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Abstract— Experimental results using a step-frequency 

tunable D-band gyrotron are reported. The short-pulse (~3 ms) 
gyrotron is equipped with an elliptically brazed CVD diamond 
Brewster angle output window. It is designed for the operation in 
the frequency range from 111.6 GHz up to 165,7 GHz. Operating 
parameters for 10 different frequencies corresponding to an 
equal number of different cavity operating modes has been 
measured.  A minimum output power of 830 kW and a peak 
output power of 1.3 MW have been realized. For all frequencies 
the parameters of the RF beam generated by the internal quasi-
optical converter, such as fundamental Gaussian contents and 
beam waist, are sufficiently good to allow an efficient coupling of 
the RF power out of the window. 

This is the first time a diamond Brewster angle window has 
been used in a high power gyrotron (~ 1 MW). Such a system 
offers the path to a simple and compact window solution for high 
power broadband applications using gyrotrons.  

 
Index Terms—Fusion, Plasma heating, Gyrotron, Output 

window, Brewster angle, CVD diamond, Frequency tunability 
 

I. INTRODUCTION 
n recent years electron cyclotron resonance heating and 
current drive (ECRH and ECCD) has been established as a 

successful instrument for magnetically confined fusion 
plasmas. Gyrotrons are the unique sources which meet the 
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extraordinary requirements of those applications: RF output 
power in the MW range, operating frequencies at about 100 – 
200 GHz, and pulse lengths of several seconds up to 
continuous wave (CW). Due to its excellent coupling to the 
plasma and the very good localization of the absorbed RF 
power, ECRH is applied in present day machines and is also 
foreseen in all large forthcoming fusion projects: it will be the 
main heating system for the W7-X stellarator and it will also 
be employed at the tokamaks ITER and JT-60SA which are 
currently under construction and it will play a major role in a 
future DEMO power plant.  

In particular advanced tokamaks are operated in a plasma 
regime where magneto-hydrodynamic instabilities, occurring 
at different locations in the plasma, may limit the 
performance. To a large extent the stability in a tokamak is 
influenced by the distribution of the internal plasma currents 
which can be manipulated by the injection of RF waves. These 
effects call for very localized current drive. The location of the 
absorption of RF waves with the angular frequency ω is 
dependent on the resonance condition ω−kzvz=ωc (kz: z-
component of the wave number, vz: electron velocity along z-
axis). The cyclotron frequency ωc of electrons is proportional 
to the magnetic induction B. Since in a tokamak the magnetic 
field B(R) is monotonically decreasing with increasing major 
radius R, the deposition center is a unique function of the 
wave frequency for radial injection. Thus, by changing the RF 
frequency ω the absorption can be moved to any radial 
position where the local cyclotron frequency of the electrons 
ωc holds for the expression above [1]. This concept avoids any 
mechanically moveable components close to the plasma in a 
harsh environment.  
 Today, high power gyrotrons for fusion applications in the 
relevant frequency range with an output power of about 1 MW 
operate at a fixed frequency. In some cases gyrotrons are 
designed for two or more discrete frequencies with a 
separation of a few tens of GHz taking benefit of a minimum 
of reflection at the single disk output window if the thickness 
of the disk correspond to an integer multiple of half of the 
wavelength of the RF radiation in the material (see e.g. [2, 3, 
4]). Frequency step-tunable gyrotrons (beyond the dual 
frequency range) are not standard products since these 
broadband tubes require additional optimization of the key 
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components, namely the electron beam forming optics, 
interaction cavity, quasi-optical mode converter and output 
window [5, 6].  

The design of the output window of a frequency step-tunable 
gyrotron is a particular challenge since it has to provide 
operation of the gyrotron at different frequencies with 
minimum reflection of the RF waves. From a technological 
point of view the design and material must support reliable 
CW operation with low RF losses in and adequate cooling of 
the disk. Due to its very good mechanical and electrical 
properties chemical vapor deposition (CVD) diamond has 
been established in recent years as a standard material for 
output window disks of high power CW tubes [7]. In the 
literature several different approaches of broadband window 
types such as circularly brazed Brewster diamond window 
with specific beam optics [3], double disk windows [8] and 
“travelling wave” windows [9] are reported. From a physics 
point of view a Brewster angle window with straight 
transmission without additional beam optics is the most 
elegant solution since it needs only one diamond disk. It is 
characterized by a simple and compact unit. For the geometry 
of Ref. [3] the metallic reflector close to the air side of the 
diamond disk may lead to arcing induced by the strongly 
focused RF beam. Therefore, in this publication we report on 
results with an elliptically brazed diamond disk.  

The gyrotron and the experimental set-up is described in 
chapter II, the most important features of the diamond disk are 
given in chapter III. Chapter IV reports on low power RF 
measurements which have been performed with the Brewster 
angle window. In chapter V the results of gyrotron operation  
is discussed. 
 

II. EXPERIMENTAL SET_UP 
 

The experimental investigations were performed with the 
modular step-frequency tunable short pulse (~ms) D-band 
gyrotron at KIT [10] which is schematically shown in Figure 
1. Originally this device has been designed for the TE22,6 mode 
operation at 140 GHz [11]. It was the first high power 
gyrotron operated with a Brewster angle window which in the 
early phase consisted of a fused silica quartz glass or SiN disk. 
A combination of the super conducting magnet system and a 
normal conducting coil system has been used to demonstrate 
fast (~ 1 s) step-frequency tuning in the frequency range from 
132 GHz up to 147 GHz [12]. In 2002 the operating cavity 
mode of the tube has been modified [13] in order to be 
compatible with a parallel development in cooperation with 
the Institute of Applied Physics, Nizhny Novgorod, Russia.  

This gyrotron has the advantage of being modular and 
allows the relative simple replacement of all key components. 
Furthermore, it is designed for broadband operation with 
regard to all components such that experiments over a wide 
parameter range can be performed.  

The step-frequency tunable gyrotron was designed for 
operation in the frequency range 105 – 143 GHz in different 
operating modes (e.g. TE17,6 at 105 GHz, TE20,7 at 124 GHz, 
TE22,7 at 131 GHz and TE22,8 at 140 GHz) [13]. Frequency-
step tuning is performed by changing the magnetic field and 
exciting corresponding TE modes in the cavity, while at a 
fixed magnetic field mainly the acceleration voltage is 
changed, yielding different RF output power levels. Typical 
high power operating parameters of the gyrotron are an 
accelerating voltage of 80 kV and a beam current of 40 A. 
However, beam currents up to 50 A have been used in the 
experiments. Details of the gyrotron can be found in [14]. The 
electron gun is a diode type magnetron injection gun which 
was designed and manufactured by the Institute of Applied 
Physics (IAP), Nizhny Novgorod, Russia [15]. Some of the 
most important design parameters are given in Table I.  

 

 
 
Fig. 1: Modular design of the step-frequency tunable D-band gyrotron with 
quasi-optical mode converter and lateral RF output with a Brewster angle 
window. 

 
Table I: Design parameters of step-frequency tunable gyrotron 

 
Cavity mode at 140 GHz TE22,8 
Output power [MW] 1 
Accelerating voltage [kV] 80 
Beam current [A] 40 
Velocity ratio at cavity, v⊥/v|| 1.4 
Magnetic induction at cavity [T] 5.54 
Frequency range [GHz] 105 - 143 
Pulse length [ms] < 10 
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III. DESIGN OF BREWSTER ANGLE WINDOW 
 

In order to minimize reflection of a linearly polarized beam 
at any frequency at the interface of a material with refractive 
index n1 and a material with refractive index n2 the input angle 
must be ΘB= arctan(n2/n1) (Brewster angle) and the 
polarization vector must be in the reflection plane. Taking a 
dielectric constant εr= 5.67 for diamond results in a Brewster 
angle of 67.2°. Simple calculations using analytic formulae 
predict reflections below -30dB for a variation of ΘB in the 
order of ±1.5°. The dimensions of the elliptically shaped 
diamond disk which was laser cut from a circular disk are: 139 
x 95 x 1.7 mm (see Fig. 2). 

The brazing of the disk was performed in cooperation with 
the company Thales Electron Devices, Velizy-Villacoublay, 
France. Several brazing tests have been performed with 
dummy ceramic disks in order to optimize the brazing tool. 
Finally, the diamond disk is brazed with an Ag based brazing 
material to cylindrical copper cuffs which have an outer 
diameter of 50 mm, the inner diameter of the system is 49 mm 
and the total length of the unit is 206 mm. This system is 
integrated into a housing which is flanged to the gyrotron. 
Since the pulse length of the gyrotron is limited to a few ms no 
cooling of the window unit is foreseen.  
 Structural analyses based on static finite element (FEM) 
simulations have been performed in order to check the stresses 
in the device after the cool down phase of the brazing process 
(see Fig. 3). In fact, the process is carried out in vacuum at 
800°C and, since copper and diamond have very different 
thermal expansion coefficients (ratio of 16 to 1 at 20°C, 
respectively), the cool down phase to room temperature results 
in high stresses that might lead to failure of the disk. Stresses 
and deformations were calculated by decreasing the 
temperature from 800°C down to 20°C. For the analysis of 
stresses in the brittle diamond the first principal stress was 
used while for the ductile copper the equivalent (von Mises) 
stress was calculated. The first principal stress is in the range 
of 30 MPa - 75 MPa along the contact region between the disk 
and the cuffs and reaches a maximum level of 137.4 MPa at 
the tip of the disk in the contact region with the longer side of 

the cuffs. This corresponds to an increase factor of 1.4 
compared to a circular disk.  

The cuffs experience plastic behavior, in fact the equivalent 
stress varies between 50 and 75 MPa (yield strength of OFHC 
copper is 45 MPa at 20°C) in the most part of the cuffs and 
has maximum values in the range 103.1-110.6 MPa, located 

 
 

Fig. 4: Experimental setup for low power measurements and built-in quasi-
optical mode converter.  
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Fig. 2: Diamond disk laser cut from circular disk (left) and brazed to copper 
cuffs (right).  

  
 
 

Fig. 3: First principal stress distribution on the top side of the diamond disk 
(top) and averaged von Mises stress for the copper cuffs (values are in Pa).  
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close to the area of maximum principal stress and to the 
support. However, the maximum first principal stress is below 
the permissible stress of diamond which is 150 MPa (ultimate 
strength is approximately 450MPa [16]) and the maximum 
equivalent stress is below the ultimate strength of OFHC 
copper (250 MPa at 20°C). 
 
 

IV. LOW POWER MEASUREMENTS WITH DIAMOND BREWSTER 
ANGLE WINDOW 

In order to verify the RF performance of the complete 
quasi-optical system including the window, low power RF 
measurements have been performed prior to installation into 
the gyrotron. A mode generator, optimized for the TE22,8 mode 
at 140 GHz, has been used to test the quasi-optical mode 
converter and the 3-mirror system. The mode generator as 
well as the measurement technique are discussed in more 
detail in [17]. The experimental set-up for the low power RF 
measurements are shown in Fig. 4.  

According to the design the beam waist of the Gaussian 
output beam is targeted for w0~ 12 mm, centered at the 
position of the disk with a small variation for the different 
modes and frequencies. Fig. 5 shows the measured output 
wave beam of the generated TE22,8 mode at a distance of about 
518 mm from the center of the window. It is assumed that 
small  distortions from a perfect Gaussian beam which are 

visible in the amplitude and phase are caused by a non-ideal 
generation of the TE22,8 mode, non-perfect quasi-optical 
launcher or diffraction (e.g. at the limited aperture of the 
window unit). A numerical analysis is applied to the complex 
field pattern. It maximizes the overlap of a TEM00 mode with 
the measured profile and analyses the remaining field in terms 
of higher TEMmn mode contributions taking 13 x 13 modes 
into account. The analysis of the profile at 518 mm and a 
profile measured at about 203 mm from the center of the 
window in terms of Gaussian mode content shows consistently 
a TEM00 mode content of 95%. The RF power transmission 
through the window aperture is estimated to be higher than 
99.5%. 
 

V. STEP-TUNABLE OPERATION OF GYROTRON WITH BREWSTER 
ANGLE WINDOW 

During the experimental investigations reported here the 
gyrotron has been operated in up to 10 different modes 
covering the frequency range from 111.6 GHz up to 165.7 
GHz (see Table II). The output beam of each mode has been 
recorded using infrared measurements of the thermal beam 
pattern on a suitable target at different positions along beam 
propagation. Thus it is possible to reconstruct the complex 
field structure using appropriate algorithms (see e.g. [18]). As 
an illustration of the beam profile Fig. 6 shows the measured 
beam pattern of the modes TE20,7 (124.1 GHz),TE22,8 (140.0 
GHz), and TE23,8 (143.3 GHz). The pictures have been taken at 
760 mm distance from the center of the window disk, showing 
an area with a cross section of 80 x 80 mm. With respect to the 
position of the TE22,8 mode the center of the mode TE20,7 is 
shifted approximately by -5.9/-1.3 mm and the mode TE23,8 by 
-0.6/1.0 mm which is much less than the aforementioned 1.5°.  

 

 

 
 

Fig. 5: Low power RF measurement of amplitude (top, values in dB) and 
phase (bottom, values in deg) of Gaussian output beam at 140 GHz (518 mm 
from center of window). 
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Table II: Gaussian mode content according to experiment and simulation 

 
Mode Frequency 

[GHz] 
TEM00 [%] 
Experiment 

TEM00 [%] 
Simulation 

TE19,6 111.6 89.5 90.4 
TE20,7 124.1 92.1 93.4 
TE21,7 127.5 93.5 91.7 
TE21,8 137.0 92.8 93.0 
TE22,8 140.0 94.0 93.3 
TE23,8 143.3 92.4 91.5 
TE24,9 155.8 85.0 Not 

investigated TE25,9 159.2 91.0 
TE26,9 162.4 92.4 
TE27,9 165.7 92.8 
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The experimental results and a comparison with simulations 
are given in Table II. Note that the launcher has been designed 
according to [19] which is a broadband design taking modes 
into account up to the TE23,8 at 143.3 GHz. In general there is 
a very good agreement of the results (low power RF 
measurements, high power measurements and simulations), 
small deviations arise from the limited accuracy of the 
measurement technique and the numerical stability of the 
analysis procedure. Nevertheless, it should be mentioned that 
the design shows in the experiment also a high fundamental 
Gaussian mode content for higher order operating modes 
which have not been considered initially in the design phase. 
In order to reduce stray radiation and minimize thermal 
loading of the transmission components the TEM00 mode 
content should be as high as possible, for single frequency 
gyrotrons this part is usually > 95 %.  

 
Optimization and high power experiments have been 

performed for modes in the frequency range from 124.1 GHz 
up to 162.5 GHz. The gyrotron has been operated in the 1 MW 
power regime for all operating modes.  A maximum peak 
power of 1.3 MW in short-pulse operation has been achieved 
at 143.3 GHz and at a beam current of 52 A. Fig. 7 shows the  
achieved output power versus the beam current for the TE23,8 
mode and an optimized magnetic field. That measurement 
demonstrates that the operation of the TE23,8 mode is stable 
over a broad beam current range from 10 A to 52 A with a 
corresponding output power from 100 kW up to 1.3 MW. The 
gyrotron has been operated in the short pulse regime (~ 3 ms) 
without depressed collector. The output power has been 

measured with a precise short pulse calorimeter which was 
directly placed at the output window flange. A summary of the 
results for other operating modes in terms of output power and 
efficiency is given in Table III. Note that the efficiency is 
calculated using the cathode voltage. This does not take into 
account voltage depression due to the electron beam and thus 
a reduced electron energy during the start-up phase.   

 

VI. CONCLUSIONS 
For the first time an elliptically brazed Brewster angle 

window of diamond material obtained by chemical vapour 
deposition (CVD) technique has been used in a MW class high 
power gyrotron. A frequency step-tunable gyrotron has been 
used for that experiments. Although after brazing the stress 
profile of the elliptic geometry of the Brewster angle window 
is more critical than a standard circular geometry the 
maximum thermal stress is still well below the ultimate 
strength. A gyrotron operation in the short-pulse regime 
without additional cooling of the window unit has been 
achieved. The high power experiments using the frequency 
step-tunable gyrotron showed an excellent agreement of the 
output beam with the simulations for several cavity modes in 
the frequency range from 111.6 GHz up to 165.7 GHz. Those 
promising results will be the base for the future design of a 
Brewster window for long pulse operation including an 
appropriate cooling technique. 
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