

Solar nanocomposites with complementary charge extraction pathways for electrons and holes: Si embedded in ZnS

<u>S. Wippermann</u>, M. Vörös, F. Gygi, A. Gali, G. Zimanyi, G. Galli



NanoMatFutur



Bundesministerium für Bildung und Forschung



### DPG-2014, 04/03/2014

### Search for materials to harvest light

Wanocomposites based on Si nanocrystals embedded in a charge transport matrix are promising candidates for light absorbers in quantum dot based 3rd generation photovoltaics architectures



# Search for materials to harvest light

Nanocomposites based on Si nanocrystals embedded in a charge transport matrix are promising candidates for light absorbers in quantum dot based 3rd generation photovoltaics architectures

### Key problems:

- Ensure efficient charge transport and low recombination rates
- Understand interplay between interface structure, quantum-confinement, defects

#### d = 3.3nm Si nanocrystals in SiO<sub>2</sub>



# Search for materials to harvest light

Nanocomposites based on Si nanocrystals embedded in a charge transport matrix are promising candidates for light absorbers in quantum dot based 3rd generation photovoltaics architectures

### Key problems:

- Ensure efficient charge transport and low recombination rates
- Understand interplay between interface structure, quantum-confinement, defects

### Si nanocrystals in ZnS:

- ZnS is earth-abundant, non-toxic and features a favourable band-alignment with Si at least for planar heterointerfaces
- Investigate Si-ZnS nanocomposites from first principles

#### d = 3.3nm Si nanocrystals in SiO<sub>2</sub>



[M. Zacharias et al., Appl. Phys. Lett. 80, 661 (2002)]

### Embedding Si nanocrystals in a-ZnS

- Create structural models for a-ZnS embedded Si35, Si66, Si123, Si172 nanoparticles (NPs): replace spherical region (1.1 - 1.9 nm) in 4x4x4 ZnS unit cell and amorphize ZnS matrix using ab initio molecular dynamics (MD)
- Si atoms free to move for T < 600 K, 10-20 ps MD



### Embedding Si nanocrystals in a-ZnS

- Create structural models for a-ZnS embedded Si35, Si66, Si123, Si172 nanoparticles (NPs): replace spherical region (1.1 - 1.9 nm) in 4x4x4 ZnS unit cell and amorphize ZnS matrix using ab initio molecular dynamics (MD)
- $\bigcirc$  DFT-LDA (Qbox) E<sub>C</sub> = 80 Ry,  $\mathbf{\tau}$  = 2 fs,T = 2400 K, Si atoms free to move for T < 600 K, 10-20 ps MD





- Different starting geometries, equilibration & cooling times lead to very similar structures
- Formation of sulfur-shell on Si-NP surface observed

=> Examine interface structure

### Sulfur shell formation introduces new mid-gap states

S-fold coordinated interfacial sulfur: achieves noble gas state with 1 S-Si, 2 S-Zn bonds and 1 lone pair



### Sulfur shell formation introduces new mid-gap states

- S-fold coordinated interfacial sulfur: achieves noble gas state with 1 S-Si, 2 S-Zn bonds and 1 lone pair
- Lone pairs of 3-fold coordinated sulfur at NP-matrix interface introduce new occupied mid-gap states, HOMO and near-HOMO states involve lone pairs



Si35 NP HOMO



### Sulfur shell formation introduces new mid-gap states

- S-fold coordinated interfacial sulfur: achieves noble gas state with 1 S-Si, 2 S-Zn bonds and 1 lone pair
- Lone pairs of 3-fold coordinated sulfur at NP-matrix interface introduce new occupied mid-gap states, HOMO and near-HOMO states involve lone pairs

### => pronounced gap-reduction of embedded NPs





Si35 NP HOMO



### Si nanoparticles (NPs) in SiO<sub>2</sub>: type I junction

- Si NPs embedded in SiO<sub>2</sub> form a type I junction with their silica host
- Valence and conduction band edges localized inside Si NP => no charge transport
- NP LUMO may be pushed above SiO<sub>2</sub> CBM by compressive strain [T. Li, F. Gygi, G. Galli, PRL 2011]



#### valence band edge



#### conduction band edge



### Si nanoparticles (NPs) in ZnS: type II junction

# Si NPs in ZnS form a type II junction at equilibrium density

- Charge-separated transport channels for electrons and holes may facilitate charge extraction and suppress recombination
- Hole transport through host matrix, highly desirable for solar cells



#### valence band edge



#### conduction band edge



### Si nanoparticles in ZnS: band alignment



DFT-LDA band offsets reliable?
=> calculate band offsets in GW approximation

Solution, storage & inversion of dielectric matrix  $\epsilon$  is major computational bottleneck => spectral representation of  $\epsilon$  (RPA)

$$\tilde{\epsilon} = \sum_{i=1}^{N} \tilde{\mathbf{v}}_i \lambda_i \tilde{\mathbf{v}}_i^H = \sum_{i=1}^{N} \tilde{\mathbf{v}}_i (\lambda_i - 1) \tilde{\mathbf{v}}_i^H + I$$

 $\Lambda T$ 

Calculation, storage & inversion of dielectric matrix ε is major computational bottleneck => spectral representation of ε (RPA)

$$\tilde{\epsilon} = \sum_{i=1}^{N} \tilde{\mathbf{v}}_i \lambda_i \tilde{\mathbf{v}}_i^H = \sum_{i=1}^{N} \tilde{\mathbf{v}}_i (\lambda_i - 1) \tilde{\mathbf{v}}_i^H + I$$

 $\Lambda T$ 

Solution of the matrix  $\mathbb{O}$  is sufficient when the matrix is sufficient of the matrix  $\mathbb{O}$  is sufficient is sufficient in the second seco

$$\odot$$
 In linear response:  $(\epsilon-I)\Delta V_{SCF}=-v_c\Delta n$ 

Charge density response  $\Delta n$  to perturbation of self-consistent field  $\Delta V_{SCF}$  can be evaluated from density functional perturbation theory

 $\Lambda I$ 

Calculation, storage & inversion of dielectric matrix  $\epsilon$  is major computational bottleneck => spectral representation of  $\epsilon$  (RPA)

$$\tilde{\epsilon} = \sum_{i=1}^{N} \tilde{\mathbf{v}}_i \lambda_i \tilde{\mathbf{v}}_i^H = \sum_{i=1}^{N} \tilde{\mathbf{v}}_i (\lambda_i - 1) \tilde{\mathbf{v}}_i^H + I$$

Solution of the matrix  $\mathbb{O}$  is sufficient with the matrix of the matrix is sufficient of the matrix is sufficient is sufficient in the second seco

$$\odot$$
 In linear response:  $(\epsilon-I)\Delta V_{SCF}=-v_c\Delta n$ 

Charge density response  $\Delta n$  to perturbation of self-consistent field  $\Delta V_{SCF}$  can be evaluated from density functional perturbation theory



[4] H.-V. Nguyen, T.A. Pham, D. Rocca, G. Galli, PRB 85 081101 (2012), PRB 87, 155148 (2013)

Calculation, storage & inversion of dielectric matrix ε is major computational bottleneck => spectral representation of ε (RPA)

$$\tilde{\epsilon} = \sum_{i=1}^{N} \tilde{\mathbf{v}}_i \lambda_i \tilde{\mathbf{v}}_i^H = \sum_{i=1}^{N} \tilde{\mathbf{v}}_i (\lambda_i - 1) \tilde{\mathbf{v}}_i^H + I$$

D. Rocca, H.-V. Nguyen, T.A. Pham (UCD)

Solution of the matrix of the matrix is sufficient when the matrix is sufficient  $\mathbb{E}$  of the matrix is sufficient is sufficie

$$\odot$$
 In linear response:  $(\epsilon-I)\Delta V_{SCF}=-v_c\Delta n$ 

Charge density response  $\Delta n$  to perturbation of self-consistent field  $\Delta V_{SCF}$  can be evaluated from density functional perturbation theory



- In RPA fast monotonous decay of dielectric eigenvalue spectrum
- Single parameter N<sub>eig</sub> to control numerical accuracy
- No summation over empty states, no inversion





# Band alignment from many body perturbation theory (GW)



GW calculations possible for a system as large as Si35Zn81S100

# Band alignment from many body perturbation theory (GW)





GW calculations possible for a system as large as Si<sub>35</sub>Zn<sub>81</sub>S<sub>100</sub>

Many body corrections in GW approximation introduce mainly a rigid shift
=> confirms type II alignment

### Summary

Investigated I.I - I.9 nm Si nanocrystals embedded in a-ZnS using ab initio MD and quasiparticle calculations in GW approximation

- In sulfur-rich conditions
  It is a type II junction with the ZnS host in sulfur-rich conditions
- Band edges localized in different portions of nanocomposite => chargeseparated transport channels for electrons and holes

PRL 112, 106801 (2014)

PHYSICAL REVIEW LETTERS

week ending 14 MARCH 2014

#### Solar Nanocomposites with Complementary Charge Extraction Pathways for Electrons and Holes: Si Embedded in ZnS

 Stefan Wippermann,<sup>1,2,3</sup> Márton Vörös,<sup>2,3</sup> Adam Gali,<sup>4,5</sup> Francois Gygi,<sup>6</sup> Gergely T. Zimanyi,<sup>3</sup> and Giulia Galli<sup>7</sup> <sup>1</sup>Interface Chemistry and Surface Engineering Department, Max-Planck-Institute for Iron Research GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany <sup>2</sup>Chemistry Department, University of California, Davis, California 95616, USA <sup>3</sup>Physics Department, University of California, Davis, California 95616, USA <sup>4</sup>Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki út 8., H-1111 Budapest, Hungary <sup>5</sup>Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary <sup>6</sup>Department of Computer Science, University of California, Davis, California 95616, USA <sup>7</sup>Institute for Molecular Engineering, University of Chicago, Illinois 60637, USA (Received 9 October 2013; published 11 March 2014)



### Acknowledgements

### Giulia Galli and her group at UChicago, especially Marton Vörös and Tuan Anh Pham

![](_page_19_Picture_2.jpeg)

Francois Gygi (UC Davis), Gergely Zimanyi (UC Davis), Adam Gali (Budapest Univ.), Dario Rocca (Univ. Lorraine)

![](_page_19_Picture_4.jpeg)

Bundesministerium für Bildung und Forschung

![](_page_19_Picture_6.jpeg)

![](_page_19_Picture_7.jpeg)

![](_page_19_Picture_8.jpeg)

![](_page_19_Picture_9.jpeg)

NanoMatFutur 13N12972

Wi3879/1-1

NISE-project 35687

NSF/Solar DMR-1035468

Max-Planck-Institute for Iron Research, Düsseldorf

![](_page_20_Figure_1.jpeg)

C.Van de Walle, J. Neugebauer, Nature 423, 626 (2003)

![](_page_21_Figure_1.jpeg)

C.Van de Walle, J. Neugebauer, Nature 423, 626 (2003)

![](_page_22_Figure_1.jpeg)

C.Van de Walle, J. Neugebauer, Nature 423, 626 (2003)

![](_page_23_Figure_1.jpeg)

![](_page_24_Figure_1.jpeg)