
Theoretical Computer Science 89 (1991) 63-106

Elsevier

63

Horn clause programs with
polymorphic types:
semantics and resolution

Michael Hanus
Fachbereich Injiirmatik, lJniversit& Dortmund, W-4600 Dortmund SO, German_v

Abstract

Hanus, M., Horn clause programs with polymorphic types: semantics and resolution, Theoretical

Computer Science 89 (1991) 63-106.

This paper presents a Horn clause logic where functions and predicates are declared with

polymorphic types. Types are parameterized with type variables. This leads to an ML-like

polymorphic type system. A type declaration of a function or predicate restricts the possible use

of this function or predicate so that only certain terms are allowed to be arguments for this

function or predicate. The semantic models for polymorphic Horn clause programs are defined

and a resolution method for this kind of logic programs is given. It will be shown that several

optimizations in the resolution method are possible for specific kinds of programs. Moreover, it

is shown that higher-order programming techniques can be applied in our framework.

1. Introduction

The theoretical foundation of the logic programming language Prolog is Horn

clause logic. In this logic the basic objects (terms) are not classified: Each function

and predicate may have any term as an argument [24]. This point of view is not

justified for the logic programming language Prolog: Several predefined predicates

have restrictions on their arguments (e.g., is or name). Additionally, programs are

frequently constructed from data types. In application programs only certain terms

are allowed to be arguments for a function or predicate. It is impossible to express

these restrictions in a natural way in Prolog. Types for logic programming can help

to close the gap between theory and programming practice. Moreover, programming

errors in Prolog are frequently type errors; in many typed languages such program-

ming errors can be found at compile time.

In addition, programs of typed logic programming languages may be more efficient

than programs of an untyped language. For instance, we want to define the predicate

append that is satisfied iff the three arguments are lists and the third list is the

concatenation of the first and the second. The following classical solution is wrong

0304-3975/91/SO3.50 @ 1991-Elsevier Science Publishers B.V. All rights reserved

64 M. Hams

from a typing point of view:

append([l.L,L)+
append([EIRl,L, [EIRL)+append(R,L,RL)

By this definition, the goal append([], 3,3) is provable in contrast to our intuition.

A correct definition is

append([l, [I, [I)+
append([l, [EIRl, [EIRl)tappend([l,R.R)
append([E(Rl, L, [EIRLI I+ append(R, L, RL)

If the first and second argument of an append-literal are nonempty lists, a proof

with the second definition needs more steps than a proof with the first one. In a

typed logic language the first definition could be already correct.

Many authors have investigated types in logic programming languages. There are

two principal starting points in research.

The declarative approach: The programmer has to declare all types he wants to

use and the types of all functions and predicates in the program. These proposals

have a formal semantics of the notion of a type, e.g., types represent subsets of

carrier sets of interpretations. Goguen, Meseguer [1 l] and Smolka [34] have pro-

posed order-sorted type systems for Horn clause logic (with equality). Each type

represents a subset of the carrier set in the interpretation, and the ordering of types

implies a subset relation on the corresponding sets. Ait-Kaci and Nasr [l] have

proposed a logic language with subtypes and inheritance based on a similar seman-

tics. From an operational point of view, these approaches require a unification

procedure that takes account of types, i.e., types are present at run time.

The operational approach : The aim of these type systems is to ensure that predicates

are only called with appropriate arguments at run time. This should be achieved

by a static analysis of the program. A lot of these approaches do not require any

type declarations but the types will be inferred by a type checker. These approaches

have only a syntactic notion of a type. Mishra [25] and Zobel [41] have presented

type inference systems for detecting programming errors in a given Prolog program.

Kanamori, Horiuchi [21] and Kluiniak [22] have developed algorithms for inferring

types of variables in a Prolog program. Yardeni and Shapiro [40] have presented

a type-checking algorithm where types are regular sets of ground atoms.

Since pure Prolog is a declarative language, each extension should have a declara-

tive meaning. Hence we will define a typed Horn clause logic in a model-theoretic

way and then we investigate the operational mechanisms for this kind of logic.

The important question is: What is an adequate type system for logic program-

ming? As shown above, there are several proposals for type systems for logic

programming, and these type systems offer different flexibilities from a programmer’s

point of view. For instance, the Pascal-like type system of Turbo-Prolog is compar-

able to many-sorted Horn logic [30], but this type system is too restricted for many

applications [14]. Prolog is a very flexible language because the programmer can

simply define predicates (e.g., see the definition of append) which are applicable

Horn clause programs with polymorphic types 65

to a number of different types, i.e., classes of objects like lists of integers, lists of

characters etc. Therefore we are interested in a polymorphic type system where type

declarations may contain type variables that are universally quantified over all types

[8]. Mycroft and O’Keefe [28] have investigated such a type system for Prolog. In

their proposal, the programmer has to declare the types of functions and predicates,

but it is not a declarative approach because they have no semantic notion of a type.

They have put restrictions on the use of polymorphic types in function declarations

and clauses. Their programs can be executed without dynamic type checking.

Dietrich and Hag1 [7] have extended this type system to subtypes on the basis of

mode declarations for the predicates. They have also only a syntactic notion of a

type. TEL [35] is a logic language with functions and a polymorphic type system

with subtypes. Since subtypes are included, there are several restrictions on the use

of polymorphic types which prevents in particular the application of higher-order

programming techniques.

This paper presents a declarative approach to a generalized polymorphic type

system for Horn clause logic. The topics of this paper are

l We present a rather general polymorphic type system: We do not restrict the use

of types. In contrast to [28], any polymorphic type expression may be argument

or result type of a function or predicate. No difference will be made in the typing

of the head and the body of a clause.

l Our approach is declarative: The semantics of types is defined in a model-theoretic

way in contrast to other type systems for Prolog where types are viewed as sets

of ground terms.

l We present sound and complete deduction and resolution methods for our logic

programs.

l Several optimizations of the resolution procedure are presented for specific

subclasses of programs. We show that it is possible to translate polymorphic logic

programs in our sense into untyped Horn clause programs. The type system and

results of [28] will be a special case of our type system.

l Higher-order programming techniques can be applied in our framework. We

present an interesting class of logic programs that are ill-typed in the sense of

other polymorphic type systems for logic programming but are well-typed in our

framework.

Let us start by looking at an example of a polymorphically typed Horn clause

program in our sense. First the programmer has to specify the types that he wants

to use in the clauses. There are basic types like int or bool, and type constructors

that create new types from given types. E.g., the type constructor list with arity 1

creates from the type int the type of integer lists Zist(int). Type expressions may

contain type variables which are universally quantified over all types. In the following

we use (Y, p for type variables. The type expression list(a) represents the types

list(int) list(bool) list(list(int)) . . .

or, in general, a list of any type. Two functions are defined on any list: The constant

66 M. Hanus

function [] that represents the empty list, and the function l that concatenates an

element with a list of the same type (throughout this paper we use the Prolog

notation for lists [6]). The type declarations for these two functions are

func [I: + Zist(cx)

func 0: (Y, Eist(LY) + list(a)

The predicate append has three arguments and is defined on lists of the same type.

Therefore append has the following type declaration:

pred append: list(a), W(a), list(a)

The following clauses define the semantics of append and are well-typed in our

sense, if the variables L, R and RL are of type list(a) and the variable E is of type cy:

append([l,L,L)+
append(IEIRI, L, [EIRLI) +append(R, L, RL)

With these type declarations the goal append([1, 21 , [3, 41 , [1, 2, 3, 41) is

well-typed and can be proved to be true, whereas the goal append([] , 3, 3) is

rejected since the second and third arguments are not lists. In contrast to other

polymorphic type systems for logic programming our type system allows a useful

logic programming technique: optimization of the resolution process by lemma

generation. In untyped logic programming it is possible to add a new fact L to a

program without changing the program semantics if L is a logical consequence of

the program. The new fact L can be used to obtain shorter proofs for subsequent

goals that include L. For instance, the specialized clause

can be added to the above append-program. This is also possible in our typed logic

language, but other polymorphic type systems for logic programming reject this

clause because they require the argument types in clause heads to be equivalent

(equal up to type variable renaming) to the type declaration of the predicate [28].

But the arguments of the head of the last clause have type Zist(int). Hence this is

not a well-typed clause in the sense of [28] since the head of the clause has not the

most general type.

The application of this feature in order to use higher-order programming tech-

niques and more examples are given in the rest of this paper.

2. Polymorphic logic programs

We use notions from algebraic specifications [13] for the specification of types.

A signature E is a pair (S, 0), where S is a set of sorts and 0 is a family of operator

sets of the form 0 = (O,,, 1 w E S*, s E S). We write o:s, , . . . , s, + s E 0 instead of

OE 0,s I ,...J,,).S . An operator of the form o: + s is also called a constant of sort s. A

signature 1 = (S, 0) is interpreted by a E-algebra A = (S,, 0,) which consists of

Horn clause programs with polymorphic types 61

an S-sorted domain S, = (s,,, 1 s E s) and an OperatiOn oA : sA,,, , . . . , SA,,,, + S,.+ E 0,

for any o:s,, . . , s, + s E 0. A set of E-variables is an S-sorted set V = (V, (s E S).

The set of E-terms of sort s with variables from V, denoted T,,,Y(V), is inductively

defined by x E T,,,(V) for all x E v,, c E T,,,(V) for all c: + s E 0, and o(t,, . . . , t,) E

Tz,?(V) for all o:s,, . . . , s, + s E 0 (n > 0) and all t, E T,,,,(V). We write 7”(V) for

all I-terms with variables from V and TX for the set of ground terms TX(o). By

Tz(V) we also denote the term algebra.

A variable assignment is a mapping a: V+ SA with a(x) E SA,, for all variables

x E V, (more precisely, it is a family of mappings (a, : V, + S,,, (s E S)). A Z-

homomorphism from a E-algebra A = (SA, 0,) into a Z-algebra B = (S,, 0,) is a

mapping (family of mappings) h : S, + SR with the properties hr(cA) = cB for all

c:+s~Oand h,(o,(a ,,..., a,,))=o,(h,,(a,) ,..., h,,(a,))forallo:s ,,..., s,+sE

0 (n > 0) and all ai E SA,, .

Polymorphic types are represented by single-sorted signatures: H = (Ty, Ht) is a

signature of types if H is a signature with one sort Ty = {type}. Operators of the

form h: + type are called basic types (with arity 0), whereas operators of the form

h: type” -+ type are called type constructors with arity n > 0. By X we denote a set of

type variables. A type expression or (polymorphic) type is a term from TH (X), a

monomorphic type is a term from TH. Since we have only one sort in the signature

of types, we will also use H to denote the set of type constructors Ht.

A type substitution u is an H-homomorphism u: TH(X) + TN(X). TS(H, X)

denotes the class of all type substitutions. Two types r, 7’ E TH(X) are called

equivalent if there exists a bijective type substitution g with T(T) = 7’.

A polymorphic signature 2 for logic programs is a triple (H, Func, Pred) with

H is a signature of types with TH # 8,

Func is a set of function declarations of the form f: r, , . . . , T,, + T with ri, T E

TH(X), n 2 0, where, in addition, rr = r; whenever f: T,, f: T; E Func,

Pred is a set of predicate declarations of the form p:~, , . . . , T, with r, E TH(X),

n 3 0, where, in addition, T,, = T; whenever p: TV, p: rh E Pred.

The additional restrictions exclude overloading. With these restrictions it is possible

to compute the most general type of a term. Therefore the user need not annotate

terms in a clause with type expressions. Note that there are no restrictions on the

use of type variables in function declarations in contrast to other polymorphic type

systems for logic programming, e.g., [28, 351.

The following specification of a polymorphic signature will be used in later

examples. Declarations of basic types and type constructors, functions, and predi-

cates are preceded by the keywords “type”, “func” and “pred”, respectively.

type nut/O, list/l, pred2/2

func z : + nut

func s : nut + nut

func [] : + list(a)

funce: cr, list(a)+ list(a)

68 M. Hanus

func pred-inc: + pred2(nut, nut)

pred inc : nut, nut

pred map : pred2(cY, p), list(a), list@)

pred apply2 : pred2(cY, p), a, p

The predicate apply2 will be interpreted like call in Prolog: If the first argument

has type pred2(a, p) and the next arguments have types (Y and /3, then it is equivalent

to the application of the first argument to the other two arguments. pred-inc is a

constant of type pred2(nut, nat). The equivalence of apply2(pred_inc, . . .) and

inc(...) will be stated in a specific clause (see below).

In the rest of this paper we will assume that 2 = (H, Func, Bed) is a polymorphic

signature. The variables in a polymorphic logic program are not quantified over all

objects, but vary only over objects of a particular type. Thus each variable is

annotated with a type expression: If Vur is an infinite set of variable names that

are distinguishable from symbols in polymorphic signatures and type variables, the

set of typed variables Varx,x is defined as

Varz,,:= {X:T~XE Vur, 7~ TH(X)}.

V is a set of typed variables with unique types, written V E u Varr,x, if V c Varr,x

and T = 7’ whenever x: r, x: T’E V.

The notion of “typed variables with unique types” is not necessary for the

definition of the semantics and the resolution procedure, but it is useful for optimiz-

ation and detection of type errors at compile time. Hence we define the semantics

for arbitrary sets of typed variables, whereas in polymorphic logic programs the

clauses must have variables with unique types so that optimizations and type-

checking are possible.

According to [5], we embed types in terms, i.e., each symbol in a term is annotated

with a type expression: Let Vr Var x,,x. A (2, X, V)-term of type TE T,(X) is either

a variable X:T E V, a constant c:r with c: + rr E Func so that there exists a UE

TS(H,X)witha(7,)=7,oracompositetermoftheformf(t,:T,,...,t,:?,):?(n>O)

with f: ~~ E Func so that there exists a type substitution u E TS(H, X) with C(G--) =

Tl,-.., T,,+T and ti:~i is a (2,X, V)-term of type 7i (i=l,..., n). Term=(X, V)

denotes the T,(X)-sorted set of all (E, X, V)-terms. A ground term is a term from

the set Term= (X, 8).

Different occurrences of a function in a term may have different types which

shows the polymorphism in our framework. We call terms from Term=(X, V)
well-typed terms, whereas terms that have the same structure as well-typed terms but

violate the type conditions are called ill-typed terms.

Examples. If we have the declarations

func f: int, boo1 + boo1 var x: (Y

then the terms f (x:a , x: a) : boo1 and f (x: int ,x: boo1) : boo1 are ill-typed. If we have

Horn clause programs with polymorphic types

the additional declaration

69

func id: CI + (Y

then the term f (id(2:int) :int, id(true:booZ):bool) :bool~ Terrr~~,~~~~({(~}, 0) is a

well-typed ground term.

The definition of the other syntactic constructs of polymorphic logic programs is

straightforward: A (2, X, V) -atom has the form p(t,: T,, . . . , t, : T,,), where p: T,, E Pred

and there exists a type substitution (T E TS(H, X) with a(~,,) = r, , . . . , T,, and ti :7i E

Termz(X, V) (i= 1,. . . , n). A (2, X, V)-goal is a finite set of (1, X, V)-atoms. A

(2, X, V)-clause is a pair (P, G), where P is a (2, X, V)-atom and G is a (2, X, V)-

goal. If G = {A,, . . . , A,,}, we also write

P+A,,. . . ,A,.

P is called head and G body of the clause. Note that again there are no restrictions

on the use of types in clauses. For convenience we sometimes omit the curly brackets

around a goal and we identify a goal containing only one atom with that atom. A

Z-term (atom, goal, clause) is a (2, X, V)-term (atom, goal, clause) for some

V c Var,,, . In the following, ifs is a syntactic construction (type, term, atom,. . .),

tvar(s) and var(s) will denote the set of type variables and typed variables that

occur in s, respectively. Furthermore, we define

uvar(s):={x~3rE TH(x): X:rE oar(s)}

as the set of variable names that occur in s.

A polymorphic logic program or polymorphic Horn clause program P = (I, C)

consists of a polymorphic signature 2 and a set C of E-clauses, where

oar(c) L u Vurz,x for all c E C. We require oar(c) s u Vur,,, rather than oar(c) E

Var,,, because in practice the user may omit the type annotations in the clauses

of a polymorphic logic program and the most general type of a term that satisfies

the uniqueness requirement can be automatically computed. Therefore we will omit

the type annotations in the clauses of subsequent examples. We assume that the

above polymorphic signature with predicate map is given. Then the following clauses

define the semantics of map:

Note that the last clause is not well-typed in the sense of [28] since apply2 has the

declared type “pred2(a, p), a, /3” but is used in the clause head with the specialized

type “pred2(nat, nut), nut, nut”. This example illustrates the possibility of higher-

order programming in our framework. That will be further investigated in Section 8.

70 M. Hams

The next example is a program for the evaluation of Boolean terms. A Boolean

term contains the constants true or false, the Boolean functions and or or, or

the function equal to compare arbitrary terms of the same type. The evaluator is

a predicate isTrue which is satisfied if such a term can be simplified to true by

the common interpretation:

type bool/O

func true: + boo1

func false: -+ boo1

func and: bool, boo1 + boo1

func or: bool, boo1 + boo1

func equal: LX, CY + boo1

pred isTrue: boo1

clauses:

isTrue(true)+

isTrue(and(Bl,B2))+isTrue(Bl), isTrue(B2)

isTrue(or(Bl,B2))cisTrue(Bl)

isTrue(or(Bl,B2))tisTrue(B2)

isTrue(equal(T,T))+

Note that this program is well-typed in our sense but not a well-typed program in

the sense of [28] because of the type of the function equal (in their type system

each type variable occurring in the argument type of a function must also occur in

the result type [29]).

3. Semantics of polymorphic logic programs

3.1. Validity and models

We use algebraic structures for the interpretation of polymorphic logic programs

[31]. Variables in untyped logic vary over the carrier set of the interpretation.

Consequently, type variables in polymorphic logic programs vary over all types of

the interpretation and typed variables vary over appropriate carrier sets. Hence an

interpretation of a polymorphic logic program consists of an algebra for the signature

of types and a structure for the derived polymorphic signature. A structure is an

interpretation of types (elements of sort type) as sets, function symbols as operations

on these sets and predicate symbols as predicates on these sets. We give an outline

of the necessary notions.

If H = (Ty, Ht) is a signature of types, an H-algebra A = (TyA, HtA) is also called

H-type algebra. The polymorphic signature 1 (A) = (TyA, FuncA, Pred,) derived from

2 and A is defined by

Func, := {f: a(q) If: TV E Func, CT : X + TyA is a type variable assignment},

Pred,:={p:a(T,,)lp : T,, E Pred, u : X + Tya is a type variable assignment}.

Horn clause programs wirh polymorphic types 71

An interpretation of a polymorphic signature 2 is an H-type algebra A = (Tya, HtA)

together with a Z(A)-structure (S, 6), which consists of a Ty,-sorted set S (the

carrier of the interpretation) and a denotation 6 with

(1) If f: r, , . . . , T, + 7 E Func,, then 6,:,1 ,,,., T,,_7 : S,, x . . . x S,z -+ S, is a function.

(2) If p:7,, . . .) T, E Pred,, then S,,:, ,,..., T,, G S,, x . . . x S,, is a relation.

Hence polymorphic functions and predicates are interpreted as families of functions

and predicates on the given types. In order to compare different interpretations, we

define homomorphisms between them. At first, we define E(A)-homomorphisms to

compare different Z(A)-structures: Let A = (TyA, HtA) be an H-type algebra and

(S, 6), (S’, 8’) be E(A)-structures. A I(A)-homomorphism h from (S, 6) into (S’, 6’)

is a family of functions (h, / T E Ty,) with

(1) h,:S,+S:.

(2) Iff:T, E Func, with Tf = T,, . . , T,, - 7 (n 2 0) and a, E S, (i = 1,. . . , n), then

h,(&,(a, 2 . . ., a,)) = q:,,(k,h), . . . > h,,(%)).
(3) Ifp:TpEPred, with T,,=T, ,..., T, (n>(l) and (a ,,..., an)~SB17,,, then

(h,,(4), . . ., h,,(an)) E &,,.
If it is clear from the context we omit the indices T in the functions h,. Note that

the composition of two E(A)-homomorphisms is again a E(A)-homomorphism.

The class of all Z(A)-structures together with the E(A)-homomorphisms is a

category [9]. We denote this category by Cat,,,,.

If A and A’ are H-type algebras, then every H-homomorphism (T : A + A’ induces

a signature morphism (T: E(A) + E(A’) and a forgetfiljiinctor U,: Cat_r(a,j+ Cat,,,,

(for details, see [9]). Therefore we can define a E-homomorphism from a E-interpreta-

tion (A, S, 6) into another Z-interpretation (A’, S’, 6’) as a pair (v, h), where u : A +

A’ is an H-homomorphism and h : (S, 6) + U,,((S’, 6’)) is a E(A)-homomorphism.

The class of all E-interpretations with the composition ((T’, h’) 0 (a, h) :=

(a’ 0 c, U,(h’) 0 h) of two E-homomorphisms is a category. Thus we call a JZ-

interpretation (A, S, 6) initial in a class of E-interpretations % iff for all Zinterpreta-

tions (A’, S’, 8’) E % there exists a unique E-homomorphism from (A, S, 6) into

(A’, S’, 8’).

The notion of “term interpretation” can be defined as usual (in the following,

we assume that VG Varz,, is a set of typed variables). By Tx(X, V) we denote the

free term interpretation over X and V where the carrier is the T,(X)-sorted set

Term,(X, V) and all predicate symbols are interpreted as empty sets. A homo-

morphism in the polymorphic framework consists of a mapping between type

algebras and a mapping between appropriate structures. Consequently, a variable

assignment in the polymorphic framework maps type variables into types and typed

variables into objects of appropriate types: If I = ((TyA, HtA), S, 6) is a Zinterpreta-

tion, then a variable assignment for (X, V) in I is a pair of mappings (p, vu/) with

p:X+ TyA and val: V+S’, where (S’, 6’):= U,((S, 6)) and d(X:T)E St (=S,,,,)

for all X:TE v.

In many-sorted algebra any variable assignment can be uniquely extended to a

homomorphism. This is also true in the polymorphic case [3I].

12 M. Hams

Lemma 3.1 (Free term structure). Let (A, S, 6) be a Z-interpretation and (p, val) be

an assignmentt for (X, V) in (A, S, S). There exists a unique Z-homomorphism (a, h)

from T=(X, V) into (A, S, 6) with the properties ~((Y)=P((Y) for all (Y EX and

h(v) = v&(v) for all UE V.

As a special case (X = V = 0) the lemma shows that every ground term with

monomorphic types corresponds to a unique value in a given E-interpretation.

Generally, any variable assignment (p, ual) can be extended to a E-homomorphism

in a unique way. In the following we denote that E-homomorphism again by (p, vu/).

We are not interested in all interpretations of a polymorphic signature but only

in those interpretations that satisfy the clauses of a given polymorphic logic program.

In order to formalize that we define the validity of atoms, goals and clauses relative

to a given Z-interpretation f = (A, S, 8).

l Let v = (CL, val) be an assignment for (X, V) in I.

1, vt=L if L=p(t,:~~, . . . , t,:~,,) is a (&Xx, V)-atom with (vaf,,(t,:~,),.. .,

ual,,(t, :T,))ES;:. I,..., 7,, where U,((S, 6)) = (S’, 8’).

1, vk G if G is a (1, X, V)-goal with 1, vk L for all LE G.

I, vk L+ G if L+ G is a (2, X, V)-clause where 1, vk G implies I, uk L.

l I, Vk B if 3 is a (2, X, V)-atom, -goal or -clause with 1, vi= 9 for all variable

assignments v for (X, V) in 1.

We say “L is valid in I” if I is a E-interpretation with I, var(L) != L (analogously

for goals and clauses). A E-interpretation I is called model for a polymorphic logic

program (2, C) if 1, var(L+ G)b L+ G for all clauses L+- GE C. A (2, X, V)-goal

G is called valid in (Z, C) relative to V if I, V!= G for every model I of (2, C).

We shall write (2, C, V)b G.

This notion of validity is the extension of validity in untyped Horn clause logic

to the polymorphic case: In untyped Horn clause logic an atom, goal or clause is

said to be true iff it is true for all variable assignments. In the polymorphic case an

atom, goal or clause is said to be true iff it is true for all assignments of type variables

and typed variables. The reason for the definition of validity relative to a set of

variables is that carrier sets in our interpretations may be empty in contrast to

untyped Horn logic. This is also the case in many-sorted logic [lo]. Validity relative

to variables is different from validity in the sense of untyped logic. The following

example shows such a difference.

Example. Let TH = {void, zero}, Func = (0: + zero}, Pred = (p:void, q:zero} and XE

Var. If C consists of the clauses

p(x:void) +

q(O:zero) + p(x:void)

then M := (TH, S, 8) with Suold = 0, S,,, = {0}, &,:+zero = 0 and 6, = 6, = 0 is a model

for (2, C). It can be shown that

(2, C, {x:void})kq(O:zero)

Hence q (0:zero) is valid in M relative to {x: void}, but q (0:zero) is not valid in M.

Horn clause programs with polymorphic types 73

Validity in our sense is equivalent to validity in the sense of untyped logic if the

types of the variables denote nonempty sets in all interpretations. But a requirement

for nonempty carrier sets is not reasonable. For a more detailed discussion of this

subject compare [lo].

“Typed substitutions” are a combination of type substitutions and substitutions

on well-typed terms: If V, V’G Vur z,x are sets of typed variables, then a typed

substitution u is a Shomomorphism c = (a,, a,) from T2(X, V) into T=(X, V’).

Since vx and (TV are only applied to type expressions and typed terms, respectively,

we omit the indices X and V and write u for both ux and uv. We extend typed

substitutions on E-atoms by a(p(r,, . . , t,)) =p(a(t,), . . . , a(t,)). S&(X, V, V’)

denotes the class of all typed substitutions from 7” (X, V) into Tz(X, V’) and

id,, v E St& (X, v, V) denotes the identity on Tz(X, V). tdom(v):=

{a E X 1 a(a) # a} is the type domain of a typed substitution U. A typed substitution

keeps the set of type variables X but may change the set of typed variables because

the types of the variables influence validity (see above). Sometimes we represent

typed substitutions by sets: The set

a={a/nat, x:cu/O:nat}

represents a typed substitution that replaces the type variable a by the monomorphic

type nut and the typed variable X:(Y by the ground term 0:nat. Hence the result of

applying (T to the atom p(x:a, y:c”) is the atom p(O:nat, y:nat). The following lemma

shows a relationship between variable assignments and typed substitutions w.r.t.

validity.

Lemma 3.2. Let I be a I-interpretation, G be a (2, X, V)-goal, u E Sub, (X, V, V’)

and v be a variable assignment for (X, V’) in I. Then I, vi= u(G) iff I, v 0 ut= G.

Proof. Let G, u, v = (p, ual) and I = (A, S, 6) be given. The composition v’:= v 0 u

is defined by v’= (p’, val’) with P’(Q) = ~((T((Y)) for all (Y E X and

val:(x:T) = (U,(val) 0 (T),(x:r) = val,(,,(u(x:T))

for all x: T E V. Thus v’ is a variable assignment for (X, V) in I. Let p(. . . ti : T, . .) E G.

Then

1, VkU(p(... ti:Ti...)) e 1, Vbp(...U(t,:T,) . ..)

@ (. . VaL,,,(u(li :Ti)) . . .) E 8p:___F(c(7,))

@ (... d,(ti :Ti) . . .) E &FyT,~

a 1, V’k=p(. . t, :T,. . .).

This proves the lemma. 0

A term t’~ Termz-(X, V’) is called an instance of a term t E Term=(X, V) if a typed

substitution u E Sub, (X, V, V') exists with t’ = u(t). The definition of instances can

74 M. Hanus

be extended on atoms, goals and clauses. We omit the simple definitions here. The

next lemma shows the relationship between the validity of a clause and the validity

of all its instances.

Lemma 3.3. Let I = (A, S, 6) be a E-interpretation and Lt G be a (1, X, V)-clause.

Then

I, VkL+G e I, V’ka(L)ta(G)foralZaESubz(X, V, V’).

Proof. The direction “e” is trivial if we use the identity on Tz (X, V) for the typed

substitution (T. Let I, Vk L t G and u E Sub, (X, V, V’) be a typed substitution. We

have to show I, V’k o(L) + a(G). Let u be a variable assignment for (X, V’) in I

with Z, u k m(G) (if there exists no such variable assignment, Z, V’k= a(L) + o(G)

is trivially true). Lemma 3.2 yields 1, u 0 al= G. This implies I, u 0 u k L since

1, Vk Lt G. Again by Lemma 3.2, it follows 1, u k a(L). 0

Along with a set of E-clauses C we define the set of instantiated clauses 6 as

follows:

&:={L+GIL~G is an instance of a clause from C}.

The set e contains all clauses which are obtained from clauses in C by substituting

type expressions for type variables and well-typed terms for typed variables.

Corollary 3.4. A Z-interpretation is a model for (2, C) i# it is a model for (2, c)

Proof. The theorem follows by definition of c and Lemma 3.3. 0

3.2. Construction of an initial model

In this section we show the existence of an initial model for every polymorphic

logic program. The construction is very similar to the untyped case [24]. A Herbrand

interpretation (model) for a polymorphic logic program (2, C) is an interpretation

(model) where the carrier is a term interpretation with ground terms and monomor-

phic types. Hence different Herbrand interpretations only differ in the denotation

of the predicate symbols. Therefore any Herbrand interpretation % =

(Tn, TermE (0, El), 6) can be characterized by the set

&=Mt,, t,)l(t, ,..., t,)E~p:T,,,p:7PEPred,,,}.

Lemma 3.5. Let (2, C) be a polymorphic logic program and (A, S, 6) be a model for

(2, C). Then there exists a Herbrand model for (2, C).

Proof. By Lemma 3.1 (free term structure), there exists a unique .Zhomomorphism

(a, h) from T,(@, 0) into (A, S, 6). We define the following Herbrand interpretation:

M={p(t,:TI ,..., t,:T,,)lp:T ,,..., ~,,EPredr,,,t,:7iETermp(0,0)

(i= 1 , . . , n), (h,,(t, :T,), . . . , h,,(t, :T,)) E &:,c,,, ,..., ,c.,,I>.

It is straightforward to show that M is a model for (2, C). q

Horn clause programs with polymorphic types 75

Next we show that Herbrand models are sufficient for proving the validity of

monomorphic ground atoms.

Lemma 3.6. Let (E, C) be a polymorphic logic program and L be a (2,0,0)-atom. If

L is valid in every Herbrand model, then L is valid in any model.

Proof. Let A4 = (A, S, 6) be a model for (2, C). By Lemma 3.5, there exists a

Herbrand model A& for (1, C). By Lemma 3.1, there exists a unique Z

homomorphism (a, h) from T’(@,@) into A4. L =p(t, : T,, . . . , t, :T,,) is valid in Mit.

Therefore p(t, : T, , . . , t,, :T,,) E MT. By construction in the proof of Lemma 3.5,

(h,,(t, :7,), . . . , h,,(tn :T~))E %:<,ci,, ,..., vcr,,). Thus M, (cr, h)k L. Since (v, h) is the

unique variable assignment, L is valid in M. 0

It is straightforward to show that the intersection of a nonempty set of Herbrand

models is again a Herbrand model. Hence the set

M,$:= n {M, 1 M, is a Herbrand model}

is a Herbrand model, because every polymorphic logic program (2, C) has at least

one model

M,={p(t,:~ ,,..., t,:~,,)lp:~ ,,..., T~~Pred~,,t~:~,~Term~(O,O)(i=l,..., n)}.

The model M9 is called the least Herbrand model. It is an initial model for (Z; C).

Theorem 3.7 (Initial model). Let (25, C) be a polymorphic logic program. Then the

least Herbrand model M,, is an initial model for (I, C), i.e., for each model M for

(2, C) there exists a unique Z-homomorphism from M,, into M.

Proof. Let M = (A, S, 6) be a model for (2, C) and M9 = (TH, Term1 (0,0), 6’). By

Lemma 3.1, there exists a unique E-homomorphism (v, h) from T,(0,0) into M.

In order to show that (a, h) is a E-homomorphism from M., into M, we have to

prove the following condition for X-homomorphisms (we assume T,, = 71, . . . , T,,):

(t,:T,,... , L :Tn)E s;:T,, =+ (h,,(t, IT,), . . . , h,,(c, :T,,))E f$ccr,,,.

Let (t, :T,, . . . , t, :T,) E S;:,,. Then M.?,OkL, where L=p(t,:~,,...,t,:T,,).There-

fore L is valid in all Herbrand models. By Lemma 3.6, L is valid in all models and

in particular, L is valid in M. Hence M, (v, h) k L and (hTl(t,: T,), . . . , h,,(t, : T,,)) E

&7,,, . 0

3.3. Fixpoint characterization of the least Herbrand model

We want to characterize the least Herbrand model by a fixpoint of a monotonic

function, which will be used for proving a completeness theorem for our polymorphic

logic. For this purpose we need some results about fixpoints in complete lattices.

We skip the necessary definitions here (keywords: partial order, least upper bound

lub, greatest lower bound glb, complete lattice, monotonic and continuous mappings,

directed subsets and f ~OJ) and refer to [24] for details. We only cite two important

results.

16 M. Hanus

Theorem 3.8 (Knaster-Tarski). Let S be a complete lattice andf: S + S be a monotonic

mapping. Then f has a least fixpoint Ifp(f) with up(f) = gZb({x If(x) = x}) =

glb({x If(x) s x1).

Theorem 3.9 (Kleene). Let S be a complete lattice and f: S+ S be a continuous

mapping. Then f?w = Zfp(f).

In the following we apply these results to Herbrand interpretations. The next

lemma is straightforward to show.

Lemma 3.10. Let E be a polymorphic signature. The set 2 Mz of all Herbrand interpreta-

tions of E is a complete lattice with the set inclusion s as a partial order. The bottom

element is $3, the top elemem is Ms. For a subset M c 2”x the least upper bound is

Zub(M) = U {Mil Mi E M} and the greatest lower bound is glb(M) = n {M, 1 M, E M}.

The mappping T,, is a transformation on Herbrand interpretations and was

defined for the untyped case in [37]: For each polymorphic logic program (2, C)

we define a mapping TX,, : 2”z + 2 Mz on Herbrand interpretations as follows:

T,,,(M) := {L E ME 13 an instance L + G of a clause from C with G z M}

for all M E 2 Mz. We will give a characterization of the least Herbrand model by the

mapping T’,, . The next lemma can be proved in the same way as in untyped Horn

logic.

Lemma 3.11. Let (2, C) be a polymorphic logic program. Then T,,, is continuous

(and monotonic).

Lemma 3.12. Let (2, C) be a polymorphic logic program and I be a Herbrand

interpretation of 2. Then I is a model for (2, C) if T,,,(I) G I.

Proof. “j” Let I be a model for (2, C) and LE T,,,(I). Then there exists an

instance Lt G of a clause from C with G G I. By Corollary 3.4, I is a model for
A

(2, C) and therefore LE I.

“e” Let T,,,(I) E I, L+ G E C, V = var(L+- G) and 2, = (p, ual) be an arbitrary

variable assignment for (X, V) in T,(@, 0) (if there exists no such variable assignment,

then I, Vk Lt G is trivially true). If I, v k G, then val(G) s I, and therefore (because

uaZ(L) + vaZ(G) E C)val(L) E T,,,(I), i.e., I, vi= L. Thus L+ G is valid in I. q

Theorem 3.13 (Fixpoint characterization of the least Herbrand model). Let (2, C)

be a polymorphic logic program. Then M9 = Ifp(T,,,) = T,,~o.

Proof.

M.=n{MjIMj is a Herbrand model} (by definition)

= glb({ Mj I Mj is a Herbrand model})

= glb({Mj I T,,,(Mj) c Mjl) (by Lemma 3.12)

= YP(TX,,, (by Theorem 3.8)

= T,.,?w (by Theorem 3.9). 0

Horn clause programs with polymorphic types 77

4. Deduction

This section presents an inference system for proving validity in polymorphic

logic programs. In contrast to the untyped Horn clause calculus it is necessary to

collect all variables used in a derivation of the inference system since validity

depends on the types of variables. Let C be a set of E-clauses. The polymorphic

Horn cluuse calculus contains the following inference rules:

(1) Axioms: If Vs Vc~r=,~ is a set of typed variables and Lt G E C is a (E, X, V)-

clause, then (2, C, V) F L c G.

(2) Substitution rule: If (2, C, V)kL+ G and a~Sub~(X, V, V’), then

(2, C, V’)ko(L)+a(G).

(3) Cut rule: If (E, C, V)kL+ Gu{L’} and (2, C, V) k L’ t G’, then (E, C, V)

EL+GuG’.

If the example program in Section 3.1 is given, then the following sequence is a

deduction in the polymorphic Horn clause calculus:

(3, C, {x:uoid})Fp(x:uoid) +

(2, C,{x:void})t-q(O:zero) +p(x:void)

(1, C, {x:uoid})t-q(O:zero) t

This example shows the need for the explicit mentioning of the variables in the

deduction since (2, C, 0) k q(0: zero) is not true.

The soundness of the polymorphic Horn clause calculus can be shown by proving

the soundness of each inference rule.

Theorem 4.1 (Soundness of deduction). Let C be a set of E-clauses, VC Varz,x and

L be a (E, X, V)-atom. If (2, C, V)F Lt0, then (E, C, V)k= L.

Proof. Let M be a model for (E, C). By induction on the length of a deduction we

show that M, Vi k Lj + Gi for each element (2, C, Vi) F Lj + G, in a deduction for

Lt0.

(1) Axioms: If Li+GiEC, then M,zIu~(L,+G,)~L,+G,. Let u=(~,z&) be a

variable assignment for (X, Vi) in M (if there exists no such variable assignment,

then M, V k Li + G, is trivially true). Let ZI’ = (p, vail vor(L,cC,J) be the restriction of

ZJ to (X, uar(Li + Gi)). Then M, u’l= Li + Gi is true and therefore M, Z, I= Li + Gi is

also true.

(2) Substitution rule: Let u E Sub,(X, V,, Vi) be a typed substitution and o’ be

a variable assignment for (X, Vi) in M (if there exists no such variable assignment,

then M, Vi k o(Li) + o(G;) is trivially true). u := V’ 0 c is a variable assignment for

(X, Vi) in M. By induction hypothesis, M, U+ Li + Gi. Suppose now that

M, u’k a(G,). Lemma 3.2 yields M, VI= Gi. This implies M, vk Li and, again by

Lemma 3.2, M, v’l= a(L,). Therefore, M, v’!= o(Li) + a(Gi).

(3) Cut rule: Let (E, C, K)F Lj c G, u {L,} and (E, C, y) k Lj + G, be elements
of the deduction with Vi = Vj. Let z, be a variable assignment for (X, Vi) in M with

78 M. Hams

M, v + Gi u G, (if there exists no such variable assignment, then M, V, k Li t Gi u G,

is trivially true). By induction hypothesis, M, vi= L, t Gi u {L,} and M, v b 15, + G,.

Since M, v+ G,, we obtain M, vi= Lj. On the other hand, M, v+ Gi. Hence

M, v + Gi u {L,} and M, v I= Li. Therefore, M, v + L, + Gi u G,, as required. 0

Similarly to [2], we prove the completeness of deduction by using the fixpoint

characterization of the least Herbrand model. At first, we state a completeness result

for monomorphic ground atoms.

Lemma 4.2. Let C be a set of E-clauses and L be a (E, 0,0)-atom. If (2, C, 0) + L,

then (2, C, 0) + L t 0.

Proof. If (2, C, 0) k L, then L is valid in every model for (2, C), in particular,

L E M9. Theorem 3.13 yields L E TX,, t w and therefore L E T,,,. t n for some finite

n. We prove the lemma by induction on n.

n = 1: By definition of T,,, , there exist L’+0 E C and g E Sub, (X, V, 0) with

L = a(L’). By an application of an axiom and the substitution rule, we obtain

(4 C,B)~L+O.
n > 1: By definition of T,,, , there exist L’ + G’ E C and (T E Sub, (X, V, 0) with

L = U(L’) and u(G’) E T,,, t n - 1. By an application of an axiom and the substitu-

tion rule, we obtain (2, C, 0) FL + a(G’). Let V(G’) = {L, , . . . , Lk}. By induction

hypothesis, (2, C, 0)C L, + 0 for i = 1,. . . , k. By k applications of the cut rule, we

obtain (2, C,O)+Lt0. 0

To extend the completeness result to E-atoms with type variables and typed

variables, we need the following lemma which states that validity is invariant under

the extension of signatures.

Lemma 4.3 (Extended signatures). Let C be a set of I-clauses, 71, . . . , rk be new

basic types or type constructors and2’= (H’, Func’, Fred) be an extendedpolymorphic

signature with H’ = H u {r, , . . . , TV} and Func c Func’. If Vc_ Varz,x, then thefollow-

ing implication is true for any (E, X, V)-clause L+ G:

(E,C,V)+L+G* (E’,C,V)bL+G.

Proof. We assume (2, C, V)+ L+ G. Let M’= (A’, S’, 8’) be a model for (I’, C)

with (A’= Ty,,, HtAs). Let A:= (Tya, HtA) with TyA := Ty,, and Ht, := {hAf 1 h E Ht}.
A is an H-type algebra. Let S:= S’, s,:, := S;:, for all f:~~ E Func, and SP:7P := 6bI7,,

for all p: To E Pred,. (S, 6) is a x(A)-structure. M = (A, i, 6) is a Z-interpretation

and all clauses from C are valid in M. Therefore M is a model for (Z, C) and

M, V!= L+ G is true. Let v be a variable assignment for (X, V) in M’. Since

V_C Varz,x, TyA = Ty,+, and S = S’, v is also a variable assignment for (X, V) in M.

Therefore M, v+ L+- G. Since SPz9, = 8b:, for all p:~, E PredA, it follows M’, v+ L+
G. Hence M’, V+ Lc G is true. 0

Horn clause programs with polymorphic types 19

Now we can state the completeness of the polymorphic Horn clause calculus.

Theorem 4.4 (Completeness of deduction). Let C be a set of E-clauses, Vc Varz,x

be a Jinite set of typed variables and L be a (2, X, V)-atom. Zf (E, C, V)k L, then

(E, c, V)F L+B.

Proof. Let tvar(L) u tvar(V) = {a,, . . . , a,} and V={x,:7 ,,..., x,:7,}. Let

y,, . . . , ym be new basic types and c,, . . . , c, be new constant symbols. Let E’=

(H u 1% 2. . ., y,},Funcu{c,:~a(~,)/i=l)..., n}, Pred) be an extended poly-

morphic signature, where (T E &6,(X, V, 0) is a typed substitution with (~(a,) = y,

(i= 1 7 . . 2 m), U(Q) = a for all other type variables (Y, and a(x, :r,) = c;:(T(T,) (j =

1 ..> n). If (E, C, V)k L, then (E’, C, V)k L by Lemma 4.3. By Lemma 3.3,

(i’, C, 0) k u(L). By Lemma 4.2, (z’, C, 0) t a(L) + 0. Since the basic types yi and

the constants cj :(~(r,) do not appear in the clauses C, we can replace y, by (Y,

(i= 1 7 . . 2 m) and c, :(~(r~) by xj:7, (j = 1,. . , n) in the last deduction. Hence we

obtain a deduction for (2, C, V) t L + 0. 0

5. Unification

We are interested in a systematic method for proving validity of goals. The Horn

clause calculus is one possibility, but in general it is far from being efficient. In

untyped Horn clause logic the resolution principle [33] with SLD-refutation [2] is

the basic proof method. The basic operation in a resolution step is the computation

of a most general unifier of two terms. We need a similar operation for the resolution

method in the polymorphic case. This section defines the unification in the poly-

morphic case and presents an algorithm for computing the most general unifier that

is based on the method in [23].

Example. Let a polymorphic signature contain the declarations p:(~ E Pred, q: int E

Pred and r: (Y E Pred (a is a type variable). X ,Y ,Z E Var are variable names and

assume the following two clauses to be given:

p(X:int) +q(X:int)

p(Y:cy)+r(Y:a)

The first clause is not allowed for proving the goal p(Z: bool). We can use the second

clause and have to prove in the next step the goal r (Z: boo1).

For proving the goal p(Z:int) the first clause can be used. In this case we are

left with the goal q(Z:int) for the next resolution step.

As we see, unification of two atoms has to consider the types of the terms. Untyped

unification cannot be applied in our case.

In Section 3.1 typed substitutions were defined. The composition of two typed

substitutions is again a typed substitution. Therefore we define the usual relations

on typed substitutions.

80 M. Hams

l Let V,, V, E Varr,x and u E Sub,(X, V, V,) and U’E Sub,(X, V, V,) be typed

substitutions. CT is more general than u’, denoted CT< u’, iff there exists 4 E

Sub, (X, V, , V,) with C#J 0 (+ = u’.

l Let t and t’ be (2, X, V)-terms. t and t’ are uni$able if there exists a typed

substitution (T E Sub,(X, V, V’) with CT(~) = a(t’) for a set V’C Vur,,, . In this

case CT is called a unifier for t and t’. u is a most general unijier (mgu) for t and

t’ if u c CT’ for all unifiers u’ for t and t’.
The well-known algorithms for the unification of two terms in a term algebra (without

equality) can be applied for the unification in the polymorphic case if we use a

particular term algebra: The untyped signature corresponding to 2, denoted E” =

(Term, Op), is defined as follows:

Term = {term}.

h: term, . . . , term+ term E Op for all h E H with arity n (n 2 0).
. 2

n

fzterm,..., term-+termEOp forallf:ri,...,r,+rEFunc (na0).
c 2

n

“I”: term, term + term E Op.

The signature E” has only one sort term. If VG Vur is a set of variable names and

X is a set of type variables, we interpret V and X also as variables of sort term

and denote by T,>,(X LJ V) the algebra of Z”-terms with variables from X u V.

T,u(X u V) is a single-sorted free term algebra over X u V, where the operation

symbols are type constructors from H, function from Func and the symbol “:” with

arity 2. It is easy to show that Term=(X, V’) G T,I~(XU V), where V= uvar(V’),

i.e., we can treat typed terms as terms over the signature 2”. For instance, the typed

term [] :Zist(a) is also a term over 2” (actually, “:“([],list (a)) is a term over

ZU, but we use the infix notation for the operator “:“). The converse is not true,

because equal (1: int,true: bool) : bool is a E”-term, but not a Z-term if equal: a, (Y +

boo1 E Func.

The notions of “substitution” and “unifier” for the algebra T,u(X u V) are defined

as usual (e.g., [24]) and we omit the details here. [33] has found an algorithm for

computing a most general unifier in a single-sorted free term algebra. For instance,

a most general unifier in T,u(X u {v}) for the Z-terms [] : list(a) and v: list(int) is

a(a) = int, a(6) = [1. It is an interesting fact that CT’ E Sub, (X, {v: list(int)}, 0) with

a’(a) = int and u’(v: list(int)) = [] :Zist(int) is a most general unifier for [] :Zist(a)

and v: list(int) in Term= (X, {v: list(int)}). Generally, we can compute a most general

unifier from a most general unifier in T,ad(X u V). In order to prove this proposition,

we present the algorithm and the result of Robinson. The algorithm of Robinson

uses disagreement sets to specify the differences of terms. For our purpose it is

Horn clause programs with polymorphic types 81

important to inspect the differences in type expressions first. Therefore we define

for to, t1 E T,>d(Xu V) the disagreement set of to and t,, ds(t,, t,), as follows:

l If to= t, then ds(t,, t,):= 0 else

l if to = t:r and t, = t’:r’ then

ds(to, tl) :=
ds(t,t’) ifr=r’,

ds(q 7’) otherwise,
else

l if to~Xu V or t,~Xu V then ds(t,, t,):={t,, tl} else

l if t,,=f(r,, . . . , r,,,) and t,=g(s,, . . . , s,) (m, n>O) then

if f# g or m # n then ds(t,,, tl) := {t,,, t,} else

if ri=si(i=l,... ,j - 1) and rj # s, then ds(to, tl) := ds(r,, sj).

If u is a substitution in T,u(X u V) and the set {x E X u Vlcr(x) # x} is finite,

we denote u by the set

{x/(~(x)Ix~Xu Vandcr(x)#x}.

Then the following algorithm computes a most general unifier in T,u(X u V).

Algorithm mgu

Input: to, t, E T,t,(X u V).

Output: An mgu (T for to and t, in T’u(X u V) or fail, if t, and t, are not unifiable

in T,t,(X u V).

(1)
(2)
(3)

k:=O;a,:={},

Ifgk(t,,) = ak(tl) then stop “uk is the mgu”,

If {x, t} G ds(ck(to), (T~(t,)) and x E X u V and x does not occur in t

then ak+l:={x/t}Ocrk; k:=k+l;goto(2).

else stop “‘fail: to and t, are not unifiable”,

The following theorem is due to Robinson [33].

Theorem 5.1. If t,,, t, E T,u(xu V) are unifiable in Tst~(Xu V), then the algorithm

“mgu” terminates and gives an mgu for to and t,, otherwise the algorithm “mgu”

terminates and reports “fail: to and t, are not untfiable”.

In the following we assume that a set V E U Vurz,x of typed variables with unique

types is given and V,:= uvar(V).

Lemma 5.2. Let to and t, be untfiable (2, X, V)-terms and u be a unifier for t, and

t,. Let cr’ be a substitution in T,cs(Xu V,) with (~‘(a):= ~(a) for any cy E X and

(T’(X):= t ifx:rE Vand F(x:~) = tea for any XE V,. Then u’ is a unifierfor to and

t, in T,u(Xu V,).

82 M. Hams

Proof. It is straightforward to show (by induction on the size of terms) that (TIN,, =

r’lTH,cxJ and &ermlCX,vJ = u’ITermZCX,V). Therefore u’(to) = a(to) = a(t,) = a’(t,). Cl

Hence each unifier corresponds to a unifier in 7”z,(X u V,). The converse is only

true for most general unifiers in T,jc(X u V,,). The following lemma is due to [23].

Lemma 5.3. Let to and t, be two (2, X, V)-terms uni$able in T,is(X u V,) with CT a

most general unifier in T,tl(Xu V,). Then there exists a typed substitution (TIE

Sub,(X, V, V’) such that a’(a) = (~(a) for any a E X, (T’(x:T) = (T(x):(T(T) for any

X:T E V and V’:= U,,, v var(a(x:r)). Moreover, CT’ is a most general un$er for t,,

and t,.

Proof. At first we show u(x):(T(~) E Term,(X, V’) for all X:TE V. By Theorem 5.1,

an mgu ok in T,t,(Xu V,) can be computed by the algorithm “mgu” presented

above. We show by induction on the computation steps the following property of

the computed substitutions oi in the algorithm “mgu”: Let W, := {x:(T,(T) 1 x: T E V},

tg Termz(X, V). Then a,(t)E Term,(X, Wi).

For i=O we have W,= V and ao(t)=t. Let i>O and a,-,(t)E Termz(X, Wi_,)

for all t E Term,(X, V). By the algorithm “mgu”, CT, = {v/u} 0 (T;-, for a v E X u V,,

and u E T,ci(X u V,).

(a) UEX: Since cri_,(to),ai_,(t,)e Termp(X, W,_,), it must be UE TH(X). It is

straightforward to show that {v/u}(t) E Termz(X, W,) for all t E Term, (X, W,_,).

(b) VE V,: Sincegi-,(to),cji,(t,)E Term\(X, W,_,), V:T, (fora~,E T,(X))must

occur in a,_,(&) or ai_, and therefore U:T, E Termp(X, W,_,) (otherwise v and

u are not in the disagreement set). It is straightforward to show that {v/u}(t) E

Term,(X, Wi) for all t E Termz(X, Wi_,) since W, = W,_, and V G U Vurz,x is a set

of typed variables with unique types.

By induction hypothesis, it follows ci(t) E Term, (X, Wi) for all t E Term, (X, V).

Since t, and t, are unifiable in T,lt(X u V,), the algorithm “mgu” stops with an

mgu ok and vk(t) E Term, (X, Wk) for all t E Termz (X, V). If CT is another mgu in

TL”(X u V,), then C(T) and Vk(T) are equivalent types for all TE TH(X). Therefore

m(t)e Term=(X, V’) for all tE Termz(X, V), in particular (T(x):(T(T)= (T(x:T)E

Termz(X, V’) for all X:TE V.

It can be shown in a similar way that a(a) E TH(X) for all (Y E X since t,,, t, E

Term=(X, V). By Lemma 3.1, there exists a typed substitution u’ with the conditions

described in the lemma. It is straightforwad to show (by induction on the size of

terms) that c/~+,(~) = ~‘1~~~~) and ~]7rrmzCX,VJ = 4TrrmzCX,v). Therefore c’(to) =
u(to) = a(t,) = u’(tl), i.e., CT’ is a unifier for to and t,. By Lemma 5.2, CT’ is a most

general unifier. 0

The requirement for a most general unifier in the last lemma is essential. If the

unifier in T,ti(Xu V,) is not most general, then the proposition does not hold: If

2 is a polymorphic signature with basic types boo1 and int, and V = (x: bool, y: bool},

Horn clause programs with polymorphic types 83

then the substitution u = {x/l, y/ 1) is a unifier for x:bool and y: boo1 in T,c,(X u V,),

but a(x: booE) = 1: bool & Termz (X, V’) is an ill-typed term.

The requirement for typed variables with unique types is also essential for the

correspondence of most general unifiers in T,c,(X u V,) to unifiers in Term= (X, V):

Let X,Y E Var and 2 be a polymorphic signature with basic types boo1 and int and

a function declaration

func f : int, boo1 + boo1

Then the terms f (X: int, X: bool): boo1 and f (0: int ,Y: boo1) : bool are unifiable in

T,~~({X,Y}) and a={X/O, Y/O} is an mgu in T,~J({X,Y}). But a(Y:bool) =O:bool is

an ill-typed term and therefore the theorem does not hold for this case. The following

theorem shows that the polymorphic unification problem can be reduced to the

unification problem in T,nz(X u V).

Theorem 5.4 (Unification). Let V C_ U Varz,, and VU:= uvar(V). Two (2, X, V)-terms

are unljiable ifl they are uni$able in T,t,(X u V,). A most general unijier can be

computed from a most general unijier in T,jj(X u V,,).

Proof. If two (E, X, V)-terms are not unifiable, then they are not unifiable in

T,~J(XU V,) by Lemma 5.3. If two (2, X, V)-terms are unifiable, then (by Lemma

5.2) they are unifiable in T,ls(X u V,). Theorem 5.1 yields a most general unifier in

T,c,(X u V,,), and Lemma 5.3 converts the mgu in T,g,(X u V,) into a most general

unifier in Term=(X, V). 0

The unification problem in the polymorphic case is solved by this theorem. There

exist more efficient unification algorithms ([26,3,32]) that can also be used instead

of the classical one presented above. We only require the following technical

restriction that will be needed for later proofs:

If Vc Var,,, , t and t’ are (2, X, V)-terms and CT is a most general unifier for t
and t’, then a={x,/t ,,..., x,/t,} and the following conditions hold:

(1) uuar(t,) G uuar(t) u uuar(t’) and tuar(ti) c tuar(t) u tvar(t’) for i = 1, . . . , n.

(2) xisZvar(t,)utvar(t,)foralli,jE{l,..., n}, i.e., the most general unifier is an

idempotent substitution.

(3) If V G U Varz,x, then U,,,, v oar(u(x:T)) G U Var_r,x.

The classical unification algorithm meets these requirements.

6. Resolution

In this section we will show that the resolution principle in untyped Horn logic

(see [24]) can be used for polymorphic Horn clause programs if we replace the

untyped unification by the polymorphic unification with typed substitutions as

84 M. Hams

defined in the last section. We call a Z-clause a variant of another E-clause if it is

obtained by replacing type variables and typed variables by other type variables

and typed variables, respectively, such that different variables are replaced by new

different variables. Let (2, C) be a polymorphic logic program.

(a) Let V, V’ s U Vurx,x, Gu {L} be a (2, X, V)-goal and the (2, X, V)-clause

L’+ G’ be a variant of a clause from C with tvar(G u {L}) n tvur(L’+ G’) = p) and

vur(Gu {L}) n vur(L’+ G’) = 0. If there exists a most general unifier (TE

Sub, (X, V, V’) for L and L’, then U(G) u v(G’) is said to be derived by resolution

from G u {L} relative to (+ and L’t G’. Notation: ,

(E, C, V) Gu{L} k urr(G)u(~(G’).

(b) Let V s U Vurz,x and G be a (2, X, V)-goal. A (E, C, V)-resolution of G is

a sequence of the form

where Go= G, V,= V and (2, C, Vi) Gi k vii+1 Gi+, with a,,1 E Subx(X, Vi, V,,,)

for i =O, 1,2,. . . , n - 1. The (2, C, V)-resolution is called successful if G,, =p). In

this case n is called the length of the (E, C, V)-resolution, and u := Us 0 . . .o u1 is

called a computed answer. Notation:

(2, C, V) k u G.

We remark that Vi E U Vur=,, for i = 0, 1,2,. . . , n - 1 since V c U Vurx,x. If

V c Vurz,x rather than V c U Vurx,x, the unifier in a resolution step is not a most

general one, the type variables and typed variables in a clause applied in a resolution

step are not disjoint from those in the E-goal, or C is only a set of Z-clauses rather

than vur(c) c U Vur=,, for all c E C, then the resolution is called an unrestricted

(2, C, V)-resolution and the symbol k is replaced by bR.

The soundness of resolution can be shown by simulating a resolution sequence

by a derivation in the polymorphic Horn clause calculus.

Theorem 6.1 (Soundness of resolution). Let (2, C) be a polymorphic logic program,

V E U Vurz,x and G be u (2, X, V) -goal. If there is a successful resolution (E, C, V)

k u G with computed answer u E Sub, (X, V, V’), then (I, C, V’) k u(G).

Proof. We assume that there is a successful resolution (1, C, V) b u G. Thus there

is a (E, C, V)-resolution of the form

(2, C, V) G, TV ~1 G, k ~2 G2 k . . . k an 0

withG,,=Gandu=u,,o* . . 0 CT,. We show the following proposition by induction

on the resolution steps: For i =O, . . . , n: If PE G,_i, then (E, C, V’)

t--UnO’ . * 0 un_,+l(P).

Horn clause programs with polymorphic types 85

This is true for i = 0 since G, = 0. For the induction step we assume

(2, C, V’)k Upj o ’ * ’ ’ Un_i+l (P) for all P E G,-i. The (n - i)th resolution step has

the form

and there is a variant L’+ G’ of a clause from C and a Z-atom LE G,_i_, with

~,_,(L)=u,_~(L’) and G,~,=a,~j((G,~i~,-{L})u G’).

We have to show that (2, C, V’) k cn 0 . . . 0 anpi is true for all P E G,_i_, . As

the (2, X, V+-*)-clause L’+ G’ is a variant of a clause from C, there exist

v” c Var=,, , L” + G” E C and

U”E Sub,(C, V”, V,_,_l) with u”(L”+ G”) = L’t G’.

Therefore,

(E, C, V”)tL”+ G” and (2, C, V,_,_,)I- L’+ G’

by the substitution rule. If we apply the substitution rule with typed substitution

un 0 * * * 0 a,_;, we obtain

(1, C, V’) t a,, 0 . . .o a,& L’+ G’).

By induction hypothesis, (1, C, V’) E CT,, 0 . . .oc~,_~+,(P), for all PE G,_i. Since

u,~~(G’) c Gn-i, we get from multiple applications of the cut rule

If P E G+_, -{L}, then a,_,(P) E G,_i, and, therefore,

(E, c, V’)kCT, 0. . .o (T,_JP)

by induction hypothesis. This completes the induction step. We obtain the following

proposition for i = n: For all P E G, (2, C, V’) + a(P).

Let M be a model for (2, C) and u be a variable assignment for (X, V’) in M

(if there exists no such variable assignment, then M, V’k a(G) is trivially true). By

Theorem 4.1 (soundness of deduction), we obtain M, v I= a(P) for all P E G. This

implies M, uk v(G). Therefore, (2, C, V’)t= a(G). 0

The completeness of resolution in untyped Horn logic can be proved by a fixpoint

theorem using a transformation on Herbrand interpretations [37,24]. In [16] this

proof method is adapted to the polymorphic case. In this paper we will show the

completeness of resolution for polymorphic logic programs by simulating each

deduction in the polymorphic Horn clause calculus by resolution. Padawitz [30]

has presented such a proof for many-sorted Horn clause logic with equality.

However, he has required that all types are interpreted as nonempty sets, which

simplifies the proof but is not reasonable in our context.

86 M. Hanus

The simulation of deduction by resolution is more difficult than the simulation

of resolution by deduction. A few technical lemmas will help to structure the

completeness proof. The first lemma shows that the substitution rule is not necessary
A

if C (the set of instantiated clauses) is used in a deduction.

Lemma 6.2. Let C be a set of E-clauses, V, V’S Varz,x and (E, C, V) E L+- G. For

any typed substitution u E SubI (X, V, V’) there exists a deduction (E, C, V’) t u(L +

G) where only axioms and cut rules are applied.

Proof. We prove the lemma by induction on the number n of cut rule applications

in a shortest deduction of (E, C, V) ä L+ G. The case n = 0 is trivial since aO(LO) *
A

oO(G,) E C for all LO t G, E C and all appropriate typed substitutions (TV. Otherwise

there is a last application of the cut rule in the deduction, say

(&Cc, V)EL~+G,U{L,} and (E,C, V)+L,+G,

occur in the deduction before the last application of the cut rule. Let (T, E

Sub,(X, V,, Vi). We have to show that (2, C, V:)E(T,(L~)+(T,(G~ u Gj) can be

deduced without an application of the substitution rule. The number of cut rule

applications in shortest derivations of

(E,C, K)FL~+G,u{L,} and (.E,C, V;)kL,+Gj

is less than n. By induction hypothesis,

(-7 C, V:)ta,(L,)ca,(G,u{L,}) and (2, C, V:)kai(L,)*oi(Gj)

can be deduced without an application of the substitution rule. By an application

of the cut rule, we obtain

(2, C, Vi)~a,(L,)ccr,(GiUGj).

This proves the lemma. 0

Lemma 6.3. Let C be a set of Zclauses and VS Var=,, . If (2, C, V) t Lt G where

only axioms and cut rules are applied, then (2, C’, V) bR id,,, L with C’= C u

{P + 1 P E G}, and each substitution in the unrestricted resolution is equal to idx,“.

Proof. The lemma is proved by induction on the length of the deduction. Let

d . . .) d, be a deduction for (1, C, V) t L+ G

a:; applied. If L+ G E C, then (E, C’, V) L bR id

where only axioms and cut rules

x,v G is an unrestricted resolution

step. If G consists of k E-atoms, then we achieve the empty goal with k further

unrestricted resolution steps with substitutions id,,, .

If L + G g C, then the clause must be derived by an application of the cut rule,

i.e., there are

di=(I, C, V)I-L+Gou{L,}, d,=(Z,C, V)EL~+G,

with G = G, u G, and i, j < n. By induction hypothesis,

(2, C’u {L, + 1, V) kK idx,v L (1)

and

(2, C’, V) bR id,,, L, (2)

since G = GO u G,. If the clause L, +- is used in resolution (l), then, by (2), it is

possible to replace the resolution step by a sequence of resolution steps that derives

L, to the empty goal using clauses from C’. Thus (2, C’, V) bR idx,” L and each

substitution in this unrestricted resolution is equal to id,,,. 0

Now we can prove the completeness of unrestricted resolution.

Theorem 6.4 (Completeness of unrestricted resolution for atoms). Let C be a set of

Z-clauses, V, V’ c Var2,x be Jinite and A be a (2, X, V) -atom. Zf u E Subz- (X, V, V’)

is a typed substitution with (2, C, V’)k a(A), then there exists a set VOc Varx,x and

a typed substitution (T” E Sub, (X, V,, V’) with (2, C, V,) bR (T” A and a,,(A) = v(A).

Proof. W.1.o.g. we assume that u affects only a finite number of type variables since

V is finite, i.e., tdom(a) is finite. Let (2, C, V’)ka(A). Theorem 4.4 yields

(E, C, V’) k u(A). By Lemma 6.2 and Lemma 6.3, there exists a successful unrestric-

ted resolution of the form

(2, C, V’) v(A) bR id,,,, G, bR idx,v,. . . bR id,,,, 0.

In the tirst resolution step there exist L,+ R,,E C, V{l& VU~~,~ and U”E

Sub,(X, Vh, V’) with uO(Lo)=a(A) and a,,(R”)= G,.

W.1.o.g. we assume tdom(a) n tdom(vO) = 0 and uuar(V) n uvar(V,!J = 0 (other-

wise we choose an appropriate variant of L, + R, and an appropriate typed substitu-

tion o,,). We define V,:= Vu var(L, + R,) and combine u and co into a typed

substitution (T, E Sub, (X, V,, , V’) with

a,(n) =
i

a(a) if cr E tdom(u),

a,(a) otherwise,

and

u1(x:7) =
i

u(x:T) ifx:rE V,

u,,(x:T) if x:rE uar(LO+ R,).

Then u,(A) = u(A) = a,(L,) = u, (L,) and u, (R,,) = a,(R,) = G, . Therefore

(2, C, VO) A ‘ER or G,

is an unrestricted resolution step. If G, =I?, then the proof is finished, otherwise

there is a second resolution step

(2, C, V’) G, tgjR id,,,, G2.

Let L; + R; E k be the clause used in this resolution step, i.e., there exist L, + R, E C,

Vi s Vurz,x and u: E Sub,(X, Vi, V’) with a{(L, + R,) = L’, + R:. Similarly to the

88 M. Hams

first resolution step, we combine ai and id,,,, into a typed substitution USE

Sub, (X, V, , V’), where V, := V’u var(L, c R,), such that

(2, C, VI) G, k~ ~2 G

is an unrestricted resolution step. Since V’ c_ VI, we can extend u, to a typed

substitution o, E Sub,(X, V,, V,). Hence we get the unrestricted resolution

(2, C, VO) A bR ff~ GI kiR u2 G

with a,(a,(A)) = a,(a(A)) = o(A) and a20 (T, E Subs(X, V,, V’). If we apply the

transformation of the second resolution step in the same way to the remaining

resolution steps, we obtain an unrestricted resolution

with u, 0 . * .o CT, (A)=u(A) and uno... 0 gi E S&,(X, v,, V’). q

We need the next lemma to prove the completeness of unrestricted resolution for

general goals.

Lemma 6.5. Let C be a set of I?kZauses, V = {x,:7,, . . . , x,: T,,} c Vars,x and G be a

(2, X, V)-goal with tvar(G) E tvar(V). Let p be a new symbol that does not occur in

2, Z’:=(If, Func,Predu{p:~ ,,..., T,}), L:=p(x,:~ ,,..., x,:7,) and C’:= Cu

{L+G}. Then

(2, C, V’)ku(G) a (2’) C’, V’)ku(L)

for all v E Sub=(X, V, V).

Proof. Let (2, C, V’) k o(G) and M’ be a model for (E’, C’). Then M’ is also a

model for (E’, C) and M’, Vk L+ G. By Lemma 3.3, M’, V’I=o(L)+-u(G). Sup-

pose u is a variable assignment for (X, V’) in M’. M’ is also a model for (2, C) if

we omit the interpretation of the predicate symbol p in M’. Therefore M’, 0 k u(G).

M’, u k o(L) + u(G) implies M’, ZJ i= o(L). Hence we obtain M’, V’l= u(L). 0

Theorem 6.6 (Completeness of unrestricted resolution). Let C be a set of&&uses,

Vc Var,,, be jinite and G be a (2, X, V)-goal. If u E Subs (X, V, V’) is a typed

substitution with (2, C, V’) I== u(G), then there exist a set VOz Vars,x and a typed

substitution USE Sub,(X, V,, V’) with (2, C, V,) bjR u,, G and u,(G) = o(G).

Proof. Let tvar(G) c tvar(V), otherwise add new variables with types from

tvar(G) - tvar(V) to V and extend u to these variables so that this condition holds

and u does not alter the new variables. Then we define p, L, 2’ and C’ as in the

last lemma. (2, C, V’) k u(G) implies (E’, C’, V’) I= a(L). By Theorem 6.4, there

exist V, E Vurz,x and a typed substitution u,, E Sub, (X, V,, V’) with

Horn clause programs with polymorphic fypes 89

(X’, C’, V,) bR u,, L and a,(L) = a(L). Since the only clause for the elimination of

an atom with predicate symbol p is L* G, there is a resolution

with u,,=u,,~~~~~w,. We can combine the typed substitution u, with the typed

substitution (TV in the second resolution step and obtain an unrestricted (2, C, V,)-

resolution for G with the same computed answer. 0

To prove completeness of resolution with most general unifiers we need the

following lemma.

Lemma 6.7 (mgu-Lemma). Let (2, C) be a polymorphic logic program, V E o VU,,,

and G be a (2, X, V)-goal. If there exists an unrestricted resolution

(~',C,V)G~R(T,G,~R(T~G~~R...~R(T,~

for G, then there exists an unrestricted resolution

(E,C, V) G~R(T: G’bRoi G;k~R***t,Rok@

where each ai is a most general untfier and a; 0 ’ . ’ 0 ai E SubI (X, V, V’). Furthermore,

there exists a typed substitution 4 E Sub,(X, V’, V”) with q5 0 (T: 0 . * * 0 ai =

Un~o”‘~U,.

Proof. By induction on the length n of the resolution: If n = 1, then (2, C, V)

G bR o1 0. Hence there exists a variant L + 0 of a clause from C with ai(G) = c,(L).

By Unification Theorem 5.4, there exists a most general unifier a; E Sub= (X, V, V’)

for G and L and therefore there is a typed substitution 4 E Sub, (X, V’, V”) with

$J 0 mi = (pi. Thus (E, C, V) G bR oi 0 is a resolution for G.

If n > 1, then there is a resolution

(-% c, V) G bRcl G,bRu2 G,iiSR...tUR~n 8.

Hence there exists a variant L’+ G’ of a clause from C with a,(L’) = a,(L) where

G = GOu {L}. By Unification Theorem 5.4, there exists a most general unifier

ai E Sub,(X, V, V’) for L’ and L and therefore there is a typed substitution 4 E

Sub,(X, V’, V”) with 4 0 ui = (T,. If Gi := a;(G,u G’), then

(qC,V) GbRo: G~~R~~~~~~~IR"~~JR~,(~)

is an unrestricted resolution for G (w.1.o.g. we assume that 4 does not alter any

type variables or typed variables from the clause used in the second resolution step)

and

(&c,V’) G:~~~2~d'G2b~"'b~ff,,~

is an unrestricted resolution for G; of length n - 1. Since V’ co Var,,, and by

induction hypothesis, there exists an unrestricted resolution

(2, C, V’) G; bR v: G: bR ’ ’ ’ ~JR a:,@

90 M. Hams

where each ai is a most general unifier, a; 0 . . . 0 a;~ Sub,(X, V’, V,), and

there exists a typed substitution p E Sub, (X, V, , V,) with p 0 a; 0 * * .o ai =

un 0 * . . 0 u2 0 4. Hence we obtain an unrestricted resolution

(~,C,V)GI_,,(T:G:~~(TIG:~U~...~~~~~,

where each a: is a most general unifier, a; 0 . . .o CT; E Sub,(X, V, VI) and

p~Sub,(X, V,, V,) is a typed substitution with p o a: 0. . . o (T: =

CT, 0 . ..~Uz~(b o(T;=(T,o.. . OU~OU~. 0

The completeness of resolution follows from completeness of unrestricted resol-

ution and mgu-Lemma 6.7:

Theorem 6.8 (Completeness of resolution). Let (2, C) be a polymorphic logicprogram,

V L U Var,,, be finite and G be a (2, X, V)-goal. If u E SubP (X, V, V’) is a typed

substitution with (2, C, V’) k u(G), then there exist a set V, c U Varz,x and a typed

substitution uO E Sub= (X, V,, V,) with (2, C, V,) h uD G, and there is a typed substitu-

tion 4 E Sub2 (X, V, , V’) with 4(uO(G)) = u(G).

Proof. By completeness Theorem 6.6, there exist Vzc Vur=,, and an unrestricted

resolution of the form

(1, c, V,) G by ~1 G, ba ~2 G r-R. . . bR un e, (1)

with u,, 0 ’ .*ou,~Sub~(X, V,, V’)andu,O**. 0 ul(G) = u(G). W.1.o.g. we assume

that V, is finite. V, E U Var x,x is not true in general. Hence we construct a set

V, c U VW=,~ corresponding to V,: If V, = var(G) u {x, : T, , . . . , x, : T,}, then we

define V,:=var(G)u{y,:~~,.. . , y, : 7,) where yi are pairwise distinct new variable

names from Var. Let p E Sub,(X, V,, V,) with p(a) = a for all (Y E X, p(x:~) =X:T

for all x:TEvar(G) and P(Y~:T~)=x~:T~ for i=l,...,m. VO~UVurz,x and p is

invertible so that p 0 p-l = id,,,,. We show that

(&c,V,) G~RU~~PG,~R~~G~...~R~~~ (2)

is an unrestricted resolution for G: Let L’ + G’ be the clause used in the first

resolution step in (1). Therefore G = G,u {L,} with a,(&) = u,(L’) and G, =

a,(G,u G’). pP’(L’+ G’) is also a variant of a clause from C. p(G) = G since

,O(X:‘T) = X:7 for all X:TE uar(G). Thus a,(p(L,)) = a,(&) = u,(L’) =

ul(p(p-‘(L’))) and u,(p(G,up-‘(G’))) = u,(G,u G’) = G,. Therefore (2) is

indeed an unrestricted resolution for G.

We assume for the resolution (2) that tvar(G,) n tuar(q) =0 and Uor(Gi) n
var(ci) = 0 where ci is the clause used in the ith resolution step. If this is not the

case then we choose an appropriate variant of ci and extend V, and the preceding

substitutions as in the proof of Theorem 6.4. By the mgu-Lemma 6.7, we obtain

from (2) a resolution

(2, C, V,) G k u; G, k a; G2. . . ‘;; a:, 0

Horn clause programs with polymorphic types 91

and a typed substitution 4 E SubE (X, V, , V’) (where ffO::=o:,o.. .O(TiE

Sub(X vo, V,)) with 4 oo,=flnO.. *oCr,op. Hence 4(a,(C)) =
un 0 . . .o u, 0 p(G) = w, 0 + ..~cr,(G)=cr(G). 0

Soundness Theorem 6.1 and completeness Theorem 6.8 are the justification for

implementing the (2, C, V)-resolution as a proof method for polymorphic logic

programs. For a complete resolution method, all possible derivations must be

computed in parallel. If we use a backtracking method like Prolog, the resolution

method becomes incomplete because of infinite derivations. If we accept this

drawback, we can implement the resolution like Prolog with the difference that the

unification includes the unification of type expressions (cf. Section 9).

7. Optimization

In the last two sections we have seen that the unification process in a resolution

step has to unify the type expressions in every subterm. Thus the resolution is in

any case more complex than the resolution in the untyped case. Mycroft and O’Keefe

[28] have defined a specific class of polymorphic logic programs for which type

checking is unnecessary at run time. Therefore it is possible to disregard the type

annotations in subterms at run time if the polymorphic logic program has specific

restrictions. We present some optimizations for the resolution of polymorphic

programs.

7.1. Type preserving functions

A first optimization for the resolution of polymorphic logic programs can be

applied to a large class of functions: We call a function symbol f type preserving if

j-:7,,..., r,, + T E Func and tvar(~,) E mar(~) for i = 1, . . . , n. In the declaration of

a type preserving function all type variables occurring in the argument types also

occur in the result type. For instance,

func [1: + list(cf)

func*:q list((Y)+Zist(cx)

are type preserving functions, whereas

func equal: (Y, (Y + boo1

is not a type preserving function. We will see that in the case of type preserving

functions type annotations in arguments are unnecessary. If t E Term2 (X, V), we

denote by Q(t) the term obtained from f by deleting the type annotations in the

arguments of type preserving functions. For instance,

and

@(a(l:int,[]:Zist(int)):fist(int)) =a(l, []):list(int)

4b(equal(l:inr,2:int):bool)=equal(l:int,2:int):booZ.

92 M. Hams

Formally, @ can be defined as a mapping @ : Term, (X, V) + T,tl(X u V,), where

V c_ U Varr,, and V, = uvar(V).

l @(x:7):= x:7 for all x:5-E V,

0 @(c:T):= C:T for all constants c:r,

l @(f(tl:rl,. . ., t,:T,):T):=f(t:,. . ., t~):rwhere@(ti:~i)=tj:~i(i=l,...,n)for

all composite terms with a type preserving function J;

. ‘@g(t,:T1,..., f,,:Tn):T):=g(@(tl:T1),...,@(f n :T,)):T for all composite terms

where g is not type preserving

The next proposition states an important property of @.

Proposition 7.1. The mapping Q, is injective.

Proof. 0 deletes only type annotations in arguments of type preserving functions.

Such type annotations can be computed from the type declaration of the function

and the actual result type in a unique way (here it is essential that we have no

overloading!). Hence the proposition can be shown by a simple induction on the

size of (2, X, V)-terms. 0

Lemma 7.2. Let V c U Varz,x and V,:= uvar(V). If to, t, E Term1 (X, V) are unijiable,

then @(to) and @(tl) are uni$able in T,t,(X u V,).

Proof. Let u E SubI (X, V, V’) be a unifier for to and t, . Let CT’ be a substitution in

T,u(Xu V,) with (T’((Y):=u(cY) for all VEX and d(x):=t for all X:TE V with

@(a(x: T)) = t : u(T). It is straightforward to show (by induction on the size of terms)

that glTHCxj =&lTHCxj and v’(@(t))= @((T(Z)) for all tE Term,(X, V). Therefore,

a’(@(to))= @(U(&J) = @(a(&)) =a’(@(t,)). 0

Lemma 7.3. Let V c_ U Vurx,x, V,:= uvar(V) and to, tI E Term=(X, V). If@(tJ and

@(t,) are uni$able in T,u(X u V,), then to and r, are unijiable.

Proof. Let @(to) and @(t,) be unifiable in T,u(Xu Vo). By Theorem 5.1, a most

general unifier in T,~~(X u V,) can be computed by the algorithm “mgu”. We show

by induction on the computation steps the following property of the computed

substitutions ui in the algorithm “mgu”: Let W, := {x:(T~(T) 1 X:T E V}, t E

Term=(X, V). Then cr,(@(t))~ @(Term=(X, W,)).

For i =O, we have W,= V and a,(O(t)) = Q(t). Let i>O and ai_r(@(t)) E

@(Term,(X, Wi_,)) for all t E Term=(X, V). By the algorithm “mgu”, ci =

{v/u} 0 ui-r for a variable v E V,,u X and u E T,“(X u V,).

(a) VEX: Since a,_,(@(t,)), ui-r(@(f,))~ @(Term=(X, kV-1)), it must be UE

TH(X) since in @(Termp(X, W,_,)) type expressions occur always as the second

argument of a “:“-term. It is straightforward to show that {v/u}(@(t)) E

@(Termz(X, Wi)) for all t E Term=(X, Wi-1).

Horn clause programs with polymorphic types 93

(b) UE VO: Since v~-,(@(&,)), a,_,(@(t,))~ @(TermZ(X, Wipl)), V:T, (for a 7,~

TH(X)) and u:~,~@(Term~(X, Wj_,)) or the subterms f(. . . . u,...):Q- and

f(. . .) u, . . .): T must occur at the same position in a,_,(@(t,,)) and a,_r(@(t,)). In

the latter case f is a type preserving function with f :Tf E Func and there exists

a, u’ E TS(H, X) with (T(rf) = 7, , . . . , T,, + T and a’(TV) = 7: , . . . , T; + T, whereas

f(. . . , U:Tj,. . .) and f(. . . , U’:T;, . . .) are the corresponding subterms in vi-i(to) and

gtYl(t,). Let T’= PI, . . . , Pn + p and X’ = tuar(p). Since (T(p) = T = u’(p), it follows

‘TI~,w,) = a’l,,~~ and a(~,) = a’(~,) (since tvar(pi) c tvar(p)). Thus 5 = T: and

f(. . .,V:Tj,...) and f (. . . , u': 7, . . .) are the corresponding subterms in a,_,(to) and

cam_, with @(u’:T~) = u:~. Therefore 21:~~ E W,_, and U:T, E @(Term=(X, W,_,)).

Now it is straightforward to show that {v/u}(@(t)) E @(Term,(X, Wi)) for all

t E Termz(X, W,_,) since W, = Wi_, .

By induction hypothesis and (a) and (b), it follows vi(@(t)) E @(Termr(X, Wi))

for all t E Termz (X, V).

Since @(to) and @(t,) are unifiable in T,i,(X u V,), the algorithm “mgu” stops

with an mgu uk and uk(O(t)) E @(Term_,(X, W,)) for all t E Termz-(X, V). By

Proposition 7.1, for each t E Term,(X, V) there exists a unique term t’~

Term,(X, W,) with @(t’) = uk(Q(t)). Hence we can define a typed substitution

UE Sub,(X, V, V’) with u(a) = Us for all LY E X and U(X:T) = t’ for all X:TE V,

whereas t’~ Term\ (X, W,) with @(t’) = uk(@(x: T)). It is easy to show (by induction

on the size of terms) that @(u(t)) = uk(@(t)) f or all t E Term, (X, V). Therefore

@(u(to)) = uk(@(to)) = uk(@(tl)) = @(a(t,)). Proposition 7.1 yields a(to) = a(t,),

i.e., u is a unifier for t, and t,. 0

Theorem 7.4 (Optimized unification for type preserving functions). Let V c U Vurz,x,

V,:= uvar(V) and to, t, E Term,(X, V). t, and t, are unijable ijj” @(to) and @(tl)

are uniJiable in T,t,(Xu V,,). A most general unifier for to and t, can be computed

from a most general unifier in Tzll(X u V,).

Proof. If to and t, are not unifiable, then @(to) and @(t,) are not unifiable in

T,ta(X u V,) by Lemma 7.3. If t, and t, are unifiable, then @(t,) and @(t,) are

unifiable in T,u(X u V,) by Lemma 7.2. By Theorem 5.1, a most general unifier for

@(t,) and @(t,) in T,u(X u V,) can be computed, which can be transformed into

a unifier for to and t, (see proof of Lemma 7.3). By the proof of Lemma 7.2, this

corresponds to a most general unifier for to and t,. 0

The optimized unification can be extended to atoms if we interpret each predicate

p:T1, . . . , T, E Pred as a function symbol with declaration p: T, , . . . , T,, + boo1 and

delete the result type bool in the unification. Therefore the optimized unification

can be integrated in the resolution method defined in Section 6. For the case of

monomorphic signatures we obtain the following result.

94 M. Hanus

Corollary 7.5. If the signature is monomorphic, i.e., all function and predicate

declarations do not contain any type variables, then type annotations are unnecessary

for the unification of atoms.

This corollary shows that in many-sorted Horn clause programs the resolution

procedure has the same efficiency as in untyped programs since types are not needed

at run time.

7.2. Type-generally defined predicates

There is another possibility for optimization if a predicate is defined with most

general types, i.e., in each clause for the predicate the head has a most general type

and the predicates in the body are also defined with most general types. In the

following we develop the necessary definitions and results to prove this idea.

We assume that V ho Var,,x is a set of typed variables with unique types. A

(E, X, V)-term t:-r is called typegeneral if for any (2, X, V)-term t’:r’with 4(~) = T’

and 4 E TS(H, X) which is unifiable with t: r and which has no type variables in

common with t: T, there exists a typed substitution (T E Sub, (X, V, V’) with a(t: 7) =

a(t’: 7’) and a(a) = cy for all CY E tvar(t’: 7’). The property type general can be simply

extended to atoms, if we treat predicates as Boolean functions.

For instance, if there is a declaration g:cu, p + bool, then g(X:c-u, Y:p):bool is a

type-general term, but neither g(X:a, 1:int):bool nor g(X:cy, 2:a):bool is a type-

general term. Note that variables and constants are always type general. For type-

general terms we do not require the result type to be most general as otherwise

type-general terms may not have type-general subterms. But this is important for

further results.

We will show that in case of type-general terms type annotations may be omitted

in the unification. First we have to prove some properties of type-general terms.

Lemma7.6. Lett=f(t,:T ,,..., t,,:T,):~andt’=f(t{:~{ ,..., tk:7;):7’be(I,X, V)-

terms with 4(r) = r’ for a type substitution C$ E TS(H, X). If t is type general, then

there exists a type substitution CT E TS(H, X) with u(T, , . . . , r,, + T) = r:, . . . , T; + 7’.

Proof. Let f: 7, E Func with r/ = . . . + TV. There exists 4 E TS(H, X) with +‘(r,.) =

r1,.*., 7, + T. Let 4”~ TS(H, X) with +“(a) = +‘(LY) for all (Y E tvar(TO) and 4”((Y) =

aforallothercu~X.Letr=f(x,:p,,...,x,:p,):p,where~“(7~)andp,,...,p,~p

are equivalent and xi E Vur with xi # xi for i #j. We assume that type variables and

typed variables in r and t are disjoint (otherwise rename them). By construction of

r, there exist a, U’E TS(H, X) with

u(pi ,..., pn+p)=7i ,..., ~,,+r and u’(p ,,..., p,,-+p)=ri ,..., r:-+~‘.

Let V,:= var(r)u var(t). We define 8~Sub~(X, V,, V,) by

e(a) =
u(a) ifaEtvar(p,,...,p,~p),

LY otherwise,

Horn clause programs with polymorphic iypes 95

and

0(x:7) =
ti:ri ifx:7=x,:Pi,

x:r otherwise.

Such a typed substitution exists since O(pi) = a(p,) = TV.

Now we have O(r) =f(O(x, :pl), . . . , 0(x, :pn)):O(p) = t = O(t), i.e., r and t are

unifiable. By definition of “type general”, there exists a type substitution 0’ E

TS(H,X) with p ,,..., P,,+P=~‘(P ,,..., ~,,+~)=8’(r ,,..., r,,+r). Therefore

d(eyT,, . . , 7, + T)) = T;, . . . , T:, + 7’. 0

Lemma 7.7. Let t =f(t, : 7, , . . . , t, :T,,):T be a type-general (2, X, V)-term. Then ti :7i

is a type-general (2, X, V)-term and (tour(~) n tvar(ti :T,)) - tvur(Tj) = 0 for i =

1 ,..., n. Furthermore, (tvur(t, : TV) - tvur(7,)) n (tuur(5 : TV) - tvur(5)) = 0 for i #j.

Proof. We prove the case i = 1. First we show that t, :r, is type general. Let rl :p,

be a (I, X, V)-term with +(r,) = p, for a 4 E TS(H, X), tvur(t) n tuur(r, :p,) = 0

and t, :r, is unifiable with r, :p, . We assume that a = a for all (Y E X - tvur(T,).

Letx,,..., x, be pairwise distinct variable names not occurring in V and V, := Vu

{x2:4(72), . . ., x,:4(7,,)}. Then r:=f(r,:p,,x,:g5(T2),...,x,:qS(T,,)):c$(~) is a

(E, X, V,)-term unifiable with t. Since t is type general, there exists a unifier

mESubt(X, V,,, Vk) for t and r with a(cu)=cu for all a~tvur(r). Thus a(t,:~,)=

(+(r, :p,) and u((Y) = (Y for all a E tmr(r, :p,). Hence t,:~, is type general.

Assumption: There exists (Y E (tvur(7) n tuur(t, : T,)) - tuur(7,). Then (Y occurs in

the subterm t, :T, but not in 7,. Therefore all occurrences of (Y in t, :r, can be

replaced by a new type variable /3 and the resulting term t: : T, remains also well-typed

and has the same result type. Clearly, the term t’ =f(ti :T1, . . . , t, : 7,): T is unifiable

with t (for convenience we do not rename the type variables in t’ which formally

must be done). But each unifier for t and t’ must identify the type variable /3 in

ti :T, with the type variable LY in r because these are identical in t. Hence t is not

type general in contrast to our assumption.

The last proposition in the lemma can be proved in the same way. 0

For a precise definition of “omitting all type annotations in a term” we define a

mapping W that deletes all type annotations in a term. Formally, W can be defined

as a mapping q: Termz(X, V)+ T,c,(X u V,,), where V,= uvur(V).

l P(x:r):=xforallx:~E V,

l !P(c:7) := c for all constants c:r,

. !P(f(t,:T,, . . ., t,:T,):~):=jf(!P(t,:~,),..., ?P(~,:T~)) for all composite terms

f(rr:r,,..., t,:r,):rE Term=(X, V).

The definitions of Iv can be simply extended to I-atoms.

Theorem 7.8 (Unification with type-general terms). Let t:~, t’:~’ be (2, X, V)-terms

with tvur(t: 7) n tuur(t’:T’) = 0, vur(t:T) n vur(t’: T’) = 0 and t: T be type general with

qb(~) = T’ for a type substitution C$ E TS(H, X). t:T and t’:T’ are unijuble ifl ‘P(~:T)

and ly(t’:~‘) are unijiuble in T,z,(X u uvur(V)).

96 M. Hanus

Proof. Let t:r and t’:r’ be unifiable, (T E Sub, (X, V, V’) be a unifier for to and t,

and V,:= uuar(V). Let (T’ be a substitution in T,u(Xu V,) with a’(a)=a(a) for

all (Y EX and U’(X)= !P(u(x:,)) f or all X:~E V It is straightforward to show

(by induction on the size of terms) that al,,(,) = ‘T’I,~~(~) and a’(?P(t)) = ?P(o(t))

for all t E Term= (X, V). Therefore a’(?P(t:r))= W(a(t:r))= P(a(t’:r’))=

a’(Ilr(t’:7’)).

Conversely, let !P(t: T) and W (t’: T’) be unifiable in T,u(X u V,). We assume

+(a) = (Y for all (Y E X - tuar(7) and prove the proposition by induction on the size

of the term f:~.

t:~ E V Let (T E Sub= (X, V, V’) with (~1 TH(x) = 4, cr(x:p) = x:4(p) for all x:p E

V-{t:~} and a(t:~)=(+(f’:~‘). Then r is a unifier for t:~ and t’:~‘.

t:T=C:T with c:+~,~Func. Since +(T)= T' and c and t’ are unifiable in

T,u(X u V,), f:~ and t’:~’ are unifiable.

t:~=f(tr:~r,. . . , t,:~,):~(n>O).Thecaset’:~‘~Visthesameast:~~V.There-

foreweassurnet’:~‘=f(t~:~~,..., t k : T;): T'. By Lemma 7.7, each ti : 7i is type general.

By Lemma 7.6, there exists 4’ E TS(H, X) with +‘(or, . . . , T,, + T) = 7: , . . . , 7; + 7'.

p(ti:7,) and p(ti:~i) are unifiable in T,r,(Xu V,) since p(t:~) and p(t':~') are

unifiable in T,cs(Xu V,). Thus we can apply the induction hypothesis and infer

that &:T~ and ti :T: are unifiable, i.e., there exist unifiers (TV for ti : 7i and t: : T{ with

a,(a) = (Y for all cy E tuar(t: :T:) (by definition of “type general”). Let q$:=

(+ilTH(rvar(r,:r,)) be type substitutions (i = 1, . . . , n). Then 4j(TV)= gii(~i)= 7: = +'(T,).

This implies 4i(~) = 4’(a) for all (Y E tvar(~~) (i = l), . . . , n). By Lemma 7.7, the

type substitutions +i can be combined into a type substitution 0 with

8(a) =

(

f#+((~) for all cy E tuar(ti:7i)r

4’(a) for all (Y E tuar(5-),

a! for all other (Y E X.

We extend 0 to a typed substitution by 0(x:7) := X:@(T) for all X:T E v Then in

e(t:T) and e(t':T') = f':T' subterms at same positions have identical types: If we

start the algorithm “mgu” with f3(f:~) and 0(t':~') at no time there are type

expressions in the disagreement set. The unification does not depend on the types,

and therefore e(f:T) and f?(t’: T') are unifiable since !I’(t:~) and q(t’: T') are unifiable

in T,u(Xu V,). 0

The condition 4(T) = 7' in the last theorem is necessary, otherwise the theorem

does not hold. For example, if there is a declaration

funcid:a+a

then id(I: int): int is type general but not unifiable with the term id(B: bool): bool.

?P(id(l:inr):int) = id(l) and ?P(id(B:bool):booE) = id(B) are unifiable in

T,u(X u (4 B1).
If we want to omit type annotations, it is not sufficient that the clause heads are

type-general atoms. It is necessary that all predicates in the clause bodies are

Horn clause programs with polymorphic types 97

type-generally defined. Therefore we define: Let (2, C) be a polymorphic logic

program and p: rp E Pred.

(a) The predicate p is type-generally defined in (2, C) relative to a set of predicates

P if for every clause

P(t ,:7 ,,..., t,:r,)tL,,...,LkEC

the following conditions hold:

(1) P(t,:r,,..., t, :T,) is type general.

(2) If Li = qi(. * .) and qi & Pu {p}, then q, is type-generally defined in (2, C)

relative to Pu{p} (for i= 1,. . . , k).

(b) The predicate p is type-generally defined in (E, C) if p is type-generally defined

in (2, C) relative to 0.

The next lemma shows that type variables are never instantiated in a resolution

step if the predicates are type-generally defined. Type variables can only be renamed

depending on the computation method for the most general unifier.

Lemma 7.9. Let (2, C) be a polymorphic logic program and G be a (E, X, V)-goal.

If (2, C, V) G k (T G’ is a resolution step and all predicates occurring in G are

type-generally defined in (2, C), then all predicates occurring in G’ are type-generally

deJined in (2, C) and oITH(,uar(GjJ is bijective, i.e., the types 7 and w(r) are equivalent

for each type r in G.

Proof. Let (2, C, V) G k (T G’ be a resolution step. Then G = GOu {L,}, the

(2, X, V)-clause L, +- G, is a variant of a clause from C, tvar(G) n tvar(L, t G,) = 0,

var(G) n var(L, + G,) = 0, o E Sub, (X, V, V,) is an mgu for L, and L, , and G’ =

u(GOu G,). Hence LO=p(. . *) and p is type-generally defined in (E, C). By

definition of “type-generally defined”, all predicates occurring in G, are type-

generally defined in (2, C). Thus all predicates occurring in G’ are type-generally

defined in (2, C) and L, is type general. By definition of “type general”, there exists

a typed substitution (T’ E Sub, (X, V, V’) with a’(L,) = o’(L,) and v’(cz) = (Y for all

a E tvar(LO). Hence u’ is a unifier for L,, and L, and there exists q5 E Sub2 (X, V, , V’)

with 4 0 cr = u’ since (T is an mgu for L, and L,. For all CI E tvar(L,) we have

cr = a’((~) = +((~(a)), which implies ~(a) E X. Hence a(a) E X for all (Y E tvar(G)

because u is an mgu for L, and L, and tvar(G) n tuar(L,) = $3.

We have to show that u is injective on tvar(G). u is injective on tvar(L,) because

(Y,, CY~E tvar(L,J with u((Y~) = u(a2) implies cy, = $J(u((Y~)) = +(u(~yJ) = (Ye. Since

u is an mgu for LO and L,, we may assume

u(cz) = (Y Va k? tvar(L,) u tvar(L,) (1)
and

tvar(u(a)) E tvar(LO) u tvar(L,) Va E tvar(L,) u tvar(L,). (2)

Suppose there are (Y, E tvar(L,) and (Ye E tvar(G,) - tvar(LO) with u(r~,) = u((YJ.

tvar(GO) n tvar(L,) = 0 and (1) implies u((Y~) = CY~, i.e., (~(a,) = LYE. (2) implies

CQ = ~(a~) E tuar(L,) u tvar(L,). This contradicts our assumption.

98 M. Hanus

Hence (+ is injective on tvar(G), i.e., uIT,(tuar(C)) is bijective. 0

The next corollary extends the result of the last lemma to resolution derivations.

Corollary 7.10. Let (2, C) be a polymorphic logic program, G be a (Z, X, V)-goal

and all predicates occurring in G be type-generally defined in (2, C). If

(2, C, V) G k u, G, k . . . k u,, G,

is a sequence of resolution steps, then a;, 0 . . * 0 u,~TH~,val~G,~ is bijective.

Proof. Let G,, = G and X, := tvar(G,) u * + . u tvar(G,). If Ci is the clause used in

the ith resolution step, we can assume tvar(ci) n Xi_, = 0. Since each ui is an mgu,

we may assume that Us = cy for all (Y E Xi-1 - tvar(G,_,). By induction on the

resolution steps and Lemma 7.9, it follows that ai 0 . . . 0 u,~~,~~,_,~ is bijective. 0

Theorem 7.11 (Optimized unification for type-generally defined predicates). Let

(2, C) be a polymorphic logic program. If G is a E-goal where all predicates in G are

type-generally de&ted in (2, C), then type annotations are unnecessary during a

resolution for G.

Proof. Only type-general atoms are unified during a resolution for G. By Theorem

7.8, type annotations have no influence on success or failure of the unification. By

Corollary 7.10, the types of G are not modified during a resolution for G. 0

Next we want to develop an algorithm for deciding the property type general. For

this purpose we need an alternative characterization of type-general terms. We call

a(&,, V)-termf(t,:r ,,..., t, : 7,): T directly type general if the following conditions

hold:

(1) (tvar(5-)ntvar(ti:7i))-tvur(7i)=0for i=l,...,n.

(2) (tvar(ti:~,)-tvar(~i))n(tvar(~:~j)-tvar(~j))=0fori,j=1,...,nwithi#j.

(3) f:P,,...,Pn +pEFunc, UETS(II,X) with u(p)=~ and u(a)=a for all

cy E X - tvar(p) implies that a(p, , . . . , pn + p) and T, , . . . , T, + T are equivalent.

The next lemma shows the relation between the properties directly type general

and type general. The notions of “occurrences” and “subterms” are standard (see

for example [17]) and we omit the definitions here.

Lemma 7.12. Let t: T be a (2, X, V)-term. If each subterm of t: T is a variable, a

constant, or a directly type-general term, then t:~ is type general.

Proof. First we show by induction on the size of t: T that for each t’: T’ E Term= (X, V)

with Uo(T) = T' (for a type substitution a, E TS(II, X)) that is unifiable with t: T and

that has no type variables in common with t:T, there exists a type substitution

u E TS(II, X) that affects only type variables from tvar(t:T) so that subterms at

Horn clause programs with polymorphic types 99

identical occurrences in CT(f: T) and t’: T’ have identical types (in this proof we extend

each type substitution u to a typed substitution by (T(x:~) := x:a(~)).

If t:r is a variable or a constant, then we define v(a) = go(a) if (Y E tvar(T) and

a(cr) = LY otherwise.

Induction step. t: T =f(t, : 7,) . . . , t, : T,,): 7. If t’:-r’ is a variable, then we define

a(~) = Us for LY E &XV(T) and V(Q) = (Y for all other cy E X.

Otherwise, t’:T’=f(t::~i,. . . , ~;:T;):T’. Letf:p,, . . . ,pn+pe Func and ui, (TIE

TS(H,X) with cr,(p ,,.. .,P~-,~)=T,, . . ., T,+T and a,(p ,,.. .,P,,+P)=

T;,..., T.:,+ 7'. u*(p) = T'= U,(T) = c~~(a,(p)) and therefore (T*(cY) = aO(a,(a)) for

all (Y E tvar(p). Since t:T is directly type general (condition (3)), there exists (TV E

TS(H, X) with (T~(T, , . . . , T,, + T) = T; , . . . , T: + T'. We assume that flj alters only

type variables from tvur(T, , . . . , T,, + T). By condition (l), each composite subterm

of c3(t, :T,) is directly type general. Thus we can apply the induction hypothesis

and we get (for i = 1,. . . , n) type substitutions 4, E TS(H, X) that alters only type

variables from tvar(t, : T;) so that subterms at identical occurrences in &(ti : 7,) and

t{ IT: have identical types and ~$,(a) = Us f or all (Y E tuar(~,). By conditions (2)

and (l), we can combine the type substitutions 4,). . . , & and uj into one type

substitution (T with the desired properties.

If t’:T’ is a (2, X, V)-term with Us = T' that is unifiable with t:T and that has

no type variables in common with t:T, there exists a type substitution (T E TS(H, X)

which alters only type variables from tvur(t: T) so that subterms at identical occurr-

ences in a(t:~) and t’:~’ have identical types. If we compute a unifier CT’ for o(t:T)

and t’:~’ with algorithm “mgu”, we get a’(cr) = CY for all cr E X. Therefore C’ 0 F is

a Unifier for t:T and t':T' with (T’ 0 ~(a) = LY for all (Y E tuUr(t’:r’), i.e., f:T is a

type-general term. 0

The next lemma is the justification for the following algorithm type-general.

Lemma 7.13 (Type general). A (2, X, V)-term is type general ifSeach subterm is a

variable, a constant, or a directly type-general term.

Proof. “j”: By Lemma 7.6 and Lemma 7.7.

“e”: By Lemma 7.12. 0

Now we are able to present the algorithm type-general. The “function” skolemize

replaces all type variables in a type expression by “new” type constants. With the

use of skolemize, equivalence of type expressions can be decided by unification

of type expressions. In the algorithm, each type substitution CJ is extended to a

typed substitution by (T(x:T) := X:CT(T). The algorithm must be called by

type_generul(t: T, 7).

Algorithm type-general

Input: Term t, type p.

100 M. Hams

Output: A type substitution, if t is type general, and fail, otherwise.

(1) p’:= skolemize(p).

(2) If t = x: T E Vurz,, then stop with mgu(r, p’).

(3) If t = C:T with c: + rC E Func then stop with mgu(r, p’).

(4) Ift =f(t,:r,, . . .) t, :7,):7andf:p,, . . .) p,~p,EFuncandcr=mgu(p,,p’)#

fail then pi,. . . , ph + PA:= skolemize(a(p,, . . . , p,, + po)).

I. mgu(pA, T) = oO#fuil and type_generuZ(o,(t, :T~), pi) = o, #fail

and... type_general(a,_,(. . . (co(tn :T,)) . . .), p’,) = a, #fail

then stop with pn 0 . . * 0 crl 0 a, else stop with fail.

(5) stop with fail.

7.3. Comparison to the type system of Mycroft-O’Keefe

The next proposition shows that the polymorphic logic programs of [28] can be

executed without dynamic type checking since their result holds only if each function

is type preserving [29].

Proposition 7.14 (Mycroft-O’Keefe-polymorphism). Let (2, C) be a polymorphic

logic program and V c o Varx,x, where 2 contains only type preserving functions. If

L=p(t,:71,. . .) t,:r,,) isa (2,X, V)-atom withp:rp~PredandrPandr,,...,~,,are

equivalent, then L is type general.

Proof. Let L’=p(r,:p,,. . ., r,, :p,) be a (-Z, X, V)-atom unifiable with L and

tvar(L) n tvar(L’) = 0. Since rp and T,, . . . , T, are equivalent, there exists a type

substitution C#J E TS(H, X) with +(rl,. . . , T,,) = TV. There exists another type substi-

tution 4’~ TS(H, X) with c$‘(T,,) =p,, . . . , pn. Therefore (4’0 4)(~i,. . . , T,) =

Pl,..., p,,. We assume without loss of generality that 4’ 0 $J alters only type variables

of 7 I,..., 7,. Then 4’0 C#J is an mgu for p,, . . . , p,, and T,, . . . , T,,. Let u E

Sub,(X, V, V’) with a]-r,Cxj = 4’0 C$ and ~(x:~)=x:(T(T) for all X:TE V. Then

a(ti :T,) = ti:pi, where ti and t: differ only in their types. By Theorem 7.4, types are

unnecessary for the unification of ti :pi and ri :pi. Since the two terms have the same

type, the computation of a most general unifier with the algorithm “mgu” has no

influence on the type variables in pi. Hence there exists a unifier u’ for L and L’

with a’((~) = (Y for all (Y E tvar(L’), i.e., L is type general. 0

By this proposition, all predicates in a polymorphic logic program with the

restrictions of [28] are type-generally defined, i.e., type annotations are unnecessary

during the resolution of a Z-goal by Theorem 7.11. Therefore the type system of

Mycroft-O’Keefe is a special case of our work because

(1) Every well-typed logic program in the sense of Mycroft-O’Keefe is a polymor-

phic logic program in our sense.

(2) If we use the optimization techniques developed in this section, polymorphic

logic programs in the sense of Mycroft-O’Keefe can be executed with the same

efficiency as untyped Prolog programs.

Horn clause programs with polymorphic types 101

On the other hand, our work is a proper extension of Mycroft-O’Keefe’s type

system because we have no restrictions on the use of polymorphic predicates in the

heads of clauses, and we have no restrictions on the use of type variables in function

types (compare examples in Section 2). For instance, the predicate isTrue in the

evaluator of Boolean terms is type-generally defined and therefore resolution can

be done with the same efficiency as in an untyped program, but it is not a well-typed

program in the sense of [28].

Moreover, in our type system it is allowed to define clauses for special cases in

contrast to Mycroft-O’Keefe’s type system. Such clauses can be used to reduce the

search space in the resolution process. Therefore resolution with types may be more

efficient than in the untyped case. This is demonstrated by the following example:

funcf,,...,f,:+rI funcg,,...,g,:+r2

pred t:a pred tl:T, pred t2:r2 pred=:cq CY

clauses:

t(X:T1) c-tl(X:r,) t(Y:r2) + t2(Y:72)

tl(f,:7,)+ . ..tl(f.:7,)+

t2(g,:72)+ . ..t2(g.:T,)t

x:Ly = x:Lr+

We want to prove the goal

If we omit all type annotations and use the Prolog backtracking strategy, then the

goal is proved in m + i + 2 resolution steps. If the types are not omitted, i.e., the

unification considers the types of terms, then the goal is proved in i-t 1 steps since

the first clause of the predicate t cannot be applied.

Therefore, type information may be useful to reduce the search space in the

resolution process. This is also true for order-sorted logic programs. E.g., Schmidt-

Schauss [36] and Huber and Varsek [191 have shown examples in order-sorted logic

where typed unification leads to more efficient proofs than in untyped logic.

Mycroft and O’Keefe have proposed to extend polymorphic Horn clause programs

by a family of predefined apply predicates to permit higher-order programming.

But this extension is only necessary because of the restrictions in their type system.

In our framework it is possible to simulate higher-order programming techniques

without any conceptual extensions. This will be shown in the next section.

8. Higher-order programming

Many logic programming languages permit higher-order programming techniques,

i.e., it is possible to treat predicates as first-class objects. For example, in Prolog

102 M. Hams

the predicate call interprets the input term as a predicate call. Mycroft and O’Keefe

[28] argue that for most practical purposes it is sufficient to have a predicate apply

that takes something like a predicate name and a list of argument terms as input

and that is satisfied if the corresponding predicate applied to the argument terms

is provable. Hence they introduce a family of predefined predicates apply (one

predicate for each arity) and a lambda notation for terms of predicate type, but

they give only an informal definition of the meaning of apply.

Generally, a semantically clean amalgamation of higher-order predicates with

logic programming techniques like unification is not trivial because the unification

of higher-order terms is undecidable in general [121. Miller and Nadathur [27] have

defined an extension of first-order Horn clause logic to include predicate and function

variables based on the typed lambda calculus. For the operational semantics it is

necessary to unify typed lambda expressions, which yields in a complex and

semi-decidable unification [18]. Hence they have a system with a clearly defined

underlying logic, their proof procedure is sound and complete for goals without

type variables, but the proof procedure is costly because of the unification of typed

lambda expressions. Warren [38] argues that no extension to Prolog or to the

underlying first-order logic is necessary because the usual higher-order programming

techniques can be simulated in first-order logic. Since he is concerned with Prolog

and its untyped logic, he does not have a clear distinction between first-order and

higher-order objects.

We suggest a “middle road” approach to higher-order programming: To have an

efficient operational semantics, we keep first-order logic as our theoretical

framework. But we want to deal with higher-order objects in the sense of computing

and distinguish between higher-order and first-order objects. Since we have an

unrestricted mechanism of polymorphic types, we may integrate these higher-order

programming techniques without any extensions to our concept of polymorphic

logic programs (in contrast to [28]). This is demonstrated by the example of the

map predicate in Section 2. The predicate map takes a predicate of arity 2 and two

lists as arguments and applies the argument predicate to corresponding elements

of the lists. In order to specify the type of map it is necessary to introduce a type

constructor pred2 of arity 2 that denotes the type of binary predicate expressions.

Hence the type of map is

pred map: pred2(a, p), list(a), list(p)

For each binary predicate p of type r,, r2 we introduce a corresponding constant

pred-p of type pred2(r, , T*). The relation between each predicate p and the constant

pred-p is defined by clauses for the predicate apply2. Hence we get the example

program of Section 2. If we prove the goal

map(pred_inc, [z,s(s(z))l,L)

Horn clause programs with polymorphic types 103

by resolution, we get the answer substitution

L=[s(z),s(s(s(z)))l

(we omit the type annotations). The polymorphic logic program does not ensure

that the constant pred_inc is interpreted as a relation in every model since we

require only first-order structures as interpretations for polymorphic logic programs.

But the clause for apply2 with pred-inc as first argument ensures that in any

model the constant pred_inc and the predicate inc are related together.

The map example has shown the possibility to deal with higher-order objects in

our framework. It is also possible to permit lambda expressions, which can be

translated into new identifiers and apply clauses for these identifiers (see [38] for

more discussion). If the underlying system implements indexing on the first argu-

ments of predicates (as done in most compilers for Prolog, cf. [39,15]), then there

is no essential loss of efficiency in our translation scheme for higher-order objects

in comparison to a specific implementation of higher-order objects [38].

The compilation of higher-order functions into first-order logic was also proposed

by Bosco and Giovannetti [4], but they perform type-checking only for the source

program and not for the target program. Clearly, the target program is not well-typed

in the sense of [28] because of the clauses for the apply predicate (see above).

Since we have translated higher-order objects into polymorphic logic programs, the

use of higher-order objects is type secure in our framework. We have similar typing

rules as in functional languages [8] and therefore functions and predicates have

always appropriate arguments at run time.

9. Implementation

The SLD-resolution in untyped Horn logic can be applied to polymorphic Horn

clause programs if we use polymorphic unification to compute the most general

unifier in a resolution step. Polymorphic unification can be reduced to untyped

unification if we treat type expressions as terms and annotate each subterm with

the corresponding type by the functor “:“. Hence we have implemented the resolution

of polymorphic logic programs as a precompiler to a Prolog system: It takes a

polymorphic logic program as input and produces a Prolog program as output. The

clauses of the input program need not be annotated with types, because the precom-

piler computes the most general type of each clause by the type inference algorithm

of [8]. Furthermore, the precompiler omits type annotations in the output program

whenever it is possible by the techniques of Section 7. For example, the precompiler

translates the polymorphic logic program

type list/l

func [1: + list(a)

func@: cy, list(a)+Zist(a)

pred append: list(a), list(a), list(a)

104 M. Hanus

clauses:

append([l,21, [3,4l, [1,2,3,41)+
append([l, L, L)+
append([EIRl, L, [EjRLl)+append(R, L, RL)

(the type int of integer numbers is predefined) into the Prolog program

append(’ ; ‘([1,2l,list(int)), ‘:‘([3,4l,list(int)),

’ : ’ ([1,2,3,41 ,list(int))).

append(’ : '([l,list(A)), ':'(L,list(A)), ‘:‘(L,list(A))).

append(’ : ‘([EIRl,list(A)), ‘:‘(L.list(A)),

’ : ’ ([EIRLI ,list(A))) :-

append(‘:‘(R,list(A)), ‘:‘(L,list(A)), ‘:‘(RL,list(A))).

The program for the evaluation of Boolean terms (Section 2) would be translated

into a Prolog program where all type annotations are omitted. If there are type-

generally defined predicates as well as other predicates in a polymorphic logic

program, then type annotations must be deleted in argument terms before calling

a type-generally defined predicate. After the predicate call type annotations must

be added to the argument terms. Hence it may be more efficient not to omit type

annotations in type-generally defined predicates in the presence of other predicates.

10. Conclusions

We have presented a polymorphic type system for Horn clause programs. Since

we have a semantic notion of a type, this can help to close the gap between

programming practice with Prolog and the underlying theory. The typing rules are

quite simple: Each variable has a fixed type and each type instantiation of a

polymorphic function or predicate can be used inside a clause if the result types of

the argument terms are equal to the argument types. The semantics of polymorphic

types is defined as a universal quantification over all possible types. We have shown

that this semantics leads to similar results as in the untyped case: The Horn clause

calculus can be extended to polymorphic logic programs, and the well-known

resolution method for untyped Horn logic can also be used in the polymorphic case

if the unification considers the types of terms. Hence our polymorphic logic programs

are also related to “constraint logic programming” [20], where the consideration

of types corresponds to constraints. We have also shown that the unification can

disregard types if declarations and clauses have a particular form. In this case the

proof method has the same efficiency as in the untyped case and we have shown

that our type system is a proper extension of the type system in [28]. On the other

hand, type information is useful to reduce the search space in the resolution process.

Thus there are examples where the unification with types leads to a more efficient

resolution than in the untyped case. In our type system it is allowed to have clauses

where the left-hand side is not of the most general type. We have shown that this

feature permits the use of higher-order programming techniques without breaking

our type system.

Horn clause programs with polymorphic iypes 105

Further work remains to be done. If the resolution process uses the standard

Prolog left-to-right strategy, then further optimizations could be done to reduce the

cases where type information is required for correct unification. If the modes of

predicates are known, then there are further possibilities to omit type annotations

[7]. The extension of our polymorphic type system to subtyping and inheritance

would be useful. For practical applications the type system has to be extended to

the meta-logical facilities of Prolog.

Acknowledgment

The author is grateful to Harald Ganzinger for his comments on a previous version

of this paper.

References

[II

121

[31

[41

[51

[61

[71

[81

r91

II101

[Ill

[I21

[I31

[I41
[I51

1161

H. Ait-Kaci and R. Nasr, LOGIN: A logic programming language with built-in inheritance, J. Logic

Programming 3 (1986) 185-215.

K.R. Apt and M.H. Van Emden, Contributions to the theory of logic programming, J. ACM 29

(3) (1982) 841-862.
M. Bidoit and J. Corbin, A rehabilitation of Robinson’s unification algorithm, in: Proc. IFIP ‘83

(1983) 909-914.

P.G. Bosco and E. Giovannetti, IDEAL: An ideal deductive applicative language, in: Proc. IEEE

Internai. Symp. on Logic Programming, Salt Lake City (1986) 89-94.

A. Church, A formulation of the simple theory of types, J. Symbolic Logic 5 (1940) 56-68.

W.F. Clocksin and C.S. Mellish, Programming in Prolog (Springer, Berlin, third rev. and ext. ed.,

1987).

R. Dietrich and F. Hagl, A polymorphic type system with subtypes for Prolog, in: Proc. ESOP 88,

Nancy, Lecture Notes in Computer Science, Vol. 300 (Springer, Berlin, 1988) 79-93.

L. Damas and R. Mimer, Principal type-schemes for functional programs, in: Proc. 9th Ann. Symp.

on Principles of Programming Languages (1982) 207-212.

H. Ehrig and B. Mahr, Fundamentals of Algebraic Specijication I: Equations and Initial Semantics,

EATCS Monographs on Theoretical Computer Science, Vol. 6 (Springer, Berlin, 1985).

J.A. Goguen and J. Meseguer, Completeness of many-sorted equational logic, Report No. CSLI-84-

15, Stanford University, 1984.

J.A. Goguen and J. Meseguer, Eqlog: Equality, types, and generic modules for logic programming,

in: D. De Groot and G. Lindstrom, eds, Logic Programming, Functions, Relations, and Equations,

(Prentice-Hall, Englewood Cliffs, 1986) 295-363.

W. Goldfarb, The Undecidability of the second-order unification problem, Theoret. Comput. Sci.

13(1981)225-230.

J.A. Goguen, J.W. Thatcher and E.G. Wagner, An initial algebra approach to the specification,

correctness and implementation of abstract data types, in: R. Yeh, ed., Current Trends in Programming

Methodologyy, Vol. 4 (Prentice-Hall, Englewood Cliffs, NJ, 1978) 80-149.
W. Hankley, Feature analysis of Turbo Prolog, SZGPLAN Notices 22 (3) (1987) 111-l 18.

M. Hanus, Formal specification of a Prolog compiler, in: Proc. Workshop on Programming Language

Implemenlation and Logic Programming, Orleans, Lecture Notes in Computer Science, Vol. 348
(Springer, Berlin, 1988) 273-282.

M. Hanus, Horn clause programs with polymorphic types, technical report 248, FB Informatik,
Univ. Dortmund, 1988.

106 M. Hanus

[171 G. Huet and D.C. Oppen, Equations and rewrite rules: a survey, in: R.V. Book, ed. Formal Language

Theory: Perspectives and Open Problems (Academic Press, New York, 1980).

[18] G.P. Huet, A unification algorithm for typed A-calculus, Theoret. Comput. Sci. 1 (1975) 27-57.

[19] M. Huber and I. Varsek, Extended Prolog with order-sorted resolution, in: Proc. 4rh IEEE Internat.

Symp. on Logic Programming, San Francisco (1987) 34-43.

[20] J. Jaffar and J.-L. Lassez, Constraint logic programming, in: Proc. 14th ACM Symp. on Principles

of Programming Languages, Munich (1987) 11 l- 119.

[21] T. Kanamori and K. Horiuchi, Type inference in Prolog and its application, in: Proc. 9th IJCAI

(1985) 704-707.

[22] F. Kluiniak, Type synthesis for ground Prolog, in: Proc. 4rh Internat. Conf: on Logic Programming,

Melbourne (1987) 788-816.

[23] S. Launay, Completion de systemes de reecriture types dont les fonctions sont polymorphes (These

de 3eme cycle), Technical Report 86-5, C.N.R.S Universite Paris VII, 1986.

[24] J.W. Lloyd, Foundations of Logic Programming (Springer, Berlin, second extended ed., 1987).

[25] P. Mishra, Towards a theory of types in Prolog, in: Proc. IEEE Infernat. Symp. on Logic Programming,

Atlantic City (1984) 289-298.

[26] A. Martelli and U. Montanari, An efficient unification algorithm, ACM Trans. Programming

Languages Systems 4 (2) (1982) 258-282.

[27] D.A. Miller and G. Nadathur, Higher-order logic programming, in: Proc. 3rd Internat Conf on

Logic Programming, London, Lecture Notes in Computer Science, Vol. 225 (Springer, Berlin, 1986)
448-462.

[28] A. Mycroft and R.A. O’Keefe, A polymorphic type system for Prolog. ArtiJcial Inrelkgence 23

(1984) 295-307.

[29] A. Mycroft, private communication, 1987.

[30] P. Padawitz, Computing in Horn Clause Theories EATCS Monographs on Theoretical Computer

Science, Vol. 16 (Springer, Berlin, 1988).

[31] A. PoignC, On specifications, theories and models with higher types, Inform. and Control 68 (l-3)

(1986).
[32] M.S. Paterson and M.N. Wegman, Linear Unification, J. Comput. System Sci. 17 (1978) 348-375.

[33] J.A. Robinson, A machine-oriented logic based on the resolution principle, J. ACM 12 (1) (1965)

23-41.

[34] G. Smolka, Order-sorted Horn logic: semantics and deduction, SEKI Report SR-86-17, FB Infor-

matik, Univ. Kaiserslautern, 1986.

[35] G. Smolka, TEL (Version 0.9) report and user manual, SEKI Report SR-87-11, FB Informatik,

Univ. Kaiserslautern, 1988.

[36] M. Schmidt-Schauss, A many sorted calculus with polymorphic functions based on resolution and
paramodulation, in: Proc. 9th IJCAZ (1985).

[37] M.H. Van Emden and J.A. Kowalski, The semantics of predicate logic as a programming language,

J. ACM 23 (4) (1976) 733-742.

[38] D.H.D. Warren, Higher-order extensions to Prolog: are they needed? in: Machine Intelligence 10

(1982) 441-454.

[39] D.H.D. Warren, An abstract Prolog instruction set, Technical Note 309, SRI International, Stanford,

1983.
[40] E. Yardeni and E. Shapiro, A type system for logic programs, Technical Report CS87-05, The

Weizmann Institute of Science, 1987.
[41] J. Zobel, Derivation of polymorphic types for Prolog programs, in: Proc. 4th Infernat. Conf: on

Logic Programming, Melbourne (1987) 817-838.

