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In magnetised plasma turbulence, the couplings of perpendicular spatial scales that arise due to the nonlinear interac-
tions are analysed from the perspective of the free-energy exchanges. The plasmas considered here, with appropriate
ion or electron adiabatic electro-neutrality responses, are described by a gyrokinetic formalism in a toroidal magnetic
geometry. Turbulence develops due to the electrostatic fluctuations driven by temperature gradient instabilities, respec-
tively, ion temperature gradient (ITG) or electron temperature gradient (ETG). The analysis consists in decomposing the
system into a series of scale structures, while accounting separately for contributions made by modes possessing special
symmetries (e.g. the zonal flow modes). The interaction of these scales is analysed using the energy transfer functions,
including a forward and backward decomposition, scale fluxes and locality functions. The comparison between the ITG
and ETG cases shows that ETG turbulence has a more pronounce classical turbulent behaviour, exhibiting a stronger
energy cascade, with implications on gyrokinetic turbulence modelling.

PACS numbers: 52.30.Gz, 52.35.Ra, 52.65.Tt

I. INTRODUCTION

In many physical systems, nonlinear interactions give rise
to couplings between different dynamical scales. In the case
of an electrically neutral fluid flow, the velocity field repre-
sents the dynamical quantity of interest and the couplings oc-
cur between different scales of motion. A similar picture ex-
ists for an electrically conductive fluid, where the interplay
between velocity and the self-consistent magnetic field gives
rise to Alfvén waves. The nonlinear interaction can now be
interpreted either as the couplings of velocity and magnetic
scales or scattering of counter-propagating Alfvén waves of
different sizes. For kinetic systems, were the dynamical quan-
tity is represented by a probability distribution function, de-
fined in a six-dimensional phase space, the picture becomes
more complicated. Not only that spatial and velocity struc-
tures evolve differently, the dynamics can involve moments of
the distribution function. These moments can be seen, to an
extent, as preferential modes of the distribution function that
mediate the nonlinear interactions.

This situation is present, as well, for magnetised plasmas
described kinetically using the gyrokinetic approximation1.
The gyrokinetic (GK) formalism, valid for a plasma evolving
under the influence of a strong magnetic guide field and which
obeys the gyrokinetic ordering, represents a self-consistent
method of removing the fast gyration phase from the motion
of charged particles and decreasing the distribution function
phase space from six to five dimensions2. The influence of
the magnetic guide field on the system leads to the develop-
ment of a spatial anisotropy. Moreover, a similar anisotropy
is also developed in velocity space. It should be understood
that these anisotropic directions occur at the dynamical level
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of the equations and that the perpendicular velocity symmetry
is taken into account explicitly by the gyrokinetic formalism.
Thus, any non-trivial geometry of the magnetic field (non-
slab, or in general possessing a non-diagonal metric) will in-
trinsically complicate the development and saturation of GK
turbulence, i.e. the couplings between different dynamical
scales.

For a turbulent GK state, the dynamics determine the type
of structures that develop along each direction and influence
the redistribution of energy in the system, both linear and non-
linear. As such, investigating the energy redistribution prob-
lem for a spectral form of the GK equations can lead to insight
regarding the dynamics of the equations. While different ap-
proaches exist for the study of the dynamics introduced by the
linear terms, the nonlinear terms drastically limit the available
possibilities. To understand the dynamics introduced by the
nonlinear term, the redistribution of free-energy (a GK ideal
invariant, i.e. a global quantity that remains constant in time in
the absence of source and sink effects) is usually investigated.
In the current work, we will only look at the redistribution of
energy between perpendicular spatial scales, obtained as the
integration of all other directions contributions. While this
represents a point of interest in the study of GK turbulence, it
should always be remembered that the fundamental dynamics
occur in a higher dimensional space that links spatial and ve-
locity dynamics (linear3,4 and nonlinear5–7 phase space mix-
ing), as well as the perpendicular and parallel spatial scales
(the concept of critical balance8). This is important as inves-
tigating the perpendicular spatial scales energetic exchanges
only captures part of the nonlinear dynamics.

Understanding the behaviour of GK turbulence in the per-
pendicular directions is important for (heat and particles)
transport studies, with relevance to the field of fusion research.
The choice of this study to concentrate on the interaction of
scales and not of modes9 is given in part by practical con-
cerns. Promising modelling techniques, like application of
Large Eddy Simulations (LES) to GK turbulence10–12, rely
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on the concept of scales, on their separation and on their lo-
cal energetic interaction. Furthermore, these concepts form
the basis of our phenomenological understanding of the prob-
lem. To facilitate the analysis, a Fourier mode decomposi-
tion of the distribution function in the perpendicular spatial
directions is used. In general, well suited decompositions are
needed to give modes proper physical significance (e.g. us-
ing spherical harmonics for spherical symmetric problems).
Since a natural mode decomposition choice that would de-
pend on the complex geometry is not known to us, we pre-
fer to build our understanding on the phenomenological rele-
vant concept of scales and not on the plane-wave modes. Al-
though the spectral modes enter the nonlinear dynamics, it is
the scales that posses phenomenological information and that
can be measured experimentally. The presence of a complex
magnetic geometry complicates further the link between dy-
namical relevant modes and the spatial scales, as perpendic-
ular wavenumbers contribute to more than one perpendicular
scale. From this perspective, contributions to perpendicular
scales made by modes that posses special symmetries, like
the zonal flow, are accounted separately. While the separation
is done at the mode level, the energetic interaction is still per-
formed from the perspective of the scales. This aspect of the
problem will be detailed in the current work.

We apply this analysis to ion temperature gradient (ITG)
and electron temperature gradient (ETG) turbulence. The
mathematical difference between these two cases consists in
the adiabatic response given by the electro-neutrality condi-
tion, which enters in the GK Poisson equation. The two cases
differ by an additional nonlinear term mediated by the elec-
trostatic potential resulting from the flux-surface average con-
tribution to the electro-neutrality condition. As such, in our
analysis, we separate the flux-surface average contribution
(responsible for the generation of zonal flows) of the electro-
static potential that appears for the ITG case compared to the
ETG one.

Considering the phenomenological interpretation of turbu-
lence, as cascades of energy between scales, decomposing the
net transfers into the forward (positive) and backward (neg-
ative) contributions allows us to better understand the nature
of the energetic exchanges that take place. This analysis is
particularly important for the development of more advanced
LES models for GK turbulence. Furthermore, looking at the
problem from the perspective of scale fluxes, including the
scale locality of flux contributions13,14 (measuring the con-
tribution of an energy flux through a scale from scales pro-
gressively dissimilar in size), provides overall understand-
ing of the GK turbulence problem. To ease the read of the
manuscript, we first introduce the GK equations in Section II,
presenting the difference between the ITG and ETG adiabatic
responses and the impact made on the nonlinear term. We
continue by presenting the scale decomposition in Section III,
the transfers analysis in Section IV, the scale flux analysis in
Section V and end with a discussion of the the problem from
a theoretical and modelling perspective.

II. OVERVIEW OF THE PROBLEM

A. The Fourier representation

For a magnetised plasma, the strong guide field (B) cre-
ates an anisotropy in the spatial and velocity directions of the
flow. As such, for the study of this system, the use of field-
aligned coordinates15 and the gyrokinetic formalism16 rep-
resents a natural approach. The field-aligned {x, y, z} non-
orthogonal coordinates parametrize the real space, where z is
the coordinate along the magnetic field line (ez) and the ra-
dial coordinate x and the toroidal coordinate y are orthogonal
to the magnetic field. The velocity coordinates {v‖, µ} are,
respectively, the velocity parallel to the magnetic field and
the magnetic moment (containing the perpendicular veloc-
ity information). Since the turbulent structures tend to align
with the magnetic field lines and become elongated along the
guide field direction, the definition of the spatial scales be-
comes entangled with that of the equilibrium magnetic ge-
ometry. By using the field-aligned coordinates system to
parametrize the real space and by using the same coordinate
basis, a Fourier representation can be obtained in the perpen-
dicular direction: {x, y} → {kx, ky}. The norm of a wave-
vector (k = kx∇x+ ky∇y) can be identified with the inverse
of a perpendicular spatial scale k ∼ 1/`. As the basis used is
non-orthogonal, the norm k ≡ |k| is defined along the wave-
vector k direction, using the inner-product k = [ηijkikj ]

1/2,
were ηij are the contra-variant metric tensor components and
i and j stand-in for the {x, y} components indices.

In the gyrokinetic representation, the perturbed distribution
functions gs = gs(x, y, z, v‖, µ, t) are the dynamical quanti-
ties of interest, where s indices the plasma species and is omit-
ted altogether when the adiabatic approximation17 is used for
the electro-neutrality response. Each perturbed distribution
function, characterising a species of particles of charge q and
mass m, is assumed to evolve around an equilibrium point
given by an appropriately normalised18 Maxwellian contribu-
tion F0 = π−3/2e−(v2‖+µB0) and which posses a background
global temperature T0. This allows for the decomposition
g = h − q F0

T0
φ to be made, where h is the non-adiabatic part

of the perturbed distribution functions and φ = φ[g] is the
gyro-averaged self-consistent electrostatic field contributions.

B. The gyrokinetic equations

The gyrokinetic equations are solved using the Eulerian
code GENE19, which can be used in both global and local
(flux-tube) approximation20. For simplicity, we restrict the
problem to the local approximation of a toroidal magnetic
equilibrium configuration. Symbolically, the gyrokinetic evo-
lution equations can be expressed as

∂g

∂t
= G[g] + L[g] +D[g] +N [g, g] . (1)

With the exception of the last term, all others are linear in g.
The first term in Eq. (1) is due to the contribution of the nor-
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malised background density (ωn) and temperature (ωT ) gra-
dients acting on the electrostatic field gradients and represents
the driving mechanism for GK turbulence,

G[g] =−
[
ωn +

(
v2
‖ + µB0 −

3

2

)
ωT

]
F0
∂φ

∂y
. (2)

The second linear term, appears due to magnetic curvature
and contains the parallel dynamics involving magnetic trap-
ping and linear Landau damping/pumping effects,

L[g] =−
T0(2v2

‖ + µB0)

qB0

(
Kx

∂h

∂x
+Ky

∂h

∂y

)
− vT

2

[
µ
B0

∂z

∂h

∂v‖
−
∂(v2
‖ + µB0)

∂v‖

∂h

∂z

]
, (3)

where vT =
√

2T0/m is the thermal velocity. The third linear
term contains the dissipative effects. The dissipation terms
have a simple hyper-diffusivity form,

D[g] =−
(
az

∂n

∂zn
+ av‖

∂n

∂vn‖

)
g , (4)

where n = 4 and the a’s parameters are adapted to the prob-
lem at hand. A collision operator can also be included.

Finally, the last term contains the E×B drift nonlinearity.
This term has the fundamental role of coupling different five
dimensional scales in phase space and leads to an effective
coupling of perpendicular scale structures,

N [g, g] =
∂φ

∂y

∂h

∂x
− ∂φ

∂x

∂h

∂y
. (5)

While all terms contribute to the balance equation, it is on the
nonlinear term that we will concentrate our analysis. More-
over, as the metric ηij depends on z for most magnetic ge-
ometries of interest, same kx, ky wavenumbers can contribute
to different scale lengths (`). This is important as the nonlin-
ear interaction term is defined in terms of kx, ky wavenumber
interactions.

Indeed, omitting the velocity dependences, which are not
of immediate interest, we see that the nonlinear term is given
by a Poisson bracket structure in the {x, y} space which for
the {kx, ky} Fourier representation simply becomes,

N(kx,ky,z) =
∑

kx−px−qx=0
ky−py−qy=0

[qxpy−qypx]φ(qx,qy,z)h(px,py,z) . (6)

From this form, it is clear that specifying the kx−px−qx = 0
and ky − py − qy = 0 wavenumber vertex interactions, will
not define the nonlinear coupling of scales k, p and q.

C. The quasi-neutrality responses

We see that the GK equation (Eqs. 1-5) has the same
form regardless of the species studied, be it ions or electrons.

However, to obtain a closed system, the self-consistent gyro-
averaged electrostatic potential (φ) needs to be obtained. In
the Fourier representation, the gyro-averaged electrostatic po-
tential is simply the Bessel function (J0) screened electrostatic
potential (ϕ), i.e. φ(k) = J0(λ)ϕ(k), with λ =

√
µB0kvT /Ω

and Ω = qB0/(mc).
Using the adiabatic approximation for one of the species (of

density δn), the electrostatic potential (ϕ(k)) is found from
the gyrokinetic Poisson equation,

δn

n0
=

1

n0

∫
J0(λ)g dv‖dµ+ [Γ0(b)− 1]

qϕ

T0
. (7)

and requires knowledge of the (charge) density fluctuations
of all plasma constituents (including δn). It is at this stage
that the difference between the ITG and ETG cases becomes
apparent, in the form of the adiabatic response (δn/n0) con-
sidered for the adiabatic species,

δn

n0
=
qϕ

T0
, for ETG, and (8)

δn

n0
=
q(ϕ− 〈ϕ〉FS)

T0
, for ITG . (9)

The ion response incorporates the departure from the flux-
surface average (〈· · · 〉FS), which leads to an additional con-
tribution. While in the ETG case (considered for electrons)
the electrostatic potential is found as

ϕETG =
1

1− Γ0(b) + τ

T0

q n0

∫
J0(λ)gdv‖dµ (10)

for the ITG case (considered for ions) the electrostatic poten-
tial takes the form

ϕITG =
1

1− Γ0(b) + τ

[ T0

q n0

∫
J0(λ)gdv‖dµ+ τ〈ϕ〉FS

]
= ϕETG +

τ〈ϕITG〉FS
1− Γ0(b) + τ

. (11)

As example, the contributions made by the two terms to the
ITG gyro-average potential and the ETG gyro-average poten-
tial are presented in FIG. 1.

Performing a δϕ = ϕ− 〈ϕ〉FS decomposition, we see that
the δϕ part of the potential is identical in the two cases. The
different form of the adiabatic response just changes the flux-
surface averaged contribution,

〈ϕETG〉FS =
1

1− Γ0(b) + τ

〈 T0

q n0

∫
J0(λ)gdv‖dµ

〉
FS

,

〈ϕITG〉FS =
1

1− Γ0(b)

〈 T0

q n0

∫
J0(λ)gdv‖dµ

〉
FS

, (12)

resulting in a less damped contribution in the ITG case.
In all of above, the function Γ0(b) = ebI0(b) and the
modified Bessel function I0 have the arguments defined as
b = k2v2

T /(2Ω2), while τ represents the kinetic to adiabatic
species temperature ratios (ion to electron temperature ratio
for ITG case and the electron to ion temperature ratio for the
ETG case).
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FIG. 1. (Color online) Cross-section through the gyro-averaged elec-
trostatic potentials for ITG and ETG cases. For ITG, the contribu-
tions made by the terms given in Eq. (11) are also presented. Details
of the simulations are given in sub-section II E.

D. A note on the nonlinear term

Taking into account the ITG and ETG form of the gyro-
averaged electrostatic potential (φ) (resulting from Eq. 10 and
Eq. 11) entering in the nonlinear term, we see that the ITG
nonlinearity differs by an additional flux-surface average con-
tribution (it is also interesting to note that this is the only
place where this additional contribution enters is in GK evolu-
tion equations). This contribution changes the 〈φITG〉FS and
〈φETG〉FS signal entering into the nonlinear term.

N ITG = Nδφ +N 〈ϕ
ITG〉FS , (13)

NETG = Nδφ +N 〈ϕ
ETG〉FS . (14)

Although symbolically we can extract a common part of the
nonlinear interactions, due to the intrinsic nonlinear character
of the problem, we can not extract a common flow behaviour
corresponding to only one term. The stronger interactions
(N 〈ϕ

ITG〉FS > N 〈ϕ
ETG〉FS , since 〈ϕITG〉FS > 〈ϕETG〉FS)

in the case of ITG, will change the overall behaviour of Nδφ

in the two cases.

E. Numerical parameters

The geometry used is a concentric circular model21 and
both ITG and ETG cases use a resolution of 256×256×24×
48× 16 in the x× y × z × v‖ × µ coordinates. However, the
perpendicular box sizes Lx×Ly are different in the two cases.
For ITG a box size of 125 ρ × 125 ρ is used, while for ETG
we employ a box of 200 ρ × 125 ρ to account for streamers
in the x direction, where ρ represents the gyroradius of the ki-
netic species. For ITG, the typical CBC parameters22 are used:
safety factor q = 1.4, magnetic shear ŝ = 0.8, aspect ratio
(small radius r over the large radius R) of r/R = 0.18, tem-
perature and density gradients of ωT = 7 and ωn = 2.2. In ad-

dition, for the ITG case we employ a Landau-Boltzmann col-
lision operator with collision frequency of ν = 0.005[vT /R]
and hyper-diffusion in z and v‖, with coefficients of az = 1.0
and av = 0.2.

For the ETG case, parameters are taken as the CBC ones as
well (listed above for ITG), but with a lower safety factor of
ŝ = 0.1. This choice is made to be in line with the authors pre-
vious LES work12 and ETG benchmarking efforts23. Choos-
ing a lower magnetic shear is known to reduce the heat trans-
port for ETG turbulence19,24. However, for ETG no collision
operator is used, as physically an electron-electron collisions
are not expected to be sufficiently strong. A hyper-diffusion
in z and v‖ with the same coefficients as for the ITG case is
used.

III. THE ENERGETIC PICTURE

The free energy (E) represents the quadratic quantity of
interest for the study of gyrokinetics turbulent dynamics25.
Free-energy is the quantity that is injected into the system by
the gradients and dissipated by collisions, while being redis-
tributed in a conservative fashion by the action of the nonlin-
ear term. Formally, the free energy is defined as

E =

〈
n0T0

2F0
hg

〉
Λ

, (15)

where Λ is the phase space volume and the 〈· · · 〉X notation
stands for the average over the X domain. Considering our
interest in analysing the energetic coupling of perpendicular
scales, we look first at the balance equation for a mode before
concentrating on scales interaction.

A. The free-energy balance equation for a mode

Working in the Fourier representation of the perpendicular
spatial directions, we can define the spectral density of free
energy for a mode identified by the wave-vector k as

E(k) =

〈
n0T0

2F0
h(−k)g(k)

〉
Θ

, (16)

where Θ is implicitly defined from the phase space volume
element (dΛ = dkxdkydΘ) and considering the reality condi-
tion in resect to Hermitian conjugation h∗(k) = h(−k). From
the GK equations (Eq. 1), the free-energy balance equation for
a mode can be written as

∂E(k)

∂t
= G(k) + L(k) +D(k) + T (k) . (17)

where the linear termsA = {G,L,D} are computed from GK
equations terms A = {G,L,D} as

A =

〈
n0T0

2F0
h(−k)A(k)

〉
Θ

. (18)
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In respect to the terms in the right-hand side of the equation,
G(k) represents the free energy injected into the system at a
mode k by the temperature and density gradients, L(k) is the
linear contributions composed by the parallel and curvature
terms (and globally integrates to zero). The term D(k) is the
local dissipation and finally, T (k) is the nonlinear free-energy
transfer term.

The free-energy transfer represents the energetic contribu-
tion of the nonlinear term (Eq. 6) and has the form,

T (k) =

〈
n0T0

2F0
h(−k)N(k)

〉
Θ

=
∑
p,q

T (k|p,q), (19)

where T (k|p,q) is the triad transfer representing the redistri-
bution of free energy between modes k due to the interaction
with modes p and q, if k + p + q = 0 and is zero other-
wise. Since the perpendicular-scale triad transfer is integrated
over all other directions, it represents an effective mechanism
for the exchange of free energy. It should not be seen as the
fundamental energetic interaction for gyrokinetics, as such an
object is defined in the full five-dimensional phase space.

B. The free-energy transfers between modes

Taking into account in a manifest way the q and p symme-
try arising from the convolution, we define the triad transfer
as

T (k|p,q) =

〈
n0T0

4F0

[
qxpy−qypx

]
×

[
φ(q)h(p)−φ(p)h(q)

]
h(k)

〉
Θ

(20)

for k + p + q = 0 and zero otherwise. While the nonlinear
term is symmetric in q and p, we see that this symmetry is
achieved by the product of two anti-symmetric structures, the
Poisson bracket one (resulting in the

[
qxpy − qypx

]
geomet-

ric contribution) and the field operator corresponding to the
Poisson equation that relates φ to g .

In addition to the T (k|p,q) = T (k|q,p) symmetry being
evident, the energy conservation in a triad can also be easily
determined,

T (k|p,q) + T (p|q,k) + T (q|k,p) = 0 . (21)

Although this object correctly account for the triad transfer
and cumulatively account for all energetic fluxed quantities
that arise, it is more convenient to split the triad transfer into
mode-to-mode transfer,

T (k|p,q) =
[
S(k|p|q) + S(k|q|p)

]
, (22)

where

S(k|p|q) =

〈
n0T0

4F0

[
qxpy−qypx

]
φ(q)h(p)h(k)

〉
Θ

. (23)

For the mode-to-mode transfer, the position of each mode
that enters the definition matters. This non-unique decompo-
sition (up to a circulation transfer that sums up to zero in a
triad26) allows for a more detailed interpretation of the trans-
fers. For instance, since the anti-symmetry of p and k is evi-
dent, we can interpret S(k|p|q) as the energy mode k receives
from mode p due to the mediation of mode q and is opposite
in value to the energy mode p receives from mode k due to the
mediation of the same mode q, i.e. S(k|p|q) = −S(p|k|q).
This conceptual decomposition is solely done to help with the
interpretation.

C. The zonal-flow mode transfers

The mode-to-mode decomposition allows to identify the
contribution to the turbulence of special modes, like the modes
responsible for zonal flows. For a GK plasma in toroidal ge-
ometry, the zonal flow contribution is given by a flux surface
averaged signal. In our representation, the flux surface aver-
age is defined as

〈g(kx, ky, z)〉FS =
1

VFS

∫
g(kx, 0, z)

√
η dz , (24)

where VFS =
∫∫ √

η dydz and we used 〈g(ky)〉y = g(0).
While the flux surface integration over z is crucial, we denote
modes kZF = (kx, 0) as zonal-flow modes. These are the
modes that contribute to the zonal-flow signal. Depending on
the role of the zonal flow mode entering in the mode-to-mode
interaction and due to the three wave resonance condition, we
have

S(kZF |p|q) =

〈
n0T0

4F0

[
− pykx

]
φ(qx,−py, z)×

h(px, py, z)h(kx, 0, z)

〉
Θ

(25)

S(k|pZF |q) =

〈
n0T0

4F0

[
+ pxky

]
φ(qx,−ky, z)×

h(px, 0, z)h(kx, ky, z)

〉
Θ

(26)

S(k|p|qZF ) =

〈
n0T0

4F0

[
− kyqx

]
φ(qx, 0, z)×

h(px,−ky, z)h(kx, ky, z)

〉
Θ

(27)

The mediation of the zonal flow only contain the S(k|p|qZF )
interactions, responsible for the transfer of energy to smaller
scales in kx direction. S(kZF |p|q) and S(k|pZF |q) only dif-
fer by a minus sign and are responsible for a nonlocal energy
movement. We expect that these interactions to contribute
drastically to the non-locality of energy interactions.

From the perspective of the triad transfer, only two sets of
interactions are possible for the zonal flow modes,

T (kZF |p,q) =
[
S(kZF |p|q) + S(kZF |q|p)

]
, (28)

T (k|pZF ,q) =
[
S(k|pZF |q) + S(k|q|pZF )

]
. (29)
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D. The scale decomposition

Starting from the idea that scales are the structures of phys-
ical importance, not the wave modes, we interpret the non-
linear interactions as in the case of classical turbulence, look-
ing at the coupling of scales in the system. For non-orthogonal
coordinates, as is the case here, we accept that the same kx, ky
wavenumber interaction bring contribution to different scales.

As in similar works27,28, we start from the decomposition
of the space into scale structures, identical to selecting struc-
tures sK = [kK−1, kK ], with boundary wavenumbers given
as a geometric progression (kK = k0λ

K , here λ = 21/5). We
call these structures shells due to previous uses in literature,
however it should be noted that the geometric shape is not
always that of a cylindrical or spherical shells. We mention
that while a infinitesimal decomposition could be performed,
equivalent to recovering the wave-norm k, a geometric pro-
gression is preferred for turbulence studies, since scaling laws
play an important part.

The nonlinear transfer between shells represents now a di-
agnostic that consists in filtering the distribution function be-
fore building the free-energy transfer functions. The shell-
filtered distribution functions gK(k) are found as

gK(k) =

{
g(k), |k| ∈ sK
0, |k| /∈ sK

(30)

It is important to realise that the shell-filtered distribution
functions are well defined in real space, the total signal being
recovered as the superposition of all scale filtered contribu-
tions,

g(x, y) =
∑
K

gK(x, y) . (31)

E. The free-energy interaction for a scale

In relation to the mode structure, the free energy contained
in a scale can be easily found as

E(K) =

〈 ∫
|k|∈sK

E(k)dk

〉
Θ

=

〈 ∫
|k|∈sK

n0T0

2F0
h(k)g(k)dk

〉
Θ

=

〈
n0T0

2F0
h(k)gK(k)

〉
Λ

=

〈
n0T0

2F0
hK(k)g(k)

〉
Λ

,

(32)

emphasising the importance of the order of the integrals and
using the fact that two scales are orthogonal to each other
(arising from the definition). As example, for the ITG case,
we show in in FIG. 2 the free-energy contained in three differ-
ent shells as a representation of scales, as well as the unfiltered
quantity. We mention that we have 30 shells in total. As we
can see, ever larger indexed shells contain smaller and smaller

FIG. 2. (Color online) The free-energy density structures and fil-
tered contributions arising from different shells. The energy density
is normalised by its global integrated value. On the right, z = 0
cross-section planes are shown for clarity.

structures. This allows us to interpret the nonlinear interac-
tions as the coupling between eddies of different size.

The balance equation for a shell can now be found in a sim-
ilar manner, giving,

∂E(K)

∂t
= G(K) + L(K) +D(K) + T (K) , (33)

where the rhs terms {G(K),L(K),D(K), T (K)} are com-
puted in a similar fashion as the energy, as the filtered contri-
bution of their respective mode quantities. For the two case
studied, we plot the linear terms spectra (the rhs terms of
Eq. 33) in FIG. 3. Compared to ITG, the ETG case has smaller
dissipation at large scales. For ETG, the dissipation tends to
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FIG. 3. (Color online) The free-energy balance equation rhs spectra,
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sent the shell boundaries.

peak at small scales. In both cases, the sum of the linear con-
tributions at each scale balances the nonlinear transfer spectra
(T ).

Due to the orthogonality of shells, the contribution arising
from the nonlinear term posses no complication in being com-
puted directly. However, the nonlinear term can be computed
as the interaction of three scales K, P and Q. Starting from
the triad-transfer definition (Eq. 35), we filter the fields before
computing the transfer,

T̄ (k|p,q) =

〈
n0T0

4F0

[
qxpy−qypx

]
×

[
φQ(q)hP (p)−φQ(p)hP (q)

]
hK(k)

〉
Θ

. (34)

For T̄ (k|p,q), the manifest symmetry in q and p of the triad
transfers is broken effectively by the shell filtering procedure,
as hP (q) = 0 for q /∈ sP . We see that the same result can be
obtained starting from Eq. (23). We thus define the triple-scale
(shell) transfer as

S(K|P |Q)=

〈
n0T0

2F0

[
qxpy−qypx

]
φQ(q)hP(p)hK(k)

〉
Λ

,

(35)

or equivalently in real space as

S(K|P |Q) =

〈
n0T0

2F0

[
∂φQ

∂y

∂hP

∂x
− ∂φQ

∂x

∂hP

∂y

]
hK
〉

Λ

.

(36)

The real space form of the definition can be more intuitive for
global simulation works or non-axisymmetric geometric con-
ditions. We notice that the averaging is done over the entire
volume as the scale separation is contained by the filtering
procedure.

Similarly, we define the three contribution of the zonal-flow
modes to the triple-scale (shell) transfer as

S(KZF |P |Q)=

〈
n0T0

2F0

[
qxpy−qypx

]
φQ(q)hP(p)hK(kZF )

〉
Λ

,

(37)

S(K|PZF |Q)=

〈
n0T0

2F0

[
qxpy−qypx

]
φQ(q)hP(pZF )hK(k)

〉
Λ

,

(38)

S(K|P |QZF )=

〈
n0T0

2F0

[
qxpy−qypx

]
φQ(qZF )hP(p)hK(k)

〉
Λ

,

(39)

or a total contribution

SZF (K|P |Q) = S(KZF |P |Q) + S(K|PZF |Q) + S(K|P |QZF )
(40)

that contains the receiver, giver and mediator contributions to
a given scale, without differentiating between the three.

IV. SCALE-TO-SCALE TRANSFERS

For GK turbulence, the scale-to-scale (shell-to-shell) trans-
fers have been studied before in the literature27,29. From the
triple-scale transfer, they are defined as

P(K|P) =
∑
Q

S(K|P |Q) . (41)

It has the interpretation of the energy received by modes lo-
cated in a shell K from modes located in a shell P by the inter-
action with all other possible modes. Due to the conservation
of interaction, P(K|P) = −P(K|P) andP(K|K) = 0 for each
species. Furthermore, it allows the recovery of the non-linear
transfer spectra,

T (K) =
∑
P

P(K|P) =
∑
P

∑
Q

S(K|P |Q) . (42)

The scale-to-scale provides a diagnostic to visualise the en-
ergy cascade. Since the shell boundaries are taken as a power
law, the normalised results to the maximal shell transfer pro-
vides us with information regarding the direction and locality
of the energy cascade. We designate a transfer to be direct if it
is positive for K > P and we call it to be local if |P − K| ∼ 5
(due to our choice of λ = 21/5). From FIG. 4, we do observe
that the scale-to-scale transfer pattern corresponds indeed to a
direct and local energy cascade for ITG and ETG turbulence.
Since P(K|P) is systematically positive (lower-diagonal) for
the energy received from larger scales K > P , we can say that
we observe a direct energy cascade.

It is important to differentiate between the locality of the
energy cascade, one structure giving energy to a similar size
structure, from the locality of interactions captured by the lo-
cality functions, where the mediator of the energetic interac-
tion is also considered (to be presented in the next section).
We stress that only the relative amplitude of the scale-to-scale
transfers matters in comparing the intensity of the coupling
between two scales.
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FIG. 4. (Color online) The shell-to-shell energy transfers for ITG
and ETG driven turbulence. Below we plot the same normalised
transfers, for given K, as a function of P − K.

A. Forward and backward transfers

The phenomenological interpretation of turbulence, as the
the direct cascade of energy from large to small scales, allows
for the existence of backscatter. The backscatter represents
transfer of information from small to large scales, in spite of
an overall direct cascade. These transfers are believed to be
important in the self-organisation process of turbulence and
are particular important in sub-grid scale modelling of turbu-
lence.

Splitting the net transfers into a forward and backward com-
ponent contains a degree of arbitrariness. Indeed, only at the
mode-to-mode transfer level can we say with certainty that
a transfer is directional (e.g. forward if S(k|p|q) > 0 for
k < p). At the shell level, as we are looking at effective trans-
fers composed of many individual interaction, this becomes
difficult. However, we use a similar approach as in Ref. [30]
and propose a possible working definition. Considering the
operators,

[X]+ =

{
X, if X > 0
0, if X ≤ 0

, [X]− =

{
0, if X > 0
X, if X ≤ 0

, (43)

that select only the positive or negative contributions, we de-
fine the forward and backward triple-scale transfers as

S+(K|P |Q)=
1

2

〈[
n0T0

2F0

[
qxpy−qypx

]
φQ(q)hP(p)

]
−
hK(k)

−
[
n0T0

2F0

[
qxpy−qypx

]
φQ(q)hK(p)

]
+

hP(k)

〉
Λ

, (44)

S−(K|P |Q)=
1

2

〈[
n0T0

2F0

[
qxpy−qypx

]
φQ(q)hP(p)

]
+

hK(k)

−
[
n0T0

2F0

[
qxpy−qypx

]
φQ(q)hK(p)

]
−
hP(k)

〉
Λ

. (45)

The forward and backward decomposition is most useful
when analysing the scale-to-scale (shell-to-shell) transfers.
The forward and backward scale-to-scale transfers are ob-
tained from the triple-scale transfers, by summing over con-
tribution made by all possible mediator scales Q,

P+(K|P) =
∑
Q

S+(K|P |Q) ,

P−(K|P) =
∑
Q

S−(K|P |Q) . (46)

This definition allows for the property P+(K|P) =
−P−(P |K), which just tells that the contribution between
two scales is equal and opposite. The net transfer value
is recovered by summing the two contributions, P(K|P) =
P+(K|P) + P−(K|P).

In FIG. 5 we plot the scale-to-scale transfers for the ITG
and ETG cases. Since the forward and backward contribu-
tion are much larger than the net transfers, we use a different
normalisation, dividing everything to L+. This quantity rep-
resents the sum of the positive part of the linear contribution
G + L+D,

L+ =

∫ [
G(k) + L(k) +D(k)

]
+
dk

≈
∑[

G(K) + L(K) +D(K)
]

+
, (47)

here, for each case, the sum over the first 10 shells.
From the start we notice that the net transfer results as

the cancelation of two large contributions, significantly larger
than that of the net transfer. Indeed, the anti-symmetry
P+(K|P) = −P−(P |K), recovers the P(K|P) = −P(P |K)
anti-symmetry property for the net transfer. This is impor-
tant as while the sign defined components would be easier to
models, the models need to account properly the difference
between the two channels. Looking at the forward and back-
ward components we still observe a local energy transfers,
which occurs primarily between neighbouring scales. Indeed,
the transfers go to zero for |P − K| > 5. Since the geometric
progression was taken with λ = 21/5, the energy transfers can
be seen as being local between octave-dyadic scales. This is
true for the forward and backward decompositions as it is for
the net transfer.

Comparing the ITG and ETG cases, we do notice strong
transfers at small scales for ETG turbulence, consisted with
the linear transfer picture. This is important as a strong small
scale cascade requires additional resolution to be properly
solved. This ETG behaviour was hinted in other studies23,
where resolutions considered sufficient for the ITG case led
to large difference in global value diagnostics (heat flux; not
to be confused with scale-flux) for ETG turbulence.
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FIG. 5. (Color online) The shell-to-shell energy transfers for (a) ITG and (b) ETG driven turbulence. For each case, the forward and backward
contributions are listed. The graphic representation shows that their sum recovers the net shell to shell transfer.

V. SCALE FLUXES PERSPECTIVE

For turbulence, the flux of energy through a scale represents
the most robust quantity related to the redistribution of energy.
It is the quantity that stands at the basis of theoretical scaling
arguments and phenomenological interpretations. Regardless
of the definition, being based on the mode-to-mode-transfer or
triad-transfers functions, the flux is consistent with the system
dynamical symmetries and contains none on the uncertainties
associated with the transfer functions.

A. The free energy scale flux

Formally, from the triad-transfers (Eq. 35), we can define
the flux of energy through a scale kc as

Π(kc) =

〈 ∫
k≥kc

dk
∫∫

dp dq T (k|p,q)

〉
Θ

. (48)

From the wave-mode perspective, the physical interpretation
is straightforward, as the energy received by modes k, located
in a delimited zone of the wave-space, from the interaction
with all other possible p and q modes. The wave-space is
delimited by the surface kc, designated here as a cut-off sur-
face, through the condition |k| ≥ kc. Due to the conservation
of nonlinear interactions (Eq. 21), only interactions that cross
the kc surface make a non-zero contribution to the flux. This

allows the flux to be seen as the energy transferred through
a wave-surface, rather than energy transferred between wave-
modes.

Numerically, we have access to the triple-scale transfer
S(K|P |Q) and thus, we can compute with ease the scale flux
through the scales boundaries (kc = kK). In term of the triple-
scale transfer information, the scale flux reads as

Π(kc) =

N∑
K=c+1

N∑
P=1

N∑
Q=1

S(K|P |Q)

=

N∑
K=c+1

N∑
P=1

P(K|P)

=

N∑
K=c+1

T (K) , (49)

where the last two identities relate the scale flux, respectively,
to the scale-to-scale and transfer-spectra quantities. These re-
lations, obvious from the definitions of scale-to-scale (Eq. 41)
and transfer-spectra (Eq. 42), are meant to emphasise the level
from which the scale flux information can be recovered. Inte-
grating over the total energy received by a scale is sufficient,
as all possible triad contributions are automatically taken into
account.

For the two cases of GK turbulence studied here, ITG and
ETG, we plot in FIG. 6 the flux of energy through a scale.
While in both cases the flux value is increasing slowly in the
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scale range dominated by the injection of energy (the first 10
shells for each respective case), the ETG flux exhibits a ten-
dency to level in value over a certain range, before quickly
decreasing to zero. In comparison, the ITG flux presents a
more gradual transition from the injection dominated build up
of the flux to the dissipation dominated decrees in value. The
presence of a constant flux over a certain range of scales, i.e.
an inertial range, represents the call sign of a classical turbu-
lence behaviour. Although for sufficiently separated injection
and dissipation ranges one would expect the ITG flux to de-
velop a similar plato (the authors were unable to verify this
assumption with the resolutions and computational resources
available), we can clearly say that ETG turbulence behaves in
a more classical way than ITG.

Another sign that supports this assessment consists in the
flux saturation value. In classical turbulence, the energy in-
jection rate equals the energy dissipation value and that of the
scale flux. While in GK turbulence, at the global level, the to-
tal energy injected still balances the total energy dissipated for
a steady state, the scale flux is not saturated by this value. As
dissipation can act strongly at the same range as the injection
of energy, only a ratio of the energy injected gets transferred.
This value is designated here as L+ and represents the sum of
the positive part of the linear contribution G + L + D, here
the sum over the first 10 shells. A larger L+/D ratio, tending
to one, denotes that a larger amount of energy injected in the
system is passed down to the turbulent cascade and thus, that
turbulence behaves closer to the classical picture.

B. Flux contributions

To better understand the triad transfers contributing to the
energy flux, in Eq. (48), we decompose the last two integrals
taken over p and q in respect to kc and we label the four terms

to ease their identifications,

Π(kc) =

〈 ∫
k≥kc

dk

[ ∫
p<kc

dp
∫

q<kc

dq

︸ ︷︷ ︸
I

+

∫
p<kc

dp
∫

q≥kc

dq

︸ ︷︷ ︸
II

+

+

∫
p≥kc

dp
∫

q<kc

dq

︸ ︷︷ ︸
III

+

∫
p≥kc

dp
∫

q≥kc

dq

︸ ︷︷ ︸
IV

]
T (k|p,q)

〉
Θ

. (50)

The first term (I) contains the contribution of triads which
have both legs across the surface. For the second term (II),
only p is across the cutoff surface, while for the third term
(III) only the q leg of the triad penetrates the surface. Since
these two terms are equal in contributions, as the triad transfer
T (k|p,q) is symmetric in p and q, we will look at their sum.
As mentioned, the last term (IV ) is always zero due to the
conservation of interactions. The contributions of the terms,
in respect to p and q scales, are represented schematically in
FIG. 7. We mention that the contributions made by the term I
and the sum II+III are the same when performing a similar
decomposition on the triple-scale transfer S(K|P |Q), even if
the resulting individual terms II and III are not.

In FIG. 8 we plot the fluxes nonzero contributions (I and
II + III) as a ratio of the total flux, for the ITG and ETG
cases. It can be seen that for the ETG case the II + III con-
tributions decrease slower, showing a tendency to level out.
A constant ratio between these two flux contributions is to be
expected in an infinity long self-similar dynamical range (i.e.
the inertial range). More importantly, as we will see next,
even if the first term (I) is responsible for the main contribu-
tion to the flux, or has a comparable contribution to the sum
II + III , the locality of interaction of the two contributions
is drastically different.
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Π(k
c
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k
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(III)

FIG. 7. The contributions to the free energy flux across kc, from p
and q.
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C. Infrared (IR) locality functions

In general, the idea of locality can be seen as the disparity
between scales contributing to a nonlinear interaction31. For
a given energy flux through a scale, the degree to which each
scale contributes to the mentioned flux represents an assertion
of locality. For the interaction to be local, the contribution of
highly separated scales should be small and decrease fast with
the increase in separation14. Measuring the locality through
the perspective of the scale flux can be done using Kraichnan’s
infrared (IR) and ultraviolet (UV) locality functions13.

Starting from the definition of the flux, the IR locality func-
tion is defined by taking a second probe surface (kp) in such
a way (kp ≤ kc) that it limits the selection of triads that con-
tribute to the energy flux through kc. Conceptually, the defi-
nition can be obtained from Eq. (50) (the nonzero terms), by
replacing the integral limits inside the square bracket from kc
to kp and it reads as

Πir(kp|kc) =

〈 ∫
k≥kc

dk

[ ∫
p<kp

dp
∫

q<kp

dq +

2

∫
p<kp

dp
∫

q≥kp

dq

]
T (k|p,q)

〉
Θ

. (51)

It measures the contribution to the flux through kc from tri-
ads of modes with at least one scale larger than that of the
probe kp. In the limit kp → kc, the locality functions recover
the value of the flux across the cut-off kc. This allows for
the normalisation Πir(kp|kc)/Π(kc) to be one for kp = kc.

Moreover, since for a steady turbulent state the fluxes are di-
rectional (same sign across a range of scales), for kp < kc
the normalised value of the locality functions will decrees in
value as a function of kp/kc. Thus, we can measure the rate at
which the normalised value of the locality functions decreases
as a function of separation between the two scales (identified
by kp and kc). Larger rates than otherwise imply that con-
tributions made by ever separated scales are smaller and thus
local interactions dominate.

To better understand these results, we judge them through
the premiss of classical turbulence, for an infinitely long in-
ertial range. The collapse of the normalised locality func-
tions curves, for different kc values, implies a self-similarity
behaviour of the dynamics (although not necessary given by
a simple scaling law). Furthermore, collapsing on the same
(kp/kc)

α curve denotes an universal nonlinear interaction
regime consistent with a simple scaling law for turbulence.
The exponent α is known as asymptotic locality exponent, as
higher degrees of turbulence will not generate larger nonlocal
interactions. This simple picture is found for hydrodynam-
ical (HD) and magneto-hydrodynamical (MHD) turbulence.
The theoretical locality exponents, respectively of 4/3 and
2/3 have been confirmed numerically32,34–36, the later case re-
ferring to the total energy flux contribution14. For reference,
we plot in FIG. 9 a composite figure of the IR locality func-
tions for HD and MHD turbulence obtained from data used by
the authors in their previous works14,32,33.

In FIG. 10 we plot the locality functions for different cut-
off values kc. While the values of kc chosen for ITG and ETG
cases differ, their location in respect to the peak of the flux
is similar (same shells values c are desired for a comparison
of turbulence behaviour). Compared to the simpler classical
turbulence examples mentioned above, GK turbulence strug-
gles to recover a similar picture. First we need to consider
the smaller resolutions available that would limit the appear-
ance of a large ”inertial range” behaviour. Our choice in cut-
off limits (c values selected for the IR functions displayed in
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FIG. 6) are meant to span the plato range of the flux, while
avoiding the strongly damped scales. Second, as the gradient
driven turbulence has a wide range dominated by the driving
instability, we notice that the curves exhibit a similar fallout
once this zone is reached, regardless of the cut-off. In this un-
clear situation, we look for signs of asymptotic locality, curves
collapsing on the same slope. For the ETG case, we see a ten-
dency to recover the theoretical 5/6 value28. This is particu-
larly encouraging as in this case, we do notice a tendency of
the curves to collapse on each other (here, c = 16, c = 18 and
c = 20 in particular). By comparison, a wide range of val-
ues are found for ITG, ranging from the 5/6 to the 1/12 value.
For ITG turbulence, we do not observe the collapse of the IR
functions on any value, regardless of the kc selection.

To aid our understanding, we look (FIG. 11) at the locality
functions of the I and II+III contributions to the flux, corre-
sponding to the fist and second term in Eq. (51), respectively.
Each function is normalised to its maximal value, to collapse
the curves onto each other, as we are interested to observe the
slope behaviour. For term I , in both cases, a ultra local be-
haviour is found (a line with an exponent of 9 is drawn for
reference), the locality functions exponent dropping to zero
the over a 5 shell interval. It should be pointed out that this
strong locale nature of the dominant flux contribution needs
to be exploited in future modelling attempts. Thus the main
influence to the locality exponent is made by the II + III
flux contribution. This is not surprising, as triads with only
one leg through the cut-off surface are geometrically less con-
strain and allow for the most non-local interactions. The ETG
case tendency to collapse on the 5/6 slope is again evident as
is the undetermined exponent for ITG turbulence. The cause

10
−1

10
0

10
−3

10
−2

10
−1

10
0

~5/6

1/12

c=16 ;  k
c
=1.4

c=18 ;  k
c
=1.85

c=20 ;  k
c
=2.43

c=22 ;  k
c
=3.21

c=24 ;  k
c
=4.24

Π
ir
( k

p
| k
c
) / max{Π

ir
( k

p
| k
c
)} 

10
−3

10
−2

10
−1

10
0

5/6

10
−0.3

10
0

9

k
p
/ k

c
k
p
/ k

c

term I terms II+III

ETG

10
−1

10
0

10
−3

10
−2

10
−1

10
0

~5/6

1/12

c=16 ;  k
c
=2.12

c=18 ;  k
c
=2.79

c=20 ;  k
c
=3.68

c=22 ;  k
c
=4.86

c=24 ;  k
c
=6.41

10
−3

10
−2

10
−1

10
0

5/6

10
−0.3

10
0

9

k
p
/ k

c
k
p
/ k

c

term I terms II+III

Π
ir
( k

p
| k
c
) / max{Π

ir
( k

p
| k
c
)} 

ITG

FIG. 11. Contribution of the I and II + III terms to the IR local-
ity for ITG and ETG turbulence. Each function is normalised to its
maximal value, to collapse the curves onto each other.

of these different behaviours is explored next.

D. Zonal flow contribution on the locality functions

While ETG and ITG behaves differently, we still need to
understand why. Using SZF (K|P |Q) as the building block
in Eq. (49), we construct the flux through a scale ΠZF (kc)
and the afferent infrared locality function due to the the zonal-
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flow modes kZF (here ky = 0 modes). In general, the total
energy flux can be decomposed into a series of fluxes that only
contain interactions that posses certain symmetry constraints.

Π(kc) = ΠZF (kc) + Πremainder(kc). (52)

In FIG. 12, we plot the flux contributions. We observe that the
zonal-flow contribution is smaller for the ETG case. This is
important since regardless of their non-locality behaviour, the
degree of which such contributions affect the overall picture
depends on their amplitude.

In FIG. 13 we plot the IR locality function arising for only
the zonal-flow modes. We see a clear 1/12 exponent for
ITG, a very non-local contribution. This seems to indicate
the zonal-flow modes contribution in the case of ITG (empha-
sised due to the electron adiabatic response) as the cause of
the more pronounce non-local nature compared to ETG tur-
bulence.

E. Ultraviolet (UV) locality functions

Since kc is fixed to a given value, the IR locality functions
let us know if the the energy transferred by the flux Π(kc)
comes primarily from nearby larger scales (a local behaviour)
or from scales kp located farther apart (a more non-local be-
haviour). However, these functions do not posses information
on where the energy is deposited across the flux cut-off kc.
This information is contained by the ultraviolet (UV) locality
functions. The UV locality functions are obtained in an ana-

logues way to the IR ones, starting from the definition of the
flux,

Π(kc) =

〈
−
∫

k≤kc

dk
∫∫

dp dq T (k|p,q)

〉
Θ

, (53)

obtained from Eq. (48) by considering the conservation of in-
teractions in a triad (changing the integral limit to k ≤ kc in-
troduces the minus sign). Decomposing the last two integrals
taken over p and q in respect to kc and taking now kp ≥ kc
gives us the ultraviolet (UV) locality functions definition,

Πuv(kp|kc) =

〈 ∫
k<kc

dk

[ ∫
p≥kp

dp
∫

q≥kp

dq +

2

∫
p<kp

dp
∫

q≥kp

dq

]
T (k|p,q)

〉
Θ

. (54)

The functions measure the contribution to the flux through
kc from triads of modes with at least one wavenumber greater
than kp, therefore providing information regarding the local-
ity makeup of a scale kc in relation with smaller and smaller
scales (kc/kp → 0). Thus, ignoring where the energy is com-
ing from through kc, we can measure where the energy is pri-
marily deposited by looking at the Πir(kp|kc)/Π(kc) ratio in
respect to kc/kp.

Since determining asymptotic locality exponents requires
us to span the inertial range, while being out of the driving
range influence, the UV locality exponent is much harder to
determine numerically. This is a known problem even for
the simpler HD and MHD turbulent systems. In FIG. 14
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we present the normalised UV locality functions for ITG and
ETG turbulence. In both cases we see a departure from the
theoretical 5/6 exponent estimate. For ITG turbulence, we
observe an upper value of 18/6. In the ETG case, while we
do observe a 9/6 value, we also observe a tendency for the
functions to collapse on the same slope. Although both values
are interpreted by us as a local UV makeup of interactions, we
do see that ETG turbulence is less local than ITG. This is con-
sistent with the idea of a stronger cascade, requiring a larger
range of scales to be accounted fully.

VI. CONCLUSIONS AND DISCUSSIONS

In this work, the energy exchanges between perpendicular
spatial scales were analysed for ITG and ETG driven gyroki-
netic turbulence. From the start, the tendency of ETG turbu-
lence to experience higher value small-scale transfers is evi-
dent from the transfer spectra. This effect is further confirmed
from the perspective of the scale-to-scale interactions, espe-
cially form the forward and backward decompositions. While
in both cases, we see a direct, local transfer of energy, the
increase in small-scale scale transfers for ETG turbulence de-
notes a stronger cascade. A quantifiable diagnostic to this ef-
fect is given at the flux level, where 82% of the energy injected
in the ETG system is cascaded down compared to only 54%
for ITG.

The strength of cascade has an influence on the turbulence
properties. ETG has a stronger classical turbulent behaviour,
recovering the theoretical IR locality exponent. In the ITG
case, no clear exponent is found. This is due in part to the
strongly non-local zonal flow component, but also to its re-
duced cascade that does not redistribute a large enough value
of energy to reach a set of scales unaffected by this large scale
effect.

From a modelling perspective, these two different be-
haviours have non-intuitive implications. As with all turbu-
lent systems, it is desired to model the small-scale effects
while numerically computing only the largest scales (eddies)
in the system. Such approach is taken by the Large Eddy
Simulations (LES) sub-grid scale modelling technique. This
method requires the existence of universal small scales that,
more importantly, ensure a universal cascading mechanism in
the form of an inertial range. In the inertial range (towards
its beginning), a cut-off is taken and scales smaller than that
are removed while their effects on larger scales are accounted
through a model. For this model to be universal, the removed
small scales should have a small dependence on the large
scales. This information if given by the IR locality functions.
Thus, ETG turbulence more IR local behaviour is preferred.
Naturally, the impact made by a model on the resolved large
scales needs to be consisted with the impact made by the small
scales on the large ones. However this information is given
by the UV locality functions. From this perspective, while
generating an ITG model is more problematic, its impact on
the system is less important than for ETG (UV locality being
higher for ITG than ETG). This effect was seen in a separate
study related to the application of LES to gyrokinetics12.

Non-intuitively, the same complications that make ITG
harder to understand and model from the perspective of clas-
sical turbulence, also makes the system more robust to scale
truncations. Conversely, ETG turbulence is more dependent
on numerical resolution that ITG, experiencing a stronger cas-
cade that needs to be fully resolved, while at the same time be-
ing a perfect candidate for the implementation of LES meth-
ods and the use of classical turbulence scaling arguments.

At the end we mention that for a conclusive understanding
of the fundamental properties of GK turbulence, the impact
of the resolution and of the geometry needs to be understood
from the perspective of the fundamental five-dimensional
spaced transfers. Due to the computational resources re-
quired and the hurdles of a full spectral implementation, such
progress is limited, but should not be abandoned by the com-
munity.
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