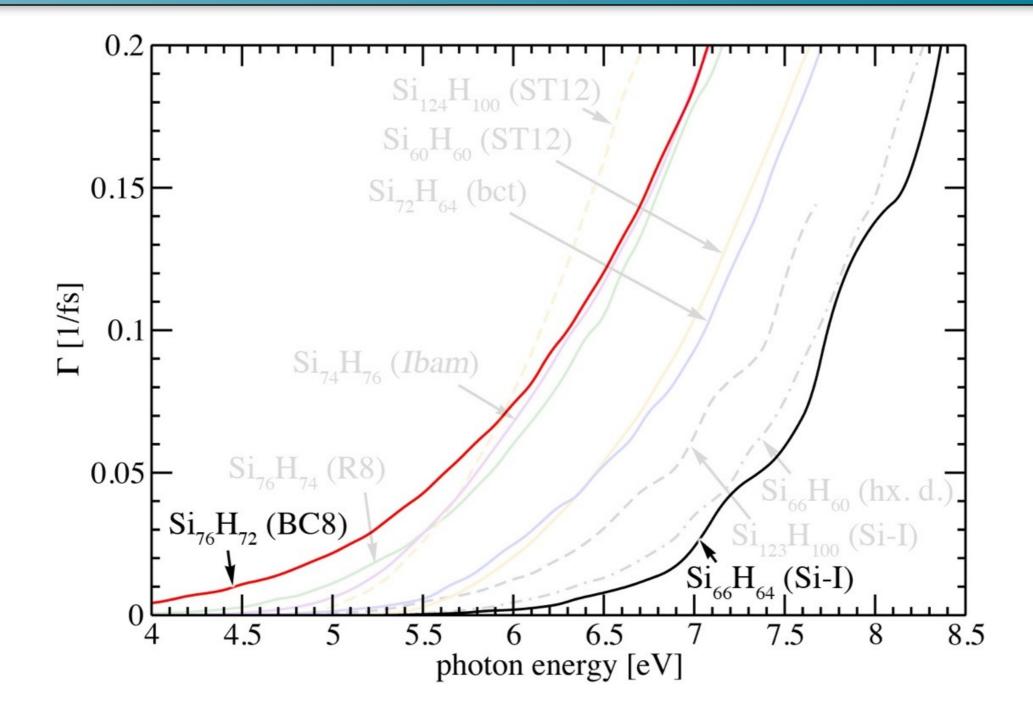


[6] A. Piryatinski et el., J. Chem. Phys. **133**, 084508 (2010) K.Velizhanin et al., Phys. Rev. Lett. **106**, 207401 (2011)

Optimum gap for MEG in 4-8nm BC8 NPs

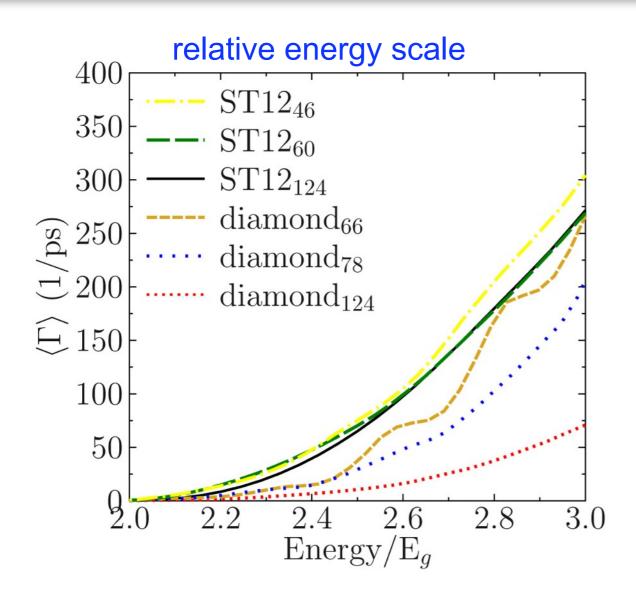


Optimum gap for MEG in 4-8nm BC8 NPs

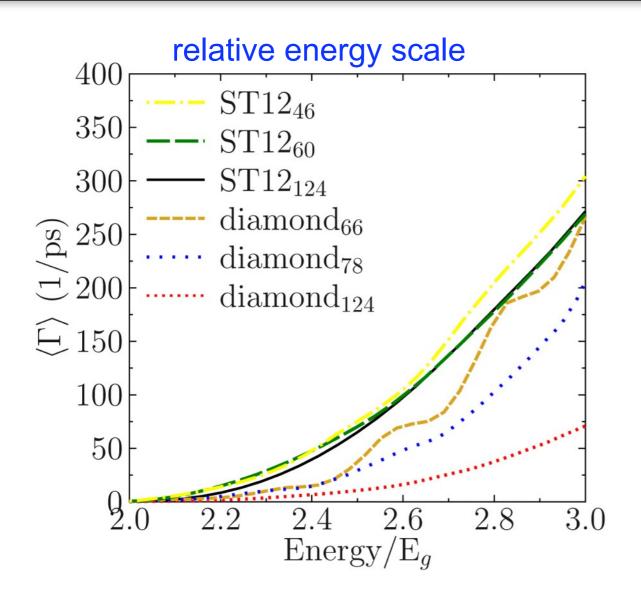


BC8 NPs feature lower activation threshold on absolute energy scale & order of magnitude higher impact ionization rate at same energies and same NP size!

Multiple Exciton Generation in Ge allotrope nanocrystals



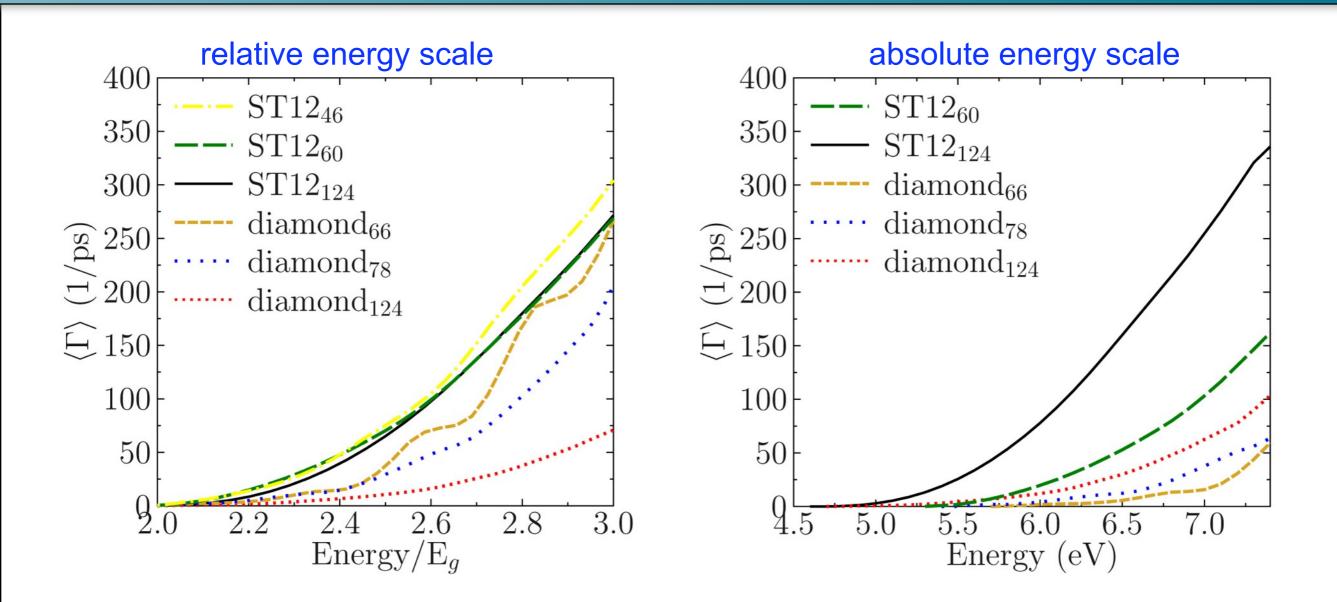
Multiple Exciton Generation in Ge allotrope nanocrystals



STI2 II rates size-independent

Increasing EDOS at band edges counterbalances loss of confinement

Multiple Exciton Generation in Ge allotrope nanocrystals

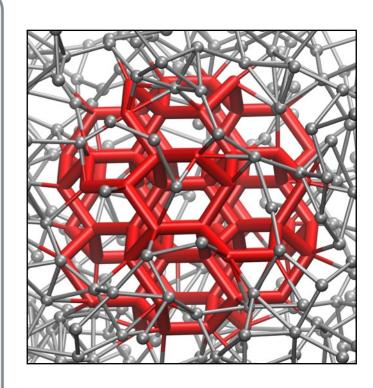


STI2 II rates size-independent

- Increasing EDOS at band edges counterbalances loss of confinement
- Simultaneously lower electronic gaps and higher relative II efficiency translate to significantly improved MEG on absolute energy scale

Summary

- (Metastable) high pressure phases of elemental semiconductors allow for gap engineering of nanoparticles, while retaining efficient MEG (Si-BC8 and Ge-STI2)
- Nanoparticles with high pressure core structures can attain optimum gap range for MEG-based solar energy conversion
- High pressure nanoparticles can be formed via the high pressure route or directly at ambient pressure in solution by chemical bottom-up synthesis from a precursor



Talk on Si NPs embedded in charge transport matrix today at 12:30pm, Tre Ma

PRL 110, 046804 (2013) PHYSICAL REVIEW LETTERS

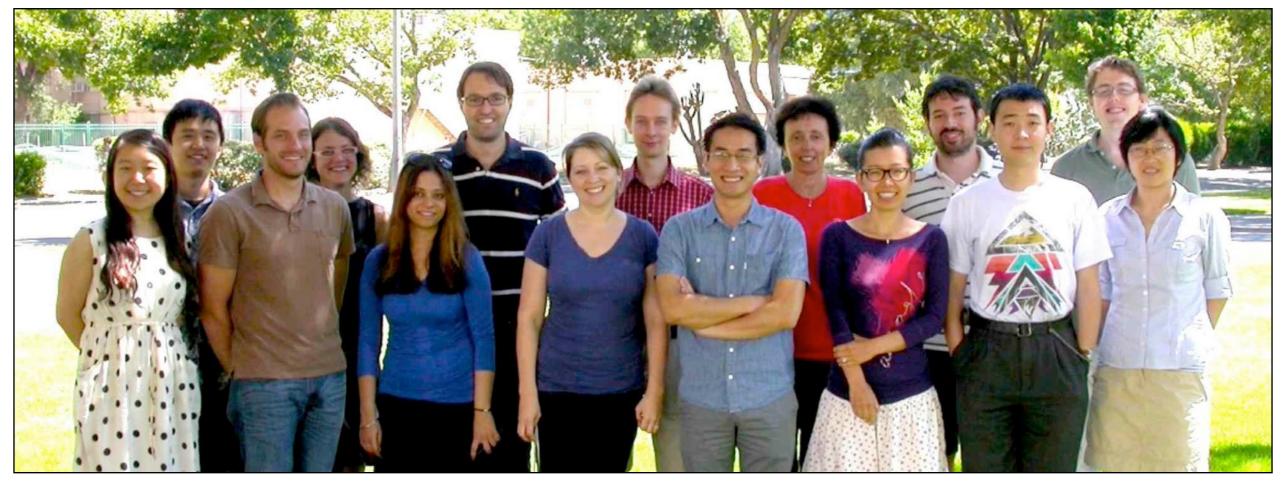
week ending 25 JANUARY 2013

High-Pressure Core Structures of Si Nanoparticles for Solar Energy Conversion

S. Wippermann,^{1,2} M. Vörös,³ D. Rocca,¹ A. Gali,^{3,4} G. Zimanyi,² and G. Galli^{1,2} ¹Department of Chemistry, University of California, Davis, California 95616, USA ²Department of Physics, University of California, Davis, California 95616, USA ³Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki út 8, H-1111 Budapest, Hungary ⁴Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary (Received 1 August 2012; published 24 January 2013)

Acknowledgements

Giulia Galli and her group at UChicago, especially Marton Vörös and Tuan Anh Pham



Francois Gygi (UC Davis), Gergely Zimanyi (UC Davis), Adam Gali (Budapest Univ.), Dario Rocca (Univ. Lorraine)

Bundesministerium für Bildung und Forschung

NanoMatFutur 13N12972

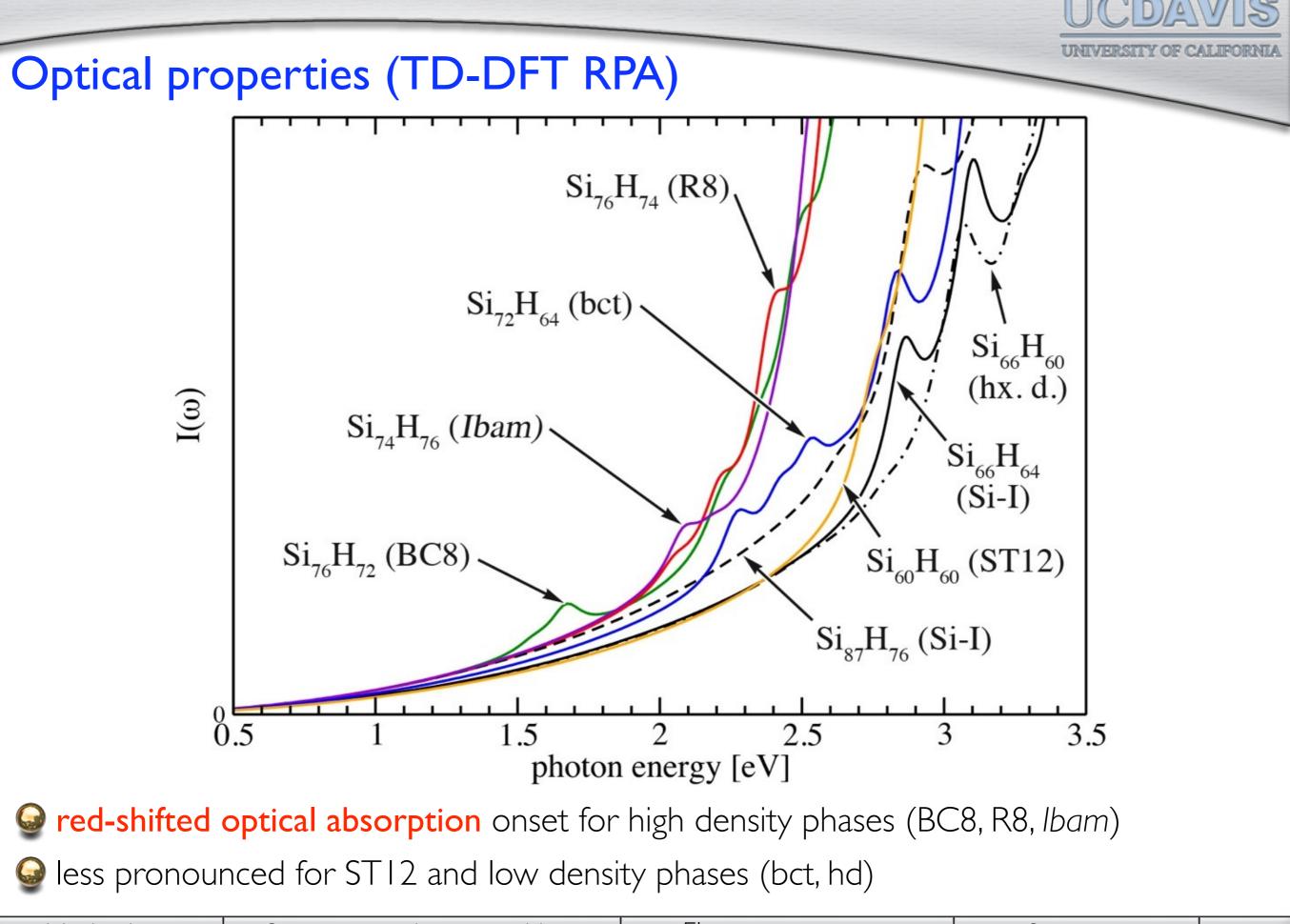
Wi3879/1-1

NISE-project 35687

NSF/Solar DMR-1035468

Max-Planck-Institute for Iron Research, Düsseldorf

Additional Slides



Motivation

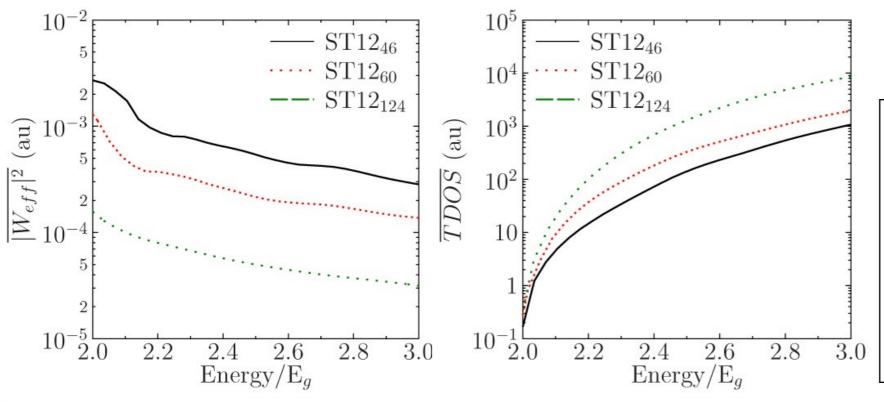
cubic diamond vs. STI2

Motivation

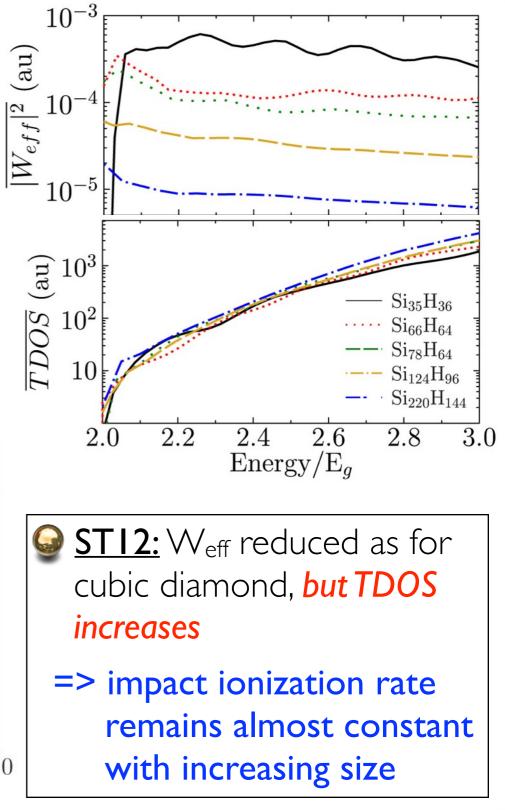
$$\Gamma_{i}^{II} = \frac{2\pi}{\hbar} \sum_{f} |\langle X_{i} | W | X X_{f} \rangle|^{2} \,\delta(E_{i} - E_{f})$$
$$= \frac{2\pi}{\hbar} |W_{eff}^{i}|^{2} \cdot TDOS_{i}$$

<u>cubic diamond</u>: NP size increase reduces Coulomb interaction W_{eff}, trion DOS almost constant

=> impact ionization rate drops



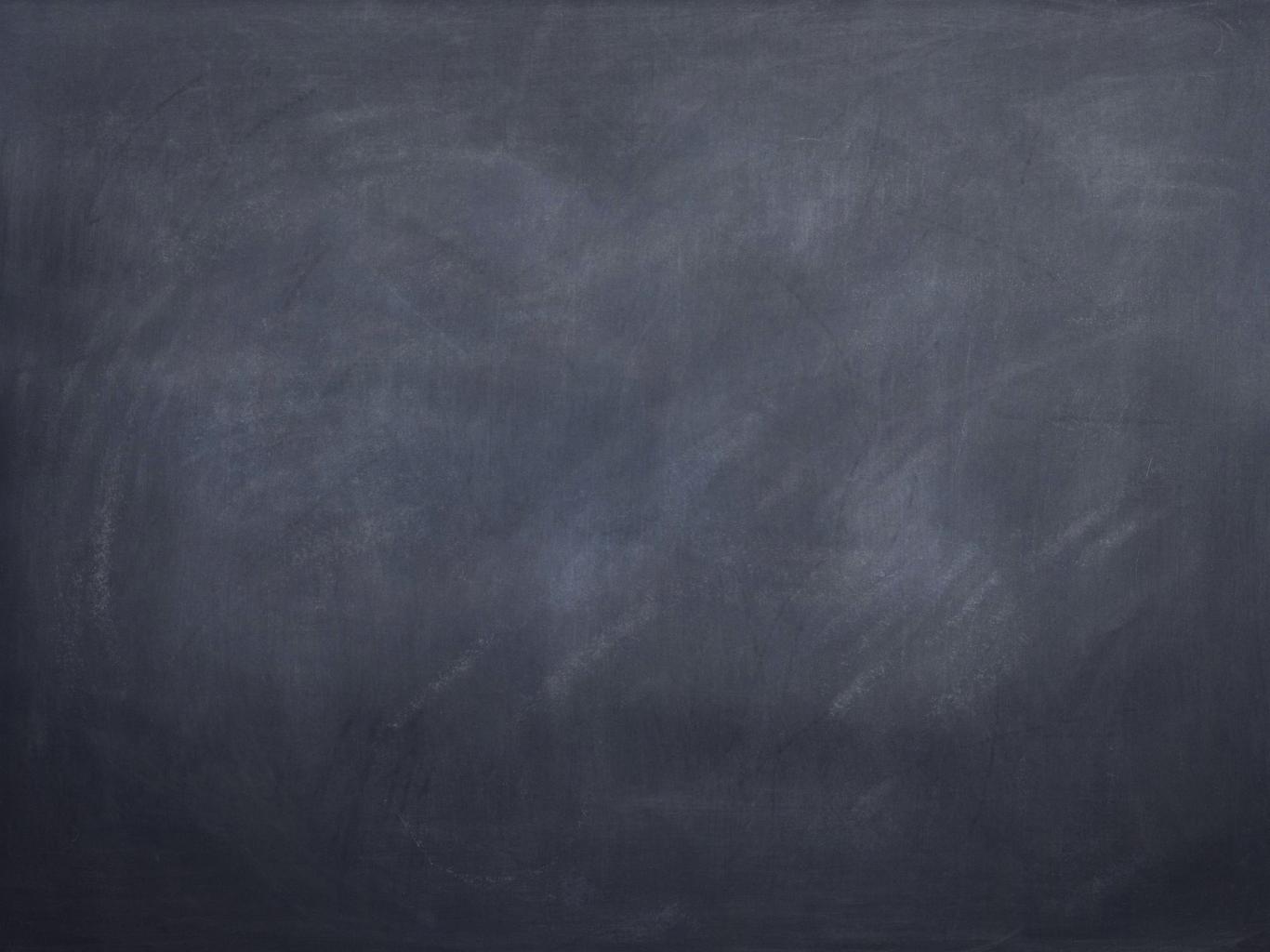
Structure & phase transition



Summary

25/25

Electron transport



Density functional theory (DFT):

Hohenberg-Kohn theorem: $E_{XC}[n] \approx E_{XC}^{LDA}[n] = \int n(r)\epsilon_{XC}^{hom}(n(r))dr$ $E_e[n] = T_0[n] + \frac{1}{2} \int \frac{n(r)n(r')}{|r - r'|} dr dr' + \int n(r)V(r)dr + E_{XC}[n]$ Walter Kohn Nobel Prize for chemistry in 1998]

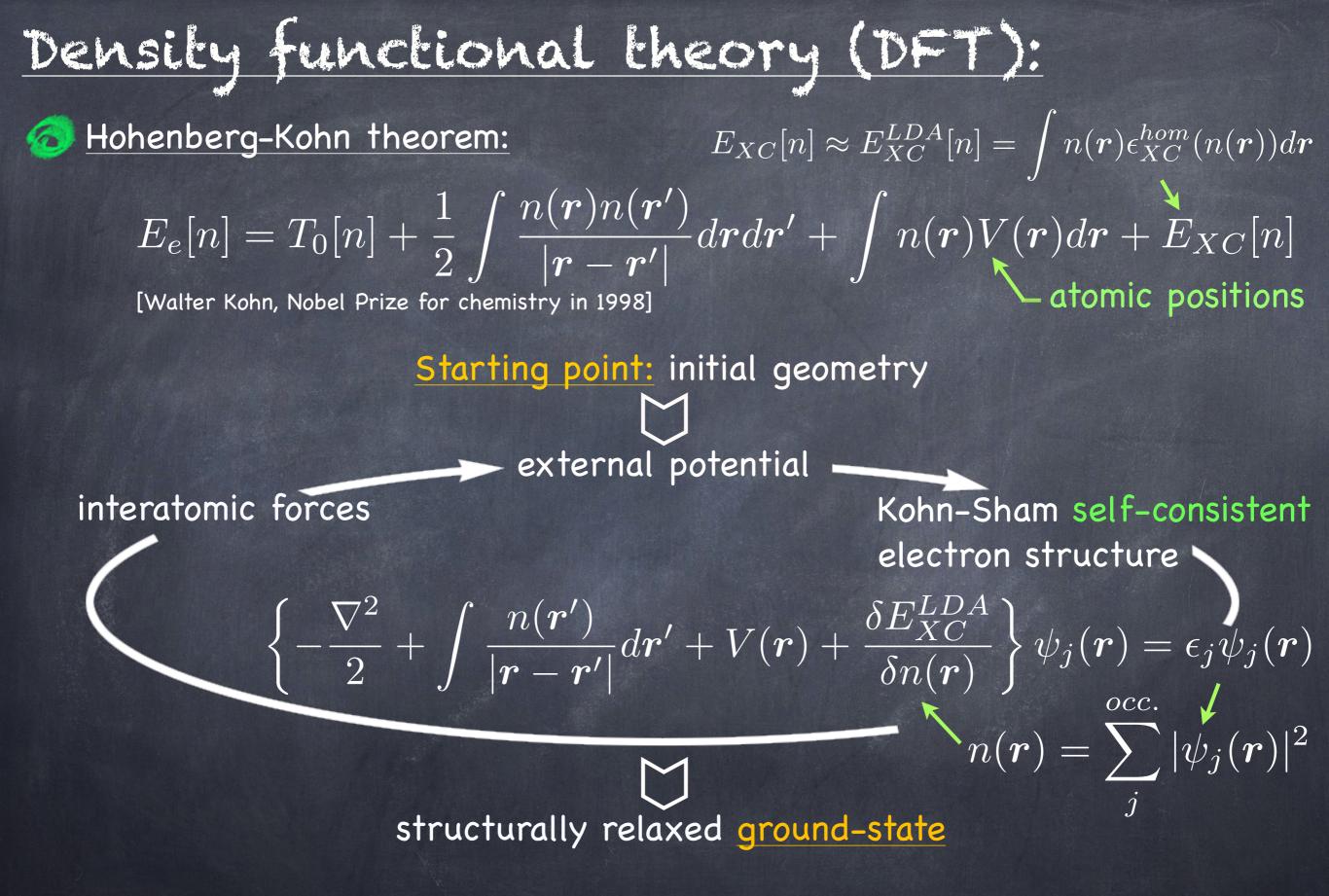
Density functional theory (DFT):

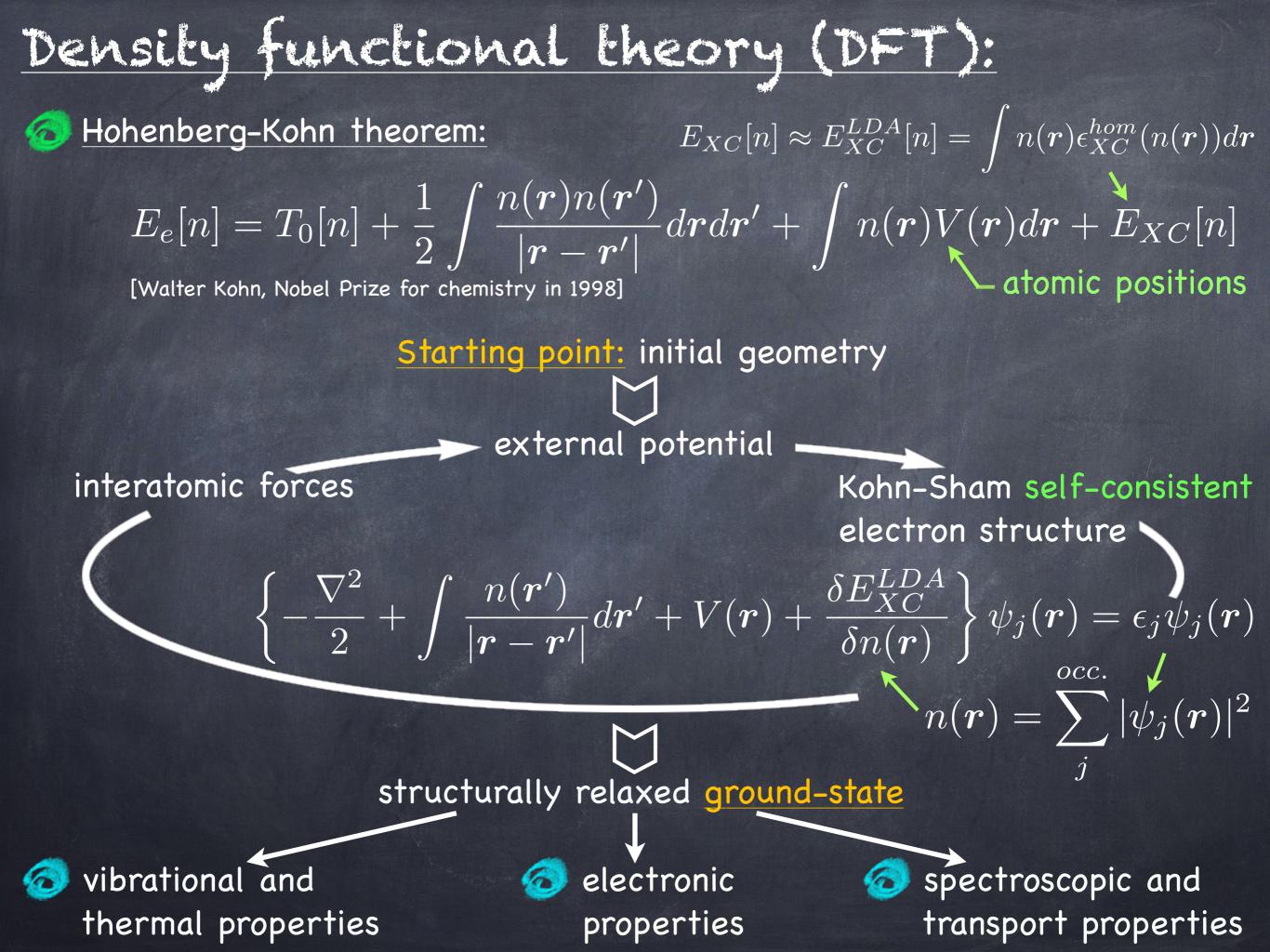
Hohenberg-Kohn theorem: $E_{XC}[n] \approx E_{XC}^{LDA}[n] = \int n(\mathbf{r})\epsilon_{XC}^{hom}(n(\mathbf{r}))d\mathbf{r}$ $E_e[n] = T_0[n] + \frac{1}{2}\int \frac{n(\mathbf{r})n(\mathbf{r'})}{|\mathbf{r} - \mathbf{r'}|}d\mathbf{r}d\mathbf{r'} + \int n(\mathbf{r})V(\mathbf{r})d\mathbf{r} + E_{XC}[n]$ [Walter Kohn, Nobel Prize for chemistry in 1998]

Kohn-Sham self-consistent electron structure

$$\left\{-\frac{\nabla^2}{2} + \int \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + V(\mathbf{r}) + \frac{\delta E_{XC}^{LDA}}{\delta n(\mathbf{r})}\right\} \psi_j(\mathbf{r}) = \epsilon_j \psi_j(\mathbf{r})$$

$$n(\mathbf{r}) = \sum_j^{occ.} |\psi_j(\mathbf{r})|^2$$





DFT disregards screened e⁻-e⁻ interaction and e⁻-h interaction for excited states => band gap underestimation, wrong distribution of spectral weights

- DFT disregards screened e⁻-e⁻ interaction and e⁻-h interaction for excited states => band gap underestimation, wrong distribution of spectral weights
- Perturbative approaches for including screening (GW) and e⁻-h interaction (Bethe-Salpeter), starting from Quantum Liouville equation

$$\begin{split} i\frac{d\hat{\rho}(t)}{dt} &= \begin{bmatrix} \hat{\mathcal{H}}(t), \hat{\rho}(t) \end{bmatrix} \qquad \rho(\mathbf{r}, \mathbf{r}', t) = \sum_{v} \phi_{v}^{*}(\mathbf{r}, t) \phi_{v}(\mathbf{r}', t) \\ \int \hat{\mathcal{H}}(\mathbf{r}, \mathbf{r}', t) \phi(\mathbf{r}', t) d\mathbf{r}' &= \left(-\frac{1}{2} \nabla^{2} + v_{H}(\mathbf{r}, t) + v_{ext}(\mathbf{r}, t) \right) \phi(\mathbf{r}, t) \\ &+ \int \Sigma(\mathbf{r}, \mathbf{r}', t) \phi(\mathbf{r}', t) d\mathbf{r}' \quad \underset{i. e. \text{ electromagn. field}}{\text{time-dep. perturbation,}} \end{split}$$

- DFT disregards screened e⁻-e⁻ interaction and e⁻-h interaction for excited states => band gap underestimation, wrong distribution of spectral weights
- Perturbative approaches for including screening (GW) and e⁻-h interaction (Bethe-Salpeter), starting from Quantum Liouville equation

$$i\frac{d\hat{\rho}(t)}{dt} = \begin{bmatrix} \hat{\mathcal{H}}(t), \hat{\rho}(t) \end{bmatrix} \qquad \rho(\mathbf{r}, \mathbf{r}', t) = \sum_{v} \phi_{v}^{*}(\mathbf{r}, t)\phi_{v}(\mathbf{r}', t)$$

$$\int \hat{\mathcal{H}}(\mathbf{r}, \mathbf{r}', t)\phi(\mathbf{r}', t)d\mathbf{r}' = \left(-\frac{1}{2}\nabla^{2} + v_{H}(\mathbf{r}, t) + v_{ext}(\mathbf{r}, t)\right)\phi(\mathbf{r}, t)$$

$$+ \int \underbrace{\Sigma(\mathbf{r}, \mathbf{r}', t)}\phi(\mathbf{r}', t)d\mathbf{r}' \qquad \text{time-dep. perturbation,}$$

$$i. e. electromagn. field$$
statically screened

Bethe-Salpeter

equation (BSE)

$$\Sigma_{COH}(\mathbf{r},\mathbf{r}') = \frac{1}{2}\delta(\mathbf{r}-\mathbf{r}')W_p(\mathbf{r},\mathbf{r}')$$

$$\Sigma_{SEX}(\mathbf{r},\mathbf{r}',t) = -\sum_{v}\phi_v(\mathbf{r},t)\phi_v^*(\mathbf{r}',t)W(\mathbf{r},\mathbf{r}')$$

- DFT disregards screened e⁻-e⁻ interaction and e⁻-h interaction for excited states => band gap underestimation, wrong distribution of spectral weights
- Perturbative approaches for including screening (GW) and e⁻-h interaction (Bethe-Salpeter), starting from Quantum Liouville equation

$$i\frac{d\hat{\rho}(t)}{dt} = \begin{bmatrix} \hat{\mathcal{H}}(t), \hat{\rho}(t) \end{bmatrix} \qquad \rho(\mathbf{r}, \mathbf{r}', t) = \sum_{v} \phi_{v}^{*}(\mathbf{r}, t)\phi_{v}(\mathbf{r}', t)$$

$$\int \hat{\mathcal{H}}(\mathbf{r}, \mathbf{r}', t)\phi(\mathbf{r}', t)d\mathbf{r}' = \left(-\frac{1}{2}\nabla^{2} + v_{H}(\mathbf{r}, t) + v_{ext}(\mathbf{r}, t)\right)\phi(\mathbf{r}, t)$$

$$+ \int \underbrace{\Sigma(\mathbf{r}, \mathbf{r}', t)}\phi(\mathbf{r}', t)d\mathbf{r}' \quad \underset{i. e. \text{ electromagn. field}}{\overset{\text{self-energy}}{\overset{\text{statically screened}}{\overset{\text{statically screenerg}}{\overset{\text{statically screenerg}}{\overset{\text{stati$$

$$\Sigma_{COH}(\mathbf{r}, \mathbf{r}') = \frac{1}{2}\delta(\mathbf{r} - \mathbf{r}')W_p(\mathbf{r}, \mathbf{r}')$$

$$\Sigma_{SEX}(\mathbf{r}, \mathbf{r}', t) = -\sum_{v} \phi_v(\mathbf{r}, t)\phi_v^*(\mathbf{r}', t)W(\mathbf{r}, \mathbf{r}')$$

statically screened Bethe-Salpeter equation (BSE) screened Coulomb interaction

To correct for DFT's band gap underestimation, quasiparticle energies can be obtained in GW approximation from

$$\Sigma_{GW}(\mathbf{r},\mathbf{r}';i\omega) = \frac{1}{2\pi} \int G(\mathbf{r},\mathbf{r}';i(\omega-\omega'))W(\mathbf{r},\mathbf{r}';i\omega')d\omega'$$

To correct for DFT's band gap underestimation, quasiparticle energies can be obtained in GW approximation from

$$\Sigma_{GW}(\mathbf{r},\mathbf{r}';i\omega) = \frac{1}{2\pi} \int G(\mathbf{r},\mathbf{r}';i(\omega-\omega')) W(\mathbf{r},\mathbf{r}';i\omega') d\omega$$

🕢 Screened Coulomb interaction required (in random phase (RPA) approx.)

$$W(\mathbf{r},\mathbf{r}') = \int \epsilon^{-1}(\mathbf{r},\mathbf{r}'')v_c(\mathbf{r}'',\mathbf{r}')d\mathbf{r}''$$

To correct for DFT's band gap underestimation, quasiparticle energies can be obtained in GW approximation from

$$\Sigma_{GW}(\mathbf{r},\mathbf{r}';i\omega) = \frac{1}{2\pi} \int G(\mathbf{r},\mathbf{r}';i(\omega-\omega')) W(\mathbf{r},\mathbf{r}';i\omega') d\omega$$

Screened Coulomb interaction required (in random phase (RPA) approx.)

$$W(\mathbf{r},\mathbf{r}') = \int \epsilon^{-1}(\mathbf{r},\mathbf{r}'')v_c(\mathbf{r}'',\mathbf{r}')d\mathbf{r}''$$

Bottleneck: calculation, storage & inversion of dielectric matrix is very computationally demanding, involves large sums over empty states and is hard to converge

To correct for DFT's band gap underestimation, quasiparticle energies can be obtained in GW approximation from

$$\Sigma_{GW}(\mathbf{r},\mathbf{r}';i\omega) = \frac{1}{2\pi} \int G(\mathbf{r},\mathbf{r}';i(\omega-\omega')) W(\mathbf{r},\mathbf{r}';i\omega') d\omega$$

Screened Coulomb interaction required (in random phase (RPA) approx.)

$$W(\mathbf{r},\mathbf{r}') = \int \epsilon^{-1}(\mathbf{r},\mathbf{r}'')v_c(\mathbf{r}'',\mathbf{r}')d\mathbf{r}''$$

<u>Bottleneck</u>: calculation, storage & inversion of dielectric matrix is very computationally demanding, involves large sums over empty states and is hard to converge

Solution: spectral representation of RPA dielectric matrix; obtain matrix from directly calculating eigenvectors and eigenvalues

$$\tilde{\epsilon} = \sum_{i=1}^{N} \tilde{\mathbf{v}}_i \lambda_i \tilde{\mathbf{v}}_i^H = \sum_{i=1}^{N} \tilde{\mathbf{v}}_i (\lambda_i - 1) \tilde{\mathbf{v}}_i^H + I$$

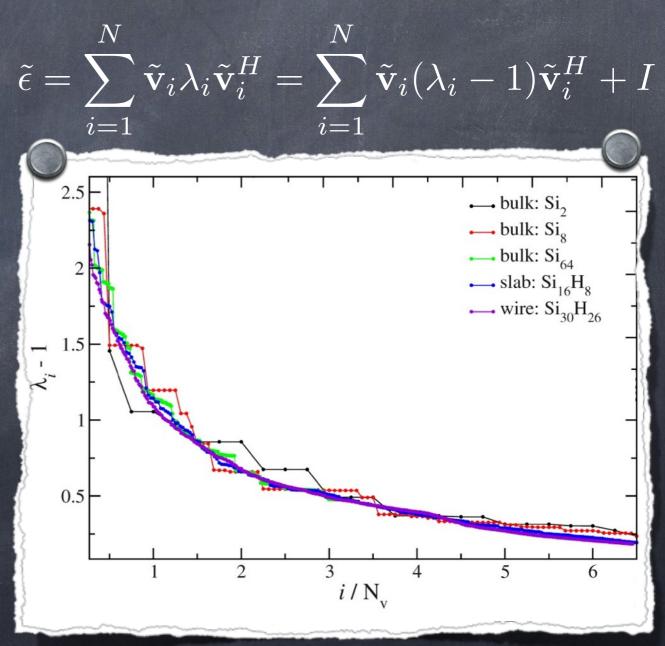
=> no summation over empty states, no inversion, storage of eigenvector/-value pairs only!

How to calculate the screening

- Obtaining the eigenvectors/-values does <u>NOT</u> require explicit knowledge of the matrix; knowledge of the <u>action of the matrix</u> on an arbitrary vector is sufficient!
 -) in linear response: $(\epsilon-I)\Delta V_{SCF}=-v_c\Delta n$

charge density response Δn to perturbation of self-consist. field ΔV_{SCF} can be evaluated from density functional perturbation theory

- for thogonal iteration procedure to obtain eigenvectors/-values, using ΔV_{SCF} as trial potentials
- in RPA fast monotonous decay of dielectric eigenvalue spectrum
- single parameter N_{eig} to control numerical accuracy



[H. Wilson et al., PRB 79, 245106 (2009); D. Rocca et al., J. Chem. Phys. 133, 164109 (2010); H.-V. Nguyen et al., PRB 85, 081101 (2012)]