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Abstract 

Hanus, M., Horn clause programs with polymorphic types: semantics and resolution, Theoretical 

Computer Science 89 (1991) 63-106. 

This paper presents a Horn clause logic where functions and predicates are declared with 

polymorphic types. Types are parameterized with type variables. This leads to an ML-like 

polymorphic type system. A type declaration of a function or predicate restricts the possible use 

of this function or predicate so that only certain terms are allowed to be arguments for this 

function or predicate. The semantic models for polymorphic Horn clause programs are defined 

and a resolution method for this kind of logic programs is given. It will be shown that several 

optimizations in the resolution method are possible for specific kinds of programs. Moreover, it 

is shown that higher-order programming techniques can be applied in our framework. 

1. Introduction 

The theoretical foundation of the logic programming language Prolog is Horn 

clause logic. In this logic the basic objects (terms) are not classified: Each function 

and predicate may have any term as an argument [24]. This point of view is not 

justified for the logic programming language Prolog: Several predefined predicates 

have restrictions on their arguments (e.g., is or name). Additionally, programs are 

frequently constructed from data types. In application programs only certain terms 

are allowed to be arguments for a function or predicate. It is impossible to express 

these restrictions in a natural way in Prolog. Types for logic programming can help 

to close the gap between theory and programming practice. Moreover, programming 

errors in Prolog are frequently type errors; in many typed languages such program- 

ming errors can be found at compile time. 

In addition, programs of typed logic programming languages may be more efficient 

than programs of an untyped language. For instance, we want to define the predicate 

append that is satisfied iff the three arguments are lists and the third list is the 

concatenation of the first and the second. The following classical solution is wrong 
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from a typing point of view: 

append([l.L,L)+ 
append([EIRl,L, [EIRL)+append(R,L,RL) 

By this definition, the goal append([], 3,3) is provable in contrast to our intuition. 

A correct definition is 

append([l, [I, [I)+ 
append([l, [EIRl, [EIRl)tappend([l,R.R) 
append( [E(Rl, L, [EIRLI I+ append(R, L, RL) 

If the first and second argument of an append-literal are nonempty lists, a proof 

with the second definition needs more steps than a proof with the first one. In a 

typed logic language the first definition could be already correct. 

Many authors have investigated types in logic programming languages. There are 

two principal starting points in research. 

The declarative approach: The programmer has to declare all types he wants to 

use and the types of all functions and predicates in the program. These proposals 

have a formal semantics of the notion of a type, e.g., types represent subsets of 

carrier sets of interpretations. Goguen, Meseguer [ 1 l] and Smolka [34] have pro- 

posed order-sorted type systems for Horn clause logic (with equality). Each type 

represents a subset of the carrier set in the interpretation, and the ordering of types 

implies a subset relation on the corresponding sets. Ait-Kaci and Nasr [l] have 

proposed a logic language with subtypes and inheritance based on a similar seman- 

tics. From an operational point of view, these approaches require a unification 

procedure that takes account of types, i.e., types are present at run time. 

The operational approach : The aim of these type systems is to ensure that predicates 

are only called with appropriate arguments at run time. This should be achieved 

by a static analysis of the program. A lot of these approaches do not require any 

type declarations but the types will be inferred by a type checker. These approaches 

have only a syntactic notion of a type. Mishra [25] and Zobel [41] have presented 

type inference systems for detecting programming errors in a given Prolog program. 

Kanamori, Horiuchi [21] and Kluiniak [22] have developed algorithms for inferring 

types of variables in a Prolog program. Yardeni and Shapiro [40] have presented 

a type-checking algorithm where types are regular sets of ground atoms. 

Since pure Prolog is a declarative language, each extension should have a declara- 

tive meaning. Hence we will define a typed Horn clause logic in a model-theoretic 

way and then we investigate the operational mechanisms for this kind of logic. 

The important question is: What is an adequate type system for logic program- 

ming? As shown above, there are several proposals for type systems for logic 

programming, and these type systems offer different flexibilities from a programmer’s 

point of view. For instance, the Pascal-like type system of Turbo-Prolog is compar- 

able to many-sorted Horn logic [30], but this type system is too restricted for many 

applications [14]. Prolog is a very flexible language because the programmer can 

simply define predicates (e.g., see the definition of append) which are applicable 



Horn clause programs with polymorphic types 65 

to a number of different types, i.e., classes of objects like lists of integers, lists of 

characters etc. Therefore we are interested in a polymorphic type system where type 

declarations may contain type variables that are universally quantified over all types 

[8]. Mycroft and O’Keefe [28] have investigated such a type system for Prolog. In 

their proposal, the programmer has to declare the types of functions and predicates, 

but it is not a declarative approach because they have no semantic notion of a type. 

They have put restrictions on the use of polymorphic types in function declarations 

and clauses. Their programs can be executed without dynamic type checking. 

Dietrich and Hag1 [7] have extended this type system to subtypes on the basis of 

mode declarations for the predicates. They have also only a syntactic notion of a 

type. TEL [35] is a logic language with functions and a polymorphic type system 

with subtypes. Since subtypes are included, there are several restrictions on the use 

of polymorphic types which prevents in particular the application of higher-order 

programming techniques. 

This paper presents a declarative approach to a generalized polymorphic type 

system for Horn clause logic. The topics of this paper are 

l We present a rather general polymorphic type system: We do not restrict the use 

of types. In contrast to [28], any polymorphic type expression may be argument 

or result type of a function or predicate. No difference will be made in the typing 

of the head and the body of a clause. 

l Our approach is declarative: The semantics of types is defined in a model-theoretic 

way in contrast to other type systems for Prolog where types are viewed as sets 

of ground terms. 

l We present sound and complete deduction and resolution methods for our logic 

programs. 

l Several optimizations of the resolution procedure are presented for specific 

subclasses of programs. We show that it is possible to translate polymorphic logic 

programs in our sense into untyped Horn clause programs. The type system and 

results of [28] will be a special case of our type system. 

l Higher-order programming techniques can be applied in our framework. We 

present an interesting class of logic programs that are ill-typed in the sense of 

other polymorphic type systems for logic programming but are well-typed in our 

framework. 

Let us start by looking at an example of a polymorphically typed Horn clause 

program in our sense. First the programmer has to specify the types that he wants 

to use in the clauses. There are basic types like int or bool, and type constructors 

that create new types from given types. E.g., the type constructor list with arity 1 

creates from the type int the type of integer lists Zist(int). Type expressions may 

contain type variables which are universally quantified over all types. In the following 

we use (Y, p for type variables. The type expression list(a) represents the types 

list( int) list( bool) list( list( int)) . . . 

or, in general, a list of any type. Two functions are defined on any list: The constant 
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function [] that represents the empty list, and the function l that concatenates an 

element with a list of the same type (throughout this paper we use the Prolog 

notation for lists [6]). The type declarations for these two functions are 

func [I: + Zist( cx) 

func 0: (Y, Eist( LY) + list(a) 

The predicate append has three arguments and is defined on lists of the same type. 

Therefore append has the following type declaration: 

pred append: list(a), W(a), list(a) 

The following clauses define the semantics of append and are well-typed in our 

sense, if the variables L, R and RL are of type list(a) and the variable E is of type cy: 

append([l,L,L)+ 
append( IEIRI, L, [EIRLI) +append(R, L, RL) 

With these type declarations the goal append( [ 1, 21 , [ 3, 41 , [ 1, 2, 3, 41 ) is 

well-typed and can be proved to be true, whereas the goal append( [ ] , 3, 3) is 

rejected since the second and third arguments are not lists. In contrast to other 

polymorphic type systems for logic programming our type system allows a useful 

logic programming technique: optimization of the resolution process by lemma 

generation. In untyped logic programming it is possible to add a new fact L to a 

program without changing the program semantics if L is a logical consequence of 

the program. The new fact L can be used to obtain shorter proofs for subsequent 

goals that include L. For instance, the specialized clause 

can be added to the above append-program. This is also possible in our typed logic 

language, but other polymorphic type systems for logic programming reject this 

clause because they require the argument types in clause heads to be equivalent 

(equal up to type variable renaming) to the type declaration of the predicate [28]. 

But the arguments of the head of the last clause have type Zist(int). Hence this is 

not a well-typed clause in the sense of [28] since the head of the clause has not the 

most general type. 

The application of this feature in order to use higher-order programming tech- 

niques and more examples are given in the rest of this paper. 

2. Polymorphic logic programs 

We use notions from algebraic specifications [13] for the specification of types. 

A signature E is a pair (S, 0), where S is a set of sorts and 0 is a family of operator 

sets of the form 0 = (O,,, 1 w E S*, s E S). We write o:s, , . . . , s, + s E 0 instead of 

OE 0,s I ,...J,,).S . An operator of the form o: + s is also called a constant of sort s. A 

signature 1 = (S, 0) is interpreted by a E-algebra A = (S,, 0,) which consists of 
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an S-sorted domain S, = (s,,, 1 s E s) and an OperatiOn oA : sA,,, , . . . , SA,,,, + S,.+ E 0, 

for any o:s,, . . , s, + s E 0. A set of E-variables is an S-sorted set V = ( V, (s E S). 

The set of E-terms of sort s with variables from V, denoted T,,,Y( V), is inductively 

defined by x E T,,,(V) for all x E v,, c E T,,,(V) for all c: + s E 0, and o( t,, . . . , t,) E 

Tz,?( V) for all o:s,, . . . , s, + s E 0 (n > 0) and all t, E T,,,,( V). We write 7”( V) for 

all I-terms with variables from V and TX for the set of ground terms TX(o). By 

Tz( V) we also denote the term algebra. 

A variable assignment is a mapping a: V+ SA with a(x) E SA,, for all variables 

x E V, (more precisely, it is a family of mappings (a, : V, + S,,, (s E S)). A Z- 

homomorphism from a E-algebra A = (SA, 0,) into a Z-algebra B = (S,, 0,) is a 

mapping (family of mappings) h : S, + SR with the properties hr(cA) = cB for all 

c:+s~Oand h,(o,(a ,,..., a,,))=o,(h,,(a,) ,..., h,,(a,))forallo:s ,,..., s,+sE 

0 (n > 0) and all ai E SA,, . 

Polymorphic types are represented by single-sorted signatures: H = (Ty, Ht) is a 

signature of types if H is a signature with one sort Ty = {type}. Operators of the 

form h: + type are called basic types (with arity 0), whereas operators of the form 

h: type” -+ type are called type constructors with arity n > 0. By X we denote a set of 

type variables. A type expression or (polymorphic) type is a term from TH (X), a 

monomorphic type is a term from TH. Since we have only one sort in the signature 

of types, we will also use H to denote the set of type constructors Ht. 

A type substitution u is an H-homomorphism u: TH(X) + TN(X). TS( H, X) 

denotes the class of all type substitutions. Two types r, 7’ E TH(X) are called 

equivalent if there exists a bijective type substitution g with T(T) = 7’. 

A polymorphic signature 2 for logic programs is a triple (H, Func, Pred) with 

H is a signature of types with TH # 8, 

Func is a set of function declarations of the form f: r, , . . . , T,, + T with ri, T E 

TH(X), n 2 0, where, in addition, rr = r; whenever f: T,, f: T; E Func, 

Pred is a set of predicate declarations of the form p:~, , . . . , T, with r, E TH(X), 

n 3 0, where, in addition, T,, = T; whenever p: TV, p: rh E Pred. 

The additional restrictions exclude overloading. With these restrictions it is possible 

to compute the most general type of a term. Therefore the user need not annotate 

terms in a clause with type expressions. Note that there are no restrictions on the 

use of type variables in function declarations in contrast to other polymorphic type 

systems for logic programming, e.g., [28, 351. 

The following specification of a polymorphic signature will be used in later 

examples. Declarations of basic types and type constructors, functions, and predi- 

cates are preceded by the keywords “type”, “func” and “pred”, respectively. 

type nut/O, list/l, pred2/2 

func z : + nut 

func s : nut + nut 

func [ ] : + list(a) 

funce: cr, list(a)+ list(a) 
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func pred-inc: + pred2( nut, nut) 

pred inc : nut, nut 

pred map : pred2(cY, p), list(a), list@) 

pred apply2 : pred2(cY, p), a, p 

The predicate apply2 will be interpreted like call in Prolog: If the first argument 

has type pred2(a, p) and the next arguments have types (Y and /3, then it is equivalent 

to the application of the first argument to the other two arguments. pred-inc is a 

constant of type pred2( nut, nat). The equivalence of apply2( pred_inc, . . . ) and 

inc(... ) will be stated in a specific clause (see below). 

In the rest of this paper we will assume that 2 = (H, Func, Bed) is a polymorphic 

signature. The variables in a polymorphic logic program are not quantified over all 

objects, but vary only over objects of a particular type. Thus each variable is 

annotated with a type expression: If Vur is an infinite set of variable names that 

are distinguishable from symbols in polymorphic signatures and type variables, the 

set of typed variables Varx,x is defined as 

Varz,,:= {X:T~XE Vur, 7~ TH(X)}. 

V is a set of typed variables with unique types, written V E u Varr,x, if V c Varr,x 

and T = 7’ whenever x: r, x: T’E V. 

The notion of “typed variables with unique types” is not necessary for the 

definition of the semantics and the resolution procedure, but it is useful for optimiz- 

ation and detection of type errors at compile time. Hence we define the semantics 

for arbitrary sets of typed variables, whereas in polymorphic logic programs the 

clauses must have variables with unique types so that optimizations and type- 

checking are possible. 

According to [5], we embed types in terms, i.e., each symbol in a term is annotated 

with a type expression: Let Vr Var x,,x. A (2, X, V)-term of type TE T,(X) is either 

a variable X:T E V, a constant c:r with c: + rr E Func so that there exists a UE 

TS(H,X)witha(7,)=7,oracompositetermoftheformf(t,:T,,...,t,:?,):?(n>O) 

with f: ~~ E Func so that there exists a type substitution u E TS( H, X) with C( G--) = 

Tl,-.., T,,+T and ti:~i is a (2,X, V)-term of type 7i (i=l,..., n). Term=(X, V) 

denotes the T,(X)-sorted set of all (E, X, V)-terms. A ground term is a term from 

the set Term= (X, 8). 

Different occurrences of a function in a term may have different types which 

shows the polymorphism in our framework. We call terms from Term=(X, V) 
well-typed terms, whereas terms that have the same structure as well-typed terms but 

violate the type conditions are called ill-typed terms. 

Examples. If we have the declarations 

func f: int, boo1 + boo1 var x: (Y 

then the terms f (x:a , x: a ) : boo1 and f (x: int ,x: boo1 ) : boo1 are ill-typed. If we have 
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func id: CI + (Y 

then the term f (id( 2:int) :int, id( true:booZ):bool) :bool~ Terrr~~,~~~~({(~}, 0) is a 

well-typed ground term. 

The definition of the other syntactic constructs of polymorphic logic programs is 

straightforward: A (2, X, V) -atom has the form p( t,: T,, . . . , t, : T,,), where p: T,, E Pred 

and there exists a type substitution (T E TS(H, X) with a(~,,) = r, , . . . , T,, and ti :7i E 

Termz(X, V) (i= 1,. . . , n). A (2, X, V)-goal is a finite set of (1, X, V)-atoms. A 

(2, X, V)-clause is a pair (P, G), where P is a (2, X, V)-atom and G is a (2, X, V)- 

goal. If G = {A,, . . . , A,,}, we also write 

P+A,,. . . ,A,. 

P is called head and G body of the clause. Note that again there are no restrictions 

on the use of types in clauses. For convenience we sometimes omit the curly brackets 

around a goal and we identify a goal containing only one atom with that atom. A 

Z-term (atom, goal, clause) is a (2, X, V)-term (atom, goal, clause) for some 

V c Var,,, . In the following, ifs is a syntactic construction (type, term, atom,. . .), 

tvar(s) and var(s) will denote the set of type variables and typed variables that 

occur in s, respectively. Furthermore, we define 

uvar(s):={x~3rE TH(x): X:rE oar(s)} 

as the set of variable names that occur in s. 

A polymorphic logic program or polymorphic Horn clause program P = (I, C) 

consists of a polymorphic signature 2 and a set C of E-clauses, where 

oar(c) L u Vurz,x for all c E C. We require oar(c) s u Vur,,, rather than oar(c) E 

Var,,, because in practice the user may omit the type annotations in the clauses 

of a polymorphic logic program and the most general type of a term that satisfies 

the uniqueness requirement can be automatically computed. Therefore we will omit 

the type annotations in the clauses of subsequent examples. We assume that the 

above polymorphic signature with predicate map is given. Then the following clauses 

define the semantics of map: 

Note that the last clause is not well-typed in the sense of [28] since apply2 has the 

declared type “pred2(a, p), a, /3” but is used in the clause head with the specialized 

type “pred2(nat, nut), nut, nut”. This example illustrates the possibility of higher- 

order programming in our framework. That will be further investigated in Section 8. 
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The next example is a program for the evaluation of Boolean terms. A Boolean 

term contains the constants true or false, the Boolean functions and or or, or 

the function equal to compare arbitrary terms of the same type. The evaluator is 

a predicate isTrue which is satisfied if such a term can be simplified to true by 

the common interpretation: 

type bool/O 

func true: + boo1 

func false: -+ boo1 

func and: bool, boo1 + boo1 

func or: bool, boo1 + boo1 

func equal: LX, CY + boo1 

pred isTrue: boo1 

clauses: 

isTrue(true)+ 

isTrue(and(Bl,B2))+isTrue(Bl), isTrue(B2) 

isTrue(or(Bl,B2))cisTrue(Bl) 

isTrue(or(Bl,B2))tisTrue(B2) 

isTrue(equal(T,T))+ 

Note that this program is well-typed in our sense but not a well-typed program in 

the sense of [28] because of the type of the function equal (in their type system 

each type variable occurring in the argument type of a function must also occur in 

the result type [29]). 

3. Semantics of polymorphic logic programs 

3.1. Validity and models 

We use algebraic structures for the interpretation of polymorphic logic programs 

[31]. Variables in untyped logic vary over the carrier set of the interpretation. 

Consequently, type variables in polymorphic logic programs vary over all types of 

the interpretation and typed variables vary over appropriate carrier sets. Hence an 

interpretation of a polymorphic logic program consists of an algebra for the signature 

of types and a structure for the derived polymorphic signature. A structure is an 

interpretation of types (elements of sort type) as sets, function symbols as operations 

on these sets and predicate symbols as predicates on these sets. We give an outline 

of the necessary notions. 

If H = (Ty, Ht) is a signature of types, an H-algebra A = ( TyA, HtA) is also called 

H-type algebra. The polymorphic signature 1 (A) = ( TyA, FuncA, Pred,) derived from 

2 and A is defined by 

Func, := {f: a( q) If: TV E Func, CT : X + TyA is a type variable assignment}, 

Pred,:={p:a(T,,)lp : T,, E Pred, u : X + Tya is a type variable assignment}. 
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An interpretation of a polymorphic signature 2 is an H-type algebra A = ( Tya, HtA) 

together with a Z(A)-structure (S, 6), which consists of a Ty,-sorted set S (the 

carrier of the interpretation) and a denotation 6 with 

(1) If f: r, , . . . , T, + 7 E Func,, then 6,:,1 ,,,., T,,_7 : S,, x . . . x S,z -+ S, is a function. 

(2) If p:7,, . . . ) T, E Pred,, then S,,:, ,,..., T,, G S,, x . . . x S,, is a relation. 

Hence polymorphic functions and predicates are interpreted as families of functions 

and predicates on the given types. In order to compare different interpretations, we 

define homomorphisms between them. At first, we define E(A)-homomorphisms to 

compare different Z(A)-structures: Let A = ( TyA, HtA) be an H-type algebra and 

(S, 6), (S’, 8’) be E(A)-structures. A I(A)-homomorphism h from (S, 6) into (S’, 6’) 

is a family of functions (h, / T E Ty,) with 

(1) h,:S,+S:. 

(2) Iff:T, E Func, with Tf = T,, . . , T,, - 7 (n 2 0) and a, E S, (i = 1,. . . , n), then 

h,(&,(a, 2 . . ., a,)) = q:,,(k,h), . . . > h,,(%)). 
(3) Ifp:TpEPred, with T,,=T, ,..., T, (n>(l) and (a ,,..., an)~SB17,,, then 

(h,,(4), . . ., h,,(an)) E &,,. 
If it is clear from the context we omit the indices T in the functions h,. Note that 

the composition of two E(A)-homomorphisms is again a E(A)-homomorphism. 

The class of all Z(A)-structures together with the E(A)-homomorphisms is a 

category [9]. We denote this category by Cat,,,,. 

If A and A’ are H-type algebras, then every H-homomorphism (T : A + A’ induces 

a signature morphism (T: E(A) + E(A’) and a forgetfiljiinctor U,: Cat_r(a,j+ Cat,,,, 

(for details, see [9]). Therefore we can define a E-homomorphism from a E-interpreta- 

tion (A, S, 6) into another Z-interpretation (A’, S’, 6’) as a pair (v, h), where u : A + 

A’ is an H-homomorphism and h : (S, 6) + U,,((S’, 6’)) is a E(A)-homomorphism. 

The class of all E-interpretations with the composition ((T’, h’) 0 (a, h) := 

(a’ 0 c, U,(h’) 0 h) of two E-homomorphisms is a category. Thus we call a JZ- 

interpretation (A, S, 6) initial in a class of E-interpretations % iff for all Zinterpreta- 

tions (A’, S’, 8’) E % there exists a unique E-homomorphism from (A, S, 6) into 

(A’, S’, 8’). 

The notion of “term interpretation” can be defined as usual (in the following, 

we assume that VG Varz,, is a set of typed variables). By Tx(X, V) we denote the 

free term interpretation over X and V where the carrier is the T,(X)-sorted set 

Term,(X, V) and all predicate symbols are interpreted as empty sets. A homo- 

morphism in the polymorphic framework consists of a mapping between type 

algebras and a mapping between appropriate structures. Consequently, a variable 

assignment in the polymorphic framework maps type variables into types and typed 

variables into objects of appropriate types: If I = (( TyA, HtA), S, 6) is a Zinterpreta- 

tion, then a variable assignment for (X, V) in I is a pair of mappings (p, vu/) with 

p:X+ TyA and val: V+S’, where (S’, 6’):= U,((S, 6)) and d(X:T)E St (=S,,,,) 

for all X:TE v. 

In many-sorted algebra any variable assignment can be uniquely extended to a 

homomorphism. This is also true in the polymorphic case [3I]. 
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Lemma 3.1 (Free term structure). Let (A, S, 6) be a Z-interpretation and (p, val) be 

an assignmentt for (X, V) in (A, S, S). There exists a unique Z-homomorphism (a, h) 

from T=(X, V) into (A, S, 6) with the properties ~((Y)=P((Y) for all (Y EX and 

h(v) = v&(v) for all UE V. 

As a special case (X = V = 0) the lemma shows that every ground term with 

monomorphic types corresponds to a unique value in a given E-interpretation. 

Generally, any variable assignment (p, ual) can be extended to a E-homomorphism 

in a unique way. In the following we denote that E-homomorphism again by (p, vu/). 

We are not interested in all interpretations of a polymorphic signature but only 

in those interpretations that satisfy the clauses of a given polymorphic logic program. 

In order to formalize that we define the validity of atoms, goals and clauses relative 

to a given Z-interpretation f = (A, S, 8). 

l Let v = (CL, val) be an assignment for (X, V) in I. 

1, vt=L if L=p(t,:~~, . . . , t,:~,,) is a (&Xx, V)-atom with (vaf,,(t,:~,),.. ., 

ual,,(t, :T,))ES;:. I,..., 7,, where U,((S, 6)) = (S’, 8’). 

1, vk G if G is a (1, X, V)-goal with 1, vk L for all LE G. 

I, vk L+ G if L+ G is a (2, X, V)-clause where 1, vk G implies I, uk L. 

l I, Vk B if 3 is a (2, X, V)-atom, -goal or -clause with 1, vi= 9 for all variable 

assignments v for (X, V) in 1. 

We say “L is valid in I” if I is a E-interpretation with I, var(L) != L (analogously 

for goals and clauses). A E-interpretation I is called model for a polymorphic logic 

program (2, C) if 1, var(L+ G)b L+ G for all clauses L+- GE C. A (2, X, V)-goal 

G is called valid in (Z, C) relative to V if I, V!= G for every model I of (2, C). 

We shall write (2, C, V)b G. 

This notion of validity is the extension of validity in untyped Horn clause logic 

to the polymorphic case: In untyped Horn clause logic an atom, goal or clause is 

said to be true iff it is true for all variable assignments. In the polymorphic case an 

atom, goal or clause is said to be true iff it is true for all assignments of type variables 

and typed variables. The reason for the definition of validity relative to a set of 

variables is that carrier sets in our interpretations may be empty in contrast to 

untyped Horn logic. This is also the case in many-sorted logic [lo]. Validity relative 

to variables is different from validity in the sense of untyped logic. The following 

example shows such a difference. 

Example. Let TH = {void, zero}, Func = (0: + zero}, Pred = (p:void, q:zero} and XE 

Var. If C consists of the clauses 

p(x:void) + 

q(O:zero) + p(x:void) 

then M := ( TH, S, 8) with Suold = 0, S,,, = {0}, &,:+zero = 0 and 6, = 6, = 0 is a model 

for (2, C). It can be shown that 

(2, C, {x:void})kq(O:zero) 

Hence q ( 0:zero ) is valid in M relative to {x: void}, but q ( 0:zero ) is not valid in M. 
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Validity in our sense is equivalent to validity in the sense of untyped logic if the 

types of the variables denote nonempty sets in all interpretations. But a requirement 

for nonempty carrier sets is not reasonable. For a more detailed discussion of this 

subject compare [lo]. 

“Typed substitutions” are a combination of type substitutions and substitutions 

on well-typed terms: If V, V’G Vur z,x are sets of typed variables, then a typed 

substitution u is a Shomomorphism c = (a,, a,) from T2(X, V) into T=(X, V’). 

Since vx and (TV are only applied to type expressions and typed terms, respectively, 

we omit the indices X and V and write u for both ux and uv. We extend typed 

substitutions on E-atoms by a( p(r,, . . , t,)) =p(a( t,), . . . , a( t,)). S&(X, V, V’) 

denotes the class of all typed substitutions from 7” (X, V) into Tz(X, V’) and 

id,, v E St& (X, v, V) denotes the identity on Tz(X, V). tdom(v):= 

{a E X 1 a( a) # a} is the type domain of a typed substitution U. A typed substitution 

keeps the set of type variables X but may change the set of typed variables because 

the types of the variables influence validity (see above). Sometimes we represent 

typed substitutions by sets: The set 

a={a/nat, x:cu/O:nat} 

represents a typed substitution that replaces the type variable a by the monomorphic 

type nut and the typed variable X:(Y by the ground term 0:nat. Hence the result of 

applying (T to the atom p(x:a, y:c”) is the atom p(O:nat, y:nat). The following lemma 

shows a relationship between variable assignments and typed substitutions w.r.t. 

validity. 

Lemma 3.2. Let I be a I-interpretation, G be a (2, X, V)-goal, u E Sub, (X, V, V’) 

and v be a variable assignment for (X, V’) in I. Then I, vi= u(G) iff I, v 0 ut= G. 

Proof. Let G, u, v = (p, ual) and I = (A, S, 6) be given. The composition v’:= v 0 u 

is defined by v’= (p’, val’) with P’(Q) = ~((T((Y)) for all (Y E X and 

val:(x:T) = (U,(val) 0 (T),(x:r) = val,(,,(u(x:T)) 

for all x: T E V. Thus v’ is a variable assignment for (X, V) in I. Let p(. . . ti : T, . .) E G. 

Then 

1, VkU(p(... ti:Ti...)) e 1, Vbp(...U(t,:T,) . ..) 

@ (. . VaL,,,(u(li :Ti)) . . .) E 8p:___F(c(7,)) 

@ (... d,(ti :Ti) . . .) E &FyT,~ 

a 1, V’k=p(. . t, :T,. . .). 

This proves the lemma. 0 

A term t’~ Termz-(X, V’) is called an instance of a term t E Term=(X, V) if a typed 

substitution u E Sub, (X, V, V' ) exists with t’ = u(t). The definition of instances can 
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be extended on atoms, goals and clauses. We omit the simple definitions here. The 

next lemma shows the relationship between the validity of a clause and the validity 

of all its instances. 

Lemma 3.3. Let I = (A, S, 6) be a E-interpretation and Lt G be a (1, X, V)-clause. 

Then 

I, VkL+G e I, V’ka(L)ta(G)foralZaESubz(X, V, V’). 

Proof. The direction “e” is trivial if we use the identity on Tz (X, V) for the typed 

substitution (T. Let I, Vk L t G and u E Sub, (X, V, V’) be a typed substitution. We 

have to show I, V’k o(L) + a(G). Let u be a variable assignment for (X, V’) in I 

with Z, u k m(G) (if there exists no such variable assignment, Z, V’k= a(L) + o(G) 

is trivially true). Lemma 3.2 yields 1, u 0 al= G. This implies I, u 0 u k L since 

1, Vk Lt G. Again by Lemma 3.2, it follows 1, u k a(L). 0 

Along with a set of E-clauses C we define the set of instantiated clauses 6 as 

follows: 

&:={L+GIL~G is an instance of a clause from C}. 

The set e contains all clauses which are obtained from clauses in C by substituting 

type expressions for type variables and well-typed terms for typed variables. 

Corollary 3.4. A Z-interpretation is a model for (2, C) i# it is a model for (2, c) 

Proof. The theorem follows by definition of c and Lemma 3.3. 0 

3.2. Construction of an initial model 

In this section we show the existence of an initial model for every polymorphic 

logic program. The construction is very similar to the untyped case [24]. A Herbrand 

interpretation (model) for a polymorphic logic program (2, C) is an interpretation 

(model) where the carrier is a term interpretation with ground terms and monomor- 

phic types. Hence different Herbrand interpretations only differ in the denotation 

of the predicate symbols. Therefore any Herbrand interpretation % = 

(Tn, TermE (0, El), 6) can be characterized by the set 

&=Mt,, . . . . t,)l(t, ,..., t,)E~p:T,,,p:7PEPred,,,}. 

Lemma 3.5. Let (2, C) be a polymorphic logic program and (A, S, 6) be a model for 

(2, C). Then there exists a Herbrand model for (2, C). 

Proof. By Lemma 3.1 (free term structure), there exists a unique .Zhomomorphism 

(a, h) from T,(@, 0) into (A, S, 6). We define the following Herbrand interpretation: 

M={p(t,:TI ,..., t,:T,,)lp:T ,,..., ~,,EPredr,,,t,:7iETermp(0,0) 

(i= 1 , . . , n), (h,,(t, :T,), . . . , h,,(t, :T,)) E &:,c,,, ,..., ,c.,,I>. 

It is straightforward to show that M is a model for (2, C). q 
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Next we show that Herbrand models are sufficient for proving the validity of 

monomorphic ground atoms. 

Lemma 3.6. Let (E, C) be a polymorphic logic program and L be a (2,0,0)-atom. If 

L is valid in every Herbrand model, then L is valid in any model. 

Proof. Let A4 = (A, S, 6) be a model for (2, C). By Lemma 3.5, there exists a 

Herbrand model A& for (1, C). By Lemma 3.1, there exists a unique Z 

homomorphism (a, h) from T’(@,@) into A4. L =p(t, : T,, . . . , t, :T,,) is valid in Mit. 

Therefore p( t, : T, , . . , t,, :T,,) E MT. By construction in the proof of Lemma 3.5, 

(h,,(t, :7,), . . . , h,,(tn :T~))E %:<,ci,, ,..., vcr,,). Thus M, (cr, h)k L. Since (v, h) is the 

unique variable assignment, L is valid in M. 0 

It is straightforward to show that the intersection of a nonempty set of Herbrand 

models is again a Herbrand model. Hence the set 

M,$ := n {M, 1 M, is a Herbrand model} 

is a Herbrand model, because every polymorphic logic program (2, C) has at least 

one model 

M,={p(t,:~ ,,..., t,:~,,)lp:~ ,,..., T~~Pred~,,t~:~,~Term~(O,O)(i=l,..., n)}. 

The model M9 is called the least Herbrand model. It is an initial model for (Z; C). 

Theorem 3.7 (Initial model). Let (25, C) be a polymorphic logic program. Then the 

least Herbrand model M,, is an initial model for (I, C), i.e., for each model M for 

(2, C) there exists a unique Z-homomorphism from M,, into M. 

Proof. Let M = (A, S, 6) be a model for (2, C) and M9 = ( TH, Term1 (0,0), 6’). By 

Lemma 3.1, there exists a unique E-homomorphism (v, h) from T,(0,0) into M. 

In order to show that (a, h) is a E-homomorphism from M., into M, we have to 

prove the following condition for X-homomorphisms (we assume T,, = 71, . . . , T,,): 

(t,:T,,... , L :Tn)E s;:T,, =+ (h,,(t, IT,), . . . , h,,(c, :T,,))E f$ccr,,,. 

Let (t, :T,, . . . , t, :T,) E S;:,,. Then M.?,OkL, where L=p(t,:~,,...,t,:T,,).There- 

fore L is valid in all Herbrand models. By Lemma 3.6, L is valid in all models and 

in particular, L is valid in M. Hence M, (v, h) k L and (hTl(t,: T,), . . . , h,,(t, : T,,)) E 

&7,,, . 0 

3.3. Fixpoint characterization of the least Herbrand model 

We want to characterize the least Herbrand model by a fixpoint of a monotonic 

function, which will be used for proving a completeness theorem for our polymorphic 

logic. For this purpose we need some results about fixpoints in complete lattices. 

We skip the necessary definitions here (keywords: partial order, least upper bound 

lub, greatest lower bound glb, complete lattice, monotonic and continuous mappings, 

directed subsets and f ~OJ) and refer to [24] for details. We only cite two important 

results. 
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Theorem 3.8 (Knaster-Tarski). Let S be a complete lattice andf: S + S be a monotonic 

mapping. Then f has a least fixpoint Ifp(f) with up(f) = gZb({x If(x) = x}) = 

glb({x If(x) s x1). 

Theorem 3.9 (Kleene). Let S be a complete lattice and f: S+ S be a continuous 

mapping. Then f?w = Zfp(f). 

In the following we apply these results to Herbrand interpretations. The next 

lemma is straightforward to show. 

Lemma 3.10. Let E be a polymorphic signature. The set 2 Mz of all Herbrand interpreta- 

tions of E is a complete lattice with the set inclusion s as a partial order. The bottom 

element is $3, the top elemem is Ms. For a subset M c 2”x the least upper bound is 

Zub( M) = U {Mil Mi E M} and the greatest lower bound is glb( M) = n {M, 1 M, E M}. 

The mappping T,, is a transformation on Herbrand interpretations and was 

defined for the untyped case in [37]: For each polymorphic logic program (2, C) 

we define a mapping TX,, : 2”z + 2 Mz on Herbrand interpretations as follows: 

T,,,(M) := {L E ME 13 an instance L + G of a clause from C with G z M} 

for all M E 2 Mz. We will give a characterization of the least Herbrand model by the 

mapping T’,, . The next lemma can be proved in the same way as in untyped Horn 

logic. 

Lemma 3.11. Let (2, C) be a polymorphic logic program. Then T,,, is continuous 

(and monotonic). 

Lemma 3.12. Let (2, C) be a polymorphic logic program and I be a Herbrand 

interpretation of 2. Then I is a model for (2, C) if T,,,(I) G I. 

Proof. “j” Let I be a model for (2, C) and LE T,,,(I). Then there exists an 

instance Lt G of a clause from C with G G I. By Corollary 3.4, I is a model for 
A 

(2, C) and therefore LE I. 

“e” Let T,,,(I) E I, L+ G E C, V = var( L+- G) and 2, = (p, ual) be an arbitrary 

variable assignment for (X, V) in T,(@, 0) (if there exists no such variable assignment, 

then I, Vk Lt G is trivially true). If I, v k G, then val( G) s I, and therefore (because 

uaZ(L) + vaZ(G) E C)val(L) E T,,,(I), i.e., I, vi= L. Thus L+ G is valid in I. q 

Theorem 3.13 (Fixpoint characterization of the least Herbrand model). Let (2, C) 

be a polymorphic logic program. Then M9 = Ifp( T,,,) = T,,~o. 

Proof. 

M.=n{MjIMj is a Herbrand model} (by definition) 

= glb({ Mj I Mj is a Herbrand model}) 

= glb({Mj I T,,,(Mj) c Mjl) (by Lemma 3.12) 

= YP( TX,,, (by Theorem 3.8) 

= T,.,?w (by Theorem 3.9). 0 
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4. Deduction 

This section presents an inference system for proving validity in polymorphic 

logic programs. In contrast to the untyped Horn clause calculus it is necessary to 

collect all variables used in a derivation of the inference system since validity 

depends on the types of variables. Let C be a set of E-clauses. The polymorphic 

Horn cluuse calculus contains the following inference rules: 

(1) Axioms: If Vs Vc~r=,~ is a set of typed variables and Lt G E C is a (E, X, V)- 

clause, then (2, C, V) F L c G. 

(2) Substitution rule: If (2, C, V)kL+ G and a~Sub~(X, V, V’), then 

(2, C, V’)ko(L)+a(G). 

(3) Cut rule: If (E, C, V)kL+ Gu{L’} and (2, C, V) k L’ t G’, then (E, C, V) 

EL+GuG’. 

If the example program in Section 3.1 is given, then the following sequence is a 

deduction in the polymorphic Horn clause calculus: 

(3, C, {x:uoid})Fp(x:uoid) + 

(2, C,{x:void})t-q(O:zero) +p(x:void) 

(1, C, {x:uoid})t-q(O:zero) t 

This example shows the need for the explicit mentioning of the variables in the 

deduction since (2, C, 0) k q( 0: zero ) is not true. 

The soundness of the polymorphic Horn clause calculus can be shown by proving 

the soundness of each inference rule. 

Theorem 4.1 (Soundness of deduction). Let C be a set of E-clauses, VC Varz,x and 

L be a (E, X, V)-atom. If (2, C, V)F Lt0, then (E, C, V)k= L. 

Proof. Let M be a model for (E, C). By induction on the length of a deduction we 

show that M, Vi k Lj + Gi for each element (2, C, Vi) F Lj + G, in a deduction for 

Lt0. 

(1) Axioms: If Li+GiEC, then M,zIu~(L,+G,)~L,+G,. Let u=(~,z&) be a 

variable assignment for (X, Vi) in M (if there exists no such variable assignment, 

then M, V k Li + G, is trivially true). Let ZI’ = (p, vail vor(L,cC,J) be the restriction of 

ZJ to (X, uar(Li + Gi)). Then M, u’l= Li + Gi is true and therefore M, Z, I= Li + Gi is 

also true. 

(2) Substitution rule: Let u E Sub,(X, V,, Vi) be a typed substitution and o’ be 

a variable assignment for (X, Vi) in M (if there exists no such variable assignment, 

then M, Vi k o( Li) + o( G;) is trivially true). u := V’ 0 c is a variable assignment for 

(X, Vi) in M. By induction hypothesis, M, U+ Li + Gi. Suppose now that 

M, u’k a(G,). Lemma 3.2 yields M, VI= Gi. This implies M, vk Li and, again by 

Lemma 3.2, M, v’l= a( L,). Therefore, M, v’!= o( Li) + a( Gi). 

(3) Cut rule: Let (E, C, K)F Lj c G, u {L,} and (E, C, y) k Lj + G, be elements 
of the deduction with Vi = Vj. Let z, be a variable assignment for (X, Vi) in M with 
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M, v + Gi u G, (if there exists no such variable assignment, then M, V, k Li t Gi u G, 

is trivially true). By induction hypothesis, M, vi= L, t Gi u {L,} and M, v b 15, + G,. 

Since M, v+ G,, we obtain M, vi= Lj. On the other hand, M, v+ Gi. Hence 

M, v + Gi u {L,} and M, v I= Li. Therefore, M, v + L, + Gi u G,, as required. 0 

Similarly to [2], we prove the completeness of deduction by using the fixpoint 

characterization of the least Herbrand model. At first, we state a completeness result 

for monomorphic ground atoms. 

Lemma 4.2. Let C be a set of E-clauses and L be a (E, 0,0)-atom. If (2, C, 0) + L, 

then (2, C, 0) + L t 0. 

Proof. If (2, C, 0) k L, then L is valid in every model for (2, C), in particular, 

L E M9. Theorem 3.13 yields L E TX,, t w and therefore L E T,,,. t n for some finite 

n. We prove the lemma by induction on n. 

n = 1: By definition of T,,, , there exist L’+0 E C and g E Sub, (X, V, 0) with 

L = a( L’). By an application of an axiom and the substitution rule, we obtain 

(4 C,B)~L+O. 
n > 1: By definition of T,,, , there exist L’ + G’ E C and (T E Sub, (X, V, 0) with 

L = U( L’) and u( G’) E T,,, t n - 1. By an application of an axiom and the substitu- 

tion rule, we obtain (2, C, 0) FL + a( G’). Let V( G’) = {L, , . . . , Lk}. By induction 

hypothesis, (2, C, 0)C L, + 0 for i = 1,. . . , k. By k applications of the cut rule, we 

obtain (2, C,O)+Lt0. 0 

To extend the completeness result to E-atoms with type variables and typed 

variables, we need the following lemma which states that validity is invariant under 

the extension of signatures. 

Lemma 4.3 (Extended signatures). Let C be a set of I-clauses, 71, . . . , rk be new 

basic types or type constructors and2’= (H’, Func’, Fred) be an extendedpolymorphic 

signature with H’ = H u {r, , . . . , TV} and Func c Func’. If Vc_ Varz,x, then thefollow- 

ing implication is true for any (E, X, V)-clause L+ G: 

(E,C,V)+L+G* (E’,C,V)bL+G. 

Proof. We assume (2, C, V)+ L+ G. Let M’= (A’, S’, 8’) be a model for (I’, C) 

with (A’= Ty,,, HtAs). Let A:= ( Tya, HtA) with TyA := Ty,, and Ht, := {hAf 1 h E Ht}. 
A is an H-type algebra. Let S:= S’, s,:, := S;:, for all f:~~ E Func, and SP:7P := 6bI7,, 

for all p: To E Pred,. (S, 6) is a x(A)-structure. M = (A, i, 6) is a Z-interpretation 

and all clauses from C are valid in M. Therefore M is a model for (Z, C) and 

M, V!= L+ G is true. Let v be a variable assignment for (X, V) in M’. Since 

V_C Varz,x, TyA = Ty,+, and S = S’, v is also a variable assignment for (X, V) in M. 

Therefore M, v+ L+- G. Since SPz9, = 8b:, for all p:~, E PredA, it follows M’, v+ L+ 
G. Hence M’, V+ Lc G is true. 0 
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Now we can state the completeness of the polymorphic Horn clause calculus. 

Theorem 4.4 (Completeness of deduction). Let C be a set of E-clauses, Vc Varz,x 

be a Jinite set of typed variables and L be a (2, X, V)-atom. Zf (E, C, V)k L, then 

(E, c, V)F L+B. 

Proof. Let tvar( L) u tvar( V) = {a,, . . . , a,} and V={x,:7 ,,..., x,:7,}. Let 

y,, . . . , ym be new basic types and c,, . . . , c, be new constant symbols. Let E’= 

(H u 1% 2. . ., y,},Funcu{c,:~a(~,)/i=l)..., n}, Pred) be an extended poly- 

morphic signature, where (T E &6,(X, V, 0) is a typed substitution with (~(a,) = y, 

(i= 1 7 . . 2 m), U(Q) = a for all other type variables (Y, and a(x, :r,) = c;:(T(T,) (j = 

1 ..> n). If (E, C, V)k L, then (E’, C, V)k L by Lemma 4.3. By Lemma 3.3, 

(i’, C, 0) k u(L). By Lemma 4.2, (z’, C, 0) t a( L) + 0. Since the basic types yi and 

the constants cj :(~(r,) do not appear in the clauses C, we can replace y, by (Y, 

(i= 1 7 . . 2 m) and c, :(~(r~) by xj:7, (j = 1,. . , n) in the last deduction. Hence we 

obtain a deduction for (2, C, V) t L + 0. 0 

5. Unification 

We are interested in a systematic method for proving validity of goals. The Horn 

clause calculus is one possibility, but in general it is far from being efficient. In 

untyped Horn clause logic the resolution principle [33] with SLD-refutation [2] is 

the basic proof method. The basic operation in a resolution step is the computation 

of a most general unifier of two terms. We need a similar operation for the resolution 

method in the polymorphic case. This section defines the unification in the poly- 

morphic case and presents an algorithm for computing the most general unifier that 

is based on the method in [23]. 

Example. Let a polymorphic signature contain the declarations p:(~ E Pred, q: int E 

Pred and r: (Y E Pred (a is a type variable). X ,Y ,Z E Var are variable names and 

assume the following two clauses to be given: 

p(X:int) +q(X:int) 

p(Y:cy)+r(Y:a) 

The first clause is not allowed for proving the goal p( Z: bool). We can use the second 

clause and have to prove in the next step the goal r (Z: boo1 ). 

For proving the goal p( Z:int ) the first clause can be used. In this case we are 

left with the goal q(Z:int ) for the next resolution step. 

As we see, unification of two atoms has to consider the types of the terms. Untyped 

unification cannot be applied in our case. 

In Section 3.1 typed substitutions were defined. The composition of two typed 

substitutions is again a typed substitution. Therefore we define the usual relations 

on typed substitutions. 
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l Let V,, V, E Varr,x and u E Sub,(X, V, V,) and U’E Sub,(X, V, V,) be typed 

substitutions. CT is more general than u’, denoted CT< u’, iff there exists 4 E 

Sub, (X, V, , V,) with C#J 0 (+ = u’. 

l Let t and t’ be (2, X, V)-terms. t and t’ are uni$able if there exists a typed 

substitution (T E Sub,(X, V, V’) with CT(~) = a( t’) for a set V’C Vur,,, . In this 

case CT is called a unifier for t and t’. u is a most general unijier (mgu) for t and 

t’ if u c CT’ for all unifiers u’ for t and t’. 
The well-known algorithms for the unification of two terms in a term algebra (without 

equality) can be applied for the unification in the polymorphic case if we use a 

particular term algebra: The untyped signature corresponding to 2, denoted E” = 

(Term, Op), is defined as follows: 

Term = {term}. 

h: term, . . . , term+ term E Op for all h E H with arity n (n 2 0). 
. 2 

n 

fzterm,..., term-+termEOp forallf:ri,...,r,+rEFunc (na0). 
c 2 

n 

“I”: term, term + term E Op. 

The signature E” has only one sort term. If VG Vur is a set of variable names and 

X is a set of type variables, we interpret V and X also as variables of sort term 

and denote by T,>,(X LJ V) the algebra of Z”-terms with variables from X u V. 

T,u(X u V) is a single-sorted free term algebra over X u V, where the operation 

symbols are type constructors from H, function from Func and the symbol “:” with 

arity 2. It is easy to show that Term=(X, V’) G T,I~(XU V), where V= uvar( V’), 

i.e., we can treat typed terms as terms over the signature 2”. For instance, the typed 

term [ ] :Zist(a) is also a term over 2” (actually, “:“( [ ],list (a) ) is a term over 

ZU, but we use the infix notation for the operator “:“). The converse is not true, 

because equal (1: int,true: bool) : bool is a E”-term, but not a Z-term if equal: a, (Y + 

boo1 E Func. 

The notions of “substitution” and “unifier” for the algebra T,u(X u V) are defined 

as usual (e.g., [24]) and we omit the details here. [33] has found an algorithm for 

computing a most general unifier in a single-sorted free term algebra. For instance, 

a most general unifier in T,u(X u {v}) for the Z-terms [ ] : list(a) and v: list(int) is 

a( a) = int, a( 6) = [ 1. It is an interesting fact that CT’ E Sub, (X, {v: list( int)}, 0) with 

a’( a) = int and u’(v: list( int)) = [ ] :Zist( int) is a most general unifier for [ ] :Zist( a) 

and v: list( int) in Term= (X, {v: list( int)}). Generally, we can compute a most general 

unifier from a most general unifier in T,ad(X u V). In order to prove this proposition, 

we present the algorithm and the result of Robinson. The algorithm of Robinson 

uses disagreement sets to specify the differences of terms. For our purpose it is 
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important to inspect the differences in type expressions first. Therefore we define 

for to, t1 E T,>d(Xu V) the disagreement set of to and t,, ds(t,, t,), as follows: 

l If to= t, then ds(t,, t,):= 0 else 

l if to = t:r and t, = t’:r’ then 

ds( to, tl) := 
ds(t,t’) ifr=r’, 

ds(q 7’) otherwise, 
else 

l if to~Xu V or t,~Xu V then ds(t,, t,):={t,, tl} else 

l if t,,=f(r,, . . . , r,,,) and t,=g(s,, . . . , s,) (m, n>O) then 

if f# g or m # n then ds( t,,, tl) := {t,,, t,} else 

if ri=si(i=l,... ,j - 1) and rj # s, then ds( to, tl) := ds( r,, sj). 

If u is a substitution in T,u(X u V) and the set {x E X u Vlcr(x) # x} is finite, 

we denote u by the set 

{x/(~(x)Ix~Xu Vandcr(x)#x}. 

Then the following algorithm computes a most general unifier in T,u(X u V). 

Algorithm mgu 

Input: to, t, E T,t,(X u V). 

Output: An mgu (T for to and t, in T’u(X u V) or fail, if t, and t, are not unifiable 

in T,t,(X u V). 

(1) 
(2) 
(3) 

k:=O;a,:={}, 

Ifgk(t,,) = ak(tl) then stop “uk is the mgu”, 

If {x, t} G ds(ck( to), (T~( t,)) and x E X u V and x does not occur in t 

then ak+l:={x/t}Ocrk; k:=k+l;goto(2). 

else stop “‘fail: to and t, are not unifiable”, 

The following theorem is due to Robinson [33]. 

Theorem 5.1. If t,,, t, E T,u(xu V) are unifiable in Tst~(Xu V), then the algorithm 

“mgu” terminates and gives an mgu for to and t,, otherwise the algorithm “mgu” 

terminates and reports “fail: to and t, are not untfiable”. 

In the following we assume that a set V E U Vurz,x of typed variables with unique 

types is given and V,:= uvar( V). 

Lemma 5.2. Let to and t, be untfiable (2, X, V)-terms and u be a unifier for t, and 

t,. Let cr’ be a substitution in T,cs(Xu V,) with (~‘(a):= ~(a) for any cy E X and 

(T’(X):= t ifx:rE Vand F(x:~) = tea for any XE V,. Then u’ is a unifierfor to and 

t, in T,u(Xu V,). 
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Proof. It is straightforward to show (by induction on the size of terms) that (TIN,, = 

r’lTH,cxJ and &ermlCX,vJ = u’ITermZCX,V). Therefore u’( to) = a( to) = a( t,) = a’( t,). Cl 

Hence each unifier corresponds to a unifier in 7”z,(X u V,). The converse is only 

true for most general unifiers in T,jc(X u V,,). The following lemma is due to [23]. 

Lemma 5.3. Let to and t, be two (2, X, V)-terms uni$able in T,is(X u V,) with CT a 

most general unifier in T,tl(Xu V,). Then there exists a typed substitution (TIE 

Sub,(X, V, V’) such that a’(a) = (~(a) for any a E X, (T’(x:T) = (T(x):(T(T) for any 

X:T E V and V’:= U,,, v var(a(x:r)). Moreover, CT’ is a most general un$er for t,, 

and t,. 

Proof. At first we show u(x):(T(~) E Term,(X, V’) for all X:TE V. By Theorem 5.1, 

an mgu ok in T,t,(Xu V,) can be computed by the algorithm “mgu” presented 

above. We show by induction on the computation steps the following property of 

the computed substitutions oi in the algorithm “mgu”: Let W, := {x:(T,( T) 1 x: T E V}, 

tg Termz(X, V). Then a,(t)E Term,(X, Wi). 

For i=O we have W,= V and ao(t)=t. Let i>O and a,-,(t)E Termz(X, Wi_,) 

for all t E Term,(X, V). By the algorithm “mgu”, CT, = {v/u} 0 (T;-, for a v E X u V,, 

and u E T,ci(X u V,). 

(a) UEX: Since cri_,(to),ai_,(t,)e Termp(X, W,_,), it must be UE TH(X). It is 

straightforward to show that {v/u}(t) E Termz(X, W,) for all t E Term, (X, W,_,). 

(b) VE V,: Sincegi-,(to),cji,(t,)E Term\(X, W,_,), V:T, (fora~,E T,(X))must 

occur in a,_,(&) or ai_, and therefore U:T, E Termp(X, W,_,) (otherwise v and 

u are not in the disagreement set). It is straightforward to show that {v/u}(t) E 

Term,(X, Wi) for all t E Termz(X, Wi_,) since W, = W,_, and V G U Vurz,x is a set 

of typed variables with unique types. 

By induction hypothesis, it follows ci( t) E Term, (X, Wi) for all t E Term, (X, V). 

Since t, and t, are unifiable in T,lt(X u V,), the algorithm “mgu” stops with an 

mgu ok and vk( t) E Term, (X, Wk) for all t E Termz (X, V). If CT is another mgu in 

TL”(X u V,), then C(T) and Vk(T) are equivalent types for all TE TH(X). Therefore 

m(t)e Term=(X, V’) for all tE Termz(X, V), in particular (T(x):(T(T)= (T(x:T)E 

Termz(X, V’) for all X:TE V. 

It can be shown in a similar way that a(a) E TH(X) for all (Y E X since t,,, t, E 

Term=(X, V). By Lemma 3.1, there exists a typed substitution u’ with the conditions 

described in the lemma. It is straightforwad to show (by induction on the size of 

terms) that c/~+,(~) = ~‘1~~~~) and ~]7rrmzCX,VJ = 4TrrmzCX,v). Therefore c’(to) = 
u( to) = a( t,) = u’( tl), i.e., CT’ is a unifier for to and t,. By Lemma 5.2, CT’ is a most 

general unifier. 0 

The requirement for a most general unifier in the last lemma is essential. If the 

unifier in T,ti(Xu V,) is not most general, then the proposition does not hold: If 

2 is a polymorphic signature with basic types boo1 and int, and V = (x: bool, y: bool}, 
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then the substitution u = {x/l, y/ 1) is a unifier for x:bool and y: boo1 in T,c,(X u V,), 

but a(x: booE) = 1: bool & Termz (X, V’) is an ill-typed term. 

The requirement for typed variables with unique types is also essential for the 

correspondence of most general unifiers in T,c,(X u V,) to unifiers in Term= (X, V): 

Let X,Y E Var and 2 be a polymorphic signature with basic types boo1 and int and 

a function declaration 

func f : int, boo1 + boo1 

Then the terms f (X: int, X: bool): boo1 and f (0: int ,Y: boo1 ) : bool are unifiable in 

T,~~({X,Y}) and a={X/O, Y/O} is an mgu in T,~J({X,Y}). But a(Y:bool) =O:bool is 

an ill-typed term and therefore the theorem does not hold for this case. The following 

theorem shows that the polymorphic unification problem can be reduced to the 

unification problem in T,nz(X u V). 

Theorem 5.4 (Unification). Let V C_ U Varz,, and VU:= uvar( V). Two (2, X, V)-terms 

are unljiable ifl they are uni$able in T,t,(X u V,). A most general unijier can be 

computed from a most general unijier in T,jj(X u V,,). 

Proof. If two (E, X, V)-terms are not unifiable, then they are not unifiable in 

T,~J(XU V,) by Lemma 5.3. If two (2, X, V)-terms are unifiable, then (by Lemma 

5.2) they are unifiable in T,ls(X u V,). Theorem 5.1 yields a most general unifier in 

T,c,(X u V,,), and Lemma 5.3 converts the mgu in T,g,(X u V,) into a most general 

unifier in Term=(X, V). 0 

The unification problem in the polymorphic case is solved by this theorem. There 

exist more efficient unification algorithms ([26,3,32]) that can also be used instead 

of the classical one presented above. We only require the following technical 

restriction that will be needed for later proofs: 

If Vc Var,,, , t and t’ are (2, X, V)-terms and CT is a most general unifier for t 
and t’, then a={x,/t ,,..., x,/t,} and the following conditions hold: 

(1) uuar( t,) G uuar( t) u uuar( t’) and tuar( ti) c tuar( t) u tvar( t’) for i = 1, . . . , n. 

(2) xisZvar(t,)utvar(t,)foralli,jE{l,..., n}, i.e., the most general unifier is an 

idempotent substitution. 

(3) If V G U Varz,x, then U,,,, v oar(u(x:T)) G U Var_r,x. 

The classical unification algorithm meets these requirements. 

6. Resolution 

In this section we will show that the resolution principle in untyped Horn logic 

(see [24]) can be used for polymorphic Horn clause programs if we replace the 

untyped unification by the polymorphic unification with typed substitutions as 
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defined in the last section. We call a Z-clause a variant of another E-clause if it is 

obtained by replacing type variables and typed variables by other type variables 

and typed variables, respectively, such that different variables are replaced by new 

different variables. Let (2, C) be a polymorphic logic program. 

(a) Let V, V’ s U Vurx,x, Gu {L} be a (2, X, V)-goal and the (2, X, V)-clause 

L’+ G’ be a variant of a clause from C with tvar(G u {L}) n tvur(L’+ G’) = p) and 

vur(Gu {L}) n vur(L’+ G’) = 0. If there exists a most general unifier (TE 

Sub, (X, V, V’) for L and L’, then U(G) u v( G’) is said to be derived by resolution 

from G u {L} relative to (+ and L’t G’. Notation: , 

(E, C, V) Gu{L} k urr(G)u(~(G’). 

(b) Let V s U Vurz,x and G be a (2, X, V)-goal. A (E, C, V)-resolution of G is 

a sequence of the form 

where Go= G, V,= V and (2, C, Vi) Gi k vii+1 Gi+, with a,,1 E Subx(X, Vi, V,,,) 

for i =O, 1,2,. . . , n - 1. The (2, C, V)-resolution is called successful if G,, =p). In 

this case n is called the length of the (E, C, V)-resolution, and u := Us 0 . . .o u1 is 

called a computed answer. Notation: 

(2, C, V) k u G. 

We remark that Vi E U Vur=,, for i = 0, 1,2,. . . , n - 1 since V c U Vurx,x. If 

V c Vurz,x rather than V c U Vurx,x, the unifier in a resolution step is not a most 

general one, the type variables and typed variables in a clause applied in a resolution 

step are not disjoint from those in the E-goal, or C is only a set of Z-clauses rather 

than vur( c) c U Vur=,, for all c E C, then the resolution is called an unrestricted 

(2, C, V)-resolution and the symbol k is replaced by bR. 

The soundness of resolution can be shown by simulating a resolution sequence 

by a derivation in the polymorphic Horn clause calculus. 

Theorem 6.1 (Soundness of resolution). Let (2, C) be a polymorphic logic program, 

V E U Vurz,x and G be u (2, X, V) -goal. If there is a successful resolution (E, C, V) 

k u G with computed answer u E Sub, (X, V, V’), then (I, C, V’) k u(G). 

Proof. We assume that there is a successful resolution (1, C, V) b u G. Thus there 

is a (E, C, V)-resolution of the form 

(2, C, V) G, TV ~1 G, k ~2 G2 k . . . k an 0 

withG,,=Gandu=u,,o* . . 0 CT,. We show the following proposition by induction 

on the resolution steps: For i =O, . . . , n: If PE G,_i, then (E, C, V’) 

t--UnO’ . * 0 un_,+l( P). 
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This is true for i = 0 since G, = 0. For the induction step we assume 

(2, C, V’)k Upj o ’ * ’ ’ Un_i+l (P) for all P E G,-i. The (n - i)th resolution step has 

the form 

and there is a variant L’+ G’ of a clause from C and a Z-atom LE G,_i_, with 

~,_,(L)=u,_~(L’) and G,~,=a,~j((G,~i~,-{L})u G’). 

We have to show that (2, C, V’) k cn 0 . . . 0 anpi is true for all P E G,_i_, . As 

the (2, X, V+-*)-clause L’+ G’ is a variant of a clause from C, there exist 

v” c Var=,, , L” + G” E C and 

U”E Sub,(C, V”, V,_,_l) with u”(L”+ G”) = L’t G’. 

Therefore, 

(E, C, V”)tL”+ G” and (2, C, V,_,_,)I- L’+ G’ 

by the substitution rule. If we apply the substitution rule with typed substitution 

un 0 * * * 0 a,_;, we obtain 

(1, C, V’) t a,, 0 . . .o a,& L’+ G’). 

By induction hypothesis, (1, C, V’) E CT,, 0 . . .oc~,_~+,(P), for all PE G,_i. Since 

u,~~( G’) c Gn-i, we get from multiple applications of the cut rule 

If P E G+_, -{L}, then a,_,(P) E G,_i, and, therefore, 

(E, c, V’)kCT, 0. . .o (T,_JP) 

by induction hypothesis. This completes the induction step. We obtain the following 

proposition for i = n: For all P E G, (2, C, V’) + a(P). 

Let M be a model for (2, C) and u be a variable assignment for (X, V’) in M 

(if there exists no such variable assignment, then M, V’k a(G) is trivially true). By 

Theorem 4.1 (soundness of deduction), we obtain M, v I= a(P) for all P E G. This 

implies M, uk v(G). Therefore, (2, C, V’)t= a(G). 0 

The completeness of resolution in untyped Horn logic can be proved by a fixpoint 

theorem using a transformation on Herbrand interpretations [37,24]. In [16] this 

proof method is adapted to the polymorphic case. In this paper we will show the 

completeness of resolution for polymorphic logic programs by simulating each 

deduction in the polymorphic Horn clause calculus by resolution. Padawitz [30] 

has presented such a proof for many-sorted Horn clause logic with equality. 

However, he has required that all types are interpreted as nonempty sets, which 

simplifies the proof but is not reasonable in our context. 
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The simulation of deduction by resolution is more difficult than the simulation 

of resolution by deduction. A few technical lemmas will help to structure the 

completeness proof. The first lemma shows that the substitution rule is not necessary 
A 

if C (the set of instantiated clauses) is used in a deduction. 

Lemma 6.2. Let C be a set of E-clauses, V, V’S Varz,x and (E, C, V) E L+- G. For 

any typed substitution u E SubI (X, V, V’) there exists a deduction (E, C, V’) t u( L + 

G) where only axioms and cut rules are applied. 

Proof. We prove the lemma by induction on the number n of cut rule applications 

in a shortest deduction of (E, C, V) ä L+ G. The case n = 0 is trivial since aO( LO) * 
A 

oO( G,) E C for all LO t G, E C and all appropriate typed substitutions (TV. Otherwise 

there is a last application of the cut rule in the deduction, say 

(&Cc, V)EL~+G,U{L,} and (E,C, V)+L,+G, 

occur in the deduction before the last application of the cut rule. Let (T, E 

Sub,(X, V,, Vi). We have to show that (2, C, V:)E(T,(L~)+(T,(G~ u Gj) can be 

deduced without an application of the substitution rule. The number of cut rule 

applications in shortest derivations of 

(E,C, K)FL~+G,u{L,} and (.E,C, V;)kL,+Gj 

is less than n. By induction hypothesis, 

(-7 C, V:)ta,(L,)ca,(G,u{L,}) and (2, C, V:)kai(L,)*oi(Gj) 

can be deduced without an application of the substitution rule. By an application 

of the cut rule, we obtain 

(2, C, Vi)~a,(L,)ccr,(GiUGj). 

This proves the lemma. 0 

Lemma 6.3. Let C be a set of Zclauses and VS Var=,, . If (2, C, V) t Lt G where 

only axioms and cut rules are applied, then (2, C’, V) bR id,,, L with C’= C u 

{P + 1 P E G}, and each substitution in the unrestricted resolution is equal to idx,“. 

Proof. The lemma is proved by induction on the length of the deduction. Let 

d . . . ) d, be a deduction for (1, C, V) t L+ G 

a:; applied. If L+ G E C, then (E, C’, V) L bR id 

where only axioms and cut rules 

x,v G is an unrestricted resolution 

step. If G consists of k E-atoms, then we achieve the empty goal with k further 

unrestricted resolution steps with substitutions id,,, . 

If L + G g C, then the clause must be derived by an application of the cut rule, 

i.e., there are 

di=(I, C, V)I-L+Gou{L,}, d,=(Z,C, V)EL~+G, 



with G = G, u G, and i, j < n. By induction hypothesis, 

(2, C’u {L, + 1, V) kK idx,v L (1) 

and 

(2, C’, V) bR id,,, L, (2) 

since G = GO u G,. If the clause L, +- is used in resolution (l), then, by (2), it is 

possible to replace the resolution step by a sequence of resolution steps that derives 

L, to the empty goal using clauses from C’. Thus (2, C’, V) bR idx,” L and each 

substitution in this unrestricted resolution is equal to id,,,. 0 

Now we can prove the completeness of unrestricted resolution. 

Theorem 6.4 (Completeness of unrestricted resolution for atoms). Let C be a set of 

Z-clauses, V, V’ c Var2,x be Jinite and A be a (2, X, V) -atom. Zf u E Subz- (X, V, V’) 

is a typed substitution with (2, C, V’)k a(A), then there exists a set VOc Varx,x and 

a typed substitution (T” E Sub, (X, V,, V’) with (2, C, V,) bR (T” A and a,,(A) = v(A). 

Proof. W.1.o.g. we assume that u affects only a finite number of type variables since 

V is finite, i.e., tdom(a) is finite. Let (2, C, V’)ka(A). Theorem 4.4 yields 

(E, C, V’) k u(A). By Lemma 6.2 and Lemma 6.3, there exists a successful unrestric- 

ted resolution of the form 

(2, C, V’) v(A) bR id,,,, G, bR idx,v,. . . bR id,,,, 0. 

In the tirst resolution step there exist L,+ R,,E C, V{l& VU~~,~ and U”E 

Sub,(X, Vh, V’) with uO(Lo)=a(A) and a,,(R”)= G,. 

W.1.o.g. we assume tdom( a) n tdom( vO) = 0 and uuar( V) n uvar( V,!J = 0 (other- 

wise we choose an appropriate variant of L, + R, and an appropriate typed substitu- 

tion o,,). We define V,:= Vu var( L, + R,) and combine u and co into a typed 

substitution (T, E Sub, (X, V,, , V’) with 

a,(n) = 
i 

a(a) if cr E tdom(u), 

a,( a) otherwise, 

and 

u1(x:7) = 
i 

u(x:T) ifx:rE V, 

u,,(x:T) if x:rE uar( LO+ R,). 

Then u,(A) = u(A) = a,( L,) = u, (L,) and u, (R,,) = a,( R,) = G, . Therefore 

(2, C, VO) A ‘ER or G, 

is an unrestricted resolution step. If G, =I?, then the proof is finished, otherwise 

there is a second resolution step 

(2, C, V’) G, tgjR id,,,, G2. 

Let L; + R; E k be the clause used in this resolution step, i.e., there exist L, + R, E C, 

Vi s Vurz,x and u: E Sub,(X, Vi, V’) with a{( L, + R,) = L’, + R:. Similarly to the 
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first resolution step, we combine ai and id,,,, into a typed substitution USE 

Sub, (X, V, , V’), where V, := V’u var(L, c R,), such that 

(2, C, VI) G, k~ ~2 G 

is an unrestricted resolution step. Since V’ c_ VI, we can extend u, to a typed 

substitution o, E Sub,(X, V,, V,). Hence we get the unrestricted resolution 

(2, C, VO) A bR ff~ GI kiR u2 G 

with a,(a,(A)) = a,(a(A)) = o(A) and a20 (T, E Subs(X, V,, V’). If we apply the 

transformation of the second resolution step in the same way to the remaining 

resolution steps, we obtain an unrestricted resolution 

with u, 0 . * .o CT, (A)=u(A) and uno... 0 gi E S&,(X, v,, V’). q 

We need the next lemma to prove the completeness of unrestricted resolution for 

general goals. 

Lemma 6.5. Let C be a set of I?kZauses, V = {x,:7,, . . . , x,: T,,} c Vars,x and G be a 

(2, X, V)-goal with tvar( G) E tvar( V). Let p be a new symbol that does not occur in 

2, Z’:=(If, Func,Predu{p:~ ,,..., T,}), L:=p(x,:~ ,,..., x,:7,) and C’:= Cu 

{L+G}. Then 

(2, C, V’)ku(G) a (2’) C’, V’)ku(L) 

for all v E Sub=(X, V, V). 

Proof. Let (2, C, V’) k o(G) and M’ be a model for (E’, C’). Then M’ is also a 

model for (E’, C) and M’, Vk L+ G. By Lemma 3.3, M’, V’I=o(L)+-u(G). Sup- 

pose u is a variable assignment for (X, V’) in M’. M’ is also a model for (2, C) if 

we omit the interpretation of the predicate symbol p in M’. Therefore M’, 0 k u(G). 

M’, u k o(L) + u(G) implies M’, ZJ i= o(L). Hence we obtain M’, V’l= u(L). 0 

Theorem 6.6 (Completeness of unrestricted resolution). Let C be a set of&&uses, 

Vc Var,,, be jinite and G be a (2, X, V)-goal. If u E Subs (X, V, V’) is a typed 

substitution with (2, C, V’) I== u(G), then there exist a set VOz Vars,x and a typed 

substitution USE Sub,(X, V,, V’) with (2, C, V,) bjR u,, G and u,(G) = o(G). 

Proof. Let tvar(G) c tvar( V), otherwise add new variables with types from 

tvar( G) - tvar( V) to V and extend u to these variables so that this condition holds 

and u does not alter the new variables. Then we define p, L, 2’ and C’ as in the 

last lemma. (2, C, V’) k u(G) implies (E’, C’, V’) I= a(L). By Theorem 6.4, there 

exist V, E Vurz,x and a typed substitution u,, E Sub, (X, V,, V’) with 
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(X’, C’, V,) bR u,, L and a,(L) = a(L). Since the only clause for the elimination of 

an atom with predicate symbol p is L* G, there is a resolution 

with u,,=u,,~~~~~w,. We can combine the typed substitution u, with the typed 

substitution (TV in the second resolution step and obtain an unrestricted (2, C, V,)- 

resolution for G with the same computed answer. 0 

To prove completeness of resolution with most general unifiers we need the 

following lemma. 

Lemma 6.7 (mgu-Lemma). Let (2, C) be a polymorphic logic program, V E o VU,,, 

and G be a (2, X, V)-goal. If there exists an unrestricted resolution 

(~',C,V)G~R(T,G,~R(T~G~~R...~R(T,~ 

for G, then there exists an unrestricted resolution 

(E,C, V) G~R(T: G’bRoi G;k~R***t,Rok@ 

where each ai is a most general untfier and a; 0 ’ . ’ 0 ai E SubI (X, V, V’). Furthermore, 

there exists a typed substitution 4 E Sub,(X, V’, V”) with q5 0 (T: 0 . * * 0 ai = 

Un~o”‘~U,. 

Proof. By induction on the length n of the resolution: If n = 1, then (2, C, V) 

G bR o1 0. Hence there exists a variant L + 0 of a clause from C with ai( G) = c,(L). 

By Unification Theorem 5.4, there exists a most general unifier a; E Sub= (X, V, V’) 

for G and L and therefore there is a typed substitution 4 E Sub, (X, V’, V”) with 

$J 0 mi = (pi. Thus (E, C, V) G bR oi 0 is a resolution for G. 

If n > 1, then there is a resolution 

(-% c, V) G bRcl G,bRu2 G,iiSR...tUR~n 8. 

Hence there exists a variant L’+ G’ of a clause from C with a,(L’) = a,(L) where 

G = GOu {L}. By Unification Theorem 5.4, there exists a most general unifier 

ai E Sub,(X, V, V’) for L’ and L and therefore there is a typed substitution 4 E 

Sub,(X, V’, V”) with 4 0 ui = (T,. If Gi := a;( G,u G’), then 

(qC,V) GbRo: G~~R~~~~~~~IR"~~JR~,(~) 

is an unrestricted resolution for G (w.1.o.g. we assume that 4 does not alter any 

type variables or typed variables from the clause used in the second resolution step) 

and 

(&c,V’) G:~~~2~d'G2b~"'b~ff,,~ 

is an unrestricted resolution for G; of length n - 1. Since V’ co Var,,, and by 

induction hypothesis, there exists an unrestricted resolution 

(2, C, V’) G; bR v: G: bR ’ ’ ’ ~JR a:,@ 
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where each ai is a most general unifier, a; 0 . . . 0 a;~ Sub,(X, V’, V,), and 

there exists a typed substitution p E Sub, (X, V, , V,) with p 0 a; 0 * * .o ai = 

un 0 * . . 0 u2 0 4. Hence we obtain an unrestricted resolution 

(~,C,V)GI_,,(T:G:~~(TIG:~U~...~~~~~, 

where each a: is a most general unifier, a; 0 . . .o CT; E Sub,(X, V, VI) and 

p~Sub,(X, V,, V,) is a typed substitution with p o a: 0. . . o (T: = 

CT, 0 . ..~Uz~(b o(T;=(T,o.. . OU~OU~. 0 

The completeness of resolution follows from completeness of unrestricted resol- 

ution and mgu-Lemma 6.7: 

Theorem 6.8 (Completeness of resolution). Let (2, C) be a polymorphic logicprogram, 

V L U Var,,, be finite and G be a (2, X, V)-goal. If u E SubP (X, V, V’) is a typed 

substitution with (2, C, V’) k u(G), then there exist a set V, c U Varz,x and a typed 

substitution uO E Sub= (X, V,, V,) with (2, C, V,) h uD G, and there is a typed substitu- 

tion 4 E Sub2 (X, V, , V’) with 4( uO( G)) = u(G). 

Proof. By completeness Theorem 6.6, there exist Vzc Vur=,, and an unrestricted 

resolution of the form 

(1, c, V,) G by ~1 G, ba ~2 G r-R. . . bR un e, (1) 

with u,, 0 ’ .*ou,~Sub~(X, V,, V’)andu,O**. 0 ul( G) = u(G). W.1.o.g. we assume 

that V, is finite. V, E U Var x,x is not true in general. Hence we construct a set 

V, c U VW=,~ corresponding to V,: If V, = var( G) u {x, : T, , . . . , x, : T,}, then we 

define V,:=var(G)u{y,:~~,.. . , y, : 7,) where yi are pairwise distinct new variable 

names from Var. Let p E Sub,(X, V,, V,) with p(a) = a for all (Y E X, p(x:~) =X:T 

for all x:TEvar(G) and P(Y~:T~)=x~:T~ for i=l,...,m. VO~UVurz,x and p is 

invertible so that p 0 p-l = id,,,,. We show that 

(&c,V,) G~RU~~PG,~R~~G~...~R~~~ (2) 

is an unrestricted resolution for G: Let L’ + G’ be the clause used in the first 

resolution step in (1). Therefore G = G,u {L,} with a,(&) = u,(L’) and G, = 

a,( G,u G’). pP’(L’+ G’) is also a variant of a clause from C. p(G) = G since 

,O(X:‘T) = X:7 for all X:TE uar(G). Thus a,( p(L,)) = a,(&) = u,(L’) = 

ul(p( p-‘(L’))) and u,( p(G,up-‘(G’))) = u,(G,u G’) = G,. Therefore (2) is 

indeed an unrestricted resolution for G. 

We assume for the resolution (2) that tvar(G,) n tuar(q) =0 and Uor(Gi) n 
var(ci) = 0 where ci is the clause used in the ith resolution step. If this is not the 

case then we choose an appropriate variant of ci and extend V, and the preceding 

substitutions as in the proof of Theorem 6.4. By the mgu-Lemma 6.7, we obtain 

from (2) a resolution 

(2, C, V,) G k u; G, k a; G2. . . ‘;; a:, 0 
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and a typed substitution 4 E SubE (X, V, , V’) (where ffO::=o:,o.. .O(TiE 

Sub(X vo, V,)) with 4 oo,=flnO.. *oCr,op. Hence 4(a,(C)) = 
un 0 . . .o u, 0 p(G) = w, 0 + ..~cr,(G)=cr(G). 0 

Soundness Theorem 6.1 and completeness Theorem 6.8 are the justification for 

implementing the (2, C, V)-resolution as a proof method for polymorphic logic 

programs. For a complete resolution method, all possible derivations must be 

computed in parallel. If we use a backtracking method like Prolog, the resolution 

method becomes incomplete because of infinite derivations. If we accept this 

drawback, we can implement the resolution like Prolog with the difference that the 

unification includes the unification of type expressions (cf. Section 9). 

7. Optimization 

In the last two sections we have seen that the unification process in a resolution 

step has to unify the type expressions in every subterm. Thus the resolution is in 

any case more complex than the resolution in the untyped case. Mycroft and O’Keefe 

[28] have defined a specific class of polymorphic logic programs for which type 

checking is unnecessary at run time. Therefore it is possible to disregard the type 

annotations in subterms at run time if the polymorphic logic program has specific 

restrictions. We present some optimizations for the resolution of polymorphic 

programs. 

7.1. Type preserving functions 

A first optimization for the resolution of polymorphic logic programs can be 

applied to a large class of functions: We call a function symbol f type preserving if 

j-:7,,..., r,, + T E Func and tvar(~,) E mar(~) for i = 1, . . . , n. In the declaration of 

a type preserving function all type variables occurring in the argument types also 

occur in the result type. For instance, 

func [ 1: + list( cf ) 

func*:q list((Y)+Zist(cx) 

are type preserving functions, whereas 

func equal: (Y, (Y + boo1 

is not a type preserving function. We will see that in the case of type preserving 

functions type annotations in arguments are unnecessary. If t E Term2 (X, V), we 

denote by Q(t) the term obtained from f by deleting the type annotations in the 

arguments of type preserving functions. For instance, 

and 

@(a(l:int,[ ]:Zist(int)):fist(int)) =a(l, [ ]):list(int) 

4b(equal(l:inr,2:int):bool)=equal(l:int,2:int):booZ. 
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Formally, @ can be defined as a mapping @ : Term, (X, V) + T,tl(X u V,), where 

V c_ U Varr,, and V, = uvar( V). 

l @(x:7):= x:7 for all x:5-E V, 

0 @(c:T):= C:T for all constants c:r, 

l @(f(tl:rl,. . ., t,:T,):T):=f(t:,. . ., t~):rwhere@(ti:~i)=tj:~i(i=l,...,n)for 

all composite terms with a type preserving function J; 

. ‘@g(t,:T1,..., f,,:Tn):T):=g(@(tl:T1),...,@(f n :T,)):T for all composite terms 

where g is not type preserving 

The next proposition states an important property of @. 

Proposition 7.1. The mapping Q, is injective. 

Proof. 0 deletes only type annotations in arguments of type preserving functions. 

Such type annotations can be computed from the type declaration of the function 

and the actual result type in a unique way (here it is essential that we have no 

overloading!). Hence the proposition can be shown by a simple induction on the 

size of (2, X, V)-terms. 0 

Lemma 7.2. Let V c U Varz,x and V,:= uvar( V). If to, t, E Term1 (X, V) are unijiable, 

then @(to) and @( tl) are uni$able in T,t,(X u V,). 

Proof. Let u E SubI (X, V, V’) be a unifier for to and t, . Let CT’ be a substitution in 

T,u(Xu V,) with (T’((Y):=u(cY) for all VEX and d(x):=t for all X:TE V with 

@( a(x: T)) = t : u( T). It is straightforward to show (by induction on the size of terms) 

that glTHCxj =&lTHCxj and v’(@(t))= @((T(Z)) for all tE Term,(X, V). Therefore, 

a’(@(to))= @(U(&J) = @(a(&)) =a’(@(t,)). 0 

Lemma 7.3. Let V c_ U Vurx,x, V,:= uvar( V) and to, tI E Term=(X, V). If@(tJ and 

@(t,) are uni$able in T,u(X u V,), then to and r, are unijiable. 

Proof. Let @(to) and @(t,) be unifiable in T,u(Xu Vo). By Theorem 5.1, a most 

general unifier in T,~~(X u V,) can be computed by the algorithm “mgu”. We show 

by induction on the computation steps the following property of the computed 

substitutions ui in the algorithm “mgu”: Let W, := {x:(T~( T) 1 X:T E V}, t E 

Term=(X, V). Then cr,(@(t))~ @(Term=(X, W,)). 

For i =O, we have W,= V and a,(O(t)) = Q(t). Let i>O and ai_r(@(t)) E 

@( Term,(X, Wi_,)) for all t E Term=(X, V). By the algorithm “mgu”, ci = 

{v/u} 0 ui-r for a variable v E V,,u X and u E T,“(X u V,). 

(a) VEX: Since a,_,(@(t,)), ui-r(@(f,))~ @(Term=(X, kV-1)), it must be UE 

TH(X) since in @( Termp(X, W,_,)) type expressions occur always as the second 

argument of a “:“-term. It is straightforward to show that {v/u}( @( t)) E 

@( Termz(X, Wi)) for all t E Term=(X, Wi-1). 
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(b) UE VO: Since v~-,(@(&,)), a,_,(@(t,))~ @(TermZ(X, Wipl)), V:T, (for a 7,~ 

TH(X)) and u:~,~@(Term~(X, Wj_,)) or the subterms f( . . . . u,... ):Q- and 

f(. . . ) u, . . .): T must occur at the same position in a,_,(@(t,,)) and a,_r(@(t,)). In 

the latter case f is a type preserving function with f :Tf E Func and there exists 

a, u’ E TS(H, X) with (T( rf) = 7, , . . . , T,, + T and a’( TV) = 7: , . . . , T; + T, whereas 

f(. . . , U:Tj,. . .) and f(. . . , U’:T;, . . .) are the corresponding subterms in vi-i( to) and 

gtYl(t,). Let T’= PI, . . . , Pn + p and X’ = tuar( p). Since (T( p) = T = u’( p), it follows 

‘TI~,w,) = a’l,,~~ and a(~,) = a’(~,) ( since tvar( pi) c tvar(p)). Thus 5 = T: and 

f(. . .,V:Tj,... ) and f (. . . , u': 7, . . .) are the corresponding subterms in a,_,( to) and 

cam_, with @(u’:T~) = u:~. Therefore 21:~~ E W,_, and U:T, E @(Term=(X, W,_,)). 

Now it is straightforward to show that {v/u}( @( t)) E @( Term,(X, Wi)) for all 

t E Termz(X, W,_,) since W, = Wi_, . 

By induction hypothesis and (a) and (b), it follows vi( @( t)) E @( Termr(X, Wi)) 

for all t E Termz (X, V). 

Since @(to) and @(t,) are unifiable in T,i,(X u V,), the algorithm “mgu” stops 

with an mgu uk and uk(O(t)) E @( Term_,(X, W,)) for all t E Termz-(X, V). By 

Proposition 7.1, for each t E Term,(X, V) there exists a unique term t’~ 

Term,(X, W,) with @(t’) = uk( Q(t)). Hence we can define a typed substitution 

UE Sub,(X, V, V’) with u(a) = Us for all LY E X and U(X:T) = t’ for all X:TE V, 

whereas t’~ Term\ (X, W,) with @(t’) = uk( @(x: T)). It is easy to show (by induction 

on the size of terms) that @(u(t)) = uk(@( t)) f or all t E Term, (X, V). Therefore 

@(u( to)) = uk( @( to)) = uk( @( tl)) = @(a( t,)). Proposition 7.1 yields a( to) = a( t,), 

i.e., u is a unifier for t, and t,. 0 

Theorem 7.4 (Optimized unification for type preserving functions). Let V c U Vurz,x, 

V,:= uvar( V) and to, t, E Term,(X, V). t, and t, are unijable ijj” @(to) and @(tl) 

are uniJiable in T,t,(Xu V,,). A most general unifier for to and t, can be computed 

from a most general unifier in Tzll( X u V,). 

Proof. If to and t, are not unifiable, then @(to) and @(t,) are not unifiable in 

T,ta(X u V,) by Lemma 7.3. If t, and t, are unifiable, then @(t,) and @(t,) are 

unifiable in T,u(X u V,) by Lemma 7.2. By Theorem 5.1, a most general unifier for 

@(t,) and @(t,) in T,u(X u V,) can be computed, which can be transformed into 

a unifier for to and t, (see proof of Lemma 7.3). By the proof of Lemma 7.2, this 

corresponds to a most general unifier for to and t,. 0 

The optimized unification can be extended to atoms if we interpret each predicate 

p:T1, . . . , T, E Pred as a function symbol with declaration p: T, , . . . , T,, + boo1 and 

delete the result type bool in the unification. Therefore the optimized unification 

can be integrated in the resolution method defined in Section 6. For the case of 

monomorphic signatures we obtain the following result. 



94 M. Hanus 

Corollary 7.5. If the signature is monomorphic, i.e., all function and predicate 

declarations do not contain any type variables, then type annotations are unnecessary 

for the unification of atoms. 

This corollary shows that in many-sorted Horn clause programs the resolution 

procedure has the same efficiency as in untyped programs since types are not needed 

at run time. 

7.2. Type-generally defined predicates 

There is another possibility for optimization if a predicate is defined with most 

general types, i.e., in each clause for the predicate the head has a most general type 

and the predicates in the body are also defined with most general types. In the 

following we develop the necessary definitions and results to prove this idea. 

We assume that V ho Var,,x is a set of typed variables with unique types. A 

(E, X, V)-term t:-r is called typegeneral if for any (2, X, V)-term t’:r’with 4(~) = T’ 

and 4 E TS(H, X) which is unifiable with t: r and which has no type variables in 

common with t: T, there exists a typed substitution (T E Sub, (X, V, V’) with a( t: 7) = 

a( t’: 7’) and a( a) = cy for all CY E tvar( t’: 7’). The property type general can be simply 

extended to atoms, if we treat predicates as Boolean functions. 

For instance, if there is a declaration g:cu, p + bool, then g(X:c-u, Y:p):bool is a 

type-general term, but neither g(X:a, 1:int):bool nor g(X:cy, 2:a):bool is a type- 

general term. Note that variables and constants are always type general. For type- 

general terms we do not require the result type to be most general as otherwise 

type-general terms may not have type-general subterms. But this is important for 

further results. 

We will show that in case of type-general terms type annotations may be omitted 

in the unification. First we have to prove some properties of type-general terms. 

Lemma7.6. Lett=f(t,:T ,,..., t,,:T,):~andt’=f(t{:~{ ,..., tk:7;):7’be(I,X, V)- 

terms with 4(r) = r’ for a type substitution C$ E TS(H, X). If t is type general, then 

there exists a type substitution CT E TS( H, X) with u( T, , . . . , r,, + T) = r:, . . . , T; + 7’. 

Proof. Let f: 7, E Func with r/ = . . . + TV. There exists 4 E TS( H, X) with +‘( r,.) = 

r1,.*., 7, + T. Let 4”~ TS( H, X) with +“(a) = +‘( LY) for all (Y E tvar( TO) and 4”( (Y) = 

aforallothercu~X.Letr=f(x,:p,,...,x,:p,):p,where~“(7~)andp,,...,p,~p 

are equivalent and xi E Vur with xi # xi for i #j. We assume that type variables and 

typed variables in r and t are disjoint (otherwise rename them). By construction of 

r, there exist a, U’E TS(H, X) with 

u(pi ,..., pn+p)=7i ,..., ~,,+r and u’(p ,,..., p,,-+p)=ri ,..., r:-+~‘. 

Let V,:= var(r)u var(t). We define 8~Sub~(X, V,, V,) by 

e(a) = 
u(a) ifaEtvar(p,,...,p,~p), 

LY otherwise, 
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and 

0(x:7) = 
ti:ri ifx:7=x,:Pi, 

x:r otherwise. 

Such a typed substitution exists since O( pi) = a( p,) = TV. 

Now we have O(r) =f(O(x, :pl), . . . , 0(x, :pn)):O( p) = t = O(t), i.e., r and t are 

unifiable. By definition of “type general”, there exists a type substitution 0’ E 

TS(H,X) with p ,,..., P,,+P=~‘(P ,,..., ~,,+~)=8’(r ,,..., r,,+r). Therefore 

d(eyT,, . . , 7, + T)) = T;, . . . , T:, + 7’. 0 

Lemma 7.7. Let t =f( t, : 7, , . . . , t, :T,,):T be a type-general (2, X, V)-term. Then ti :7i 

is a type-general (2, X, V)-term and (tour(~) n tvar( ti :T,)) - tvur(Tj) = 0 for i = 

1 ,..., n. Furthermore, (tvur( t, : TV) - tvur( 7,)) n (tuur( 5 : TV) - tvur( 5)) = 0 for i #j. 

Proof. We prove the case i = 1. First we show that t, :r, is type general. Let rl :p, 

be a (I, X, V)-term with +(r,) = p, for a 4 E TS(H, X), tvur(t) n tuur(r, :p,) = 0 

and t, :r, is unifiable with r, :p, . We assume that a = a for all (Y E X - tvur(T,). 

Letx,,..., x, be pairwise distinct variable names not occurring in V and V, := Vu 

{x2:4(72), . . ., x,:4(7,,)}. Then r:=f(r,:p,,x,:g5(T2),...,x,:qS(T,,)):c$(~) is a 

(E, X, V,)-term unifiable with t. Since t is type general, there exists a unifier 

mESubt(X, V,,, Vk) for t and r with a(cu)=cu for all a~tvur(r). Thus a(t,:~,)= 

(+(r, :p,) and u((Y) = (Y for all a E tmr(r, :p,). Hence t,:~, is type general. 

Assumption: There exists (Y E (tvur( 7) n tuur( t, : T,)) - tuur( 7,). Then (Y occurs in 

the subterm t, :T, but not in 7,. Therefore all occurrences of (Y in t, :r, can be 

replaced by a new type variable /3 and the resulting term t: : T, remains also well-typed 

and has the same result type. Clearly, the term t’ =f( ti :T1, . . . , t, : 7,): T is unifiable 

with t (for convenience we do not rename the type variables in t’ which formally 

must be done). But each unifier for t and t’ must identify the type variable /3 in 

ti :T, with the type variable LY in r because these are identical in t. Hence t is not 

type general in contrast to our assumption. 

The last proposition in the lemma can be proved in the same way. 0 

For a precise definition of “omitting all type annotations in a term” we define a 

mapping W that deletes all type annotations in a term. Formally, W can be defined 

as a mapping q: Termz(X, V)+ T,c,(X u V,,), where V,= uvur( V). 

l P(x:r):=xforallx:~E V, 

l !P(c:7) := c for all constants c:r, 

. !P(f(t,:T,, . . ., t,:T,):~):=jf(!P(t,:~,),..., ?P(~,:T~)) for all composite terms 

f(rr:r,,..., t,:r,):rE Term=(X, V). 

The definitions of Iv can be simply extended to I-atoms. 

Theorem 7.8 (Unification with type-general terms). Let t:~, t’:~’ be (2, X, V)-terms 

with tvur( t: 7) n tuur( t’:T’) = 0, vur( t:T) n vur( t’: T’) = 0 and t: T be type general with 

qb(~) = T’ for a type substitution C$ E TS(H, X). t:T and t’:T’ are unijuble ifl ‘P(~:T) 

and ly(t’:~‘) are unijiuble in T,z,(X u uvur( V)). 
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Proof. Let t:r and t’:r’ be unifiable, (T E Sub, (X, V, V’) be a unifier for to and t, 

and V,:= uuar(V). Let (T’ be a substitution in T,u(Xu V,) with a’(a)=a(a) for 

all (Y EX and U’(X)= !P(u(x:,)) f or all X:~E V It is straightforward to show 

(by induction on the size of terms) that al,,(,) = ‘T’I,~~(~) and a’( ?P(t)) = ?P(o(t)) 

for all t E Term= (X, V). Therefore a’(?P(t:r))= W(a(t:r))= P(a(t’:r’))= 

a’( Ilr( t’:7’)). 

Conversely, let !P( t: T) and W (t’: T’) be unifiable in T,u(X u V,). We assume 

+(a) = (Y for all (Y E X - tuar( 7) and prove the proposition by induction on the size 

of the term f:~. 

t:~ E V Let (T E Sub= (X, V, V’) with (~1 TH(x) = 4, cr(x:p) = x:4( p) for all x:p E 

V-{t:~} and a(t:~)=(+(f’:~‘). Then r is a unifier for t:~ and t’:~‘. 

t:T=C:T with c:+~,~Func. Since +(T)= T' and c and t’ are unifiable in 

T,u(X u V,), f:~ and t’:~’ are unifiable. 

t:~=f(tr:~r,. . . , t,:~,):~(n>O).Thecaset’:~‘~Visthesameast:~~V.There- 

foreweassurnet’:~‘=f(t~:~~,..., t k : T;): T'. By Lemma 7.7, each ti : 7i is type general. 

By Lemma 7.6, there exists 4’ E TS(H, X) with +‘( or, . . . , T,, + T) = 7: , . . . , 7; + 7'. 

p(ti:7,) and p(ti:~i) are unifiable in T,r,(Xu V,) since p(t:~) and p(t':~') are 

unifiable in T,cs(Xu V,). Thus we can apply the induction hypothesis and infer 

that &:T~ and ti :T: are unifiable, i.e., there exist unifiers (TV for ti : 7i and t: : T{ with 

a,(a) = (Y for all cy E tuar( t: :T:) (by definition of “type general”). Let q$ := 

(+ilTH(rvar(r,:r,)) be type substitutions (i = 1, . . . , n). Then 4j( TV)= gii(~i)= 7: = +'(T,). 

This implies 4i(~) = 4’(a) for all (Y E tvar(~~) (i = l), . . . , n). By Lemma 7.7, the 

type substitutions +i can be combined into a type substitution 0 with 

8(a) = 

( 

f#+((~) for all cy E tuar(ti:7i)r 

4’(a) for all (Y E tuar(5-), 

a! for all other (Y E X. 

We extend 0 to a typed substitution by 0(x:7) := X:@(T) for all X:T E v Then in 

e( t:T) and e( t':T') = f':T' subterms at same positions have identical types: If we 

start the algorithm “mgu” with f3( f:~) and 0( t':~') at no time there are type 

expressions in the disagreement set. The unification does not depend on the types, 

and therefore e( f:T) and f?( t’: T') are unifiable since !I’( t:~) and q( t’: T') are unifiable 

in T,u(Xu V,). 0 

The condition 4(T) = 7' in the last theorem is necessary, otherwise the theorem 

does not hold. For example, if there is a declaration 

funcid:a+a 

then id( I: int): int is type general but not unifiable with the term id(B: bool): bool. 

?P(id(l:inr):int) = id(l) and ?P(id(B:bool):booE) = id(B) are unifiable in 

T,u(X u (4 B1). 
If we want to omit type annotations, it is not sufficient that the clause heads are 

type-general atoms. It is necessary that all predicates in the clause bodies are 
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type-generally defined. Therefore we define: Let (2, C) be a polymorphic logic 

program and p: rp E Pred. 

(a) The predicate p is type-generally defined in (2, C) relative to a set of predicates 

P if for every clause 

P(t ,:7 ,,..., t,:r,)tL,,...,LkEC 

the following conditions hold: 

(1) P(t,:r,,..., t, :T,) is type general. 

(2) If Li = qi(. * .) and qi & Pu {p}, then q, is type-generally defined in (2, C) 

relative to Pu{p} (for i= 1,. . . , k). 

(b) The predicate p is type-generally defined in (E, C) if p is type-generally defined 

in (2, C) relative to 0. 

The next lemma shows that type variables are never instantiated in a resolution 

step if the predicates are type-generally defined. Type variables can only be renamed 

depending on the computation method for the most general unifier. 

Lemma 7.9. Let (2, C) be a polymorphic logic program and G be a (E, X, V)-goal. 

If (2, C, V) G k (T G’ is a resolution step and all predicates occurring in G are 

type-generally defined in (2, C), then all predicates occurring in G’ are type-generally 

deJined in (2, C) and oITH(,uar(GjJ is bijective, i.e., the types 7 and w(r) are equivalent 

for each type r in G. 

Proof. Let (2, C, V) G k (T G’ be a resolution step. Then G = GOu {L,}, the 

(2, X, V)-clause L, +- G, is a variant of a clause from C, tvar( G) n tvar( L, t G,) = 0, 

var( G) n var( L, + G,) = 0, o E Sub, (X, V, V,) is an mgu for L, and L, , and G’ = 

u(GOu G,). Hence LO=p(. . *) and p is type-generally defined in (E, C). By 

definition of “type-generally defined”, all predicates occurring in G, are type- 

generally defined in (2, C). Thus all predicates occurring in G’ are type-generally 

defined in (2, C) and L, is type general. By definition of “type general”, there exists 

a typed substitution (T’ E Sub, (X, V, V’) with a’( L,) = o’( L,) and v’( cz) = (Y for all 

a E tvar( LO). Hence u’ is a unifier for L,, and L, and there exists q5 E Sub2 (X, V, , V’) 

with 4 0 cr = u’ since (T is an mgu for L, and L,. For all CI E tvar(L,) we have 

cr = a’((~) = +((~(a)), which implies ~(a) E X. Hence a(a) E X for all (Y E tvar(G) 

because u is an mgu for L, and L, and tvar( G) n tuar( L,) = $3. 

We have to show that u is injective on tvar( G). u is injective on tvar( L,) because 

(Y,, CY~E tvar(L,J with u((Y~) = u(a2) implies cy, = $J(u((Y~)) = +(u(~yJ) = (Ye. Since 

u is an mgu for LO and L,, we may assume 

u( cz) = (Y Va k? tvar( L,) u tvar( L,) (1) 
and 

tvar(u(a)) E tvar( LO) u tvar( L,) Va E tvar( L,) u tvar( L,). (2) 

Suppose there are (Y, E tvar( L,) and (Ye E tvar( G,) - tvar( LO) with u(r~,) = u((YJ. 

tvar( GO) n tvar(L,) = 0 and (1) implies u((Y~) = CY~, i.e., (~(a,) = LYE. (2) implies 

CQ = ~(a~) E tuar( L,) u tvar( L,). This contradicts our assumption. 
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Hence (+ is injective on tvar(G), i.e., uIT,(tuar(C)) is bijective. 0 

The next corollary extends the result of the last lemma to resolution derivations. 

Corollary 7.10. Let (2, C) be a polymorphic logic program, G be a (Z, X, V)-goal 

and all predicates occurring in G be type-generally defined in (2, C). If 

(2, C, V) G k u, G, k . . . k u,, G, 

is a sequence of resolution steps, then a;, 0 . . * 0 u,~TH~,val~G,~ is bijective. 

Proof. Let G,, = G and X, := tvar( G,) u * + . u tvar(G,). If Ci is the clause used in 

the ith resolution step, we can assume tvar(ci) n Xi_, = 0. Since each ui is an mgu, 

we may assume that Us = cy for all (Y E Xi-1 - tvar(G,_,). By induction on the 

resolution steps and Lemma 7.9, it follows that ai 0 . . . 0 u,~~,~~,_,~ is bijective. 0 

Theorem 7.11 (Optimized unification for type-generally defined predicates). Let 

(2, C) be a polymorphic logic program. If G is a E-goal where all predicates in G are 

type-generally de&ted in (2, C), then type annotations are unnecessary during a 

resolution for G. 

Proof. Only type-general atoms are unified during a resolution for G. By Theorem 

7.8, type annotations have no influence on success or failure of the unification. By 

Corollary 7.10, the types of G are not modified during a resolution for G. 0 

Next we want to develop an algorithm for deciding the property type general. For 

this purpose we need an alternative characterization of type-general terms. We call 

a(&,, V)-termf(t,:r ,,..., t, : 7,): T directly type general if the following conditions 

hold: 

(1) (tvar(5-)ntvar(ti:7i))-tvur(7i)=0for i=l,...,n. 

(2) (tvar(ti:~,)-tvar(~i))n(tvar(~:~j)-tvar(~j))=0fori,j=1,...,nwithi#j. 

(3) f:P,,...,Pn +pEFunc, UETS(II,X) with u(p)=~ and u(a)=a for all 

cy E X - tvar( p) implies that a( p, , . . . , pn + p) and T, , . . . , T, + T are equivalent. 

The next lemma shows the relation between the properties directly type general 

and type general. The notions of “occurrences” and “subterms” are standard (see 

for example [17]) and we omit the definitions here. 

Lemma 7.12. Let t: T be a (2, X, V)-term. If each subterm of t: T is a variable, a 

constant, or a directly type-general term, then t:~ is type general. 

Proof. First we show by induction on the size of t: T that for each t’: T’ E Term= (X, V) 

with Uo( T) = T' (for a type substitution a, E TS( II, X)) that is unifiable with t: T and 

that has no type variables in common with t:T, there exists a type substitution 

u E TS(II, X) that affects only type variables from tvar( t:T) so that subterms at 



Horn clause programs with polymorphic types 99 

identical occurrences in CT( f: T) and t’: T’ have identical types (in this proof we extend 

each type substitution u to a typed substitution by (T(x:~) := x:a(~)). 

If t:r is a variable or a constant, then we define v(a) = go(a) if (Y E tvar(T) and 

a( cr ) = LY otherwise. 

Induction step. t: T =f( t, : 7, ) . . . , t, : T,,): 7. If t’:-r’ is a variable, then we define 

a(~) = Us for LY E &XV(T) and V(Q) = (Y for all other cy E X. 

Otherwise, t’:T’=f(t::~i,. . . , ~;:T;):T’. Letf:p,, . . . ,pn+pe Func and ui, (TIE 

TS(H,X) with cr,(p ,,.. .,P~-,~)=T,, . . ., T,+T and a,(p ,,.. .,P,,+P)= 

T;,..., T.:,+ 7'. u*(p) = T'= U,(T) = c~~(a,( p)) and therefore (T*(cY) = aO(a,(a)) for 

all (Y E tvar( p). Since t:T is directly type general (condition (3)), there exists (TV E 

TS(H, X) with (T~( T, , . . . , T,, + T) = T; , . . . , T: + T'. We assume that flj alters only 

type variables from tvur(T, , . . . , T,, + T). By condition (l), each composite subterm 

of c3( t, :T,) is directly type general. Thus we can apply the induction hypothesis 

and we get (for i = 1,. . . , n) type substitutions 4, E TS(H, X) that alters only type 

variables from tvar( t, : T;) so that subterms at identical occurrences in &( ti : 7,) and 

t{ IT: have identical types and ~$,(a) = Us f or all (Y E tuar(~,). By conditions (2) 

and (l), we can combine the type substitutions 4,). . . , & and uj into one type 

substitution (T with the desired properties. 

If t’:T’ is a (2, X, V)-term with Us = T' that is unifiable with t:T and that has 

no type variables in common with t:T, there exists a type substitution (T E TS(H, X) 

which alters only type variables from tvur( t: T) so that subterms at identical occurr- 

ences in a( t:~) and t’:~’ have identical types. If we compute a unifier CT’ for o( t:T) 

and t’:~’ with algorithm “mgu”, we get a’( cr) = CY for all cr E X. Therefore C’ 0 F is 

a Unifier for t:T and t':T' with (T’ 0 ~(a) = LY for all (Y E tuUr( t’:r’), i.e., f:T is a 

type-general term. 0 

The next lemma is the justification for the following algorithm type-general. 

Lemma 7.13 (Type general). A (2, X, V)-term is type general ifSeach subterm is a 

variable, a constant, or a directly type-general term. 

Proof. “j”: By Lemma 7.6 and Lemma 7.7. 

“e”: By Lemma 7.12. 0 

Now we are able to present the algorithm type-general. The “function” skolemize 

replaces all type variables in a type expression by “new” type constants. With the 

use of skolemize, equivalence of type expressions can be decided by unification 

of type expressions. In the algorithm, each type substitution CJ is extended to a 

typed substitution by (T(x:T) := X:CT(T). The algorithm must be called by 

type_generul( t: T, 7). 

Algorithm type-general 

Input: Term t, type p. 
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Output: A type substitution, if t is type general, and fail, otherwise. 

(1) p’:= skolemize( p). 

(2) If t = x: T E Vurz,, then stop with mgu(r, p’). 

(3) If t = C:T with c: + rC E Func then stop with mgu(r, p’). 

(4) Ift =f(t,:r,, . . .) t, :7,):7andf:p,, . . .) p,~p,EFuncandcr=mgu(p,,p’)# 

fail then pi,. . . , ph + PA:= skolemize(a( p,, . . . , p,, + po)). 

I. mgu(pA, T) = oO#fuil and type_generuZ(o,(t, :T~), pi) = o, #fail 

and... type_general(a,_,(. . . (co(tn :T,)) . . .), p’,) = a, #fail 

then stop with pn 0 . . * 0 crl 0 a, else stop with fail. 

(5) stop with fail. 

7.3. Comparison to the type system of Mycroft-O’Keefe 

The next proposition shows that the polymorphic logic programs of [28] can be 

executed without dynamic type checking since their result holds only if each function 

is type preserving [29]. 

Proposition 7.14 (Mycroft-O’Keefe-polymorphism). Let (2, C) be a polymorphic 

logic program and V c o Varx,x, where 2 contains only type preserving functions. If 

L=p(t,:71,. . .) t,:r,,) isa (2,X, V)-atom withp:rp~PredandrPandr,,...,~,,are 

equivalent, then L is type general. 

Proof. Let L’=p(r,:p,,. . ., r,, :p,) be a (-Z, X, V)-atom unifiable with L and 

tvar(L) n tvar(L’) = 0. Since rp and T,, . . . , T, are equivalent, there exists a type 

substitution C#J E TS(H, X) with +(rl,. . . , T,,) = TV. There exists another type substi- 

tution 4’~ TS(H, X) with c$‘(T,,) =p,, . . . , pn. Therefore (4’0 4)(~i,. . . , T,) = 

Pl,..., p,,. We assume without loss of generality that 4’ 0 $J alters only type variables 

of 7 I,..., 7,. Then 4’0 C#J is an mgu for p,, . . . , p,, and T,, . . . , T,,. Let u E 

Sub,(X, V, V’) with a]-r,Cxj = 4’0 C$ and ~(x:~)=x:(T(T) for all X:TE V. Then 

a( ti :T,) = ti:pi, where ti and t: differ only in their types. By Theorem 7.4, types are 

unnecessary for the unification of ti :pi and ri :pi. Since the two terms have the same 

type, the computation of a most general unifier with the algorithm “mgu” has no 

influence on the type variables in pi. Hence there exists a unifier u’ for L and L’ 

with a’((~) = (Y for all (Y E tvar(L’), i.e., L is type general. 0 

By this proposition, all predicates in a polymorphic logic program with the 

restrictions of [28] are type-generally defined, i.e., type annotations are unnecessary 

during the resolution of a Z-goal by Theorem 7.11. Therefore the type system of 

Mycroft-O’Keefe is a special case of our work because 

(1) Every well-typed logic program in the sense of Mycroft-O’Keefe is a polymor- 

phic logic program in our sense. 

(2) If we use the optimization techniques developed in this section, polymorphic 

logic programs in the sense of Mycroft-O’Keefe can be executed with the same 

efficiency as untyped Prolog programs. 
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On the other hand, our work is a proper extension of Mycroft-O’Keefe’s type 

system because we have no restrictions on the use of polymorphic predicates in the 

heads of clauses, and we have no restrictions on the use of type variables in function 

types (compare examples in Section 2). For instance, the predicate isTrue in the 

evaluator of Boolean terms is type-generally defined and therefore resolution can 

be done with the same efficiency as in an untyped program, but it is not a well-typed 

program in the sense of [28]. 

Moreover, in our type system it is allowed to define clauses for special cases in 

contrast to Mycroft-O’Keefe’s type system. Such clauses can be used to reduce the 

search space in the resolution process. Therefore resolution with types may be more 

efficient than in the untyped case. This is demonstrated by the following example: 

funcf,,...,f,:+rI funcg,,...,g,:+r2 

pred t:a pred tl:T, pred t2:r2 pred=:cq CY 

clauses: 

t(X:T1) c-tl(X:r,) t(Y:r2) + t2(Y:72) 

tl(f,:7,)+ . ..tl(f.:7,)+ 

t2(g,:72)+ . ..t2(g.:T,)t 

x:Ly = x:Lr+ 

We want to prove the goal 

If we omit all type annotations and use the Prolog backtracking strategy, then the 

goal is proved in m + i + 2 resolution steps. If the types are not omitted, i.e., the 

unification considers the types of terms, then the goal is proved in i-t 1 steps since 

the first clause of the predicate t cannot be applied. 

Therefore, type information may be useful to reduce the search space in the 

resolution process. This is also true for order-sorted logic programs. E.g., Schmidt- 

Schauss [36] and Huber and Varsek [ 191 have shown examples in order-sorted logic 

where typed unification leads to more efficient proofs than in untyped logic. 

Mycroft and O’Keefe have proposed to extend polymorphic Horn clause programs 

by a family of predefined apply predicates to permit higher-order programming. 

But this extension is only necessary because of the restrictions in their type system. 

In our framework it is possible to simulate higher-order programming techniques 

without any conceptual extensions. This will be shown in the next section. 

8. Higher-order programming 

Many logic programming languages permit higher-order programming techniques, 

i.e., it is possible to treat predicates as first-class objects. For example, in Prolog 
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the predicate call interprets the input term as a predicate call. Mycroft and O’Keefe 

[28] argue that for most practical purposes it is sufficient to have a predicate apply 

that takes something like a predicate name and a list of argument terms as input 

and that is satisfied if the corresponding predicate applied to the argument terms 

is provable. Hence they introduce a family of predefined predicates apply (one 

predicate for each arity) and a lambda notation for terms of predicate type, but 

they give only an informal definition of the meaning of apply. 

Generally, a semantically clean amalgamation of higher-order predicates with 

logic programming techniques like unification is not trivial because the unification 

of higher-order terms is undecidable in general [ 121. Miller and Nadathur [27] have 

defined an extension of first-order Horn clause logic to include predicate and function 

variables based on the typed lambda calculus. For the operational semantics it is 

necessary to unify typed lambda expressions, which yields in a complex and 

semi-decidable unification [18]. Hence they have a system with a clearly defined 

underlying logic, their proof procedure is sound and complete for goals without 

type variables, but the proof procedure is costly because of the unification of typed 

lambda expressions. Warren [38] argues that no extension to Prolog or to the 

underlying first-order logic is necessary because the usual higher-order programming 

techniques can be simulated in first-order logic. Since he is concerned with Prolog 

and its untyped logic, he does not have a clear distinction between first-order and 

higher-order objects. 

We suggest a “middle road” approach to higher-order programming: To have an 

efficient operational semantics, we keep first-order logic as our theoretical 

framework. But we want to deal with higher-order objects in the sense of computing 

and distinguish between higher-order and first-order objects. Since we have an 

unrestricted mechanism of polymorphic types, we may integrate these higher-order 

programming techniques without any extensions to our concept of polymorphic 

logic programs (in contrast to [28]). This is demonstrated by the example of the 

map predicate in Section 2. The predicate map takes a predicate of arity 2 and two 

lists as arguments and applies the argument predicate to corresponding elements 

of the lists. In order to specify the type of map it is necessary to introduce a type 

constructor pred2 of arity 2 that denotes the type of binary predicate expressions. 

Hence the type of map is 

pred map: pred2(a, p), list(a), list(p) 

For each binary predicate p of type r,, r2 we introduce a corresponding constant 

pred-p of type pred2( r, , T*). The relation between each predicate p and the constant 

pred-p is defined by clauses for the predicate apply2. Hence we get the example 

program of Section 2. If we prove the goal 

map(pred_inc, [z,s(s(z))l,L) 
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by resolution, we get the answer substitution 

L=[s(z),s(s(s(z)))l 

(we omit the type annotations). The polymorphic logic program does not ensure 

that the constant pred_inc is interpreted as a relation in every model since we 

require only first-order structures as interpretations for polymorphic logic programs. 

But the clause for apply2 with pred-inc as first argument ensures that in any 

model the constant pred_inc and the predicate inc are related together. 

The map example has shown the possibility to deal with higher-order objects in 

our framework. It is also possible to permit lambda expressions, which can be 

translated into new identifiers and apply clauses for these identifiers (see [38] for 

more discussion). If the underlying system implements indexing on the first argu- 

ments of predicates (as done in most compilers for Prolog, cf. [39,15]), then there 

is no essential loss of efficiency in our translation scheme for higher-order objects 

in comparison to a specific implementation of higher-order objects [38]. 

The compilation of higher-order functions into first-order logic was also proposed 

by Bosco and Giovannetti [4], but they perform type-checking only for the source 

program and not for the target program. Clearly, the target program is not well-typed 

in the sense of [28] because of the clauses for the apply predicate (see above). 

Since we have translated higher-order objects into polymorphic logic programs, the 

use of higher-order objects is type secure in our framework. We have similar typing 

rules as in functional languages [8] and therefore functions and predicates have 

always appropriate arguments at run time. 

9. Implementation 

The SLD-resolution in untyped Horn logic can be applied to polymorphic Horn 

clause programs if we use polymorphic unification to compute the most general 

unifier in a resolution step. Polymorphic unification can be reduced to untyped 

unification if we treat type expressions as terms and annotate each subterm with 

the corresponding type by the functor “:“. Hence we have implemented the resolution 

of polymorphic logic programs as a precompiler to a Prolog system: It takes a 

polymorphic logic program as input and produces a Prolog program as output. The 

clauses of the input program need not be annotated with types, because the precom- 

piler computes the most general type of each clause by the type inference algorithm 

of [8]. Furthermore, the precompiler omits type annotations in the output program 

whenever it is possible by the techniques of Section 7. For example, the precompiler 

translates the polymorphic logic program 

type list/l 

func [ 1: + list(a) 

func@: cy, list(a)+Zist(a) 

pred append: list(a), list(a), list(a) 
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clauses: 

append([l,21, [3,4l, [1,2,3,41)+ 
append([l, L, L)+ 
append([EIRl, L, [EjRLl)+append(R, L, RL) 

(the type int of integer numbers is predefined) into the Prolog program 

append( ’ ; ‘([1,2l,list(int)), ‘:‘([3,4l,list(int)), 

’ : ’ ([1,2,3,41 ,list(int))). 

append( ’ : '([l,list(A)), ':'(L,list(A)), ‘:‘(L,list(A))). 

append( ’ : ‘([EIRl,list(A)), ‘:‘(L.list(A)), 

’ : ’ ([EIRLI ,list(A))) :- 

append(‘:‘(R,list(A)), ‘:‘(L,list(A)), ‘:‘(RL,list(A))). 

The program for the evaluation of Boolean terms (Section 2) would be translated 

into a Prolog program where all type annotations are omitted. If there are type- 

generally defined predicates as well as other predicates in a polymorphic logic 

program, then type annotations must be deleted in argument terms before calling 

a type-generally defined predicate. After the predicate call type annotations must 

be added to the argument terms. Hence it may be more efficient not to omit type 

annotations in type-generally defined predicates in the presence of other predicates. 

10. Conclusions 

We have presented a polymorphic type system for Horn clause programs. Since 

we have a semantic notion of a type, this can help to close the gap between 

programming practice with Prolog and the underlying theory. The typing rules are 

quite simple: Each variable has a fixed type and each type instantiation of a 

polymorphic function or predicate can be used inside a clause if the result types of 

the argument terms are equal to the argument types. The semantics of polymorphic 

types is defined as a universal quantification over all possible types. We have shown 

that this semantics leads to similar results as in the untyped case: The Horn clause 

calculus can be extended to polymorphic logic programs, and the well-known 

resolution method for untyped Horn logic can also be used in the polymorphic case 

if the unification considers the types of terms. Hence our polymorphic logic programs 

are also related to “constraint logic programming” [20], where the consideration 

of types corresponds to constraints. We have also shown that the unification can 

disregard types if declarations and clauses have a particular form. In this case the 

proof method has the same efficiency as in the untyped case and we have shown 

that our type system is a proper extension of the type system in [28]. On the other 

hand, type information is useful to reduce the search space in the resolution process. 

Thus there are examples where the unification with types leads to a more efficient 

resolution than in the untyped case. In our type system it is allowed to have clauses 

where the left-hand side is not of the most general type. We have shown that this 

feature permits the use of higher-order programming techniques without breaking 

our type system. 
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Further work remains to be done. If the resolution process uses the standard 

Prolog left-to-right strategy, then further optimizations could be done to reduce the 

cases where type information is required for correct unification. If the modes of 

predicates are known, then there are further possibilities to omit type annotations 

[7]. The extension of our polymorphic type system to subtyping and inheritance 

would be useful. For practical applications the type system has to be extended to 

the meta-logical facilities of Prolog. 
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