
Wolfgang.Treutterer@ipp.mpg.de	

ASDEX Upgrade Discharge Control System -
A Real-Time Plasma Control Framework 	

W.	 Treutterer1,	 R.	 Cole2,	 K.	 Lüddecke2,	 G.	 Neu1,	 C.	 Rapson1,	 G.	 Raupp1,	 D.	 Zasche1,	 T.	
Zehetbauer1	 and	 ASDEX	 Upgrade	 Team

1Max-‐Planck-‐Institut	 für	 Plasmaphysik,	 EURATOM	 Association,	

Boltzmannstraße	 2,	 85748	 Garching,	 Germany	
2Unlimited Computer Systems GmbH, Iffeldorf, Germany

ASDEX Upgrade is a fusion experiment with a size and complexity to allow extrapolation of technical and

physical conditions and requirements to devices like ITER and even beyond. In addressing advanced physics
topics it makes extensive use of sophisticated real-time control methods. It comprises real-time diagnostic
integration, dynamically adaptable multivariable feedback schemes, actuator management including load
distribution schemes and a powerful monitoring and pulse supervision concept based on segment scheduling and
exception handling. The Discharge Control System (DCS) supplies all this functionality on base of a modular
software framework architecture designed for real-time operation. It provides system-wide services like
workflow management, logging and archiving, self-monitoring and inter-process communication on Linux,
VxWorks and Solaris operating systems. By default DCS supports distributed computing, and a communication
layer allows multi-directional signal transfer and data-driven process synchronisation over shared memory as
well as over a number of real-time networks. The entire system is built following the same common design
concept combining a rich set of re-usable generic but highly customisable components with a configuration-
driven component deployment method.

We will give an overview on the architectural concepts as well as on the outstanding capabilities of DCS in
the domains of inter-process communication, generic feedback control and pulse supervision. In each of these
domains, DCS has contributed important ideas and methods to the on-going design of the ITER plasma control
system. We will identify and describe these essential features and illustrate them with examples from ASDEX
Upgrade operation.

Keywords: DCS, plasma control, exception handling, data-driven workflow, real-time network, configuration,
software framework

1. Introduction

In view of shrinking fuel resources for conventional
power generation, opening up alternative methods of
energy production has become a pressing task. Besides
the renewable sources like solar and wind energy,
thermonuclear fusion can produce energy in a
sustainable, almost inexhaustible way. The fundamental
principle seems simple – two hydrogen atoms are
combined to a helium atom, releasing an amount of
binding energy. Realisation, however, is one of the most
challenging projects of scientific and technological
research.

In a fusion reactor built on base of the Tokamak
principle, a magnetic shaping field confines hot
Deuterium and Tritium plasma to avoid direct contact
with the reactor vessel. Magnetic induction, neutral
beam injection, ion cyclotron and electron cyclotron
frequency heating systems provide auxiliary power to
start the exothermic reaction. Gas injection and frozen
hydrogen pellets bring fuel to the plasma. Fluid
mechanic and electromagnetic effects determine the
inner plasma structure. They lead to a variety of
temporal and localised effects with strong influence on
the efficiency of the fusion reaction. Internal particle
transport processes paired with dosed feeding of
radiating gas species and localised heating allows

indirect control of the plasma structure, control of power
flows as well as removal of impurity and exhaust
particles.

Establishing a sustained fusion reaction thus is a
complex task and a sophisticated control system is
needed to coordinate the multitude of involved systems,
to ensure stable operation and to assist in protecting the
device and its environment. On the way towards an
economically viable fusion power plant many
experimental devices over the world are exploring the
principles of plasma physics as well as methods for
plasma control [1, 2, 3, 4]. One of them is ASDEX
Upgrade with its Discharge Control System DCS [5].

DCS provides all functionality needed to conduct
plasma experiments, coordinating a multitude of
measurement and actuation devices to control and
optimise the behaviour of plasma and technical systems.
As described in section 2 these functions do not only
comprise classical feedback control but also exception
handling with intelligent methods to deal with special
situations in a fault tolerant way. Section 3 summarises
the main requirements and the derived main concepts
resulting in the distributed, modular and configuration-
driven framework system architecture of DCS. Sections
4, 5, 6 and 7 highlight selected aspects contributing to
the effectiveness and versatility of DCS: control

Wolfgang.Treutterer@ipp.mpg.de	

workflow management, testing and inspection facilities,
extension interfaces and deployment.

2. Functions for Plasma Control
DCS is an entirely digital control system and

contains all basic elements of a feedback controller from
sensor data sampling and measurement pre-processing
(blue boxes in Fig. 1) over single and multivariate
control algorithms (magenta boxes in Fig. 1) to
command output (red boxes in Fig. 1). A reference
generator and a segment scheduler (white boxes in Fig.
1) do not only transform waveform definitions to actual
reference signal values. The reference generator can also
intelligently adapt waveforms with respect to the
measured plant state, while the segment scheduler allows
to select alternative sequences from the pulse schedule in
response to unplanned events.

2.1 Measurements and Plasma Reconstruction

More than twenty external diagnostic systems with
hundreds of channels supply information about plasma
and plant state. For control and monitoring in DCS raw
sensor signals are processed to reconstruct main physics
quantities such as plasma separatrix geometry [6],
magnetic flux coordinates [7], electron and neutral
density and density profiles [8], radiated power, power
fluxes, effective heating power components, stored
energy, plasma confinement parameters [9, 10], MHD
and locked mode amplitudes and locations [11, 12] and
disruption precursors [13, 14]. To distribute and
parallelise the working load, part of these quantities are
not computed by DCS but directly by real-time enabled
digital diagnostic systems [15].

The condensed information is subsequently fed to
feedback controllers and monitoring algorithms. But also
exception handling makes use of it: the segment
scheduler selects pulse schedule segments based on

identified events and their context. These, in turn, are
derived from processed plasma and plant. Moreover, the
reference generator can intelligently generate state-
adapted waveforms during runtime. This feature is
exploited by the ASDEX Upgrade soft-landing function
(see also section 2.3).

2.2 Feedback Control

DCS feeds the condensed measurement information
to a collection of mostly multivariable control loops.
Control of elementary plasma parameters like current,
position shape [16, 17, 18], pressure, density and
radiated power [19] provide the fundament to ensure
stable and reproducible experiment conditions even in
the presence of external perturbations. Nested control
schemes address advanced use cases like plasma current
profile shaping or MHD mode stabilisation with mirror
guided electron cyclotron beams [20, 21, 22]. As a tool
for basic exploration DCS also supports the full or
partial application of feed-forward commands.

The magneto-hydrodynamic nature of plasma gives
rise to strong non-linear interactions between plasma
parameters. Spatial distribution of plasma current,
density, temperature, radiative losses, transport effects
and electromagnetic fields induce global plasma regimes
with distinct characteristics like L- and H-mode, as well
as local instability phenomena like tearing modes. They
are the reason for operation limits, such as density limit
or beta limit. Variations in the current density or pressure
gradient lead to localised dynamic limit cycle effects like
ELMs or sawteeth with consequences on overall plasma
behaviour, stability and load of structural components
like the divertor. DCS controllers need the capability to
adapt to the changing regimes. A large choice of
algorithms from simple proportional to non-linear relay
control is at disposal for dynamical selection with a
control mode switch. Likewise, controller gains and

Fig. 1: DCS control system function overview

Wolfgang.Treutterer@ipp.mpg.de	

even the selection of controlled parameters can be
changed dependent on pulse schedule references and
plasma state [23].

Commonly, plasma control systems have to
implement a number of feedback control functions with
different goals but requiring the same set of actuators.
Examples are plasma shape control functions by gap
control or by isoflux control. Both use the same poloidal
field coils as actuators. DCS avoids possible conflicts by
design. Actuators are bound to dedicated feedback
controllers, whose controlled parameters are determined
by the control mode. As each feedback controller has
exactly one active control mode at a time, no conflicts
can occur. Instead of sharing actuators between different
control goals, the user has to define a combined control
goal and a corresponding control mode.

In order to avoid steps in the command output when
changing gains or controlled variables, DCS controllers
offer a smooth transition option. The implementation of
smooth transitions depends on the control algorithm. In
general, smooth transitions are be achieved by adding a
transient decay term to the control algorithm output.
Whenever the control mode changes the initial term
value is set to the difference between the last and the
newly calculated controller output. For I, PI or PID
controllers smooth transitions are implemented by
manipulating the initial state of the integral component.

Since integrating control algorithms are also prone to
windup in case of actuator saturation, DCS comes with
an anti-reset windup management resetting the integrator
while the command output is limited and the increment
of the integrator component would aggravate the windup
(see also [24]).

Command outputs can be confined by a configurable
number and type of limits. Dependent on the actuator,
limits originating from different reasons can be
accumulated and the most stringent one will become
active. The currents in the ASDEX Upgrade divertor
coils OH2u and OH2o, for example, must not only stay
below the static power supply limits. Their maximum
values are also restricted by coil suspension forces. Due
to magnetic attraction the current command allowable
for these coils is dependent on the varying current in the
ohmic solenoid. Limits can also be related to change
rate, energy, or other dynamic quantities.

2.3 Actuator Management

ASDEX Upgrade is equipped with a number of
actuators: ten independently controllable magnetic coil
circuits for ohmic heating and poloidal field, eight
neutral beam boxes with different injection angles, eight
ECRH beamlines, four of which are equipped with
steerable mirrors, two ICRH antennae, five gas channels,
a pellet injector and a massive gas injection valve for
disruption mitigation. While the magnetic field coils
generally are unique actuators, heating systems often are
interchangeable in their effects. As long as only part of
the installed power is required for control, this
redundancy can be used to distribute load and reduce

fatigue, or to overcome temporal trips of individual
actuators. Functions like this or transforming continuous
control commands to binary pulse-width modulated
actuator commands are assembled in DCS actuator
management. This component keeps custom properties
of actuator systems separate from re-usable generic
feedback algorithms and allows versatile combinations.

2.4 Exception Handling and Reference Generation

 The complexity and non-linearity of plasma
behaviour, as well as the large number of plant systems
raises the potential for the occurrence of unplanned
events – be it the degradation or failure of technical
components, plasma instability effects, or an accidental
or correlated combination of both. Most situations are
not safety critical and by applying smart handling
policies DCS can cope with them without annoyingly
shutting down operation. Moreover, ASDEX Upgrade
has a size and design, that requires a coordinated system-
wide reaction by DCS to protect the investment, and this
requirement is even more stringent for larger devices like
JET or ITER. Therefore, exception handling is an
integral part of DCS [25].

As far as possible, events are detected and handled
on DCS component level, thus preventing propagation
over the entire system. Measurement outliers or failed
sensors, for example, are intelligently detected in the
diagnostic systems or reconstruction modules. Often,
they can be repaired using redundant information from
neighbouring sensors. Equilibrium reconstruction, for
instance, uses the function parameterisation approach
[6], which is based on principal component analysis.
This method allows specifying confidence limits for the
measurements of magnetic pickup coils. DCS checks the
sensor measurements against these limits and replaces
outliers by calculating a weighted sum from values of
the remaining sensors. Similarly, actuator management
can replace a tripped neutral beam by another one. Thus,
e.g. in case of a beam interlock due to overheated wall
structures, the physics experiment can be continued
without interruption. Feedback controllers encountering
defective feedback input signals have a built-in recursive
fallback strategy, which switches the controller to a more
robust mode with other inputs and ultimately to
feedforward operation.

1

3

4 1.  Uloop
threshold
exceeded

2.  Repair
segment
scheduled

3.  ECRH Heating
switched on
and increased
density
reference

4.  Return to
original
schedule at
the end of the
repair
segment

2

Fig. 2: Locked mode rejection to avoid a disruption inserting a
repair segment that interrupts the normal pulse schedule.

Wolfgang.Treutterer@ipp.mpg.de	

Plasma events, however, need adaption of control
strategies spread over a variety of feedback control
loops. Locked modes, for instance, often leading to
disruption, can potentially be unlocked again with a
combination of localised ECRH heating and increased
density [22]. Applying additional central heating at
reduced density can eliminate MARFEs and prevent
disruptions [26]. Such and similar events are treated by
the central exception handler in close interaction with the
DCS reference computation [27]. Fig.2 shows, how a
repair segment with the corresponding actions interrupts
the nominal pulse schedule of shot 24137 to counteract a
locked mode and save the discharge.

Generation of reference and feedforward signals for
controllers and actuators is organised in segments, where
each segment contains time-value data points defining
the waveform for each signal relative to the start time of
the segment. DCS implements reference computation
with two processes: a segment scheduler and a reference
generator. While the segment scheduler determines the
“active” segment, the reference generator interpolates the
waveform data points in the active segment to obtain the
reference signal values.

Segments structure the pulse schedule and enable re-
using waveform definitions in other pulse schedules. In
nominal operation, segments are chained according to
elapsed time (Fig. 3a). The combination with rule-driven
sequencing driven by the detection of planned as well as
unexpected events makes segment scheduling one of the
principal tools for central exception handling. In an

ASDEX Upgrade pulse, for example, the magnetic coils
may be powered on only after the flywheel generator
spin-up is completed. This procedure is implemented
with a segment, whose exit condition is the achievement
of the generator working speed. This planned event
triggers the scheduling of the continuation segment
where the coil currents are ramped up. If, instead, a fault
should be detected, the scheduler selects a segment
leading to pulse abortion (Fig. 3b). Scheduling rules and
precedence of concurrent events are configurable and
laid down in the pulse schedule [28]. As the above
example on locked mode rejection illustrates, the
segment scheduler can even interrupt a segment with a
repair segment and then return control back to continue
the original schedule (Fig. 3c).

Also the reference generator comes with a number of
smart features. Step interpolation is applied to signals
with discrete value domain like control mode switches,
while continuous signals are linearly interpolated. For
these, smooth transitions between segments are
automatically generated if the waveform data point of a
signal is placed with an offset to the segment start time a
(Fig. 3a start of the “Pulse” segment). The last data point
of a waveform is carried on, if the segment duration is
longer than the waveform definition (Fig. 3a, “Init” and
“Stop” segments). In addition, the reference generator
has the capability to re-compute waveform data points,
derived from the current plasma state, in real-time
(Fig. 3b, “Abort” segment). This feature is most valuable
in exception handling for adjusting the references to
match the current plasma and plant conditions. ASDEX
Upgrade uses it on a regular basis to implement the soft-
landing procedure. If the soft-landing segment is
scheduled due to some event, new reference waveforms

W. Treutterer

Abort Init Prepare Pulse Repair Stop

tseg

y

Init Prepare Pulse Stop

Init Prepare Stop Pulse Abort

y

t

y

t

Init Prepare Stop y

t

…Pulse Pulse Repair

a

b

c

Fig. 3: Illustration of segment chaining
The first row shows the segments comprising a pulse schedule
with data points for an example signal y. Below, several
scenarios are shown: (a) nominal sequence with a computed
smooth transition between “Prepare” and “Pulse” (dashed line),
(b) premature branching from the “Pulse” to the “Abort”
segment which contains generated waveforms, (c) the “Repair”
segment interrupts the main “Pulse” segment.
In contrast to solid lines, dashed lines highlight dynamic
waveform portions which depend on the state of reference
generation and controlled system.

Fig.4: Timetraces of an ASDEX Upgrade soft-landing.
From t = 6.6 – 8.2 s plasma current is ramped to zero and
heating power is switched off stepwise. From t = 8.2 – 9.7 s
plasma is off and the remaining coil currents, e.g. the OH
current, are ramped to zero. All waveforms are computed
during the pulse, dependent on measured state of plasma,
heating and coil currents.

Wolfgang.Treutterer@ipp.mpg.de	

and control mode settings will be computed for plasma
current and position, as well as for shaping coil currents,
external heating power and fuelling systems, starting
from the current situation. In the first phase, plasma
shape is smoothly guided to a more stable circular shape
combined with a moderate plasma current reduction and
a staged shutdown of the additional heating.
Subsequently, the plasma current is ramped to zero at a
high rate, maintaining plasma shape and position. After
the plasma phase, the remaining coil currents such as the
currents in the ohmic solenoid and in the position control
coils are ramped down (Fig. 4).

In the case of soft-landing, as well as in other cases
of exception handling a coordinated response of the
actuators for plasma shaping, heating and fuelling is
required to ensure stable and consistent behaviour.
Because of its coordinating role, reference generation, as
well as segment scheduling are centralised, non-
distributed function units in DCS.

3. DCS Architecture
The abundance of required control and exception

handling functionality has embossed the architecture of
DCS. DCS has been designed to control a complex
matter under the aggravation that it is used for a research
experiment where frequent modifications accounting for
the latest findings must be anticipated. Selection between
large variety of options, amendment of algorithms,
adaptation of control structures and the addition of novel
features must be facilitated.

3.1 CORE CONCEPTS

A very important demand to a control system like
DCS is to bridge between the world of physics, which is
the object of research, and the world of computers where
the ideas get implemented. Physics researchers are
experts in modelling the nature of fusion plasmas and in
designing methods for control. However, they are not
necessarily computer and software experts knowing,
how to effectively implement such methods. The same
dilemma applies in the reverse direction. DCS therefore
has been designed to assist researchers in developing and
improving control methods, while it hinders them to
make mistakes and relieves them from tedious repetitive
administrative tasks.. Fig. 5 shows how DCS offers a
user environment in the form of Application Processes
(AP) holding the algorithmic part of control (in yellow)
embedded in a framework infrastructure (in blue). Built-
in consistency checks, e.g. for data types, implicit
memory allocation and the preferred object lifetime
management via class constructors and destructors
prevent user errors. Application processes are strictly
separated from each other and communicate only
indirectly via in- and output signals. Signal routing
between application processes is automatically
established with a publish-subscribe mechanism on base
of configuration data. That way the composition
application processes can be easily restructured because
the users of a signal need not be adapted when the
producer is modified and vice versa.

Complementary, DCS offers infrastructure services
comprising function libraries, real-time computing, data
communication, process configuration and experiment
management [29]. The latter is depicted at the bottom of
Fig. 5 and contains graphical user interface, coordinating
state machine, parameter server, signal routing server
and back-ends for the logging and data archiving
facilities. All infrastructure services are developed and
maintained by software and control engineers. User
environment and infrastructure services are glued
together by modular framework architecture, forming the
backbone of DCS.

As a modern product, DCS is committed to address
the RAMI requirements: reliability, availability,
maintainability and inspectability. Inspection by logging
and automatic data archiving help in analysing normal
and off-normal system behaviour. The modular
architecture and the clear separation of algorithms from
infrastructure services make maintenance and
modification straightforward. Reliability and availability
are addressed by sophisticated methods for exception
handling (section 2.4) and testing, as well as by coding
standards (section 5). Thus, DCS ensures high quality in
operation, as well as scalability towards future extension.

Finally, sufficient computation performance is a key
requirement for real-time systems. Luckily, the on-going
progress in computer technology is already a big help.
Nevertheless, DCS exploits multi-core processor
technology, distributed parallel processing and real-time
operation systems like real-time enabled Linux or
VxWorks for maximum speed and deterministic timing.
The code base is written in C++, a very powerful,
feature-rich, high-level but yet very fast object oriented
programming language.

Signal Communication

instantiation, parser,
log and alarm handler,
self-monitoring

Application Process

read,sync,...,publish

waveform generator,
i/o handler,diagnostic,
feedback,monitor,...

Signal access

Infrastructure:
flow control,
setup, log, alarm

Algorithm:
signal processing
user-defined code

Application Process

user interface,
state machine

parameter
server

logger,
archiver ...

experiment management
communication

signal
routing server

Fig. 5: Application Process: separation between user algorithm
(yellow) and DCS Infrastructure (blue). Signal communication
is the only way to exchange real-time information between the
two application processes. The left box shows process
functions, examples are listed in the right box.

Wolfgang.Treutterer@ipp.mpg.de	

3.2 Core Components

As a workflow scheme DCS adopts the basic idea of
a block-diagram, where blocks represent control
processes and linking signal lines stand for the
information data flow [30]. By virtue of the polymorphic
features of C++ it is possible to implement all
infrastructure functions in base classes for the blocks,
signals and other core components. For customisation of
user algorithms it is sufficient to define derived classes,
inheriting all the common functions. At the same time
the language ensures, that all components adhere to
uniform interfaces and follow the same standards.

The main components in DCS can be divided in
function elements in the form of processes and
DcsObjects, as well as data elements represented by
signals, signal groups and parameters. Fig. 6 shows these
elements.

Processes are mapped on one or more threads and
execute commands of the central DCS state machine, the
most prominent of which is the execution of the real-
time algorithm. In addition, the process base class
supplies a unique interface to format and stream log
messages to the operator’s console and web-based
graphical frontends, documenting internal events and
decisions for subsequent analysis. Specialised classes –
in this article referred to as ApplicationProcesses - are
dedicated to hold the users’ algorithms. But DCS
employs the same mechanism in form of
AdministrationProcesses to implement services like
control cycle pace making, self-monitoring, alarm
propagation, or signal data collection and archiving.
Each process specialisation defines its individual
composition of parameters, signals and/or signal groups.

Signals are communication elements for information
exchange between processes. They represent streams of
data samples, consisting not only of the pure value. In
addition, they comprise metadata like a time stamp, a
confidence state classifying the data quality, and a
production state indicating process activity (Fig. 7). How
these meta-data are used will be explained in the
following sections.

Input and output signals provide different methods
depending on the flow direction. The InputSignal and
OutputSignal base classes comprise properties like
identifier and sampling period, as well as access methods
to the current sample. The derived InputSignalUnit and
OutputSignalUnit classes supply particular methods to
establish synchronised data-driven workflows, one of the
outstanding features of DCS. Details are explained in
section 4. The actual data transport of signal samples is
part of the infrastructure. Hiding the details from the
application code allows to transparently convey data via
memory or networks and gives DCS maintainers the
freedom to adjust process deployment on computation
nodes without changes to the control processes.

A common pattern in control processing are
algorithms requiring a number of input signals sampled
at the same time and in return producing a number of
output signals. Complementing individual
InputSignalUnits and OutputSignalUnits, DCS accounts
for this pattern with the definition of InputSignalGroups
and OutputSignalGroups, thus facilitating efficient
process scheduling and network package transfer.

Processes can also be built combining sub-entities
consisting of executing function elements, parameters
and private process signals and signal subgroups. These
entities are called DcsObjects and bundle non-trivial
sub-functions, like signal filters or control algorithms to
generic re-usable blocks. The ability to recursively
compose DcsObjects from sub-objects and to derive
super classes which can even be used polymorphically
makes the concept extremely powerful. DCS furnishes a
constantly growing library of DcsObjects, which are all
highly configurable by configuration data.

4. Control Workflow
In general, DCS control operation is structured in

periodic control cycles. The Cycle Master, a pace-

Fig. 6: DCS core components as a SysML diagram

Timestamp
used for process synchronization

•  Control cycle number or absolute time

Signal sample

Timestamp

Confidence
State

Production
State

Value
•  scalar, vector, matrix
•  fixed size, extensible
•  integer, float, double

Value

Production state
used for signal
stream control
•  Running,

Outdated
•  Timeout,

Stopped

Confidence state
used for exception
handling
•  Good, Corrected
•  Corrupt, Raw,

Invalid

Fig. 7: Signal sample components

Wolfgang.Treutterer@ipp.mpg.de	

making process, starts control cycles in defined time
periods sending new samples of a dedicated signal - the
cycle number signal, whose payload is the number of the
current control cycle. These samples trigger outputting
DCS commands from the previous cycle, taking sensor
data snapshots for the new cycle and generating
reference signals for control. The duration of DCS
control cycles is defined by a reference signal in the
pulse schedule and can be varied during a pulse. Usually,
during plasma phases a length of 1 ms is used, whereas
in technical phases like fly-wheel generator spin-up,
control cycles can be as long as 0.5 s.

Inside a control cycle the main workflow – the
sequence in which the control blocks are scheduled – is
data-driven. As soon as all requested input samples are
available an application process becomes executable. In
general, the process will subsequently produce output
signal samples, such that follow-up processes become
executable and so on, until all involved processes are
done. On a system with distributed computers, multi-
core CPUs and real-time operating system the method
inherently opens parallel execution branches whenever
more than one process is executable. Thus, DCS can
exploit the computational power and minimise
processing latency in response to varying processing
needs during a plasma pulse without a prior, inflexible
sequence specification. With such a self-organising
workflow it is also straightforward to insert new
processes or to decommission obsolete ones [30]. DCS’
self-monitoring infrastructure function monitors that
each control cycle is completed timely and executes a
controlled pulse stop, if any process should not be
responsive.

4.1 Synchronisation Methods

Depending on the nature of a process task, different
synchronisation modes can be appropriate. All methods
make use of the timestamp, which is an intrinsic
constituent of each sample. In most cases, processes such
as plasma re-constructors and feedback controllers use
the blocking-wait method to obtain input data associated
with a timestamp. The process is suspended until the
data is delivered and then carries out its control function.
To accomplish this, DCS uses counting semaphores for
each input signal unit or input signal group. The process
scheduling itself is implemented by the native operating
system’s methods.

Subscription mode, however, is preferred for generic
output processes. These apply scaling and other
transformations to a large number of signals, which may
be produced by different processes and thus arrive in
arbitrary order. In subscription mode, a process executes
a callback function for each arriving sample of a signal
or a signal group.

All synchronisation methods require that all signals in a
group be produced with a same sampling rate being
equal or a multiple of the sampling rate of the
synchronised consumer process. This condition is true
for most signals produced by the control system, since

they are based on a common control cycle, and DCS
verifies this condition at configuration time before each
pulse.

Signals from external systems, however, are not
necessarily synchronous with the control cycle. At
ASDEX Upgrade, each real-time diagnostic can have its
individual sampling rate. MHD control, for instance,
requires NTM mode locations from ECE, which are
published every 6 ms, as well as ECRH beam deposition
locations, which the TORBEAM ray-tracing diagnostic
calculates every 35 ms [20]. Rigid synchronisation
would not be applicable in such cases. As an alternative,
DCS offers also non-blocking sample access based on
sample timestamps. As further detailed in section 4.2,
DCS infrastructure stores all distributed signal samples
in internal sample buffers. DCS can search these buffers
for input signal samples that most closely match a given
cycle time and thus assemble all data to a consistent
snapshot.

Some of the signals are not produced in periodic
intervals. These indicate asynchronous changes such as
the occurrence of an event or the change of an operation
mode. For convenience, DCS supports the grouping of
such sporadic signals with periodic ones, in which case
the sporadic signals are exempted from the original
synchronisation method and non-blocking lookup is
applied for them, instead. On the contrary, a process can
also be instructed to wait for a sporadic signal to handle
an associated event.

Not all components in large systems might be
operational at all times. Real-time diagnostics for plasma
investigation for example often are in a preparation stage
before plasma breakdown and do not deliver data. With
the aid of the sample production state each process
announces, whether it is active and clients can expect
further samples. DCS uses this information for workflow

cycle
state
value

Sample Buffer

Sample
Buffer

Signal
producer Signal

consumer
Application
Processes

Real-time Network

Mirroring
Sample
Buffer

cycle
state
value

Node 1

Signal
consumer

Shared

Node 2
Fig. 8: Signal communication with the shared sample buffer

Wolfgang.Treutterer@ipp.mpg.de	

management. Like sporadic signals, signals from
inactive processes are exempted from synchronisation.

4.2 Signal Communication

Behind the scenes, DCS infrastructure uses
sophisticated methods to store and buffer samples,
transport them across the boundary of computing nodes
and notify sample consumers that a requested sample is
available. Availability of the sample, in turn, triggers
algorithm execution, and thus establishes the data-
driven workflow.

When a process publishes a sample, it is stored in a
ring-buffer on the local computation node, the sample
buffer (Fig. 8). Buffering allows delayed sample access
by consumers without the sample being overwritten in
the meantime. This feature is important for background
processes like signal archivers, downstream processes
operating at lower rates and for stateful sample
consumers like filters.

When a consumer process requests a sample, a
registration is stored in the sample buffer of the
corresponding signal. If the matching sample is stored in
the buffer, the buffer issues a notification leading either
to the release of a semaphore or to the execution of a
callback function, depending on the synchronisation
method employed by the consumer. Finally, the
requested samples are copied to the consumer’s input
signals, just before it starts processing.

When consumers and producers reside on different
computation nodes, the samples are transported via real-
time networks. Dedicated gateway processes adapted to
network technology and transport protocol manage this
operation such that an arbitrary number and arbitrary
types of networks can be attached to the sample buffers.
On the remote consumer side DCS automatically installs
a mirroring sample buffer, where the receiving network
gateway serves as a deputy producer for incoming
signals. Gateway processes currently support shared
memory, reflective memory and Ethernet transport with
UDP protocol [31]. In addition to sample transport they
also monitor the sample stream detecting and handling
timeouts, which might result from network problems as
well as malfunctions of the signal producers.

While nowadays the control system processes of
DCS all fit on one modern multi-core CPU, real-time
networks are still indispensable to provide a scalable
architecture and to connect to real-time diagnostic
systems.

5. Testing and Simulation
Before a new or modified control algorithm is put

into service it should be tested for faults or unexpected
behaviour in order to minimise risks to the plant. As a
first line of defence DCS is designed to exploit the strict
compiler checks for consistency of data types, function
arguments and class member visibility. Most DCS
classes, for example, are based on the C++ template
concept allowing the compiler to sort out accidental type
conversions.

A lot of issues, however, arise only when an
algorithm is used in a realistic context. By virtue of the
strict separation of application processes in DCS a dry-
run is easy to accomplish by just replacing the original
sensor data sampling processes with test data injectors
streaming archived data from an earlier experiment.
With a plasma simulator process as replacement, even
hardware-in-the-loop simulation is feasible (Fig. 9).

Testing with archived data is a standard operation in
DCS called Replay. By choice of graded replay levels it
is also possible to customise the coverage of replaced
diagnostic processes. In level-0 replay all data from
external components, also the outputs of real-time
diagnostics, are read from the archive. In level-1 replay
the real-time diagnostics are part of the test but are fed
with raw measurements from the archive.

6. Integration of External Systems
Although DCS is already a quite comprehensive

control system, occasionally challenges occur, which
cannot be satisfied or which would require enormous
effort, while specialised third-party systems can provide
an attractive solution.

Real-time diagnostic systems with dedicated frontend
electronic and dedicated computer hardware equipment
belong to this category. Real-time diagnostics often
perform sophisticated reconstruction of physics
quantities. TORBEAM-rt, for instance, estimates the
deposition location of electron cyclotron beams,
essential information for NTM control.

Another case is the trend to develop and test
algorithms in a simulation environment like Simulink
and generate program source code or even executable
binaries directly from there. A recent application is the
RAPTOR code, combining magnetic equilibrium with a
kinetic transport model to reconstruct plasma
temperature and pressure profiles in real-time [10]. Such
data open the door for designing advanced control
methods needed not only at ASDEX Upgrade but also in
future fusion devices like ITER and DEMO.

Moreover, in the collaborative fusion research
community, physics reconstruction and control
algorithms developed on one experimental device are
often validated on a different device, which might be

Shared
Sample
Buffer

Application
Processes

in-situ
test

Test Data
Injector

Data
Archive

Archived
Data

archived sensor data!
-> verify behaviour!

Input/
Diagnostic

Sensor
Inputs

Plasma/
Plant

Simulator

model-based
simulation data!
-> closed loop!

listen to actuator
output commands

Fig. 9: Test mockup for replaying archived data or embedding
a plasma simulator	

Wolfgang.Treutterer@ipp.mpg.de	

equipped with its own control system. MARTe, for
instance, is another well-known control system
framework used at several fusion devices [32]. DCS can
cooperate with a MARTe installation such that MARTe
algorithms can be integrated in the DCS control
workflow.

In all three examples, connectivity to external
systems greatly extends the capabilities of the control
system. The integration interface covers data exchange
and a general experiment workflow management
consisting of configuration, initialisation and execution.

DCS supplies two basic approaches of interfacing.
The wrapper process approach is used to integrate
algorithms designed with Simulink. Code for a DCS
application process is generated from the algorithm
according to a given pattern. This process wraps the
algorithm’s entry functions behind a DCS compatible
facade. The second approach is used when the external
systems are independent computational entities like real-
time diagnostics or MARTe systems. Here a DCS
gateway application process communicates with the
external system, via real-time networks or dedicated
shared memory objects like message queues.

With its plug-and-play like extension interface DCS
opens up a new field of capabilities and is ready to
utilise state-of-the-art power tools also in future.

7. Deployment
Fig. 10 shows context and deployment of a standard

DCS installation. It comprises a single-core 1 GHz PC
with VxWorks operating system for compatibility with
legacy hardware and a modern multi-core 3.33 GHz PC
running Concurrent Linux [33], a real-time optimised
Linux kernel. Six of its twelve cores are reserved for
real-time processing. For robustness reasons, in

particular for memory protection, DCS applications on
the multi-core computer are distributed over seven
logical units (LCx0 – LCx6), which, however, need not
necessarily be bound to individual cores. The allocation
of input, reconstruction, monitoring and feedback
processes on dedicated units is defined in a configuration
file and can be tuned to optimise the overall
performance. Inside a computation node, signal data
exchange is accomplished via shared memory. External
nodes are connected by a variety of real-time networks,
such as Ethernet and two types of reflective memory,
Bit3 and VMIC ([31], see also section 4.2). Gateway
processes, which are part of DCS infrastructure,
encapsulate data transport on and between these
networks, creating a virtual shared sample memory for
signal exchange between Application Processes. Real-
time networks also connect to real-time diagnostic
systems, while classical diagnostic and actuator systems
are attached directly to DCS computation nodes with
custom optical fibre links. In this configuration, the
entire control loop is executed in a base cycle of up to
1 ms duration. This length is given by the response time
of ASDEX Upgrade fastest actuator, the power supply
for the vertical stabilisation coils. DCS would even be
capable of faster cycle times.

8. Conclusion
Due to the complex matter of plasma physics, control

systems for experimental thermonuclear fusion devices
belong to the most ambitious exponents of their species.
DCS, the control system of the ASDEX Upgrade fusion
experiment, tackles this challenge, employing a modular
framework, which encapsulates control algorithms in
application processes with uniform interfaces to common
infrastructure services like data exchange. The design
has been optimised to relieve algorithm developers from

real-time
diagnostics
and analysis

classical
diags actuators

control system

analog
signals

safety
system

Linux multicore (LCx)
C2In

(VxWorks)

virtual shared sample memory

LCx0 LCx1 LCx2 LCx3 LCx4 LCx5
infra infra infra infra infra infra

admin admin admin

LCx6
infra

admin
infra

sched.
sched. input

input input
cond
cond recon.

recon.
mon

mon
ctr
ctr
ctr

output

output

mon
bit3

bit3

vmic

vmic
eth

eth shm shm shm shm shm shm shm

•  Configurable allocation
and priorisation of
processes

•  XML format
(SysConf.xml)

Fig. 10: typical DCS deployment and context

Wolfgang.Treutterer@ipp.mpg.de	

recurring but error-prone general tasks and offer them a
simple yet powerful toolset for implementation. In the
background sophisticated synchronisation methods,
versatile signal transport via real-time networks,
customisable process communication topology based on
the block-diagram concept ensure performance,
scalability, easy maintainability. The powerful
integration interface to external systems opens up a
promising evolution path. The concepts are even generic
enough, that the system could be used for any
demanding control task – not only in the fusion domain.

References
[1] R. Felton, E. Joffrin, A. Murari, L. Zabeo, F. Sartori, F.

Piccolo, et al., Real-time measurement and control at JET
experiment control, Fusion Eng. Des. 74 (2005), 561–566

[2] D.A. Humphreys, R.D. Deranian, J.R. Ferron, R.J.
Jayakumar, R.D. Johnson, R.R. Khayrutdinov, et al., High
performance integrated plasma control in DIII-D, Fusion
Eng. Des. 74 (2005) 665–669.

[3] J.I. Paley, S. Coda, B. Duval, F. Felici, J-M. Moret,
Architecture and commissioning of the TCV distributed
feedback control system, Real Time Conference (RT), 2010
17th IEEE-NPSS , vol. 1, no. 6, pp. 24-28 May 2010,
http://dx.doi.org/10.1109/RTC.2010.5750487

[4] K. Kurihara, J.B. Lister, D.A. Humphreys, J.R. Ferron, W.
Treutterer, F. Sartori et al., Plasma control systems relevant
to ITER and fusion power plants, Fusion Engineering and
Design, 83 (7–9) (2008), pp. 959–970
http://dx.doi.org/10.1016/j.fusengdes.2008.06.027

[5] G. Raupp , K. Behler, H. Blank, A. Buhler, R. Drube, H.
Eixenberger, K. Engelhardt, C. Fuchs, H. Kollotzek, A.
Lohs, R. Merkel, G. Neu, G. Schramm, W. Treutterer, D.
Zasche, T. Zehetbauer, ASDEX Upgrade Team, ASDEX
Upgrade CODAC overview, Fusion Engineering and
Design 84, 7-11 (2009), pp. 1575-1579,
http://dx.doi.org/10.1016/j.fusengdes.2009.01.031

[6] P. J. McCarthy, An Integrated Data Interpretation System for
Tokamak Discharges, PhD thesis, University College Cork
(1992)

[7] L. Giannone, M. Reich, W. Treutterer, R. Fischer, J. C.
Fuchs, K. Lackner, H. R. Koslowski, M. Maraschek, P. J.
McCarthy, A. Mlynek, R. Preuss, J. Stober, et. al., Real-
time magnetic equilibria for NTM stabilisation experiments,
Europhysics Conference Abstracts (CD-ROM, Proc. of the
38th EPS Conference on Plasma Physics, Strasbourg,
France, 2011), (Ed.) A. Becoulet and T. Hoang and U.
Stroth (European Physical Society, Geneva), Vol. 35G
(2011), P2.105

[8] A. Mlynek, M. Reich, L. Giannone, W. Treutterer, K. Behler,
H. Blank, A. Buhler, R. Cole, H. Eixenberger, R. Fischer,
A. Lohs, K. Lüddecke, R. Merkel, G. Neu, F. Ryter, D.
Zasche, et. al., Real-time feedback control of the plasma
density profile on ASDEX Upgrade, Nuclear Fusion 51, 4
(2011), 043002, http://dx.doi.org/10.1088/0029-
5515/51/4/043002

[9] H. Höhnle, J. Stober, K. Behler, A. Herrmann, W. Kasparek,
R. Neu, A. Mlynek, M. Reich, U. Stroth, W. Treutterer, and
the ASDEX Upgrade Team. Electron Cyclotron Resonance
Heating in the Second Harmonic Ordinary Mode at ASDEX
Upgrade. 38th EPS Conference on Plasma Physics, volume
35, page P2.095

[10] F. Felici, M.R. de Baar, M. Steinbuch, E. Fable, E. Fokina,
L. Giannone, C. Rapson, M. Reich, W. Treutterer, Real-
time plasma state reconstruction and fault detection using a
model-based dynamic observer, Proc. of the EPS 2013, to
be published.

[11] M. Reich, K. Behler, A. Buhler, H. Eixenberger, J. Hobirk,
W. Treutterer, et. al., Real-time current profile
measurements for NTM control, Europhysics Conference
Abstracts (CD-ROM, Proc. of the 36th EPS Conference on
Plasma Physics, Sofia, Bulgaria, 2009) , Vol. 33E (2009), P-
1.160

[12] M. Maraschek, Control of neoclassical tearing modes, 2012
Nucl. Fusion 52, 7 (2012), http://dx.doi.org/10.1088/0029-
5515/52/7/074007

[13] L. Giannone , A.C.C. Sips, O. Kardaun, G. Pautasso, F.
Spreitler, W. Suttrop, et. al., Regime Identification in
ASDEX Upgrade, in: Europhysics Conference Abstracts
(CD-ROM, Proc. of the 31st EPS Conference on Plasma
Physics, London, 2004) , (Ed.) Norreys, P. and Hutchinson,
H. (EPS, Geneva), Vol. 28G (2004), P-4.131

[14] Y. Zhang, G. Pautasso, O. Kardaun, G. Tardini, X. D.
Zhang, et. al., Prediction of disruptions on ASDEX Upgrade
using discriminant analysis, Nuclear Fusion 51, 6 (2011),
063039, http://dx.doi.org/10.1088/0029-5515/51/6/063039

[15] W. Treutterer, K. Behler, A. Buhler, R. Cole, L. Giannone,
A. Kagarmanov, K. Lüddecke, G. Neu, G. Raupp, M.Reich,
D. Zasche, T. Zehetbauer, ASDEX Upgrade Team,
Integrated operation of diagnostic and control systems,
Fusion Engineering and Design 86, (6-8) (2011), pp. 465-
470, http://dx.doi.org/10.1016/j.fusengdes.2010.12.074.

[16] W. Treutterer, C. Aubanel, O. Gruber, G. Neu, G. Raupp, U.
Seidel, D. Zasche, T. Zehetbauer, P. McCarthy, K.
Lüddecke, Redesign of the ASDEX upgrade plasma
position and shape controller, IEEE Transactions on Nuclear
Science, 43 (1 PART 1) (1996), pp. 217-221

[17] W. Treutterer, O. Gruber, P. McCarthy, G. Raupp, et. al.,
Progress in Shape Control at ASDEX Upgrade, Fusion
Technology (Proc. of the 20th Symposium on Fusion
Technology, Marseille, 1998), Vol. 1 (1998), pp. 521-524

[18] J. Santos, L. Guimarãis, M. Zilker, W. Treutterer, M.
Manso, et. al., Reflectometry-based plasma position
feedback control demonstration at ASDEX Upgrade,
Nuclear Fusion 52, 3 (2012),
http://dx.doi.org/10.1088/0029-5515/52/3/032003

[19] A. Kallenbach, M. Bernert, T. Eich, J.C. Fuchs, L.
Giannone, A. Herrmann, J. Schweinzer, W. Treutterer,
Optimized tokamak power exhaust with double radiative
feedback in ASDEX Upgrade, Nuclear Fusion, 52, 12
(2012), http://dx.doi.org/10.1088/0029-5515/52/12/122003

 [20] M. Reich, K. Behler, A. Bock, L. Giannone, M.
Lochbrunner, M. Maraschek, E. Poli, C. Rapson, J. Stober,
W. Treutterer, ECCD based NTM control at ASDEX
Upgrade, Europhysics Conference Abstracts 36F (2012),
PD4.004

[21] C. Rapson, F. Monaco, M. Reich, J. Stober, W. Treutterer,
et. al., Simulation of feedback control system for NTM
stabilisation in ASDEX Upgrade, Proc of 27th SOFT
conference, Liege, 2012

[22] B. Esposito, G. Granucci, M. Maraschek, S. Nowak, A.
Gude, V. Igochine, E. Lazzaro, R. McDermott, E. Poli, J.
Stober, W. Suttrop, W. Treutterer, H. Zohm, D. Brunetti, et.

Wolfgang.Treutterer@ipp.mpg.de	

al., Avoidance of disruptions at high ß N in ASDEX
Upgrade with off-axis ECRH, Nuclear Fusion 51, 8 (2011),
http://dx.doi.org/10.1088/0029-5515/51/8/083051

[23] W. Treutterer, T. Zehetbauer, V. Mertens, G. Neu, G.
Raupp, D. Zasche, et. al., Plasma Feedback Controller
Reorganisation for ASDEX Upgrade's New Discharge
Control and Data Acquisition System, Fusion Engineering
and Design 74 (2005), pp. 501-505,
http://dx.doi.org/10.1016/j.fusengdes.2005.06.151

[24] K. S. Walgama, J. Sternby, Inherent observer property in a
class of anti-windup compensators, International Journal of
Control, 52:3 (1990), pp. 705-724,
http://dx.doi.org/10.1080/00207179008953562

 [25] G. Raupp, V. Mertens, G. Neu, W. Treutterer, D. Zasche,
T. Zehetbauer, Real-time exception handling—Use cases
and response requirements, Fusion Engineering and Design,
Vol. 87, 12 (2012), pp. 1891-1894,
http://dx.doi.org/10.1016/j.fusengdes.2012.06.002

[26] V. Mertens, G. Raupp, W. Treutterer, Plasma Control in
ASDEX Upgrade, Fusion Science and Technology, Vol. 44,
3 (2003), pp. 593-604

[27] W. Treutterer, G. Neu, C. Rapson, G. Raupp, D. Zasche, T.
Zehetbauer, ASDEX Upgrade Team, Event detection and
exception handling strategies in the ASDEX Upgrade
discharge control system, Fusion Engineering and Design,
article in press,
http://dx.doi.org/10.1016/j.fusengdes.2013.03.004

[28] G. Neu, K. Engelhardt, G. Raupp, W. Treutterer, D. Zasche,
T. Zehetbauer, et. al., The ASDEX Upgrade Discharge
Schedule, Fusion Engineering and Design 82 (2007), pp.
1111-1116, http://dx.doi.org/10.1016/j.fusengdes.2006.12.

[29] G. Neu, A. Buhler, K. Engelhardt, J. C. Fuchs, O. Gruber,
V. Mertens, G. Raupp, J. Schweinzer, W. Treutterer, D.
Zasche, T. Zehetbauer, et. al., Experiment planning and
execution workflow at ASDEX Upgrade, Fusion
Engineering and Design 86, 6-8 (2011), pp. 1072-1075,
doi:10.1016/j.fusengdes.2011.01.

[30] W. Treutterer, G. Neu, G. Raupp, D. Zasche, T. Zehetbauer,
R. Cole, K. Lüddecke, et. al., Management of complex data
flows in the ASDEX Upgrade plasma control system,
Fusion Engineering and Design, 87 (2012), pp. 2039-2044,
http://dx.doi.org/10.1016/j.fusengdes.2012.01.038

[31] W. Treutterer, G. Neu, G. Raupp, T. Zehetbauer, D. Zasche,
K. Lüddecke et al., Real-time signal communication
between diagnostic and control in ASDEX Upgrade, Fusion
Engineering and Design, 85 (2010), pp. 466–469
http://dx.doi.org/10.1016/j.fusengdes.2010.04

[32] A. Neto, F. Sartori, F. Piccolo, R. Vitelli, G. De Tommasi,
F. Sartori et al., MARTe: a multiplatform real-time network,
IEEE Transactions on Nuclear Science, 57 (2) (2010), pp.
479–486 http://dx.doi.org/10.1109/TNS.2009.2037815

 [33] Concurrent Computer Corporation, iHawk Real-Time
Multiprocessors, http://real-time.ccur.com/docs/default-
source/data-sheets/ihawk-real-time-multiprocessors-data-
sheet.pdf?sfvrsn=8

