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Analytical and numerical support is here provided in support of the explanation (H. Laqua et al., 

submitted to Plasma Physics and Controlled Fusion) for the observation of MeV electrons during Lower 

Hybrid (LH) operation in EC pre-heated plasma at the WEGA stellarator [M. Otte, H. P. Laqua, E. 

Chlechowitz, S. Marsen, J. Preinhaelter, T. Stange, A. Rodatos, J. Urban and D. Zhang, Nukleonika, 57 

(2012) 171]. In the quoted experiments, LH power from the WEGA TE11 circular waveguide, 9 cm 

diameter, un-phased, 2.45 GHz antenna, is radiated into a B0.5 T, ne5x1017 1/m3 plasma at Te10 eV 

bulk temperature with an EC-generated 50 keV population of electrons. In response, the fast electrons 

travel around flux or drift surfaces essentially without collisions, repeatedly interacting with the rf field 

close to the antenna mouth, and gaining energy in the process. Our WEGA antenna calculations indicate a 

predominantly standing electric field pattern at the antenna mouth. From a simple approximation of the 

corresponding Hamiltonian equations of motion we derive here a relativistic generalization of the 

simplified area-preserving Fermi-Ulam (F-U) map [Lieberman and Lichtenberg, Phys. Rev. A5 (1972) 

1852), Lichtenberg, Lieberman, and Cohen, Physica 1D (1980) 291], allowing phase-space global 

stochasticity analysis. At typical WEGA plasma and antenna conditions, and with correlated phases 

between electron – antenna electric field interaction events, the F-U map and supporting numerical 

simulations predict an absolute energy barrier in the range of 300 keV. In contrast, with random phases 

intervening between interaction events the electron energy can reach ~MeV values, compatible with the 

measurements on WEGA.  
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I INTRODUCTION 

High energy electrons in the MeV range were observed by Laqua et al.1 during lower hybrid 

(LH) operation in EC pre-heated plasma at the WEGA stellarator2, 3. The explanation given by 

Laqua et al1 for the high electron energies is their stochastic acceleration resulting from repeated 

interaction with the LH standing wave electric field at the antenna mouth, as the electrons 

circulate on drift surfaces around the torus. In order to provide a theory framework for 

understanding this interaction, we derive and analyze here a relativistic generalization of the so-

called simplified Fermi-Ulam process, given in its original form by Lieberman and Lichtenberg4, 

and Lichtenberg, Lieberman, and Cohen5.  

Stochastic (or, synonymously, chaotic) acceleration of charged particles is a subject of 

considerable interest for the understanding of many phenomena in astrophysical as well as 
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laboratory plasmas. Particle motion can be rendered stochastic in interaction with waves, shocks, 

turbulence, i.e. with plasma and/or electric and/or magnetic field perturbations. The subject was 

initiated in a few pioneering papers by Fermi6, 7, Davis8, and Kulsrud and Ferrari9, to give a 

representative sample. In his first paper: Fermi6 discusses interactions of particles with 

surrounding media fluctuations, turbulence in general. Such stochastic acceleration processes are 

referred to, at least in the astrophysical literature (e.g. Petrosian10), as Fermi processes of the 2nd 

order. In his second paper Fermi7 introduces particle chaos and acceleration caused by singular 

impact events, shocks or collisions with spatially separated entities, such as magnetically charged 

walls etc., usually referred to as Fermi processes of the 1st order. Davis8 and Kulsrud and Ferrari9 

underlined the diffusive nature of 2nd order Fermi processes and developed their kinetic 

description. Much work has been devoted in the past to relativistic chaos caused by magnetic 

field perturbations of respectively proton or electron beams in particle accelerators (e.g., Chao et 

al.11) and free electron lasers (e.g., Chen and Davidson12). In either case, the particles are 

relativistic to start with, the magnetic field perturbation enters the Hamiltonian via the vector 

potential, and the beyond a certain interaction parameter threshold the magnetic perturbation acts 

to scatter particles away from the device axis, where the particle orbits are integrable, thereby 

deteriorating the device performance. An important non-relativistic variation on the particle 

chaos caused by magnetic perturbations in accelerators and FELs, are resonant magnetic 

perturbations13 deliberately excited at the tokamak edge in order to mitigate the effects of edge 

localized modes (ELMs). Wave-particle interactions are a special case of a 2nd order Fermi 

process; a novel treatment of this particular problem has been recently undertaken by Kominis, 

Ram and Hizanidis14. 

The present work deals with a special case of 1st order Fermi acceleration, specifically with 

electron interacting (or “colliding”) with a spatially localized electromagnetic wave-packet. The 

motivation for the work is driven by the wish to provide theory support to the analysis of the 

observation of high energy MeV electrons during Lower Hybrid (LH) operation in EC pre-

heated plasma at the WEGA stellarator, reported by the WEGA team1. To do so, we first extend 

previous work by Fuchs et al.15, Pavlo and Krlin.16, Pánek17, Krlin et al.18, and Seidl19 on electron 

phase space stochasticity and acceleration caused by the electrons repeatedly passing through a 

spatially localized travelling lower hybrid (LH) wave, to the case of electrons passing through a 

standing wave. An important distinction between the travelling and standing wave cases is that 
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for a single passage through the wave region, the electron Hamiltonian is conserved in the 

travelling wave case, and remains so even for relativistic velocities, as was shown by Seidl19. In 

either case, electron orbits tend to become stochastic as a result of the phase lag accumulated on 

the field free path between successive interaction events. Second, we show that the standing 

wave interaction in question can be approximated by the “simplified” version of the Fermi-Ulam 

map (Lieberman and Lichtenberg4, Lichtenberg et al.5), which we generalize to relativistic 

velocities.  

In addition to the orbiting electron - travelling wave interaction, mentioned above, the 

present WEGA problem is also closely related to the problem of tokamak edge electrons 

interacting of with a LH wave spectrum20-25. A Fermi-like non-relativistic map was developed 

(Fuchs et al.21, Goniche et al.22) to describe the latter interaction, which occurs as the electrons 

travel along magnetic field lines in front of the lower hybrid grill. In the process, the electrons 

tend to diffuse to higher energies and depending on the radiated wave electric field strength will 

reach an upper limit given by the extent of Chirikov26 resonance (i.e. spectrum Fourier mode) 

overlap. The LH grill waveguide phasing (typically π/2) is the underlying cause for the electron 

stochastic acceleration from their cold edge value of typically 10-20 eV up to few keV. In the 

orbiting electron problem, of interest here, the phase lag acquired by the electron on the field-

free part of its orbit is the counterpart of the grill waveguide phasing. 

As already mentioned, we show here that the interaction of electrons with the WEGA lower 

hybrid electric field at the antenna mouth is Fermi-like. The Fermi-Ulam approximation4, 5 of the 

1st order Fermi process to which we reduce the electron equations of motion, has received much 

attention in the past (Lichtenberg and Lieberman27, and further references therein), not only 

because it is a conveniently simple area-preserving map, but because it serves to represent near-

integrable Hamiltonian systems with two degrees of freedom. The simplified F-U model 

describes a particle bouncing between two fixed surfaces, one of which delivers momentum of 

some prescribed temporal oscillating nature to the particle. To the best of our knowledge, most 

of the past work related to the F-U map is limited to non-relativistic conditions with the notable 

exception of the gravitational bouncer model (Pustylnikov28) in which the particle returns by 

gravity to an oscillating surface. The particle energy in Pustylnikov’s model can grow without 

limits, while in the present relativistic F-U model the particle energy is limited by period-1 fixed-

point stability, in similar way as in the usual non-relativistic case5, 27, but with a condition for 
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global stochasticity onset modified by relativity. The issue here is that in order for an electron to 

reach MeV values under WEGA conditions, we find that random phases between interaction 

events have to be assumed. 

To set up the Hamiltonian for the WEGA orbiting electron interaction problem, we determine 

the electromagnetic power radiated at fLH=2.45 GHz into a Te10 eV, line average ne5x1017 

1/m3, B0.5T, edge plasma by the WEGA TE11 circular waveguide, 9 cm diameter, un-phased 

antenna with a double cut at its front (Podoba et al.29). The antenna was modeled as a two 

waveguide grill with zero phasing and calculations were carried out with the full wave coupling 

code described in Preinhaelter et al.30. The results indicate that at the given conditions the 

electric field is polarized predominantly in the z (toroidal) direction; with 40% of the power 

reflected. Most of the transmitted power ends up in non-propagating eigenmodes, only 10% 

propagates in opposite directions along resonance cones, which due to the lack of phasing also 

forms a standing wave pattern at the antenna mouth. Fig. 1 illustrates the resonance cone 

structure of the propagating portion of the Ez field, and Fig. 2 shows the field Ez and its spectrum 

close to the antenna mouth. The Ez field is predominantly electrostatic, so the vector potential 

from the Hamiltonian (1) below can be omitted. 

 

 

 

FIG 1 WEGA antenna Ez field: resonance cone structure. 
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FIG. 2 WEGA antenna Ez field: a) Re(Ez) along the antenna in the toroidal direction, at 1 cm from the 

antenna mouth, b) Ez spectrum as function of n//. 

 

The prominent low-n// peak seen in FIG. 2b is the reason for the dominant standing wave 

character of the Ez field near the antenna. 

Fast electrons (50 keV) cycle essentially without collisions around flux or drift surfaces, 

shown in Fig. 3:  

 

 

 

FIG. 3 Flux surfaces (blue) and particle drift surfaces (green) for different relativistic γ-factors. We see a 

simplified sketch of the antenna field. This is a poloidal cut of a toroidal configuration. The antenna is 

inserted beyond the last closed flux surface so the electrons circulate freely. (Reproduced from Laqua et 

al.1) 
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The dominant collision frequency coll is that of the fast (Thot50 keV) electrons on the thermal 

bulk electrons (Te10eV, ne5x1017 1/m3), which gives hot/thermal  4 s-1, so the collision time coll 

as the electron speeds up is always larger than 0.25 seconds. This is to be compared with the 

electron travel time trans=L/v (L=2qR) around a flux or drift surface, which is always smaller 

than L/c  7.5x10-8 sec. We take R=0.72 m, and on the basis of results from the WEGA 

equilibrium code31 shown in Fig. 4 we estimate the safety factor to be  q5. All this goes to show 

that collisions are most likely not the process which leads to randomizing phases on the field-free 

electron orbit. 

 

 

  

FIG. 4 a) Magnetic equilibrium of the experiment described in Laqua et al.1, determined from the 

equilibrium code in Otte et al.23. b) Safety factor corresponding to B0.5 T of the respective experiment is 

q5. ρtor is  the normalized square root of toroidal flux. 

 

The negligible collisionality in the low density WEGA plasma with an EC generated 50 keV 

component allows an electron to repeatedly interact with the rf field close to the antenna mouth. 

The evolution of electron energy depends on whether its phases between interaction events are 

correlated or random. Essentially, for correlated phases the electron energy stochastic region is 

bounded, for random phases we find that the energy grows with increasing number of interaction 

events (i.e. with the number of cycles around drift surfaces). We support these findings by 

numerical as well as theory analysis. In order to better understand the nature of the interaction 
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along with the resulting global stochasticity bound in the case of correlated phases, we show, in 

section II, that a simple approximation of the equations of motion leads to a relativistic version 

of the area-preserving Fermi-Ulam map, for which we also establish a relativistic version of the 

period-1 fixed point stability criterion. The present form of the relativistic F-U map is distinct 

from a previous relativistic F-U model - the gravitational bouncer model29, in which the particle 

energy can increase indefinitely even for correlated phases between interaction events. In section 

III we apply the theory of section II to WEGA experimental conditions of Laqua et al.1. From 

numerical and period-one fixed point stability analysis4, 5, we find that the electron energy, for an 

electric field strength 50 kV/m (corresponding to about 10 kW of power radiated by the antenna), 

does not exceed at WEGA conditions about 300 keV. In order to reach electron energies in the 

MeV range, random phases between the electron-antenna interaction events therefore need to be 

assumed. Further in the WEGA context, it is interesting to note that Laqua et al.1 and Otte et al.2 

report that at energies above 200 keV, the electron confinement in WEGA becomes highly 

asymmetric with electrons in one direction along drift surfaces suffering loss, so during LH 

operation a non-inductive current is a fortiori generated. First moments of the electron 

distribution obtained from the iterated F-U map give an LH current density of about 7 kA/m2, an 

LH driven current  230 A, and dissipated LH power  225 W. This compares favorably with 

results of the experiment1, 2. In section IV, the principal phase space features, e.g. energy 

stochastic boundaries and diffusion coefficient, found using the relativistic F-U approach, are 

verified by symplectic integrations of the relativistic electron equations of motion. Finally, in 

section V we give our summary and conclusions. 

 

II THE RELATIVISTIC FERMI-ULAM MAP 

 

In view of expected MeV electron energies we describe electron interaction with the standing 

wave field by a relativistic non-conservative and non-autonomous Hamiltonian with canonical 

momentum P=p-eAz, vector potential Az0, scalar potential (z,t)= (z) sin(t), coordinate z, 

rest mass me, and =2πfLH : 

    z)(kkeE(z)Φt),(ω(z)Φ)(γcmH e sin/sin1 0

2     (1) 

The corresponding equations of motion  
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describe interaction with the field (z,t) at the antenna, where /z=Ez of FIG. 2. On the field-

free orbits around a flux (or drift) surface, the auxiliary condition 0 applies. 

 

We now show that under particular conditions of the WEGA experiment, the dynamical problem 

specified by Eqs (1) and (2) can be reduced to a relativistic form of the Fermi-Ulam process. For 

correlated phases between interaction events this allows analysis of the stochastic electron phase 

space. The fast electrons (>50 keV) do not precisely sample the electric field variations since 

with increasing velocity their transit time (10-9 s at 50 keV) through the field region becomes 

shorter than the field period 1/fLH=4x10-10 s. Denote therefore by z0=0 the position of the 

antenna, by t0 the time during an orbit at which interaction occurs and introduce the phase =t. 

Integrating Eqs (2) through the integration region and one field-free orbit then gives 
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where E00.56 kV/cm is the lower hybrid Ez-field amplitude in the quoted WEGA experiment1, 2. 

With z0=0, recalling that L is the electron orbit length and introducing normalized momentum 

u=p/(me vq), Eqs (3) reduce to a normalized relativistic form of the F-U map 
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The F-U map is a resonant system with the principal, so-called period 1 resonances5, 27, 

occurring when the electron orbit time L/v equals an integer multiple of the field period 1/f, i.e. 

when Lme/p=n/f, n=1, 2, 3,… 

We emphasize that the condition for applicability of the Fermi-Ulam model to the WEGA 

situation is limited to fast electrons whose transit time through the interaction region is shorter 

than the electric field period 1/fLH. This issue will be addressed in more detail in section V, 

where symplectic integrations of the equations of motion (2) are carried out. 
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Global Stochasticity Boundary from Period 1 Momentum 

A usual method of identifying and analyzing phase space stochasticity of various maps, 

including the Fermi-Ulam process, is to locally represent the map by the “Standard” map whose 

stochasticity properties are well known27, 28. We thus linearize (4) around the period 1 

momentum u1=M/n, n=1,2,3…. Let therefore u=u1+u, shift the phase =-/2, and introduce 

a new action variable I=Ku, where K=2M/1(u1)
2 is the stochasticity, or interaction, parameter 

[we note that the usual non-relativistic form of the interaction parameter is K=2M/(u1)
2, where 

u1=v1/vq and v1 is the period 1 velocity]. The Lorentz factor in terms of u1 is 1=1+(u1)
2, 

=(vq/c)2. The map (4) is thus locally represented by the Chirikov-Taylor Standard map27, 28 

111 );sin(   nnnnnn IKII      (5) 

which exhibits global stochasticity when K1, i.e. when 2M/1(u1)
21. This leads to a global 

stochasticity upper bound x(u1)
2 given by the cubic equation 

2223 )(;02 cvM)π(xxα q       (6) 

 

III APPLICATION OF THE FERMI-ULAM MAP TO WEGA  

We now apply results of the preceding section to the WEGA LH operation conditions1: 

electron orbit mean radius (from Fig. 3) R0.72 m, B0.5 T. An important factor entering into 

the interaction parameter M is the electron orbit length L=2Rq=22.6 m. In order to indicate how 

the stochasticity upper bound scales with electric field strength E0, we solve Eq. (6) in the range 

E0<104,5x105> kV/cm. At WEGA conditions and in the given range of electric field, Eq. (6) 

has one real root, leading to the energy bound shown in Fig 5a. Figure 5b is then produced at 

E0=50 kV/m, close to the field value quoted in the experiment1, and indicates a saturation of the 

energy response as the electron speeds up  
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FIG. 5 a) Upper bound Urel of the relativistic F-U map (4), at WEGA conditions1, as function of electric 

field E0. b) Electron energy jumps Uout – Uin between iterations of the F-U map (4), as function of Uin. 

 

Specifically, at E050 kV/m,
 we have vq5.7x105 m/s, the interaction parameter is M=9.7x104, 

giving the real solution x=3.9x105 of Eq. (6). The corresponding stochasticity threshold is 

U1=512(1-1)=284 keV, where 1=1+x. To see how this predicted energy threshold compares 

with maximum energy obtained directly from the map (4), we carry out 106 iterations of the map 

for 100 electrons having initially identical energy (50 keV) but initially distributed with random 

phases. The resulting energy histogram is shown in Fig 6a. For a much higher value of electric 

field, say 250 kV/m, the predicted stochastic bound from Eq. (6) is 705 keV, and the associated 

maximum energy histogram is shown in FIG. 6b. 
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FIG. 6 Histogram of maximum energies in an ensemble of 100 electrons distributed with random initial 

phases. Phases between the 106 interaction events are correlated, i.e. non-random. a): E0=50 kV/m, b) 

E0=250 kV/m. 

 

In both cases we see that the most energetic electrons of the distributions indeed lie close to the 

predicted stability theory values of 284 keV, and 705 keV, respectively. A surface of section plot 

for an electron at the high end of the energy range for E0=50 kV/m shown in FIG. 7 clearly 

indicates the expected global stochasticity for U< Umax. The maximum energy at 50 kV/m is 

rather short of the expected MeV range, which possibly suggests that the phases of particles 

between interaction events are random. 

 

FIG. 7 a) Surface of section, energy versus phase, from the Fermi-Ulam map (4) at WEGA operating 

conditions from Laqua et al.1. Phases between interaction events are assumed correlated. U0 indicates the 

energy initial condition (50 keV). b) Blow-up of the stochasticity boundary shows the lowest-order 

resonances.  

 

Finally, FIG. 8 demonstrates the critical effect of random phases on the energy of circulating 

electrons: 
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IV SYMPLECTIC INTEGRATIONS OF EQUATIONS OF MOTION  

In order to ascertain that the simple F-U model captures the essence of the WEGA lower hybrid 

interaction, we now corroborate its results by numerical integration of equation of motion (2), 

which describes electron motion through the non-zero width antenna field region with electric 

field Ez(z,t) = Re[Ez(z)] sin(t) of FIG. 2a, determined by the full wave coupling code of 

Preinhaelter30. Amplitude of the wave was taken to represent input LH power of 10 kW. We take 

a non-zero electric field only in the interaction region of width d = 0.31 m and treat electrons as 

free particles on the rest of their drift orbits of length Lfree = L-d = 22.31 m. The integration was 

carried out with a 4th order symplectic method32, verified with the Runge-Kutta-Fehlberg 

scheme33. 

First, we analyze the change of particle momentum p1-p0 after one particle orbit. Integration 

results of FIG. 9a  

 

FIG. 8. Average maximum energy <Umax> in an 

ensemble of 1000 electrons distinguished initially 

by random phases but all having an identical initial 

energy 50 keV. 
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show that momentum exchange between particle and the wave, for electron energies above 50 

keV, can be described by 

p  p1 – p0 = Ap(p0) sin(t0+p(p0))     (7) 

This relation resembles the first equation in the F-U mapping (3), but with momentum amplitude 

dependent on the momentum exchange Ap and its phase p. FIG. 9a shows how p depends on 

the initial phase of the particle in the wave, computed for several selected values of p0. An 

excellent agreement between the relation (7) and numerical integration verifies that the 

momentum exchange described by a sine dependence on the phase, as assumed in the F-U 

model, can be used to describe local (in the sense of constant p0) particle-wave interaction also 

for the case of full Ez(z,t) profile. The scan shown in FIG. 10 over a range of p0 values shows 

dependence of Ap and p on the initial momentum.  

FIG. 9. a) Change of momentum p = p1-p0 and b) modulation of orbit time with respect to orbit time of 

free particle (t)free, for the case of particles interacting with the standing wave of FIG. 2a. The fit of 

relations (7) and (9) for each initial energy is indicated by black lines. 
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For energies approximately below 200 keV both Ap and p are strongly dependent on the particle 

energy and the global F-U map is not expected to provide correct results in this region. For 

higher energies, however, Ap and p converge to constant values and the particle dynamics is 

well represented by the F-U map. We note that the value of E0 used in the previous section in the 

F-U map (3) shows good agreement as regards the value of momentum exchange in FIG. 10a in 

the region around 300 keV where the stochastic threshold is expected. The most pronounced 

difference between the interaction with a realistic spatial profile of Ez and the -function 

approximation in the F-U model is a strong reduction of energy exchange observed around 106 

keV (as seen in FIG. 10a). This region corresponds to the particle energy for which its transit 

time t through the non-zero part of Ez is comparable to the field oscillation period T=1/fLH. 

When this condition is satisfied, then as a consequence of field shape and symmetry the particle 

gains and loses similar amounts of energy in the first and second half of the interaction and its 

momentum exchange with the wave is strongly reduced, as can be seen in FIG. 11. 

 

FIG. 10. a) Amplitude of momentum exchange Ap (blue line) and b) its phase p for the case of 

particle interacting with the full Ez profile of the standing wave (FIG. 2a). Green line in the left plot 

shows momentum exchange in the F-U model. Vertical dotted line marks position of F-U 

stochasticity threshold. 
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As the shape of the field indicates, the effect of the Ez field on a particle can be approximated by 

several separated kicks corresponding to the main peaks of the field 

 

p  p1sin((t-d1/2/v))+p2sin(t)+p1sin((t+d1/2/v) = sin(t)(p2p1cos(d1/(2v)) ) 

 

where p1 and d1 represent respectively the amplitude of the kick given by the two major peaks 

on the wings of Ez and their distance from the center of the wave, and p2 is the amplitude of the 

joint kick given by the two minor peaks in the middle of the field. Here we assume that the 

change of particle velocity in the field is negligible compared to particle's initial velocity 

v ≈ d/t. Then the condition p = 0 translates as 

2p1 cos(/(2v))+p2 = 0. 

This shows that a similar reduction of the energy exchange should be observed also for higher 

resonances (located below the initial 50 keV) as is verified for the case of t ≈ 2/fLH in FIG. 15. 

FIG. 11. a) Evolution of particle kinetic energy and b) electric field acting on particle during its transit 

through the wave for the case of resonant particles with t ≈ 1/f. Four different initial phases 0 of the 

particle are shown. Position of the four main peaks of Ez is marked by black dashed vertical lines. 
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In the range of energies 93-128keV, i.e. around the first-order resonance, the stochastic sea is 

temporarily replaced by regular motion, as seen in FIG. 12 

 

Above 128 keV the dynamics becomes stochastic again and the stochastic sea extends up to 258 

keV where a transition to regular dynamics starts. For such energies the F-U process already 

well-represents the dynamics and therefore the global stochastic energy threshold predicted by 

the F-U model, Ethr,F-U = 284 keV, is close to the energy Ethr,full = 258 keV of transition to regular 

motion found numerically for the full profile of Ez, estimated from FIG. 13.  

 

We note that both values scale similarly with increasing amplitude of the electric field (Ethr,F-U = 

489 keV and Ethr,full = 474 keV for an amplitude 2.5 times higher, and Ethr,F-U = 705 keV and 

Ethr,full = 685 keV for an amplitude 5 times higher) and the F-U prediction remains within bounds 

of a 10% relative error. 

FIG. 12. Poincaré sections of 1500 particles at the entrance to the interaction region. Particles were 

initially distributed randomly in the range 80-200 keV and followed for 1000 orbits. a) Stochastic sea 

reaches up to 93 keV, and b) a new stochastic region is formed above 128 keV. 
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As shown in FIG. 9b the period of a complete orbit t is given as the orbit period of a free 

particle tfree = Lme1/p1, modulated by an additional oscillating term,

t = t1- t0 =Lme1/p1 + At(p0) sin(t0+ft(p0))    (8) 

A fit of the values At and t as a function of particle energy is plotted in FIG. 14.  

 

FIG. 13. a) Minimum and maximum energy of particles for the case of standing wave from FIG. 2a and 

b) using the same field with 5x higher amplitude after 500 000 orbits as a function of their initial energy. 

Initial phase of the particles was chosen randomly. Black horizontal line shows estimated position of the 

stochasticity threshold. 
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Since the characteristic relative change of particle velocity in the wave is small, the second term 

in (8) is negligible compared to the first one. Moreover, since At(p0) << 1/fLH, the second term in 

(8) does not significantly alter the particle phase and can be neglected. The remaining term is 

identical with the second equation of the F-U model (3) which thus represents a first-order 

approximation of the particle orbit time. 

As was already pointed out, the particles can cross the non-stochastic regions of phase space and 

be accelerated above the stochastic threshold only if the electron phase between consecutive 

interactions is uncorrelated. In such a case the particle undergoes diffusion in velocity space with 

the diffusion coefficient  

 

D(U0)=<(U1-U0)
2>/(2<tbounce>)     (9) 

 

shown in FIG. 15: 

 

Here U0 and U1 are kinetic energy before and after interaction, respectively, and tbounce is period 

of particle's orbit. The diffusion coefficient saturates for energies in the MeV range and in 

FIG. 14. a) Amplitude of orbit time modulation At . b) Phase t for the case of particles interacting 

with the full Ez profile of the standing wave (FIG. 2a). Vertical dotted line shows position of F-U 

stochasticity threshold. 

FIG. 15. Diffusion coefficient from 

Eq.(9), for the case of the full Ez 

profile, in blue, and from the F-U map, 

in green. 
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agreement with the F-U model its value is sufficient to accelerate electrons up to 2.5 MeV in the 

time frame of the WEGA experiment1, tLHW  6.5 s. 

 

V SUMMARY AND CONCLUSION 

 

To summarize, this paper is made up of two main themes. The first is a high-energy 

relativistic generalization of the so-called simplified Fermi-Ulam (F-U) map, the second is its 

application to WEGA stellarator lower hybrid (LH) power operation1. The simplified F-U map 

describes a particle bouncing between two stationary walls, one active and one passive. The 

active wall imparts momentum to the particle, which then returns to this wall after bouncing off 

the passive one. The map does not formally change if one removes the passive wall and lets the 

particle circulate, returning to the active wall. This is the situation experienced by electrons on 

drift surfaces near the antenna during WEGA LH operation. The role of the active wall is here 

assumed by the standing wave pattern of the WEGA antenna Ez field. We essentially 

demonstrate that an interfering random phase between interaction events is necessary for electron 

acceleration beyond a global stochastic limit which holds for correlated phases. It is a curious 

fact that even for very infrequent randomizing events (we tried, for example, randomizing the 

phase on every 10000th orbit out of 106 orbits) the particle energy keeps increasing. In the 

fluctuating edge plasma such occasional randomizing events can be expected to occur. 

Moreover, since our model is constructed as 1D, effects of perpendicular particle energy should 

in the lowest approximation contribute to render the particle phase stochastic. 

In order to represent the electron dynamics [equations of motion (1) and (2) and FIG. 2a] by 

the F-U map, the “real” field region of non-zero extent must be contracted to a -function. This 

can be done if the particle transit time through the field region is shorter than the field oscillation 

period. Numerical symplectic integrations of the equations of motion in section IV with the 

“real” antenna field then show for higher electron energies excellent agreement with results from 

the F-U model. This indicates that the F-U model is a good generic representation of the 

dynamics of sufficiently energetic particles in a spatially complicated oscillating field. Indeed, 

for particle energies below 200 keV the F-U process does not correctly represent the interaction 

and a new type of resonance between the particle transit time through the wave and the field 
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oscillation period appears, decreasing the diffusion coefficient in a narrow region around the 

resonant energy. 

There appear to be two main factors allowing the generation of MeV electrons and non-

inductive current during LH operation with an un-phased antenna on WEGA. First, the 50 keV 

electrons generated during EC pre-heating suffer sufficiently few collisions in order to allow 

them to circulate around drift surfaces without slowing down, thereby gaining energy by 

repeated interaction with the field at the antenna mouth. In doing so, the electrons become even 

less collisional. This is a typical runaway situation, taking place when the fast electron mean-

free-path is not smaller than the total orbiting path. Second, since motion on the drift surfaces is 

asymmetric, such that electrons in one direction are not confined1-3, a current is generated.  

In the case of correlated phases between interaction events, we find that the electron energy 

saturates with the number of passes through the interaction region. The energy saturation values 

from iterations of the F-U map is found to agree with values from period-1 fixed point stability 

analysis. These results are confirmed by direct numerical integration with a finite width 

interaction region. In contrast, when the phases between interaction events are assumed random, 

the electron energy obtained from F-U simulations does not saturate with the number of passes. 

This result is again corroborated by numerical integration with a finite-sized antenna field region. 

The numerical results for random phases, for example the diffusion coefficient of FIG 15, 

essentially corroborate the result of Laqua et al.1. The iterated F-U map can also yield global 

quantities of interest such as maximum energy ensemble averages shown in FIG. 8, revealing 

that with random phases intervening between interaction events, fast electrons in the MeV range 

can be expected to be generated within the time frame of the WEGA experiment1, tLHW  6.5 s.  

The present relativistic form of the F-U map could naturally have useful astrophysical 

applications, cosmic radiation being the area for which the Fermi7 map was originally 

formulated.  
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