
Theoretical Computer Science 89 (1991) 3-32

Elsevier

Order-sorted completion:
the many-sorted way

Harald Ganzinger”
Max-Planck-lnstitut ftir Informatik, Im Stadiwald, W-6600 Saarbriicken, Germany

Abstract

Ganzinger, H., Order-sorted completion: the many-sorted way, Theoretical Computer Science 89

(1991) 3-32.

Order-sorted specifications can be transformed into equivalent many-sorted ones by using injec-

tions to implement subsort relations. In this paper we improve previous results about the relation

between order-sorted and many-sorted rewriting. We then apply techniques for the completion

of many-sorted conditional equations to systems obtained from translating order-sorted conditional

equations. Emphasis will be on ways to overcome some of the problems with non-sort-decreasing

rules.

1. Introduction

1.1. Operational semantics for order-sorted specifications

Order-sorted equational logic has been introduced into algebraic specification

and logic programming in order to provide for a more powerful type concept,

allowing us to express partiality of functions, error handling and subtype inheritance.

Order-sorted equational logic originated with [22] and, independently in the context

of abstract data types, with [131. The concept was further elaborated in [14, 12, 25,

20,231 among others. A recent paper comparing the two main semantic variations-

overloading vs. polymorphism-is [26].

In [lo] an operational semantics for order-sorted specifications based on a

translation scheme into many-sorted specifications is introduced. Auxiliary injection

operators are added to implement the subsort relations. Therefore, standard concepts

of many-sorted rewriting, completion, and theorem proving can be used in

implementations of specification languages based on order-sorted logic.

In [111, a completion procedure specifically tailored to (unconditional) order-

sorted equations and based on order-sorted rewriting is proposed as an alternative.

The main motivation for this approach is that order-sorted rewriting can be more

efficient than naive many-sorted rewriting with the translated rules [20].

The purpose of this paper is not to enter a discussion about the efficiency of

rewrite relations-we believe that both approaches are of interest in their own

* This work has been partially supported by the ESPRIT-project PROSPECTRA, ref#390, at the
University of Dortmund.

0304-3975/91/$03.50 0 1991-Elsevier Science Publishers B.V. All rights reserved

4 H. Gunzinger

right-but to improve both previous approaches. There are two directions of

improvement which this paper wants to contribute to.

One problem left open in the approaches of [lo] and [111 is the handling of

non-sort-decreasing rules. This problem had been overlooked in [lo] as most of the

results in this paper which relate order-sorted to many-sorted rewriting are only

valid for sort-decreasing rules. Standard Knuth-Bendix completion when applied

to the many-sorted translation of order-sorted equations must give up whenever a

non-sort-decreasing rule is encountered. In such a case, the operationally awkward

injectivity axiom for the injections has to be taken into consideration-a problem

which standard Knuth-Bendix completion is not prepared to handle. For a related

reason, the order-sorted completion procedure of [ll] fails when a non-sort-

decreasing rule is generated. Order-sorted replacement of equals by equals is not a

complete proof method for order-sorted deduction in this case [25].

A second problem is to complete order-sorted specifications with conditional

equations. Fortunately, the state-of-the-art in completion of many-sorted conditional

equations, which originated with [171, has been substantially advanced during recent

years, mainly by the work of Rusinowitch and Kounalis [21, 241 and by this author

[8]. (Other related relevant work is described in [28] and [19]. Recently in [5] it is

shown how to extend the concept of completion to the full first-order case.) Tech-

niques which are required to make completion useful in practice are detailed in [9,

4, 31. The method of proof orderings and proof transformations [l, 21 has been

very helpful to prove completeness of these techniques. This advance in technology

suggests that we can again pick up the translation idea of [lo] and develop

order-sorted completion the many-sorted way.

As one can immediately see, both problem areas are closely related. To handle

non-sort-decreasing rules requires that we consider the effect on the equational

theory of conditional equations such as the injectivity axioms for sort injections.

1.2. Summary of main results

With regard to the relation between order-sorted rewriting and many-sorted

rewriting we improve the results in [lo]. In particular we show that one step of

order-sorted rewriting with a set of rules R is one step of many-sorted rewriting

with the lowest parses [Rs] of the sort specializations Rs of R modulo the axioms

LP of the lowest parse. This result also holds in the presence of non-sort-decreasing

rules. Moreover we show that for any sort-decreasing and convergent system of

order-sorted conditional rewrite rules, LP u IRS] is an equivalent, convergent (many-

sorted) rewrite system. (This result is not completely obvious as the critical pairs

lemma is not true for conditional rewrite rules in general [7].) A corollary is the

result in [lo] which, by the way, is also only true for non-sort-decreasing rules,

about the convergence of + LRsl 0 ALP in the many-sorted world.

We show that in many practical cases non-sort-decreasing rules can be replaced

by sort-decreasing ones without changing the initial algebra. These replacements

Order-sorted complekx the many-sorted way 5

are conditional rules with extra variables in the condition and in the right side.

Fortunately they belong to the class of what we call quasi-reductive rules. Quasi-

reductive rules are a generalization of reductive conditional rewrite rules and the

associated rewrite process is similarly efficient.

We outline an unfailing completion procedure for conditional equations that can

handle both non-reductive equations such as injectivity axioms and quasi-reductive

equations as they are introduced during the replacement of non-sort-decreasing

rules. It is an extension of the one which has been presented and proved correct in

[8]. The correctness of the extensions (unfailing completion, quasi-reductive

equations) is further addressed in [4] and proved in detail in [3]. Our techniques

perform successfully on practical examples of order-sorted specifications. An

implementation of the concepts as described in this paper is part of the CEC-system

[151.

2. Basic notions and notations

We will only introduce the syntactic aspects of order-sorted logic and refer to

[12] and [25] for the two main variants of the semantics for order-sorted

specifications, and to [26] for a comparison of the two. In this paper, notions and

notations mainly follow [25, 111.

Every variable x comes with a sort sx which is a sort symbol. For every sort symbol

there exist infinitely many variables having this sort.

A subsort declaration is an expression of form s < s’, where s and s’ are sort

symbols. A function or operator declaration has the form f: s, . . . s, + so, where n is

the arity off and si are sort symbols. An order-sorted signature, usually denoted

2, is a set of sort symbols, subsort and function declarations. A many-sorted signature,

usually denoted Z ms, is a particular case of an order-sorted signature with an empty

set of subsort declarations. In a many-sorted signature we do not allow more than

one declaration for any function symbol. By S”” and flms we denote the set of sorts

and operators, respectively, of a many-sorted signature Ems.

The subsort orders s s’ is the least quasi-order on the sort symbols of 2 generated

by the subsort declarations. Throughout this paper we restrict our attention to

signatures for which <, defined as < = < \ =, is a partial order. s’ extends to tuples

of sort symbols of the same length by (_sl,. . . ,_s,) c (s,, . . . , s,), iff _Si~ Si, for

1~ i s n. We write s Q s’, ifs < s’ and if there does not exist any s’ such that s < s” < s’.

Given a set of variables X, a Z-term of sort s in Yz (X), is either a variable x

such that sx s s, or has the form f(t, , . . . , ,, , t) where f: s, . . . s, + so is a function

declaration in 2 such that s Oss and tieTz(X),y, is a term of sort si, for l<isn.

The sort of a many-sorted term t is uniquely determined and will be denoted s’

in this paper. For both order-sorted and many-sorted terms t we use the notation

t : s to indicate that t is a term of sort s.

’ If < is a strict partial order, by > we denote its inverse and by s we denote < u =

6 H. Ganzinger

A ,X-equation is an ordered pair of Z-terms u and v of the same sort written as

u = v. A conditional equation over 2 is a formula of form C ---, u L- v, where u = v

is a X-equation and C is a finite conjunction of E-equations, written u1 =

VI). . .) u, = v,, n 2 0. If E is a set of (conditional) Zequations, by E = we denote

the set

E’={C+u-vlC+u=v~E or C+V=UEE}.

For unconditional many-sorted equations E, rewriting (by applying the equations

from left to right) is defined as usual. The one-step rewrite relation is denoted by

+E. E-normalforms of terms t are denoted by tJE.

An order-sorted (equational) specijication consists of an order-sorted signature 2

and a set E of conditional E-equations.

If 0 is a syntactic Z-object, i.e. a term or (conditional) equation, by var(0) we

denote the set of variables occurring in 0. A X-substitution is a function u from

E-terms to I-terms such that (i) if u is a term of sort s, then a(u) is a term of sort

s and (ii) a(f(t,, . . . , t,)) =f(a(t,), . . . , (T(t,)). We will mainly use the notation uu

for u(u).

An order-sorted signature 2 is called pre-regular, if for any Z-function symbol f

and every string s, . . . s,of~-sortstheset{S((f:S,...S,~s)~~,s~...s,~S~...S,}

is either empty or has a minimum element. _X is called regular, if for any string

Sl.. . s, of X-sorts such that there exists a function declaration (f : S, . . . F,, + S) E 2
with sl. . . s, Q 5,. . . S,, then there exists a least (si, . . . , _s,, _s) such that (f : 3,. . .sn +

_s)E~ and s,...s,,~~i...~~. Regularity of a signature implies pre-regularity.

Pre-regularity ensures the existence of initial algebras in the semantics of [25].

For the semantics of [12], regularity is a sufficient condition for the existence of

initial algebras. Although the notion of order-sorted deduction which is used in this

paper corresponds to the semantics of [121, pre-regularity will already be a sufficient

condition for the syntactic properties on which our approach of order-sorted comple-

tion is based.

An order-sorted signature is called coherent, if each equivalence class of sorts

under the equivalence closure (S u 2)” of c has a maximum.

From now on we will assume order-sorted signatures to be finite, pre-regular and

coherent.

3. Translation of order-sorted specifications

3.1. Many-sorted representations of order-sorted terms

Definition 3.1. Let 2 be an order-sorted signature. Its translation into a correspond-

ing many-sorted signature I;“” is defined as follows:

(1) the sorts in S”” are the sorts in S,

Order-sorted completion: the many-sorted way 7

(2) iff:s,. . . s, + so is an operator declaration in 2, then fr ,,.., (._,~“: sl. . . s, + so E
ms

fi 3
(3) if s 4 s’ in 2, then T~‘E 0”“. ts’ is called a (basic) injection.

The translation disambiguates overloaded function symbols and introduces injec-

tions tf’ to represent the inclusion of s in s’. Injections along chains of subsort

relations can be represented by terms in elementary injections. As there may be

more than one way of going from an s to an s’ we have to order these paths if we

want a unique representation. For that purpose we assume the partial subsort order

< to be extended to an arbitrary but fixed total order Q on S. The same notation

is used for the lexicographic extension of Q to sequences of sorts. (This is different

to the extension of 4 to tuples which we have used to define the regularity properties.

The latter was defined component-wise. Hence, G is usually a proper subset of Q .)

Now we define composite injections to proceed along minimal paths in the subsort

graph.

Definition 3.2. Let s < s’. Furthermore let s,s,_, . . . sO, n 2 0, be a sequence of sorts

minimal wrt G such that s0 = s, s, = s’, and si 4 s,+, , for 0 < i < n. Then

is called the minimal composite injection from s to s’, denoted as t:‘. (If s = s’, tz’

is empty, denoting the identity. In this case, tt:‘= t.)

Note that if s 4 s’, the basic injection is at the same time the minimal injection

from s into s’. Where no confusion can arise we will write tt”’ for tra’.

We can now go on and define mappings between order-sorted terms and their

many-sorted representations as terms over 2”‘“. Any many-sorted term t in 1””

represents one unique order-sorted term [t 1 which is obtained by deleting injections

and by collapsing the disambiguated operator symbols into the original overloaded

symbol.

Definition 3.3. The type erasingfunction I_ 1: Tzm,5(X) + Yz (X) is inductively defined

as follows:

(1) if x is a variable, then [xl = x,

(2) Ifsl_._s,,+so(fl,. . . I tn)l =f(Tt11,. . . 2 [tnl), for non-injections fs,_..s,_s,E Oms,

(3) [tt:‘l= [tl, for injections Ts’E 0,‘.

In the reverse direction, 1-1 will compute the lowest parse of an order-sorted term.

Definition 3.4. The lowest purse 1-j : FE(X) + Tzmr(X) is inductively defined as

follows:

(1) 1x1 = x, for variables x: s E X,

(2) Let ti be given and let [ti] E T,,m,(X),;, 1 s is n. Then

lf(4, . . . , L)J =L ,... .,,+,,(ltlJ Tf:, . . . , 101 ?I;,),

8 H. Ganzinger

wheref :s,.. . s, + so is the operator declaration in 25 for which s,,sr . . . s, is minimal

with respect to Q such that si s si, 1 s is n.

(3) For E-substitutions u the lowest parse [a] is then defined to be the (many-

sorted) substitution {XH [xa] tSX 1 x E X}.

As we are putting the codomain s0 off at the beginning of the sort sequence

SOSl. . . s, when looking for a minimal declaration forf, [tj will always have a lowest

possible sort with respect to Q . Due to the pre-regularity of the signature, s0 will

also be minimal with respect to the subsort order. We observe the following

properties.

Proposition 3.5. [[tJ 1 = t and s ““’ s s’.

3.2. Computation of minimal parses by rewriting

The lowest parse of an order-sorted term is a corresponding many-sorted term

of lowest possible sort and unique for pre-regular signatures. On the other hand,

different many-sorted terms can represent the same order-sorted term via i-1. In

this section we describe a canonical set of rewrite rules over 2,’ which, for any

given many-sorted term, computes the lowest parse of the order-sorted term [tl it

represents.

The set of rules consists of rules for computing the minimal path (with respect

to <) between any two sorts s <s’ and of rules which represent the inheritance

axioms for overloaded function symbols on the intersection of their domains.

Axioms (CI) for composite injections

s~~‘+x~~“, for s<s’<s”, if T:“#Tt:‘ot:‘.

Axioms (INH) for inheritance

“L ,... S,+S,(xlT;;, . . . 1 XnT;) =L;...s~-&1?5j>~ . . > x.r;n;,

iff:s,.. .s,+Q and f :s;. . . s: + s& are operator declarations, s&c so, shs; . . . sk Q

SOS,. . . s,, and ii are maximal sorts (with respect to <) such that fi s Si and gi s S; .’

We will now prove that the equation system LP = CI u INH, oriented from left

to right, forms a canonical system of rewrite rules. First we will define a precedence

on 2,’ -operators such that the induced recursive path ordering proves the termina-

tion of the system.

’ Formally it would make no difference if one simply introduced an equation for any S; for which

$ c s, and :i s s:. However, (INH)-axioms for maximal Ft subsume (INH)-axioms for non-maximal ones.

Order-sorted completion: the many-sorted way

Definition 3.6. By >, we denote the following partial order on a”“:

(1) t$ >I r:, iff si < s2 or if s$ = s2 and s: < s, , for injections tz and r;i.

(21 L I.... \,l+s,, >I t:, for any order-sorted operator f and any injection tz’.

(3) fl,... s,,‘30 > Ifs;...S;,+Sr;, iff sbs: . . .sL Q sosl. . .s,, for any two declarations

f :s;. ..s~+s~ and f :s,. . . s, + so of the same order-sorted operator symbol f:

By >, we also denote the recursive path ordering on Tzmr(X) induced by >,.

Proposition 3.7. For any equation L = R in LP, L > , R.

The confluence of the system will be proved using the following proposition.

Proposition 3.8. If

is some composite injection from so to s, , n a 1, then J(x) + F, XT 2 .

Proof. Induction over n: If n = 1, J(x) = XT:;. If n > 1, J(x) = J’(x)?:_, . By induc-

tion hypothesis, J’(x) -Fr xTf;ml. Now, either

xt~;-lt~::_, = XT.:; or xt:;mltk_, = xt$

is a rule in (CI). 0

As a consequence we have J,(x) kc-, J*(x), for any two composite injections J,

and J2 from s to s’.

Lemma 3.9. For any two Ems- terms t : s and t’ : s’ such that s =S so, and S’S so, we

have [tl = it’], i# tt”o =Lp t’t”o such that the = Lp-proof only involves intermediate

terms smaller than tt”o r)r t’?‘o with respect to >[.

Proof. The “*“-case is trivial as [N 1 = [Ml, for any equation N = M in LP

We prove the “*“-case by induction over the structure of t.

Let t =x: s be a variable. Then, t’= J&x) with some composite injection J,,,.

from s to s’. Hence from Proposition 3.8,

Since this proof applies CI-rules from left to right, the requirement about the

complexity of the intermediate terms is satisfied.

If t = t,TS, then [t,l = [t’]. In this case, using Proposition 3.8,

t t SO= tlt’t’o**c, t,TFo =LPt’p.

Hereby, the last equivalence is the induction hypothesis, involving only intermediate

terms smaller than t,T’o or t’t”. Altogether, a proof of the required form has been

constructed.

10 H. Canzinger

Now let t =fF,___.5,,_5(fl, . . . , c,). Then, ~'=_h...r,,-~(fI, . . . , G)t“ and rt,l = I&l,
i _, - 1 s is n. Thus, 1 r&l] = 1 It;] J =: ii_ From Proposition 3.5 we obtain s ’ -. s, S si and

Fi s s,. The pre-regularity of E implies the existence of an operator declaration

f : 3,. . .s, + _s with minimal s such that s’, s s,, _s s s and _s s 5. Furthermore, we may

choose f such that ~3,. . ._s, is minimal with respect to Q . From the INH-equations

we immediately see that

& ,... ,,,+c(ilYl,. . . , LY9+2pfF ,... r,,-,(W~~. . . , WW
and

& ,... ,,+,(&?‘I,. . . , W9--*Lpf* ,._. 5,,+5(W1,. . . , kp)t’.

From the induction hypothesis we infer

ti =Lp i;T”l

and

r, ZLP Q’8

involving only terms smaller than tt‘o and t’t’c~. Finally,

Xt”t“tYW& XTro +*c, x~3~S(~.

Altogether we have constructed the following proof

tt”ll=$,....~,,-.~(fl, . . . > tn)t‘”

in which the intermediate terms are all smaller than tt*~ or t’t”. 0

An immediate consequence is [t]?‘ [u] =LP lt~]?‘, for terms t: s and

substitutions V.

Proposition 3.10. The set of rules LP is locally conjluent, hence confluent by

Proposition 3.7.

Proof. As both sides of any critical pair are equal under r-1, we may apply Lemma

3.9 and conclude the existence of a “subconnected” proof of s =Lp t, i.e. a proof

which involves only terms smaller than or equal to s or 1. Therefore, the local

confluence follows from the extended critical pairs lemma of [27]. 0

Order-sorted completion: the many-sorted way 11

From Propositions 3.7 and 3.10 it follows that LP is convergent. We will now

prove that the LP-normalform of a term t represents the lowest parse of the

corresponding order-sorted term [t 1. More precisely,

Lemma 3.11. Let t E T,,,,>(X), and s”“’ =: s’s S”G s.

(i) [[tl] t“’ is irreducible under jLp.

(ii) t>, [[tljt”‘.

Zn particular, from (i), Lemma 3.9 and Propositions 3.7 and 3.10, we have that

t4 LP = LTtlJ?‘.

Proof. (i) The irreducibility of] [t 11 t “’ follows from the fact that]] t 11 contains

only minimal instances of overloaded operators which cannot occur on the left side

of ZNH-rules. Moreover, if a (composite) injection from s, to s2 occurs in 1 It]_/ t“‘,

it is the minimal one t :; which is irreducible under CZ-rules.

(ii) From (i), Lemma 3.9 and Propositions 3.7 and 3.10, we have that

r+:p l[tllt’. H ence, t &, l[tlJt’. If s”= s, we are done. Otherwise, s”< s which

implies that any elementary injection in t T:’ is smaller in precedence than the topmost

elementary injection in t’:,. As a consequence, l[tl]t’>, l[tlJt”“. 0

Altogether we have shown that two terms t , , t2 E T,)zl\(X) are representations of

the same order-sorted terms, iff they are equivalent under LP. Moreover, the

equivalence can be decided by rewriting the appropriately injected terms to their

+L,-normalforms.

3.3. Order-sorted deduction and rewriting

The notion of order-sorted deduction here corresponds to the variant of order-

sorted logic in [12]. To avoid the problems related to empty types, we assume that

all sorts are inhabited, i.e. have ground terms of that sort. We assume X to be a

fixed set of variables that has infinitely many variables for every sort. Order-sorted

deduction can be described by the following set of inference rules which we have

adopted from [ll].

Definition 3.12 (order-sorted deduction). Let E be a set of order-sorted equations

over 2.

Reflexivity

Ett-t, for any tEFA(X).

Symmetry

Ekt=t’

Ekt’=t’

Transitivity

Ett-t’ E k t’ = t”

Ett=t”

12 H. Ganzinger

Congruence

Ekxe-x0’, VxEvur(t)

Ek-ze=te ’

for 13, 8’ substitutions and t E .Yz (X).

Substitutivity

Ettif9=t~0, 1GiGn

Et-rte-t’e ’

for t, = t:, . . . , t, = tk + t = t’ E E and 8 a substitution.

Let, in the following,

=E=,IJ, =!A,

where =“, = (b and t =E t’, iff t =E n-1 t’ or if there exist uj, u; such that uj = E-’ uj

and t= t’ can be derived from u, = uj using one of the above inference rules. Clearly,

E E t = t’ iff t =E t’. Observe also that order-sorted deduction coincides with many-

sorted deduction in case 25 is actually a many-sorted signature.

We will now extend our notion of lowest parses 1-J to unconditional equations

in the obvious way. Let t, z t2 be an order-sorted equation, and assume that si = s”~‘.

Then

where s is some minimal sort such that t,, C,E TX(X),. (There may be more than

one choice for s. This, however, is irrelevant in our context.) In particular, if s2 s s, ,
the left side of [tl = t2J will not have an injection as the top symbol.

Now let

E#=CIvINHuINu LE],

where

lE]={...lti=tjJ...+ [t=t’jI...ti=t;...+t=t’~E}

are the minimal parses of the equations in E and where

IN={x+y+x-y/ +nm”}

is the set of injectivity axioms for the basic injections in Em’.

The following is the proof-theoretic equivalent of the satisfaction theorem in [lo].

Theorem 3.13. For tl, t,E T’-(X),, t, =E# t2, 8 [tll =E rtz]-

Proof. The “*“-case is trivial as the images of ES-axioms under

trivial equations or E-axioms.

1-1 are either

Order-sorted completion: the many-sorted way 13

The “*“-case proceeds by induction over n in = E. The base case n = 0 is trivial.

The induction step is structured according to the inference rules for order-sorted

deduction.

Reflexivity: Suppose t = ;” t by reflexivity. As t = [r, I= [f21, we infer from

Lemma 3.9 that t1 =Lp tZ.

Symmetry: This case follows trivially from the symmetry of =E*.

Transitivity: Suppose, It, 1 = g t’ and t’ = g I&]. This case is proved by first

observing some basic relationships between the involved sorts. There exist sorts s1

and s2 such that It,], t’E TX(X),, and [t2], t’E LT~(X),,. Furthermore let _s, = sLr’~“,
_s2=sLr511, and s’ = s ‘I”. Now let S be the maximal element of the connected

component

The induction hypothesis provides

as [tlT”l = [tll, [[t’Jt’l= t’, and [t2t”l = [t,].Thus, t,f’=,+ t2tS,yielding tl =E# t2

by the injectivity axioms for the injections.

Congruence: Let [t, 1= tOI, [tz] = t&, and x0, = E x0,, for any x E var(t). Define,

for i=1,2,ai= lfI,].Then, [[tjail= [&I. Hence, ti =Lp lt]cTi’f”.xa, =,#xa,isthe

induction hypothesis. This gives us t, = Es t2 from the congruence properties of = ,+.

Substitutivity: Suppose, . . vi = vi. . .+ u = U’E E, vi0 = g vie, and ~0 = ItI], u’0 =

[f2]. Again let (T = 16 1. From the construction of LE] there exists an equation

. . . b,=b:...+a-a’E [EJ such that [b,O]=viO, [b~a]=v:O, [m]=uB and

[u’a] = u’8. Hence, U(T = E a’~, using this equation and the induction hypothesis.

As [aal = [tll and [~‘a]= if*], the remaining problem is to coerce the sorts. Let
c10 a’V s =s = s’ and 3 = s”‘l”. Then, 3 s s, s’, hence there exists S such that s, s’s S.

Therefore,

Hence, by the injectivity axioms, t, =p t2. 0

This theorem proves the equivalence of order-sorted deduction in E with standard

many-sorted equational logic in E#.

We now go on and compare order-sorted rewriting to many-sorted rewriting. As

an order-sorted (conditional) rewrite rule we admit any order-sorted conditional

equation C + I = r.3 We call an equation a rule whenever we want to emphasize its

use from left to right in replacements of equals by equals. Formally, rules and

equations are the same in this paper.

3 One often finds additional restrictions about the variables such as (var(C) v vnr(r)) c var(I). These
conditions matter only if one is concerned with the decidability of the rewrite relation.

14 H. Canzinger

Definition 3.14. Let R be a set of order-sorted rules and A a set of order-sorted

equations. A term t E YE(X) rewrites to t’ modulo A with a rewrite rule p = C + 1~ r

in R, which is denoted t jRIA t’, whenever

(1) t =A w, u is a substitution such that w/o = lu, w’ = s[ro],,, and w’ =+, t’,

(2) there is a sort s such that, for x a variable of sort s, w[x], is a well-formed

term and lu, ruE FE(X),,

(3) for any r4 = u E C there exist terms u’ and v’such that uu -+z,a u’, vu +:,a v’,

and u’ =A v’, with --+zla the reflexive and transitive closure of +RIA. In this case

we also write uu JRla vu.

The least fixpoint of this recursion defines jRIA. That is, +R,A=U+RIA,n,

where +R,A,O=O and where -s~/*,~+, is the set of one-step rewritings in which

the rewrite proofs for the conditions can be carried out in lJj_ -z~,*,~. Where A

is empty, we will simply write --zR and -_*R for +RIA and +z,*, respectively. In

this case, jR is just ordinary conditional rewriting. For many-sorted rewriting,

which is just order-sorted rewriting for many-sorted signatures, the second condition

of the previous definition becomes trivial.

Order-sorted rewriting with R corresponds to many-sorted rewriting modulo LP,

using as rules the lowest parses of all specializations of R. To formally introduce

the notion of specialization it is useful to define the notion of a sort assignment. A

sort assignment is a map (Y : X + S, where X is the set of names of variables in X.

Hence, a sorted set of variables is a pair (X, a), denoted X,. Sort assignments

inherit the subsort ordering such that (Y G CK’, iff Q(X) < a’(x), for any x E X. A

specialization is a substitution p : X, + X,., where (Y’S (Y, sending x : a(x) to x : a’(x).

To specialize an order-sorted term of formula 4 means to apply a specialization to

4. If @ is a set of order-sorted terms of formulas, by Qs we denote the set of all

specializations of terms or formulas in @.

Theorem 3.15. For any n 20, u -+lRsjlLP,n v ifs [ul -+R,n Iv]; hence u *LR,JILP v ifl

lU1+R TV].

Proof. The “only if” case is obvious. For the converse, the proof will be by induction

over n. The base case n =0 is trivial. Suppose now that [u] -+R.n+l Iv]. Let X =

(X, (Y). According to the definition of order-sorted rewriting there exists a term N

and an occurrence o in [u] such that [u] = N[lu],,, TV] = N[ru],, N= [u~[x]~,,

where x is a variable of sort s such that la, ru E .Yx(X),v, and where T=

1, = r, , . . . ,I, f r,, + 1~ r E R is the rule that is applied in this rewrite step. As lu, ru

both have sort s, there exists a specialization p : (J?, a) + (J?, a’) of T such that lp

and rp are terms of sort s, and such that, for any x in X, [xu] has the form
]xuJ = tJa(x) =LPfxTa’(x)Ta(x). Let r be the substitution that maps any x: a’(x) to

txt a’(x’. The substituted condition equations of T are satisfied, i.e. l,u+& t, and

r,u --+& ;. t From the induction hypthesis we infer that

]k]?“r JIR.4lLP.n lriplt”Ty

Order-sorted complerion: the many-sorted way 15

if IT,] has the form ll,pJ~“l- [r,p]t”l,. . . , [l,,pJtS~~- [rnp]‘fS,z+ llpJt’- LrpJt”.

Obviously, s ““’ s s ‘IpJ s s and s lro’ G s ‘v’ c s. According to Lemma 3.9 we obtain

the LP-congruences

1laJ T’ =Lp [ZaJ T,““‘TS

= LP lb1 fr‘

= [lpJt”r

+lRsI/LP,n+l lrPl tT7

= lrp]rt‘

=Lp [raJy”I”y

= Lp lruj T‘.

If we now denote by o’ that occurrence of x in IN] which corresponds to the

occurrence o in N, we have shown that

u’= lNJ[l~~ltFl~.~~R.~,,LP,n+, lNJ[lr~jt”lo,= 2)‘.

Then, for an appropriate injection J, u =LpJ(~‘) +~~\-~~~p,~+i J(v’) =Lp 0, from

which u +jRsJILP,n+, u is inferred. 0

This theorem proves that order-sorted rewriting is equivalent to rewriting the

LP-equivalence classes of the many-sorted representations of terms, using the lowest

parses of the specializations of the order-sorted rules as rewrite rules. If ‘R is

convergent, [R,J/LP is also convergent. (A rewrite system is called convergent if

it is confluent and terminating.) Convergence of R is by itself not sufficient to ensure

convergence of the somewhat more practical rewrite system [Rs] u LP Suppose

we have subsort relations s < s, < s’, s < s2 < s’, constants a : s, b : s,, and a - b as

the only rewrite rule in R. If s2 Q s,, CI consists of xTFIT”= x?‘zT”. Therefore,

aT’2T” +lRjuLP a?“?“+~R]uLP W”

is a non-convergent peak in 1R J u LP However, R# = lRsJ u LP is convergent if

R is convergent and sort-decreasing, as we shall see below.

Definition 3.16. An order-sorted rule C + s = t is called sort-decreasing, iff for any

specialization p, sp = tp has a lowest parse such that sLsp’ 2 ~1’~‘. A many-sorted

rule C + s = t is called sort-decreasing, iff the left side s does not carry an injection

at its top. A set of rules is sort-decreasing if each of its members is sort-decreasing.

If we are given a reduction ordering > on FZ (X), it can be extended to a reduction

ordering >“” on TE~~~~ (X) which is compatible with =Lp, simply by defining t >“” t’
iff It]> It’]. Another reduction ordering -+ on T,,~~~(X) is obtained by defining

t-+ t’, if (i) it]> it’1 or (ii) [tl= It’1 and t 2, t’, where >, is the recursive path

ordering that we have introduced to order the LP axioms. This ordering proves

termination of both -+tRFJILp and jRP, if R is contained in t.

16 H. Canzinger

Theorem 3.17. Let R be a set of order-sorted rules.

(i) R is sort-decreasing if and only if R# is sort-decreasing.

(ii) Let R be sort-decreasing. R is convergent if and only if R# is convergent and

+,RSIILP is terminating.

(iii) If R” is convergent and sort-decreasing, then, JR+ = = E+, i.e. for any two terms

u, VE Ts-s(X), we have u =E# v, iflu &n# v.

Proof. (i) R is sort-decreasing, iff for any specialization p and any rule C + s = t

in R, sp = tp has a lowest parse such that sLSpJ 2 s”“. According to the definition

of lowest parses for rules, the latter is equivalent to [sp = tp] = lsp] = LtpJ T”“‘.

(ii) SUppOSe, R# iS COmWgent and +LRSJ/Lp is terminating. From Theorem 3.15

and the sort-decreasingness of R, u +R v implies]uJ +lRJILP]vJ~“~~‘. Hence R

is terminating. The local confluence of ‘R follows from Theorem 3.15 and from

the confluence of R#.

If, conversely, R is convergent, then both +lRSJILP and R# are contained in --+

and hence are terminating. It remains to prove the local confluence of R#. We will

show that for any peak v cR# u -+R* t there exists a proof of v AR# t which only

involves intermediate terms smaller than u wrt -+. We have to distinguish four cases,

depending on which kind of rule (either in LP or IRS]) has been applied in any

of the two rewrite steps.

The case in which both rules are in LP is proved by Proposition 3.10.

Let us now assume that both rules are in lRs] . Then, from Theorem 3.15,

]u] +-R [ul +‘R [tl, hence TV] -g r +z [tl, by confluence of R. Applying

Theorem 3.15, we obtain v+TRJILp [r]?“” +TR]/Lp t. (The lowest sort of r is less

or equal to the lowest sorts of v and t as R is sort-decreasing.) This proof of v = R# u

involves applications of LP-congruences and applications of rules in [RJ in terms

smaller than u wrt tms. As > mS is compatible with LP, all intermediate terms in

the complete proof are smaller than u wrt -+.

For the mixed cases assume that v tR# u by applying a rule Z= r E LP and

u +R# t by applying a rule C + a = b E lRsJ . As the critical pairs lemma can only

be proved for reductive conditional rewrite rules [16], it is not sufficient to just

consider the case in which both rule applications overlap at a non-variable occurrence

in a. Let us, however, start with this particular case by noting that there cannot be

an overlap of a at a non-variable occurrence in 1 below the top of 1. The top symbol

in a is not an injection. Hence, overlaps are only created by unification of I with

a non-variable subterm of a (including a). They yield mgus T which send any

variable in a to a composite injection. (I is either a composite injection itself, or it

is a linear term of form f (t, , . . . , t,), with a non-injection f at the top and composite

injections ti as subterms.) Hence](C + a = b)T] is a specialization of C + a = b.

Now, rewriting the r-part in v to LP-normalform makes 1 [aT= bT]J applicable

and rewriting with this rule produces a term t’ which is LP-congruent to t. This

completes the construction of the subconnected proof of u = v, except for one detail.

We need to show in addition that the proof of convergence of the condition instances

Order-sorted completion: the many-sorted way 17

in C upon u +R# t carries over to a proof of convergence of the condition instances

in [[CT]] . If C is empty, this is trivial. Otherwise, supposee, u -+R#,n+l t. Then,

the proofs for the C-instances are in 6R#,n and n 2 1. As []]Cr]J] = [CT], we

obtain from Theorem 3.15 [[CT]] c @+IRsJILP,n. As the LP-rules are all uncondi-

tional (i.e. all LP-steps occur on level l), and +R#,n 0 +R#,n c JR* by the induction

hypothesis, AIRs~lLp,,, G JR+. This provides us with the required proof of conver-

gence for the conditions] [CT] J .
The remaining non-trivial subcase is the one in which the two rewrite steps occur

one above the other. If the LP-step is above the IRS] -step, there is no problem, as

the equations in LP are unconditional. The converse case is proved again by

induction over the recursion level in rewriting. Rewrite proofs for condition instances

allow us to construct rewrite proofs for LP-rewritten condition instances as both

the original and the rewritten condition instances are proved on the same (smaller)

recursion level.

(iii) We have to prove that the injectivity axioms for the injections are logical

consequences of the equational theory = R#, if R# is sort-decreasing and convergent.
Let xTS’ayt”‘+x= y be an injectivity axiom and u a substitution such that

xt”‘a =R# yt”‘~. Then there exists a rewrite proof of form

where x’ and y’ are the normalforms of X(T and ya, respectively. The proof

x’?.” +z# u +z# y’t”’ can only involve the rules for the composite injections in CI

which rewrite injections to injections. As both x’ and y’ are irreducible, x’= u’?’

and y’ = u’Tc, with u’ some term that does not have an injection at the top. Therefore,

x’ = y’ and hence xu = R# yu, which was to be shown. 0

3.4. Eliminaton of non-sort-decreasing rules

Theorem 3.17 requires order-sorted rules to be sort-decreasing for the construction

of an equivalent convergent system of many-sorted rules. Likewise, order-sorted

completion as proposed in [111 requires rules to be sort-decreasing and fails, if

non-sort-decreasing rules are generated. We shall see in Section 5.1 that translating

into many-sorted specifications and applying conditional equation completion (to

deal with the injectivity axiom of injections) is successful in simple cases of non-sort-

decreasing rules. In many interesting cases, as in the subsequent example, the

completion procedure which we will describe in Section 4 will not terminate.

Example 3.18

sortnzNat<nat, nat<int,nzNat<nzInt, nzInt<int

OP
0 : nat

s : nat + nzNat

18 H. Ganzinger

+:int*int+int, nat+nat+nat, nat*nzNat+nat

nzNat+nat+nat, nzNat*n.zNat+nzNat

-:nat+int, nzNat+nzInt, int+int, nzInt+nzInt

*:int*int+int, nat*nat+nat

square:int*int+nat

var i:int, j:int, n:nat

axioms

-(O)=O
-(-i)=i

i+O=i

O+i=l

k+s(m)=s(k+m)

(-s(k))+s(m)=(-k)+m

i+(-j)=-((-i)+j)

i*O=O

O*i=O

i*s(n)=i*n+i
i*(-j)=-(ixj)

(-i)*j=-(i*j)

square(i)=i*i

The last axiom, when oriented from left to right, is clearly not sort-decreasing.

A specification with the same initial algebra would be the one in which this equation

is replaced by

i * i = n + square(i) = n,

with n a variable of sort nut. This equation, when oriented from left to right, is

sort-decreasing. However, it has the extra variable n in its condition and right side.

The lowest parse of this equation would be

i* j-h?‘” --, square(i) L- n.

Equations of this kind are usually not admitted as rewrite rules. In fact, we plan to

associate a specific operational semantics with it. square(i) may be replaced by any

n which can be obtained from normalizing i * i and type checking the result by

matching nTrn’ with the normalform. If the normalform is unique, this process of

finding the substitution for i and n at rewrite-time is completely backtrack-free.

Deterministic oriented goal solving is not a complete goal solving method in general.

Fortunately, an adequately designed completion procedure can make it become

complete.

This idea of replacing non-sort-decreasing equations by sort-decreasing ones

should be obvious, not requiring any further formalization. However, we should be

saying something about whether this replacement preserves the initial algebra of a

specification. We assume to be given a set E of order-sorted equations, as well as

its many-sorted equivalent ES.

Order-sorted complerion: the many-sorted way 19

Definition 3.19. Let C be a set of unconditional equations and let t E Tz (X), be a

term of sort s, var(C) c X, and s’ s s. We say that t is of El-type s’ in context C,

where E’ G E, if for any ground substitution (T of the variables in X (i) E t- Cu

iff E't Cu, and (ii) if Et Cu, then there exists a term U,E T=(X),, such that

E’I- ta= u,.

In our example above we have i * i of type nut in the empty context as, for any

ground substitution, i * i is equal to s’*‘(O), a term of sort nut.

Proposition 3.20. Let e = C + 1 = r be a conditional equation in E and let r be of

E\(e)-type s in context C. Then, replacing C + I= r by

C,r-x+1=x,

with x a new variable of sort s, preserves =E on ground terms, and hence the intial

algebra of the specification.

4. Completion of many-sorted conditional equations

In this section, we will assume to be given a fixed many-sorted signature Zm5.

Equations, terms, substitutions, etc. will be taken over this signature, unless specified

otherwise. Furthermore, we assume a reduction ordering > to be given on T,,~~~(X).

>rr will denote the transitive closure of > u st, with st the strict subterm ordering.

>%, is well-founded and stable under substitutions.

4.1. Annotated equations and reductive rewriting

At completion-time we do not put any restrictions on the syntactic form of

conditional equations. In particular, conditions and right sides may have extra

variables. However, the application of equations at rewrite-time should be restricted

to achieve decidability of the rewrite relation. Completion, if it terminates, will

guarantee that this restricted application is complete. Formally, application restric-

tions can be modelled by considering a given set E of equations as a generator for

rewrite rules.4 In particular, the set E’ of reductive instances of the equations in E

is of interest:

E’={Cu+su==tuIC+s= tEE~,sa~tu,su>,,uu,su>,,vu,

for any u = v E C}.

In the general case, jEr is undecidable and requires (restricted) paramodulation

to solve conditions of equations in E. Furthermore, the computed solutions have

to be tested for reductivity. In order to make rewriting decidable and not too

inefficient, our goal is to be able to appropriately restrict application of equations

at rewrite-time.

4 In [4] we develop a more general concept of application restrictions based on a notion of relevant
substitutions.

20 H. Ganzinger

We will annotate equations to specify in which way their use at rewrite-time

should be restricted. For the purposes of this paper, an equation can be annotated

as operational or non-operational. The intuitive meaning is that a non-operational

equation should not contribute at all to the equational theory. Injectivity axioms,

for example, should be irrelevant at rewrite-time.

In operational equations C + s = t, condition equations u z v E C will be annotated

as either oriented or unoriented. We will use the notation u G v to indicate the

annotation “oriented”. For an oriented condition, oriented goal solving is wanted.

Altogether:

Definition 4.1. Let E be a set of annotated equations. E is viewed to generate the

set E” of rewrite rules Cu+ su= ta such that

(1) c+s== t E E= is annotated as operational and Cu+ su = tu E E’, i.e. the

instance is reductive,

(2) if u G VE C, then vuu’ is +,.-irreducible for any +.a-irreducible

substitution u’.

Clearly, -+Ea G +a’ c +E, where the subset inclusions are in general proper,

hence AEn f =E in general. E is called complete, iff AEa = =E and if --+E~ is

convergent. A completion procedure attempts to complete an initally given E,, i.e.

attempts to find an equivalent and complete E.

In many practical cases, a final system E obtained by completion will have

additional properties which makes *Ea efficiently computable. For example, if

i* i&n?::, + square(i) = n.

with the condition annotated as oriented, is in a complete E, square(i) needs only

to be rewritten for those instances of i for which the +Ea-normalform of i * i is of

the form nt $:,‘, . Moreover, if i * i is smaller in the reduction order than square(i),

the replacement n will also always be smaller than square(i), making any application

of the equation reductive. No reductivity tests are required at rewrite-time. Equations

which have this property will be called quasi-reductive. Note that let-expressions

with patterns in functional programming languages such as MIRANDA are another

example of equations with oriented conditions (cf. definition of quicksort below).

4.2. Quasi-reductive equations

To simplify the formal treatment in this section, we can assume that operational

equations have oriented conditions only. (If an equation has an unoriented condition

u = v, we can replace the latter by the two oriented conditions u G x and v =S X,

where x is a new variable.)

In the classical case of unoriented conditions, the class of reductive equations

[17, 161 allows for efficient rewriting [181. In particular, conditions of equations are

easily proved or disproved, and no goal solving is required. Moreover, there are no

Order-sorted completion: the many-sorted way 21

reductivity tests required at rewrite-time, as any instance of a reductive equation is

reductive.

In the case of oriented goal solving there exists a similarly efficient class of

equations. Oriented goal solving U(T -+ z vu boils down to normalizing uu and then

matching vo with the normal form, if any of the variables of u is already bound

by the matching of the redex, or by the solution of some other condition equation.

To formalize this idea, we will have to look at how variables are bound within an

equation. We call a conditional equation U, = v, , . . . , u, L- v, -+ s = t (with oriented

conditions) deterministic, if, after appropriately changing the orientation of the

consequent and choosing the order of the condition equations, the following holds

true:

VUr(U;)cvur(S)U IJ (VUr(Uj)UVUr(Vj)),
Isjsi

and

vur(t)c vur(s)u ij (vur(uj)u vur(v,)).
j=l

Definition 4.2. A deterministic equation u, = v, , . . . , u, = v, + s = t, n > 0, is called

quasi-reductive, if for any substitution u the following is satisfied:

(i) for any OS i < n, if uju+ via, for 1 s j s i, then SW >S, ui+,o, and

(ii) if uja > via, for 1 s j i n, then su > vu.

An unconditional equation s = t is quasi-reductive if s z t.

The equation

i * izz n?‘“’ + squure(i) = n

becomes quasi-reductive under a recursive path ordering, if square > * in precedence.

Also quasi-reductive is

spZit(x, 1)~(Z,, l,)+sort(cons(x, I))-uppend(sort(Z,), cos(x,sort(Z,))).

The termination proofs can be given by an appropriately chosen polynomial

interpretation.

The following method appears to be useful for checking quasi-reductivity. Let us

assume the existence of some enrichment 1’ 2 1”‘” of the signature such that the

given reduction ordering on T,~T(X) can be extended to a reduction ordering on

T,.(X).

Proposition 4.3. A deterministic equation u, = v, , . . . , u, = v, + s = t, n > 0, is quusi-

reductive, ifthere exists u sequence hi([) of terms in T,,(X), 5 E X, such that s > h,(u,),

hi(h,+!(ui+,), 1s i< n, and h,(v,)+ t.

22 H. Ganzinger

Quasi-reductivity is a proper generalization of reductivity.

Proposition 4.4. If the equation u, - u,,, , . . . , u, = u2n + s = t is reductive, then the

equation

u,=x,, z&+,=x 1,‘. .) u,=x,, U*n==X”-+S= 4

is quasi-reductive, if the xi are new, pairwise distinct variables.

Lemma 4.5. Let E be finite and u, = v,, . . , u, = v, + s = t E E a quasi-reductive

equation.

(1) If a is a substitution such that uiu -_*E v,u, 1 s is n, then ~a> tu.

(2) If N is a term and N’+e” N” is decidable for all terms N’ such that N > *, N’,

then the applicability of the equation u, - v, , . . . , u, = v, + s = t in N is decidable.

Proof. The proof of (1) follows immediately from the assumptions and the fact that

uiu Z= v&r.

For the proof of (2), we note that because the given equation is deterministic,

any u which solves the condition is obtained by rewriting the uiui and matching

the rewrites against via,, where u, is that part of u which has been obtained after

having matched s against a subterm of N and after having solved the condition

equations up to index i - 1. Because of termination of +E~ there are only finitely

many irreducible r with uiu + zet r that need to be matched against viui, and, hence,

finitely many CT~+, which need to be considered for the next condition. As uju --+zo v;u,

and hence u,u> v,u, for 1 s j < i the quasi-reductivity implies that N >.S, su =

sui >c, ~,a,. Hence any of these r can be effectively computed, as we have assumed

the decidability of +E~ in terms smaller than N. 0

Corollary 4.6. Let E be a set of annotated equations in which any operational equation

is quasi-reductive. Then +e” is decidable.

For confluent +E‘a, the applicability of a quasi-reductive equation can be decided

by matching the left side and, then, for 1 s is n, matching the vi against the normal

forms of the substituted ui to obtain another part of the substitution. As quasi-

reductive equations are deterministic, each variable in u, is bound at the time when

the ith condition is to be checked. Computing the substitution u is completely

backtrack-free in this case. Moreover, no termination proofs are required at rewrite-

time.

4.3. Completion inference rules

Standard completion CC in the conditional case according to the concepts in [8]

and further refined in [4] consists of three inference rules for adding consequences

and of powerful techniques for eliminating redundant clauses and inferences. The

availability of the latter is crucial for an acceptable termination behaviour of the

completion procedure in practice.

Order-sorted completion: rhe many-sorted way 23

To explain the underlying theory in detail would go beyond the scope of this

paper. We will only briefly describe the basic inferences of completion and state

some major results. For detailed proofs of these results using proof orderings we

refer the reader to [3]. Proof techniques based on semantic arguments can be found

in [6,5]. These three papers also contain a detailed description of techniques for

eliminating redundant clauses.

Adding a critical pair

Definition 4.7. Let D + u = v and C + s = r in E - both be operational. Furthermore,

assume that their variables have been renamed such that they do not have any

common variables. Assume, moreover, that o is a non-variable occurrence in s such

that u/o and s can be unified with a mgu 0: Then,

Cu, Dv+ u[t],,a= V(T

is a contextual critical pair with superposition term uu, if u is potentially reductive

both for C+s-t and D+u= v. (We call w potientially reductive for C + s = t, if

su is a strictly maximal term in Ca + S(T = tu with respect to > .)

Critical pairs are computed to replace peaks in rewriting. This definition allows

us to superpose both sides of the consequent of any two operational equations to

form critical pairs. However we have restricted attention to such critical pairs which

can possibly appear in a peak of reductive applications. If (T is not possibly reductive

for one of the overlapping equations, it cannot be further instantiated to a reductive

application of the equation, and hence does not contribute to E”.

Adding a superposition instance

If a non-operational or non-reductive equation has a non-empty condition part,

superposition on a condition may be required to achieve that the equation will in

fact be irrelevant for the equational theory of the final system.

Definition 4.8. Let D, u = v + I= r in E and let C + s = t in E _ be an operational

equation. Furthermore, assume that variables have been appropriately renamed. Let

o be a non-variable occurrence in u = v such that (u = v)/o and s can be unified

with a mgu u. Then,

is called an instance of D, u = v + I= r by superposing C + s = t on the condition u = v,

if (T is potentially reductive for C + s = t, and if, in case vu and uu are comparable

under the reduction order, o is inside the bigger of the two terms.

24 H. Ganzinger

Adding a resolution instance

Definition 4.9. Let 0, u L- v + s = t E E such that u and v can be unified with an

mgu cx Then

Da+sa=tu

is an instance of D, u = v + s = t obtained by resolving the condition u = v (with

x=x).

Superposition and resolution instances are computed to achieve AEn = =E in the

limit. Only potentially reductive instances of operational equations need to be

superposed on conditions of equations. To improve the termination behaviour, one

should additionally avoid, as much as possible, the computation of superpositions

on conditions of instances of equations which are rewrite rules in E”. In particular,

superposition on the left side conditions of quasi-reductive equations such as

i * i & nTin’ + square(i) = n.

are redundant. Additionally, for non-quasi-reductive equations one may, as in [21],

adopt the strategy of superposing on maximal literals. Here, as in [8] and [4], we

propose to superpose on one specifically but arbitrarily selected condition. In many

practical examples this will lead to far less superpositions. Hence, for non-

operational equations and non-quasi-reductive equations which have conditions,

we assume that exactly one of the conditions is annotated as being selected for

superposition. As with any other annotation, this selection must not be changed

throughout the life-time of the equation. These considerations lead to the following

formal definition.

Definition 4.10. A resolution is called critical, if(i) or (ii) below apply. A superposi-

tion instance of D, u L- v + I= r is called critical if any of the following three cases

applies:

(i) Q u = v + I= r is annotated as non-operational and u = v is the condition

annotated as being selected for superposition.

(ii) D, u=v+l= r is annotated as operational, u = v is the condition annotated

as being selected for superposition, and neither Du, UC = vu+ ru= la nor Du,

uu =vu+lu= ru is quasi-reductive.

(iii) D, u=v+l= r is annotated as operational, u = v is annotated as oriented,

u is potentially reductive for either D, u = v + r L- 1 or D, u = v + 1~ r, and o, the

superposition occurrence, is inside v.

With these definitions, only paramodulation on the right side of any of their

oriented conditions is critical for quasi-reductive equations.

Order-sorted completion: the many-sorted way 25

4.4. Fair completion procedures

A completion procedure is a mechanism which applies these inference rules, or

removes redundant clauses. Starting from an initial set of equations &, it produces

a sequence E,,, E,, . . . of sets of equations, called CC-derivation, such that E,,,

results from Ej either by adding a conditional equation which follows from E,, or

by deleting an equation which is redundant in E,. (An equation is redundant in a

set E of equations, if it follows from “smaller” equations in E. We refer the reader

to [6] or [5] for a formal definition of redundancy.) Let E, = U, nkS, Ek denote

the limit system of this process. The required annotations of initial as well as

generated equations and conditions may be given in an arbitrary way by some kind

of “expert system”, e.g. the human user. Some annotations may result in a fair

completion and a successful terminaton of the process, whereas other annotations

may cause failure or non-termination. A completion process is called fair if it is

successful in the limit, i.e. if E, is complete. Annotations also may result in a final

set of equations for which -+ Em can be efficiently computed, particularly if all final

equations are either non-operational or quasi-reductive, (cf. Corollary 4.6).

The following fairness result has been proved in [8] (with the extension to unfailing

completion and oriented goals in [4]).

Theorem 4.11. A CC-derivation EO, E, , . . is fair, zf the following holds true:

(1) E, does not contain any unconditional equation annotated as non-operational;

(2) IJ Ek contains all critical paramodulation instances ofjnal equations by final

equations and all critical resolution instances offinal equations in E,;

(3) U Ek contains all critical pairs between final (operational) equations in E,.

Note that because of the first fairness constraint, completion may fail if a non-

operational equation without conditions cannot be reduced or eliminated during

completion. Completion becomes unfailing and, hence, refutationally complete for

the equational theory, if the given reduction order is total on ground terms and if

no unconditional equation will be annotated as non-operational (cf. [3]).

5. Order-sorted completion: the many-sorted way

In this section we illustrate by means of examples that our techniques of comple-

tion for conditional equations can be successfully applied to order-sorted

specifications. In the examples non-operational equations will be labelled by a “-“.

Moreover, we rearrange conditions of non-operational equations such that the first

condition is always the one which is selected for superposition. Operational

equations will all be reductive or quasi-reductive with the given orientation of literals

and ordering of conditions.

26 H. Ganzinger

5.1. Smolka’s example

Our first example is due to Smolka and shows the incompleteness of order-sorted

replacement of equals by equals (cf. [25] or [20]) in the case of non-sort-decreasing

rules.

Example 5.1

sort sl < s2

opa:sl,b:sl,d:s2,f :sl+sl
axioms

a=d

b=d

In this example, f(a) =f(b) can be derived by order-sorted deduction, however

it cannot be proven by replacement of equals by equals. The many-sorted equivalent

E" consists of the following equations.

Example 5.2

1 i(a)=d
2 i(b)=d

z- i(x)=i(y) * x=y

where i : s I+ s2 is the injection T if. Axiom 3 is the injectivity property of i. Orienting

1 and 2 from left to right creates the following final system of equations.

Example 5.3

1 i(a

3- i(x
4 i(x

5 b=a

)=d
)=i(y) * x-y

)=d * x=a

Equation 4 is generated from superposing equation 1 on the condition of the

non-operational injectivity axiom 3 (cf. fairness constraint 2). Here we have decided

to classify 4 as non-operational although it becomes a quasi-reductive equation

when orienting its literals from right to left. After this, 4 generates equation 5 from

superposition with equation 2. If b > a in precedence, equation 5 is reductive,

allowing us to eliminate equation 2 by reduction. Any other superposition on the

condition of 3 or 4 only generates redundant equations.

Order-sorted completion: the many-sorted way 21

5.2. Squares of integers

We return to the specification of integers as given in Example 3.18. The correspond-

ing set of many-sorted equations E # is given below. Here, injections t:’ are

ambiguously denoted by their codomain s’, e.g. int denotes both t $,,, and tz:,
The order-sorted rather than the many-sorted function symbols are used. x : s denotes

a variable x of sort S.

Example 5.4

1

2

3

4

5

6

7

8

9

10
11
12
13

-(O)=int(O)

-(-(i:int))=i

(i:int)+int(O)=i

int(O)+(i:int)=i

(k:nat)
int f-s

(i:int
(i:int

int(0)

+nat(s(m:nat))=nat(s((k:nat)+(m:nat)))
k:nat))+int(nat(s(m:nat)))=-(k:nat)+int(m:nat)

+(-(j:int))=-(-(i:int)+(j:int))

)*int(O)=int(O)
*(i:int)=int(O)

(i:int)*int(nzInt(s(m:nat)))=(i:int

(i:int)*(-(j:int))=-(i:int)*(j:int)

(-(i:int))*(j:int)=-(i:int)*(j:int)
(i:int)*(i:int)Gint(k:nat) *square

-_ ---

11

12

13
14

15
16
17

18

19

-

-int(Xl:nat)=-(Xl:nat)

-int(Xl:nzInt)=int(-(Xl:nzInt))

-nat(Xl:nzNat)=int(-nzInt(Xl:nzNat))

-nat(Xl:nzNat)=int(-(Xl:nzNat))
-nzInt(Xl:nzNat)=-(Xl:nzNat)
int(X2:nat)+int(Xl:nat)=int((X2:nat)+(Xl:nat))

nat(X2:nzNat)+(Xl:nat)=(X2:nzNat)+(Xl:nat)

int(X2:nat)*int(Xl:nat)=int((X2:nat)*(Xl:nat))

int(nat(X:nzNat))=int(nzInt(X:nzNat))
--_ -_

il- nat(X:nzNat)=nat(Y:nzNat)+X=Y
i2- int(X:nat)=int(Y:nat)JX=Y
i3- nzInt(X:nzNat)=nzInt(Y:nzNat)JX=Y
i4 int(X:nzInt)=int(Y:nzInt)*X=Y

)*int(m:nat)+(i:int)

(i:int)=k

The (ZNH)-equations have a number I1 to 18, equation Z9 is the only (CZ)-axiom,
the non-operational injectivity axioms are the equations il-i4. We have only intro-
duced (ZAFZ)-equations between any two neighboring operators (wrt <) as the
remaining ones are generated as critical pairs. The (ZNH)- and (CZ)-equations and
any other equation u = ZI for which [ul = [1 ZI will be oriented in the many-sorted

28 H. Ganzinger

world according to >,. Any equation u-v, for which [ul# [vl will be ordered by
a reduction order on the order-sorted terms. As >[is predefined (cf. Definition

3.6), the user need not be bothered with precedences between the many-sorted

operators. The result of completing this system is the following.

Example 5.5

1

2

2a

2b

2c

3

3a

3b

4

4a

5

5a

6

7

7a

7b

7c

8

8a

9

9a

IO

IOa

11

lla

llb

llc

12

12a
12b

12c

13

13a

-(O)=int(O)

-(-(i:int))=i

-(-(Xl:nzInt))=Xl

-(-(Xl:nat))=int(Xl:nat)

-(-(Xl:nzNat))=nzInt(Xl:nzNat)

(i:int)+int(O)=i

(X2:nat)+O=X2
(X:nzNat)+O=nat(X:nzNat)

int(O)+(i:int)=i

O+(Xl:nat)=Xl

(k:nat)+nat(s(m:nat))=nat(s((k:nat)+(m:nat)))

(X2:nzNat)+nat(s(m:nat))=nat(s((X2:nzNat)+(m:nat)))

int(-s(k:nat))+int(nzInt(s(m:nat)))=-(k:nat)+int(m:nat)

(i:int)+(-(j:int))=-(-(i:int)+(j:int))

(i:int)+int(-(Xl:nzInt))=-(-(i:int)+int(Xl:nzInt))

(i:int)+int(-(Xl:nzNat))=-(-(i:int)+int(nzInt(Xl:nzNat)))

(i:int)+(-(Xl:nat))=-(-(i:int)+int(Xl:nat))

(i:int)*int(O)=int(O)

(X2:nat)*O=O

int(O)*(i:int)=int(O)

O*(Xl:nat)=O

(i:int)*int(nzInt(s(m:nat)))=(i:int)*int(m:nat)+(i:int)

(xz:nat)*nat(s(m:nat))=(xz:nat)*(m:nat)+(X2:nat)

(i:int)*(-(j:int))=-(i:int)*(j:int)

(i:int)*int(-(Xl:nzInt))=-(i:int)*int(Xl:nzInt)

(i:int)*(-(Xl:nat))=-(i:int)*int(Xl:nat)

(i:int)*int(-(Xl:nzNat))=-(i:int)*int(nzInt(Xl:nzNat))

(-(i:int))*(j:int)=-(i:int)*(j:int)
int(-(Xl:nzInt))*(j:int)=-int(Xl:nzInt)*(j:int)

(-(Xl:nat))*(j:int)=-int(Xl:nat)*(j:int)

int(-(Xl:nzNat))*(j:int)=-int(nzInt(Xl:nzNat))*(j:int)

(i:int)*(i:int)gint(k:nat)Jsquare(i:int)=k

(i:int)*(i:int)sint(nzInt(X:nzNat))

*square(i:int)=nat(X:nzNar)

11 -int(Xl:nat)=-(Xl:nat)

12

13

15

16

17

18

19
110

Ill

112

113

114
115

il-

i2-

i3-

i4
i5-
i6-

--

Order-sorted completion: the many-sorted way 29

-int(Xl:nzInt)=int(-(Xl:nzInt))

-nat(Xl:nzNat)=int(-(Xl:nzNat))
-nzInt(Xl:nzNat)=-(Xl:nzNat)

int(X2:nat)+int(Xl:nat)=int((X2:nat)+(Xl:nat))
nat(X2:nzNat)+(Xl:nat)=(X2:nzNat)+(Xl:nat)

int(X2:nat)*int(Xl:nat)=int((X2:nat)*(Xl:nat))
int(nat(X:nzNat))=int(nzInt(X:nzNat))
int(X2:nat)+int(nzInt(X:nzNat))=int((X2:t))
int(nzInt(X:nzNat))+int(Xl:nat)=int((X:nzNat)+(Xl:nat))

int(nzInt(X:nzNat))+int(nzInt(Y:nzNat))

=int((X:nzNat)+nat(Y:nzNat))
int(X2:nat)*int(nzInt(X:nzNat))

=int((X2:nat)*nat(X:nzNat))

int(nzInt(X:nzNat))*int(Xl:nat)=int(nat(X:n~at)*(Xl
int(nzInt(X:nzNat))*int(nzInt(Y:nzNat))

=int(nat(X:nzNat)*nat(Y:nzNat))

: nat

nat(X:nzNat)=nat(Y:nzNat)*X=Y

int(X:nat)=int(Y:nat)*X=Y

nzInt(X:nzNat)=nzInt(Y:nzzNat)+X=Y

int(X:nzInt)=int(Y:nzInt)*X=Y
int(nzInt(X:nzNat))=int(Y:nat)*nat(X:Nat)=Y
int(nzInt(Xl:nzNat))=int(nzInt(X:nzNat))

andint(nzInt(X:nzNat))=(il:int)*(il:int)~X=Xl

1)

The final system also contains the lowest parses of many specializations (indicated

by letters a, b, c, . . .) of the initial order-sorted rules. This is in accordance with

Theorem 3.17. In a reduced final system like the one above, however, not all
specializations need to be present. The remaining (ZMZ)-equations 110-115 have
been added. Equation 13a has been generated from superposing 19 on the right

side of the condition of 13 (cf. Theorem 4.11). In this example, completion has just
verified the completeness of the initial system. No new order-sorted equation has

been generated. The new equations on the many-sorted level serve to synchronize

the application of order-sorted rules with the computation of lowest parses.

5.3. Maximum of integers

In this final example completion restructures in a non-trivial way the initial given
set of conditional equations. Here, the subsort structure on integers is as in the
previous example.

Example 5.6

sortbool. nzNat<nat, natcint, nzNat<nzInt, nzInt<int

OP

30 H. Ganzinger

0:nat

s:nat+nzNat

-:nat+int,nzNat+nzInt,int+int,nzInt+nzInt

true:bool

false:bool

=< :int*int+bool

max:int*int+int
vari, j, l:int,k,m:nat,n:nzNat
axioms

-(O)=O
-(-i)=i

(O=c n)=true

C-m=< n)=true

(m=<-n)=false

(s(m)=<s(k))=(m=<k)

(m=<k)=((-k)=< (-m))

(i=<j)=trueand (j=<l)=true+(i=<l)=true
----_

(i=<j)=true*max(i, j)=j
(i=< j)=false*max(i, j)=i
max(i,i)=i

(i=<max(i, j))=true

(i=<max(j,i))=true

The subset of operational equations of the final system which is generated from

E# in this case is the following.

Example 5.7

-int(Xl:nat)=-(Xl:nat)

-int(Xl:nzInt)=int(-(Xl:nzInt))

-nat(Xl:nzNat)=int(-(Xl:nzNat))

-nzInt(Xl:nzNat)=-(Xl:nzNat)

-(O)=int(O)

-(-(i:int))=i

int(nat(X:nzNat))=int(nzInt(X:nzzNat))
-(-(Xl:nzInt))=Xl

-(-(Xl:nat))=int(Xl:nat)

-(-(Xl:nzNat))=nzInt(Xl:nzNat)

-(k:nat)=<-(m:nat)=int(m:nat)=cint(k:nat)

-(m:nat)=cint(nzInt(nn:nzNat))=true

int(m:nat)=<int(-(n:nzNat))=false
-(k:nat)=<int(O)=int(O)=cint(k:nat)

Order-sorted completion: the many-sorted way 31

int(O)=<-(m:nat)=int(m:nat)=<int(O)

int(nzInt(Xl:nzNat))=cint(O)=false
int(O)=<int(nzInt(n:nzNat))=true
-(k:nat)=cint(-(Xl:nzNat))=int(nzInt(Xl:nzNat))=<int(k:nat)

int(-(Xl:nzNat))=<-(m:nat)=int(m:nat)=<int(nzInt(Xl:nzNat))

int(-(Xl:nzNat))=<int(nzInt(n:nzNat))=true

int(nzInt(X:nzNat))=c(-(n:nzNat))=false
int(-(T:nzNat))=<int(-(X:nzNat))

=int(nzInt(X:nzNat))=<int(nzInt(Y:nzNat))

int(nzInt(s(m:nat)))=cint(nzInt(s(k:nat)))

=int(m:nat)=<int(k:nat)

max(i:int,i:int)=i
i:int=<j:int=true*max(i:int, j:int)=j
i:int=<j:int=false*max(i:int, j:int)=i

j : int=c j : int=true
int(-(n:nzNat))=<int(m:nat)=true
il:int=<jl:int=true*il:int=<max(jl:int, j:int)=true

il:int=<jl:int=true*il:int=<max(j:int, jl:int)=true

For example, the last two equations do not directly correspond to equations in

the initial system. They are generated through superposition on the transitivity axion

for =<.

Acknowledgment

The author is grateful to Hubert Bertling for inany discussions on the subject of

this paper.

References

[II

[21

131

[41

[51

[61

L. Bachmair, Proof methods for equational theories, PhD thesis, University of Illinois at Urbana-

Champaign, 1987.

L. Bachmair, N. Dershowitz and J. Hsiang, Orderings for equational proofs, in: Proc. 1st Symp. on
Logic in Computer Science, Boston, MA, (1986) 346-357.

H. Bertling, Knuth-Bendix completion of Horn clause programs for restricted linear resolution

and paramodulation, PhD thesis, FB Informatik, Universitlt Dortmund, 1990.
H. Bertling and H. Ganzinger, Completion-time optimization of rewrite-time goal solving, in: Proc.
3rd Internat. Conf: on Rewriting Techniques and Applications, Chapel Hill, Lecture Notes in Computer

Science 355 (Springer, Berlin, 1989) 45-58.

L. Bachmair and H. Canzinger, Completion of first-order clauses with equality by strict superposi-

tion, in: Proc. 2nd Internat. Workshop on Conditional and 7)ped Rewriting, Montreal, Lecture Notes
in Computer Science (Springer, Berlin, 1991).

L. Bachmair and H. Canzinger, On restrictions of ordered paramodulation with simplification, in:

Proc. 10th Internat. Coqf: on Automated Deduction, Kaiserslautern, Lecture Notes in Computer
Science 449 (Springer, Berlin, 1990) 427-441.

32 H. Ganzinger

[81

[91

[lOI

[I71

[I81

[7] N. Dershowitz, M. Okada and D.A. Plaisted, Confluence of conditional rewrite systems, in: Proc.
1st Internal. Workshop on Conditional Term Rewriting, Orsay, 1987, Lecture Notes in Computer

Science 308 (Springer, Berlin, 1988) 31-44.

H. Canzinger, A completion procedure for conditional equations, in: Proc. 1st Intenat. Workshop

on Conditional Term Rewriting, Orsay, 1987, Lecture Notes in Computer Science 308 (Springer,

Berlin, 1988) 62-83; revised version J. Symb. Comput. 11 (1991) 51-81.

H. Canzinger, Completion with history-dependent complexities for generated equations, in: D.T.

Sannella and A. Tarlecki, eds., Recent Trends in Data Type Specifications, Lecture Notes in Computer

Science 332 (Springer, Berlin, 1988) 73-91.
J.A. Goguen, J.P. Jouannaud and J. Meseguer, Operational semantics of order-sorted algebra, in:

Proc. 12th Internal. Conf: on Automata, Languages and Programming, Nafplion, Lecture Notes in

Computer Science 194 (Springer, Berlin, 1985) 221-231.

I. Gnaedig, C. Kirchner and H. Kirchner, Equational completion in order-sorted algebras, in: Proc.

CAAP’ZS, Lecture Notes in Computer Science 299 (Springer, Berlin, 1988) 165-184.

J.A. Goguen and J. Meseguer, Order-sorted algebra I: partial and overloaded operations, errors

and inheritance, Technical Report, SRI International, Computer Science Laboratory, 1987.

J.A. Goguen, Order-sorted algebra. Semantics and theory of computation, Report No. 14, UCLA

Computer Science Department, 1978.
M. Gogolla, Partiell geordnete Sortenmengen und deren Anwendung zur Fehlerbehandlung in

abstrakten Datentypen, Dissertation, Technische Universitit Braunschweig, West Germany, 1986.

H. Ganzinger and R. Schlfers, System support for modular order-sorted Horn clause specifications,
in: Proc. 12th Internat. Conf: on Sofrware Engineering, Nice (1990) 150-163.

J.P. Jouannaud and B. Waldman, Reductive conditional term rewriting systems, in: Proc. 3rd TC2

Working Conj on the Formal Description of Prog. Concepts, Ebberup, Denmark (North-Holland,

Amsterdam, 1986).

S. Kaplan, Fair conditional term rewriting systems: unification, termination and confluence, in:

Recem Trends in Data Type Specijcation, IFB 116 (Springer, Berlin, 1985).

S. Kaplan, A compiler for conditional term rewriting systems, in: Proc. 2nd Internat. Conf on

Rewriting Techniques and Applications, Bordeaux, Lecture Notes in Computer Science 256 (Springer,

Berlin, 1987) 25-41.

S. Kaplan and J.-L. Remy, Completion algorithms for conditional rewriting systems, in: MCC

Workshop on Resoluton of Equarions in Algebraic Srrucrures, Austin (1987).

C. Kirchner, H. Kirchner and J. Meseguer, Operational semantics of 0BJ3, in: Proc. 15th Internal.

Coil. on Automata, Languages and Programming, Tampere (1988).

E. Kounalis and M. Rusinowitch, On word problems in Horn logic, in: N. Dershowitz and S.

Kaplan, eds., Proc. Ist Workshop on Conditional Rewriting Systems, Lecture Notes in Computer

Science 308 (Springer, Berlin, 1988) 144-160.

A. Oberschelp, Untersuchungen zur mehrsortigen Quantorenlogik, Math. Ann. 145 (1962) 297-333.

A. Poigne, Partial algebras, subsorting, and dependent types, in: D.T. Sannella and A. Tarlecki,

eds., Recent Trends in Dara Type Specifications, Lecture Notes in Computer Science 332 (Springer,

Berlin, 1988) 208-234.

M. Rusinowitch, Theorem-proving with resolution and superposition: an extension of Knuth and

Bendix procedure as a complete set of inference rules, Report 87-R-128, CRIN, Nancy, 1987.

G. Smolka, W. Nutt, J.A. Goguen and J. Meseguer, Order sorted equational computation, in: Proc.

Coil. on Resolution of Equarions in Algebraic Structures, Austin l(987).

U. Waldmann, Semantics of ordersorted-specifications, Forschungsbericht 297, FB Informatik,

Universitit Dortmund, 1989 Theoret. Compur. Sci. (to appear).
F. Winkler and B. Buchberger, A criterion for eliminating unnecessary reductions in the Knuth-
Bendix algorithm, in: Proc. Coil. on Algebra, Combinatorics and Logic in Computer Science, GyGr,

Hungary (1983).
Hantao Zhang and J.-L. RCmy, Contextual rewriting, in: Proc. 1st Internat. Conj on Rewiring

Techniques and Applicatons, Dijon, Lecture Notes in Computer Science 202 (Springer, Berlin, 1985)

46-52.

[I91

PO1

Pll

[221
r231

v41

[251

WI

c271

WI

