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Si embedded in ZnS
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Search for materials to harvest light

[M. Zacharias et al., Appl. Phys. Lett. 80, 661 (2002)]

d = 3.3nm Si nanocrystals in SiO2

 Nanocomposites based on Si nanocrystals embedded in a charge transport matrix	

    are promising candidates for light absorbers in quantum dot based 3rd generation 	

    photovoltaics architectures



Search for materials to harvest light

[M. Zacharias et al., Appl. Phys. Lett. 80, 661 (2002)]

d = 3.3nm Si nanocrystals in SiO2

Key problems:	
!
 Ensure efficient charge transport and low 	


    recombination rates	
!
 Understand interplay between interface 	


    structure, quantum-confinement, defects

 Nanocomposites based on Si nanocrystals embedded in a charge transport matrix	

    are promising candidates for light absorbers in quantum dot based 3rd generation 	

    photovoltaics architectures



Search for materials to harvest light

[M. Zacharias et al., Appl. Phys. Lett. 80, 661 (2002)]

d = 3.3nm Si nanocrystals in SiO2

Key problems:	
!
 Ensure efficient charge transport and low 	


    recombination rates	
!
 Understand interplay between interface 	


    structure, quantum-confinement, defects

Si nanocrystals in ZnS:	
!
 ZnS is earth-abundant, non-toxic and 	


    features a favourable band-alignment with 	

    Si at least for planar heterointerfaces	
!

 Investigate Si-ZnS nanocomposites from 	

    first principles

 Nanocomposites based on Si nanocrystals embedded in a charge transport matrix	

    are promising candidates for light absorbers in quantum dot based 3rd generation 	

    photovoltaics architectures



Embedding Si nanocrystals in a-ZnS

 Create structural models for a-ZnS embedded 	

  Si35, Si66, Si123, Si172 nanoparticles (NPs): replace 	

  spherical region (1.1 - 1.9 nm) in 4x4x4 ZnS unit 	

  cell and amorphize ZnS matrix using ab initio 	

  molecular dynamics (MD)	
!
 DFT-LDA (Qbox) EC = 80 Ry, τ = 2 fs, T = 2400 K, 	

  Si atoms free to move for T < 600 K, 10-20 ps MD
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  molecular dynamics (MD)	
!
 DFT-LDA (Qbox) EC = 80 Ry, τ = 2 fs, T = 2400 K, 	

  Si atoms free to move for T < 600 K, 10-20 ps MD

 Different starting geometries, 	

    equilibration & cooling times 	

    lead to very similar structures	

 	


 Formation of sulfur-shell on	

    Si-NP surface observed	

!
    => Examine interface structure

Si123 (1.6nm)



Sulfur shell formation introduces new mid-gap states
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 3-fold coordinated interfacial sulfur : achieves noble	

  gas state with 1 S-Si, 2 S-Zn bonds and 1 lone pair
 Lone pairs of 3-fold coordinated sulfur at NP-matrix 	

  interface introduce new occupied mid-gap states,	

  HOMO and near-HOMO states involve lone pairs

  => pronounced gap-reduction of embedded NPs



Si nanoparticles (NPs) in SiO2: type I junction

valence band edge                                 conduction band edge
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 Si NPs embedded in SiO2 form a type I junction 	

  with their silica host	

 	


  Valence and conduction band edges localized 	

  inside Si NP => no charge transport	
!
 NP LUMO may be pushed above SiO2 CBM by	

  compressive strain [T. Li, F. Gygi, G. Galli, PRL 2011]
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Si nanoparticles (NPs) in ZnS: type II junction

Si NP HOMO

 Si NPs in ZnS form a type II junction at 	

  equilibrium density	
!
 Charge-separated transport channels for electrons 	

  and holes may facilitate charge extraction and 	

  suppress recombination	
!
 Hole transport through host matrix, highly desirable 	

  for solar cells



Si nanoparticles in ZnS: band alignment

Si NP LUMO

ZnS CBM

ZnS VBM
Si NP HOMO

!
 Formation of type II interface 	

  between Si NP and a-ZnS 	

  matrix, if, and only if, sulfur 	

  content is above a certain 	

  threshold

Si123 in Zn188S201

 Calculate band edge energies 	

  as a function of the radial 	

  distance from the center of 	

  the NP

 DFT-LDA band offsets reliable?	
!
  => calculate band offsets in GW approximation
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i + I

!
 Calculation, storage & inversion of dielectric matrix ε is major computational 	

  bottleneck => spectral representation of ε (RPA)
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ṽi(�i � 1)ṽH
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Band alignment from many body perturbation theory (GW)

!
 GW calculations possible for a 	

  system as large as Si35Zn81S100



Band alignment from many body perturbation theory (GW)

!
 GW calculations possible for a 	

  system as large as Si35Zn81S100

 Many body corrections in GW approximation introduce mainly a rigid shift	
!
  => confirms type II alignment



Summary

 Investigated 1.1 - 1.9 nm Si nanocrystals embedded in a-ZnS using ab 	

  initio MD and quasiparticle calculations in GW approximation	
!
 ZnS-embedded Si nanocrystals form a type II junction with the ZnS host 	

  in sulfur-rich conditions	
!
 Band edges localized in different portions of nanocomposite => charge-	

  separated transport channels for electrons and holes
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