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Abstract: The evolution of nanoscience is based on the ability of the fields of 

chemistry and physics to share competencies through mutually beneficial 

collaborations. With this in mind, in this Perspective, I describe three classes of 

compounds: rylene dyes, polyphenylene dendrimers, as well as nanographene 

molecules and graphene nanoribbons, which have provided a superb platform to 

nurture these relationships. The synthesis of these complex structures is demanding, 

but also rewarding because they stimulate unique investigations at the single-

molecule level by scanning tunneling microscopy and single-molecule spectroscopy. 

There are close functional and structural relationships between the molecules 

chosen. In particular, rylenes and nanographenes can be regarded as honeycomb-

type, discoid species composed of fused benzene rings. The benzene ring can thus 

be regarded as a universal modular building block. Polyphenylene dendrimers serve, 

first, as a scaffold for dyes en route to multichromophoric systems and, second, as 

chemical precursors for graphene synthesis. Through chemical design, it is possible 

to tune the properties of these systems at the single-molecule level and to achieve 

nanoscale control over their self-assembly to form multifunctional (nano)materials. 
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Chemistry is an essential part of nanoscience because it involves the materials, 

either molecules or particles, that make up the field, while also introducing an artistic 

element through eloquent synthetic design. Because nanoscience focuses on nano-

sized objects and their assemblies, it is imperative to acknowledge the need to 

visualize and to manipulate the individual molecular building blocks by physical 

methods such as scanning tunneling microscopy (STM) and single-molecule 

spectroscopy (SMS). Herein, I describe how synthetic chemistry and these physical 

characterization techniques have formed a beneficial, yet mutually challenging 

collaboration aimed at advancing nanoscience.1  

However, more sophisticated characterization by these methods demands 

structurally perfect and increasingly complex, multifunctional molecules. For example, 

areas like electronics and optoelectronics require conjugated molecules with 

extended π-systems,2–5 which represent an enormous playground for the synthesis of 

both small organic molecules and polymers. The unique features of these structures, 

such as the ability to take up and to transport electrons or to interact with light and to 

undergo excitation energy transfer, is what qualifies them as active components of 

devices. By examining the field of nanoscience, one can conclude that the synthesis 

of new complex molecules has spurred new physical experiments capable of 

characterizing them, and, in turn, these new physical techniques have encouraged 

the pursuit of even more complicated syntheses. Therefore, I wish to demonstrate the 

advantages of the fruitful interplay between physics and chemistry for three classes 

of conjugated molecules: rylene-type chromophores (Scheme 1); shape-persistent 

dendrimers made from twisted, tightly packed interlocked benzene rings; and 

graphene molecules and related graphene nanoribbons (GNRs, Scheme 1).  

 

Scheme 1: Rylenes (1), graphene molecules (2) (3) and graphene nanoribbons (4) 
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These examples of conjugated species were chosen based on a few obvious 

characteristics. 

Chromophores, while representing a seemingly mature field of chemistry, are still in 

high demand from both an industrial and a fundamental point of view. One reason for 

this undiminished need for these materials is that chromophores can serve not only 

as colorants, but also as semiconductors, sensors, and biological probes.6 In regard 

to single-molecule properties, the workhorse of the SMS community has been the red 

terrylene dye (TDI, 1b). However, more complex studies have required 

chromophores with a broad variation of absorption and emission wavelengths and, 

even more important, ultrahigh photostability.7 

Control over functional groups such as redox centers, catalysts, or receptors requires 

their perfect nano-site definition. This has prompted the synthesis of dendrimers as 

scaffolds for the design of “unimolecular” functional nanoparticles.8 Our 

polyphenylene dendrimers have provided such structures due to their shape 

persistence, which guarantees geometrically defined placement of the functional 

units in their nanoenvironments.  

There has been a tremendous amount of effort spent on the fabrication of graphene 

and its derivatives through chemical and physical methods with varying levels of 

sophistication.9 Currently, graphenes are predominately obtained by top-down 

methods (i.e., exfoliation from graphite),10 but these methods yield products that lack 

structural perfection, especially when employing graphene oxide as an intermediate. 

Hence, it is necessary to utilize synthetic, bottom-up methods to achieve graphene 

materials with control over their chemical and physical structures.11–13 

Herein, the benzene ring serves as a modular building block in proceeding from small 

organic molecules to extended oligomers and finally their related polymers. Next to 

the size of the chemical structure, the second most important design principle is their 

dimensionality. Linear (one-dimensional [1D]) poly-para-phenylenes are the prototype 

of conjugated polymers, with their two-dimensional (2D) analogues being graphene 

molecules, which we regard as 2D polymers. Remarkably enough, we synthesize 

them from dendritic three-dimensional (3D) polyphenylenes. It is this evolution of 

chemical synthesis that we define as a true bottom-up protocol. 

Interdisciplinary efforts appear to be a key ingredient of nanoscience, since it is too 

difficult for a single research group to possess the necessary combination of 

chemical and physical expertise. Finding the right partners, however, can be another 

obstacle. Fortunately, with our collaborators, we have found a successful balance 

between achievements in chemistry and physics while still challenging one another 

toward even more difficult shared goals. I will mention these collaborations in the 

appropriate sections to highlight their accomplishments, and, additionally, I would like 

to dedicate this article to each and every one of them. 
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Rylene Chromophores 

Perylene tetracarboxdiimide (PDI, 1a) has been known for nearly a century and it has 

found extensive commercial use, while also serving as the workhorse of many 

electronic and optoelectronic investigations. A bulk heterojunction solar cell 

fabricated from a PDI as the electron acceptor and a hexabenzocoronene (HBC, 2b) 

derivative as the electron donor has paved the way toward nanophase separation in 

solar cells with the formation of separate percolation pathways of holes and 

electrons.14 The photovoltaic activity in electron acceptor/electron donor blends 

based on nanoscale phase segregated PDI architectures and poly-3-hexyl-thiophene 

(P3HT) has been monitored for the first time at the nanoscale by Kelvin probe force 

microscopy (KPFM), in collaboration with Paolo Samori.15 The build-up of a 

homologous series of rylene dyes (Figure 1) has enabled a systematic variation of 

absorption and emission wavelengths reaching far into the near infrared. Since the 

new opportunities for device fabrication have been extensively described elsewhere,8 

here, I focus on the role of these chromophores as stimuli for nanoscience. 

 

Figure 1: Homologous series of rylene dyes (1a–1e). 

As expected, increases in the ribbon size up to 4 nm in length required the 

substitution of alkyl chains at the imide, as well as the ring positions to achieve 

soluble materials. Physisorption from solution and visualization of HDI (1e) by STM in 

the group of Steven De Feyter revealed the concentration-dependent formation of 

multilayers. Application of shear forces resulted in large-area alignment of these 

multilayers at the organic liquid−solid interface. Quinonediimine (QDI, 1c) was found 

to form two different patterns of 2D crystals, the relative abundance of which could 

also be controlled by shear flow.7,16  

As to optical detection, Christoph Bräuchle and Thomas Basché have shown 

terrylene diimide (TDI, 1b) to be an ideal chromophore for SMS due to its high 
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fluorescence quantum yield and its emission above 700 nm, which made it applicable 

as a tracking molecule for biological studies.7,17–19  The main advantage of TDI (1b) 

and its analogues over other dyes, some of which may be commercially available, is 

their extremely high photostability. This property also proved to be advantageous for 

the case of dibenzo-fused QDI, which has a bathochromically shifted emission 

spectrum.20,21 Here, SMS work by Nick van Hulst aimed to achieve coherent control 

and manipulation of vibrational wave-packet interference at room temperature, and 

these remarkable experiments required unprecedented stability of a chromophore 

made by design. 

 

Scheme 2: Different multichromophoric systems. 

The next logical step was to characterize multichromophores by SMS techniques 

(Scheme 2). Dyad 5 was synthesized with a PDI donor and TDI acceptor that were 

covalently connected by a rigid oligophenylene spacer, which was used to control the 

distance and dipole orientation factor between the units. Single-molecule 

spectroscopy provided unique insights into energy transfer mechanisms at the single-

molecule level, as well as to the limits of description by the Förster model.22 This 

process was further extended toward the modulation of energy transfer between 

individual molecules or the application of external stimuli, for example, by mechanical 

forces. Thus, together with the group of Thomas Basché, we made and studied 

multichromophore 6 in which a central TDI unit was surrounded by four perylene 

dicarboxy monoimide (PMI) dyes.23 This complex system was deposited on a surface 

Page 5 of 19

ACS Paragon Plus Environment

ACS Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



6 

 

and subjected to compressive stress exerted by the tip of an atomic force 

microscope. Conformational changes of the multichromophore occurred, leading to 

changes in the electronic states, which in turn were monitored by SMS. We could 

thereby detect spectral shifts that were reversible, as well as those that persisted, 

even after removal of the tip. A future challenge would be to incorporate structural 

functionalities that are capable of undergoing cis-trans isomerization (see below) into 

such chromophores synthetically, and to investigate the impact of this type of 

transformation at the molecular level by SMS.  

Similarly complex in terms of synthesis and of photophysics, but equally rewarding 

from a nanoscience point of view, were the cases of molecules 7 and 7a.24 These 

materials were designed with the goal of resembling molecular machines. A perylene 

or terrylene dicarboxmonoimide moiety was attached to a tetraphenylmethane core 

yielding a tripod with three ammonium functional groups for anchoring onto a 

substrate surface. The dye was oriented either along the main C3 axis of the system 

or possessed a twist due to the presence of a meta-phenylene unit. The rotation of 

the dye around the central axis within the actual molecular rotor was monitored by 

defocused wide-field imaging in the group of Johan Hofkens. Here, it was a critical 

issue to bias the Brownian motion and to control the speed of the rotation, where one 

significant factor was the viscosity of the surrounding solvent. Another important 

factor, which was more difficult to understand, was the polarization of the excitation 

light field, because it would not be realistic to assume a sufficient optical torque. 

Rather, it was necessary to invoke a fluctuating friction model in this case. Thereby, 

the transition dipole tended to adopt the same direction as the optical field vector 

since this was when the probability for an excitation event was highest. 

Dendritic Multichromophores 

From there, we deemed it straightforward to proceed to more complex 

multichromophores by incorporating multiple dye molecules to investigate degenerate 

or directional energy transfer. In this case, it was necessary to achieve perfect spatial 

definition of the chromophores, and toward that end, we could involve a different 

object of our nanochemistry, the polyphenylene dendrimers.9 Scheme 3 illustrates 

their structures (9–11), which indeed represent a unique class amongst the 

dendrimer field because they i) are only made from twisted, tightly packed benzene 

rings, ii) can be obtained with structural perfection and monodispersity up to 

molecular weights above 1.5 MDa thanks to the use of repetitive Diels-Alder 

cycloaddition reactions,25 iii) possess outstanding chemical stability, and iv) are 

shape-persistent due to the lack of back-bending of the dendron arms. The semi-rigid 

character of these structures is a remarkable aspect that guarantees the perfect site 

definition of active groups such as chromophores, redox centers, or catalysts, and it 

is this feature that discriminates the polyphenylene macromolecules from other 

dendrimers.  
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Scheme 3: Different polyphenylene dendrimers (only lower generation showed). 

A special case was dendrimer 8, which possessed naphthalene dicarboxy monoimide 

antennae on the rim, PDI units throughout the scaffold, and a central TDI molecule as 

the core.26 This system generated a unique light-harvesting complex in which 

excitation energy transfer onto the core could occur in a direct or stepwise fashion, 

and this process was studied by Frans De Schryver and Johan Hofkens via SMS. 

Many other light-induced processes could also be analyzed through these functional 

3D-macromolecules, such as electron transfer between different incorporated 

molecules or the isomerization of azobenzene units. The latter case is particularly 

appealing from a nanoscientific point of view since multiple azobenzene “hinges” 

placed in an otherwise rigid dendrimer scaffold (10) yielded spherical 

macromolecules whose size could be changed upon exposure to light.27 

Furthermore, a unique aspect of these “breathing” dendrimers was that through the 

trans-cis isomerization of the azobenzenes the macromolecules could stably 

encapsulate guest species, which were only released upon opening the dendritic 

cages by the cis-trans transformation. 

Thus, polyphenylene dendrimers create a unique functional nanoenvironment by way 

of a perfect covalent design. While these materials provide numerous opportunities 

that are appealing to nanoscience, they extend beyond the scope of the present 

article. However, I would be remiss not to mention some of the future challenges in 

the field: i) it has been shown that the inner voids of these dendrimers can be tuned 

to act as perfect receptors for explosives, and, in conjunction with an 

ultramicrobalance, they can be used as sensors with picomolar detection limits.28 It is 

important to utilize such host–guest interactions for other gas-sensing purposes; ii) 
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borate functional groups can be encapsulated within the dendrimer core (11) to 

achieve weakly coordinating anions (WCAs).29 These macromolecular ions hold 

great promise for controlling chemical reactions, for example, in stabilizing cationic 

zirconocenium catalysts during polyolefin synthesis. On the physicochemical side, 

the dendritic shell can be used to separate spatially anionic and cationic species 

approaching the Bjerrum length of the ion pair.30  

These dendrimers constructed from branched and densely packed benzene rings 

exhibit yet another feature that qualifies them as a key constituent of synthetically 

driven nanoscience: they serve as a molecular carbon source for transformation into 

2D graphene molecules. The exciting potential of such a 3D to 2D interconversion is 

that it lays the groundwork for bottom-up synthesis of graphenes, and, more 

importantly, the connectivity of the dendrimer precursors defines the size and 

periphery of the graphenic products.  

Graphene Molecules and Graphene Nanoribbons  

Polycyclic aromatic hydrocarbons (PAHs), as pioneered by Erich Clar, have played a 

crucial role in the advancement of organic chemistry.31,32 In 1995, we started a 

program toward obtaining larger and larger PAHs, with our “superbenzene” 

hexabenzocoronene (HBC, 2) as the most visible case.33 The synthesis included the 

planarization of the hexaphenylbenzene precursor 2’ (Scheme 4). Furthermore, it 

was necessary to attach soft alkyl substituents to the parent HBC to make it solution 

processable. This enabled visualization by STM not only based upon vacuum 

deposition, but also upon physisorption on substrates such as highly oriented 

pyrolytic graphite (HOPG) from solution. Remarkably elegant STM experiments at the 

solid–liquid interface were then performed by Jürgen Rabe and Paolo Samori.1,34 

Subsequent chemical developments have included i) increasing the size of the discs, 

often by designing homologous series; ii) varying the periphery from arm-chair to zig-

zag patterns; and iii) incorporating heteroatoms or forming ionic derivatives. In all 

cases, the synthesis proceeded via cyclodehydrogenation (flattening) of suitably 

designed polyphenylene precursors.35,36 Indeed, the precursor of nanographene 3 

(C222) is compound 3’, which turned out to be nothing more than a first-generation 

polyphenylene dendrimer with a hexaphenylbenzene core. In every case, the 

synergy between synthesis and STM studies proved to be of outstanding value. 

Additionally, STM was accompanied by scanning tunneling spectroscopy (STS) to 

gather information on the electronic structure of the surface-immobilized PAHs and to 

compare this information with the outcome of other spectroscopic 

characterization.37,38 
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Scheme 4: From non-planar polyphenylene precursors to disc-type graphene 

molecules. 

At this time, we would like to point out two more synthetic achievements that were 

particularly important from a nanoscience perspective. First, perfect edge chlorination 

of the discs induced ring puckering, and thus provided sufficient solubility for single 

crystal growth and structural analysis.39 These graphene molecules can be 

synthesized with diameters up to 4 nm, and while this may be rather large from an 

organic chemistry stand point, they still possess structural perfection and are solution 

processable. It is possible to increase the size of these molecules even further; these 

materials will be outlined below for the case of graphene nanoribbons (GNRs).  

Second, more complex PAH derivatives were made, such as the dyad 2c in which a 

HBC unit was connected to anthraquinone.40 After STM visualization, a donor 

molecule was placed from solution on top of the anthraquinone acceptor, thus 

creating a new dipole next to the HBC. The resulting electrical field could act as a 

gate for the tunneling current through the HBC and therefore afford a model case for 

a single-molecule field-effect transistor (FET). In other studies, HBC could be 

functionalized with two thiol anchor groups and then subjected to break junction-STM 

measurements of the electrical conduction.41 Molecular wires have been a long-

lasting query of nanoscience and a comparison of 1D and 2D species is among the 

key topics.  

There is, admittedly, an appreciable gap between nanometer-sized, molecularly 

defined graphenes42 and the micron-sized graphene flakes made by top-down 

methods. Before we start to close this gap synthetically, let us take a brief look at the 
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high charge carrier mobility for graphene,43,44 which would qualify graphene as a 

useful semiconductor in a high-modulation FET.45 However, this is hampered by the 

vanishing band gap of graphene, which excludes a proper off-behavior and limits the 

general use of graphene in digital electronics. Yet it is possible to open the band gap 

through geometric confinement, which has been demonstrated through the 

production of GNRs.46 With this in mind, various approaches toward the fabrication of 

GNRs have been taken, such as lithography of graphene precursors or unzipping of 

carbon nanotubes.14,47 The obvious disadvantage of such protocols is the lack of 

structural definition of the edges and this defines a pressing need for a bottom-up 

synthesis method. 

 

Scheme 5: Synthesis of graphene nanoribbons in solution.  

It might be mentioned that as early as 1993 we synthesized polymer 1248 as part of 

our work toward double-stranded polyphenylenes, and 12a is indeed a GNR 

(Scheme 5). Since 2010, we have introduced a whole new class of GNRs with 

polymer 4a as the most recent example49 (Scheme 5). The synthesis included the 

twisted precursor polymer 13a which was obtained by a repetitive Diels-Alder 

cycloaddition of the AB-type monomer 13. The polymer was then, as described 

above, subjected to intramolecular dehydrogenation, yielding GNR 4a. The 

planarized macromolecule, due to its extensive alkyl substitution, was still solution 

processable, and after fractionation, it could be obtained with a length of 600 nm. 

Visualization and proof of the structural perfection were achieved by the group of 

Steven De Feyter via STM after deposition onto graphite or a gold surface. Current-

potential curves were measured by Chongwu Zhou after the GNRs were deposited 

from solution between electrodes, and the resulting devices could even be used for 

gas sensing.50 Since the fabrication of FETs with organic semiconductors11,51 is often 

obstructed by large contact resistances it was important that the charge carrier 

mobilities could also be detected in a contact-free mode by terahertz spectroscopy in 

the group of Mischa Bonn.52 

Some key challenges for synthesis of future chemical GNRs are: i) to further increase 

their size while also varying the aspect ratios, and control the edge structures; ii) to 
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incorporate heteroatoms; iii) to form block copolymers from GNR blocks with different 

widths and thus different bandgaps; and iv) to end-cap with functional groups toward 

anchoring at electrodes. Needless to say, all of these structural changes are 

essential for future device studies, but require sophisticated chemical expertise. 

 

Scheme 6: Synthesis of tribenzocoronene 14a by electrocyclic ring closure from 

cyclophane 14. 

These syntheses, while enabling rewarding nanoscience, will push the limits of 

classical polymer chemistry. However, there is one problem: the decreasing solubility 

of larger and larger ribbons. While the use of soft-landing in collaboration with Paolo 

Samori53 was shown to be a method to process larger and larger PAHs into ordered 

crystalline monolayers on a conductive substrate, such a deposition method is 

extremely slow. In this framework, a key breakthrough in view of processing 

limitations was pioneered by the group of Roman Fasel through an atomically precise 

GNR synthesis. Their protocol comprised UHV-deposition of small building blocks 

onto metal surfaces and monitoring of the whole process by STM. Our organic model 

reaction was the transformation of cyclophane 14 into the PAH 14a (Scheme 6). This 

stepwise electrocyclic ring closure could be accomplished by photolysis in solution, 

but also by heating the precursor on a Cu(111) surface with STM control.54 Related 

work in the literature55,56 made use of dibromo derivatives of aromatic building blocks 

that were immobilized on metal surfaces. Thermal carbon–halogen bond cleavage 

furnished intermediate diradicals that could still diffuse on the surface and polymerize 

to form conjugated polymer chains. In a similar fashion, we could achieve the 

polymerization of the dibromobianthryl building block 15a in spite of the prevailing 

steric hindrance. However, the formation of GNR 15 required subsequent flattening of 

the precursor polymer, and this became possible in a further heating step (Figure 

2).57 Then, it was logical to apply a surface-bound monolayer synthesis to other 

polymer topologies such as chevron structures,57 which could simply be realized by 

the choice of the dibromo monomer. Furthermore, polymer networks became 

accessible by introducing tribromo-substituted building blocks. Along these lines, we 

could accomplish the synthesis of 2D layers with atomically precise pores for 

possible use as membranes.58  
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Figure 2: Schematic illustration for the surface-assisted synthesis of N = 7 GNR 15. 

a) Vacuum deposition of 10,10'-dibromo-9,9'-bianthryl monomer 15a on a metal 

surface. b) Debromination of 15a to form surface-stabilized biradical intermediates. c) 

Radical polymerization to form covalent bonds between the monomer units. d) 

Preplanarization upon thermal activation, followed by e) surface-assisted 

cyclodehydrogenation to give GNR 15. 

Chemical reactions on surfaces and, in particular, GNR synthesis under the control of 

STM and STS have become a very active new field of nanoscience.59–61  Many 

questions remain to be answered though, such as, i) the occurrence of side reactions 

or the coupling of neighboring ribbons, ii) the mechanism of polymer growth upon 

diffusion of intermediate oligomers, and iii) the feasibility of reactions other than aryl-

aryl coupling.62,63 However, there are remarkable opportunities that mainly follow 

from the choice of the monomeric starting compound and that help to tailor the 

electronic structure of the product. This can be achieved, as with solution synthesis, 

via doping of the resulting GNR by incorporation of heteroatoms into the monomer or 

by varying the width and edges of the ribbon. Particularly exciting will be GNRs with 

zig-zag peripheries because they promise unique edge states, and thus offer an 

entry into spintronics. Another problem is the need to execute this synthesis from 

metal substrates. The latter enables STM control and might lead to the stabilization of 

reactive intermediates. Furthermore, they offer additional opportunities by 

preorganization of monomers or polymers on the surface or by combining different 

building blocks in a programmable fashion. However, conducting surfaces exclude 

charge transport measurements, and subsequent device fabrication would require 

transfer to insulating surfaces by lift-off techniques.  
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From a physical point of view, we have looked at the characterization of graphene 

molecules by STM and SMS side by side since they both provide significant 

breakthroughs in single-molecule detection. Apart from the physical methods, there is 

also a structural connection between our families of graphene and rylene molecules. 

Indeed, rylene dyes represent a special topology of PAHs in which the HOMO-LUMO 

gaps are particularly small. Rylenes can also be regarded as a narrow GNR, and this 

relation could be further corroborated by a chemical reaction, the Hundsdiecker 

decarboxylation.64 Thereby, PDIs were transformed into tetrabromo perylenes 16 

(Scheme 7). These compounds were used by Lifeng Chi and Harald Fuchs as unique 

building blocks for GNR 16a formation on gold surfaces. The same GNRs could also 

be achieved when starting from a tetrabromonaphthalene 17. A key aspect of both 

protocols is that ribbon formation does not require a cyclodehydrogenation step. It is 

mechanistically remarkable that the fusion of two naphthalene units via their peri-

positions proceeds by an aurate complex 17a in which the four peri-positions are 

connected by two gold centers. 

 

Scheme 7: On-surface synthesis of rylene-type graphene nanoribbons. 

Therefore, it is a unique feature of our GNR fabrication, both in solution and on 

surfaces, that their geometric and electronic structures can be tuned by the nature of 

the monomeric building blocks. Some chemical challenges have been outlined 

already but many more can be envisaged, such as the inclusion of monodisperse 

oligomers as model compounds or selective reactions at the edges to tune the band 
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gaps further. More physical methods would have to be employed, such as Raman 

spectroscopy and X-ray photoelectron spectroscopy, to complement these 

syntheses.  

Conclusion and Prospects 

The present cases were chosen to document the cross-fertilization between design 

and synthesis on one hand and single-molecule detection on the other. These 

selected examples should provide evidence that nanoscience must go beyond the 

catalogue of commercial compounds to make use of our collective chemical 

imagination. The toolbox of synthetic methods must be combined with overarching 

design concepts, where the size and dimensionality of molecules is of particular 

interest. The resulting bottom-up approach of materials synthesis offers the 

advantages of structural perfection and reproducibility.  

While many further challenges have already been outlined, there remain no limits for 

the multidisciplinary interactions discussed herein. The beauty of materials synthesis 

cannot be further exemplified, although the many obstacles of extremely intricate 

syntheses have not been expounded on in this Perspective. It becomes obvious, 

however, that all these structural and functional modifications immediately create 

opportunities for fresh nanoscience, both in bulk and at the single-molecule level. 

While the emphasis of this Perspective has been on fundamental aspects, there is 

also room for applications of which a few cases shall be mentioned: rylenes can be 

used as near-infrared absorbers in heat management; surface-functionalized 

dendrimers act as drug-delivery vehicles capable of crossing the blood–brain barrier; 

detection of lung cancer from breath analysis requires chemiresistors based upon 

graphene molecules and carbon nanotubes; 1,2-diketone functionalities at the edge 

of graphenes establish catalytic activity in the dehydrogenation of ethylbenzene to 

styrene; structurally perfect graphene molecules hold special promise as 

semiconductors for FETs; and there is so much more to come.  
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Suggested Pull Quotes 
 
Polyphenylene dendrimers create a unique functional nanoenvironment by way of a 
perfect covalent design. 
 
It is a unique feature of our graphene nanoribbon fabrication, both in solution and on 
surfaces, that their geometric and electronic structures can be tuned by the nature of 
the monomeric building blocks. 
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Nanoscience must go beyond the catalogue of commercial compounds to make use 

of our collective chemical imagination. 
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