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Abstract

In earlier work we have introduced the “Recursive Sparse Blocks” (RSB) sparse matrix storage scheme
oriented towards cache efficient matrix-vector multiplication (SpMV ) and triangular solution (SpSV ) on
cache based shared memory parallel computers. Both the transposed (SpMV T ) and symmetric (SymSpMV )
matrix-vector multiply variants are supported. RSB stands for a meta-format: it recursively partitions a
rectangular sparse matrix in quadrants; leaf submatrices are stored in an appropriate traditional format —
either Compressed Sparse Rows (CSR) or Coordinate (COO). In this work, we compare the performance
of our RSB implementation of SpMV, SpMV T, SymSpMV to that of the state-of-the-art Intel Math Kernel
Library (MKL) CSR implementation on the recent Intel’s Sandy Bridge processor. Our results with a
few dozens of real world large matrices suggest the efficiency of the approach: in all of the cases, RSB’s
SymSpMV (and in most cases, SpMV T as well) took less than half of MKL CSR’s time; SpMV ’s advantage
was smaller. Furthermore, RSB’s SpMV T is more scalable than MKL’s CSR, in that it performs almost as
well as SpMV. Additionally, we include comparisons to the state-of-the art format Compressed Sparse Blocks
(CSB) implementation. We observed RSB to be slightly superior to CSB in SpMV T, slightly inferior in
SpMV, and better (in most cases by a factor of two or more) in SymSpMV. Although RSB is a non-traditional
storage format and thus needs a special constructor, it can be assembled from CSR or any other similar row-
ordered representation arrays in the time of a few dozens of matrix-vector multiply executions. Thanks to its
significant advantage over MKL’s CSR routines for symmetric or transposed matrix-vector multiplication, in
most of the observed cases the assembly cost has been observed to amortize with fewer than fifty iterations.

Keywords: sparse matrix-vector multiply, symmetric matrix-vector multiply, transpose matrix-vector
multiply, shared memory parallel, cache blocking, sparse matrix assembly

1. Introduction and Related Literature

Many scientific and engineering problems require the solution of large sparse linear systems of equations;
that is, systems where the number of equations largely outnumbers the average number of unknowns per
equation. Since most of the entries in the (floating point number) coefficient matrices associated to such
systems are zeroes, it is advantageous to represent them in a computer by their non-zero coefficients only.
Such matrices (and their data structures in a computer) are therefore called sparse. A class of techniques for
solving such systems is that of iterative methods [1]. Their computational core is largely based on repeated
Sparse Matrix-Vector Multiplication (SpMV, defined as “y ← y + A x”; with A being the matrix, and
x, y vectors) executions. Methods as BiCG or QMR (see Barrett et al. [2, Ch. 2]) or Krylov balancing
algorithms (see Bai et al. [3, Alg. 7.1]) require computation of the transpose product as well (SpMV T,
defined as “y ← y + AT x”). Availability of an efficient algorithm for SpMV T eliminates the need
for an explicit transposed matrix representation. Many applications give rise to symmetric matrices (that
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Figure 1: Matrix audikw 1 (symmetric, 943695 rows, 3.9 · 107 nonzeroes excluding the upper triangle) partitioned differently
for 1, 2, 4, 8 and 16 threads RSB, on the same machine. The number of leaf submatrices is respectively 27, 64, 126, 247 and
577; they are laid in memory in the same succession they are traversed by the broken line in the figure. Please note how most
successive submatrices are adjacent, either vertically or horizontally; this has the chance of increasing reuse of cached operand
vectors locations.

is, A = AT ). It is possible to take advantage of symmetry by omitting the explicit representation of the
(strictly) upper triangle and use an appropriate SpMV algorithm exploiting the (non strictly) lower triangle.
We denote such a variant by SymSpMV. In the application of iterative methods, the aforementioned multiply
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kernel variants often consume most of the computing time.
Contemporary multi-core architectures are increasingly inefficient in performing computations on sparse

matrices, and research in algorithms capable of overcoming these inefficiencies (see the wider study of
Asanovic et al. [4, Sec. 3.2]) is considered of strategic importance for forthcoming architectures. The main
technological problem (see the microbenchmark-backed study by Schubert et al. [5] and the considerations by
Buluç et al. [6, Fig.1]) is that for each new architecture the memory bandwidth to (floating point) compute
rate is decreasing. This, while sparse operations/algorithms are already bandwidth (and latency) bound. In
this context, designers of sparse matrix software should seek to optimize memory accesses, in both quantity
(to cope with the limited bandwidth) and type (local accesses are preferred in order to avoid the high latency
of cache misses).

Recently ([7]) we proposed the “RSB” (Recursive Sparse Blocks) hybrid data structure, aiming at im-
proving (w.r.t. traditional formats) cache memory usage in a shared memory parallel context. RSB is a
format built atop the traditional COO and CSR formats.

Similarly to other contemporary approaches, RSB uses a two dimensional matrix partitioning in blocks;
see Fig. 1 for a visual example of it. However, unlike CSB (Buluç et al. [8]) the sparse blocks dimensions are
not uniform, and unlike Yzelman and Bisseling’s ([9]) our techniques are not hyper-graph based. Similarly to
other approaches, selection of a data structure for blocks occurs, but without using completely novel formats,
as Kourtis et al. [10] do with CSX or as Belgin et al. [11] do with PBR. Unlike approaches combining dense
blocking and autotuning techniques (like BCSR in SPARSITY, by Im et al. [12]) RSB does not not require
the representation of excess zeroes, but still has a potential for autotuning. The closest approach we are
aware of is that of Šimeček et al.; in [13], authors use a quad-tree representation for (serial) SpMV, but
with different blocking criteria and data layout, comparing results to an in-house CSR implementation; in
[14] they target specifically index space minimization, but using an uniformly-dimensioned sparse blocks
approach.

Although platform specific tuning is known to give significant efficiency improvements (see the study of
Williams et al. [15]), we chose not to apply it here. In this way we keep RSB algorithms general and the
code portable, thus retaining the possibility of further optimizations.

RSB supports the Level 2 Sparse BLAS (see Duff et al. [16]) operations (matrix-vector multiply and
matrix-vector triangular solve) and their variants, that is: diagonal implicit, symmetry, transposition, up-
per/lower triangle.

In this article, we compare the performance of RSB’s SpMV, SpMV T, SymSpMV to that of a highly
tuned proprietary implementation of the CSR format: the one in the Intel Math Kernel Library (MKL).
To make our contribution more complete we also measure the practical cost of assembling RSB structures,
thus exposing when using our RSB implementation can save overall execution time over MKL’s CSR.
Additionally, we include also results obtained with the state-of-the-art format Compressed Sparse Blocks
(CSB) implementation (see Buluç et al. [8],[6]). However, our main emphasis is on the RSB vs MKL-CSR
comparison, in that CSB exists only as a prototypal code, whereas the former two reside in two complete
Sparse BLAS oriented libraries (MKL and librsb, respectively), and thus are of practical interest to users.

We carry out our study on a computer equipped with a recent multi-core shared-memory processor of
Intel’s Sandy Bridge family.

The next section proceeds by first recalling techniques and problems of the classical COO and CSR
matrix representations, then discussing consequences of their usage with block partitioned matrices, and
finally outlining the RSB data structures and its matrix-vector multiply algorithm. Then the experimental
setup is presented, followed by results and their discussion.

2. The RSB Format and Algorithms

2.1. Vectors and Arrays Notation

Given a matrix A with nr rows and nc columns, we denote each of its entries ai,j by specifying its row
and column indices: 1 ≤ i ≤ nr and 1 ≤ j ≤ nc. We call nonzeroes the entries ai,j which are different from
zero. Sometimes we use an array notation similar to that of the well known Matlab language. For instance,
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Figure 2: COO SpMV (s,x,y): SpMV listing for a COO submatrix s. Assuming index arrays (s.IA, s.JA) contain local
indices translated respectively by s.or and s.oc. Arrays x and y are global.

1 for l← 1 to s.nnz do
2 i← s.IA(l) + s.or
3 j ← s.JA(l) + s.oc
4 y(i)← y(i) + s.VA(l)x(j)

5 end

Figure 3: COO SpMV T (s,x,y): SpMV T listing for a COO submatrix s.

1 for l← 1 to s.nnz do
2 i← s.IA(l) + s.or
3 j ← s.JA(l) + s.oc
4 y(j)← y(j) + s.VA(l)x(i)

5 end

x(i) denotes the ith element of array x; x(f : l) the elements in the range of indices f to l; x(:) denotes the
whole array. Similarly, A(i, j) denotes ai,j ; A(:, j) denotes the jth column; A(i, :) denotes the ith row of A.

The sum of nr sized vector y and the product of A and nc sized vector x can be expressed as ∀1 ≤
i ≤ nr, yi ← yi +

∑nc
j=1 ai,jxj ; in vector notation ∀1 ≤ i ≤ nr, yi ← yi + a(i,:)x. The corresponding

transposed operation is defined (this time for each of y’s nc entries, with nr-sized x) as ∀1 ≤ j ≤ nc, yj ←
yj +

∑nr
i=1 ai,jxi; in vector notation ∀1 ≤ j ≤ nc, yj ← yj + aT(:,j)x.

Given a data structure instance s, we refer to its individual fields with a dot notation similar to Matlab’s
(e.g.: s.x is the x field of structure instance s).

2.2. Background: the COO and CSR formats

As a background for the discussion to follow, here we introduce basic variants of two common sparse
matrix storage formats (COO and CSR) which constitute the computational core of RSB, and show basic
SpMV /SpMV T/SymSpMV algorithms for them.

The Coordinate (COO) format represents a matrix A by encoding its nnz non-zero coefficients (nonze-
roes) using three arrays. Two index arrays IA, JA represent respectively row and column coordinates
of the nonzeroes, while array VA stores their numerical values; that is, for each 1 ≤ l ≤ nnz we have
that aIA(l),JA(l) := VA(l). An SpMV algorithm for COO executes y(IA(l)) ← y(IA(l)) + VA(l)x(JA(l))
on the whole range of l. Correspondingly, an algorithm for SpMV T iterates on y(JA(l)) ← y(JA(l)) +
VA(l)x(IA(l)). We assume a row major ordering of the nonzeroes; that is, ∀1 ≤ p < q ≤ nnz holds either
IA(p) < IA(q) or the both of IA(p) = IA(q) and JA(p) < JA(q).

We show basic COO pseudocode listings for SpMV in Fig. 2 and for SpMV T in Fig. 3. The listings
are general enough to handle a matrix or any of its submatrices (blocks) s. So, the submatrices indices are
relative to a row offset (s.or) and column offset (s.oc), both 0 based. If an entire matrix is to be represented,
then s.or = s.oc = 0.

The second format of interest is CSR (Compressed Sparse Rows). It employs two indices arrays (PA, JA)
and one values array (VA). The JA and VA arrays have the same contents as in the previously defined COO.
The compressed indices array PA is dimensioned nr + 1, and for each 1 ≤ i ≤ nr, PA(i+ 1)−PA(i) is equal
to the number of nonzeroes on row i. That is, PA(i) is the index of the first nonzero corresponding to row i
within JA and VA. If row i is empty, then PA(i + 1) = PA(i). Any SpMV algorithm for CSR is equivalent
to the execution of y(i)← y(i) + VA(PA(i) : PA(i + 1)− 1)x(JA(PA(i) : PA(i + 1)− 1)) on each non empty
row i.

Analogously, the SpMV T variant is equivalent to y(JA(l)) ← y(JA(l)) + VA(l)x(i), where PA(i) ≤ l ≤
PA(i + 1)− 1.

Basic CSR pseudocode for SpMV is shown in Fig. 4; for SpMV T, in Fig. 5.
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Figure 4: CSR SpMV (s,x,y): SpMV listing for a CSR submatrix s.

1 for i← 1 to s.nr do
2 for l← s.PA(i) to s.PA(i+ 1)− 1 do
3 j ← s.JA(l)
4 y(i+ s.or)← y(i+ s.or) + s.VA(l)x(j + s.oc)

5 end

6 end

Figure 5: CSR SpMV T (s,x,y): SpMV T listing for a CSR submatrix s.

1 for i← 1 to s.nr do
2 for l← s.PA(i) to s.PA(i+ 1)− 1 do
3 j ← s.JA(l)
4 y(j + s.oc)← y(j + s.oc) + s.VA(l)x(i+ s.or)

5 end

6 end

Both the COO and CSR formats support a symmetric storage variant, where either the upper or the lower
triangle of A can be omitted from representation. The corresponding symmetric matrix-vector multiplication
variant (SymSpMV ) is equivalent to performing SpMV on one triangle of A and SpMV T on the off-diagonal
elements of the same triangle, but with a single read of the matrix arrays. This is a gain in efficiency if
compared to executing SpMV, SpMV T in sequence, because with no additional matrix memory accesses, the
ratio of compute operations to memory accesses is almost doubled. See the example listings COO SymSpMV
in Fig. 6 and CSR SymSpMV in Fig. 7. Please note that depending on the assumptions on the matrix
diagonal the innermost check in both listings could be safely omitted in some cases; for instance, when
assuming a diagonal implicit or a lower triangle representation.

2.3. Background: Serial COO and CSR SpMV kernels for sparse blocks

As previously mentioned, the role of JA,VA arrays is the same in COO and CSR. The remaining arrays
are the nnz sized IA for COO and the nr + 1 sized PA for CSR. With matrices encountered in common
applications having nr < nnz, using a CSR representation rather than a COO one requires fewer index
entries, because row indices information is compressed in the PA array instead of being explicitly stored
as in IA. Assuming the same integer representation for PA, IA, JA (e.g.: C’s int type) and nr � nnz, a
CSR representation can save almost half of the indexing storage required by COO. Assuming an 8 bytes
type for the numerical coefficients in VA and 4 bytes for the index type, a COO representation uses exactly
8 + 4 + 4 = 16 bytes per nonzero, while CSR uses ((8 + 4)nnz + 4nr)/nnz. That is, CSR uses between 12
and 16 bytes per nonzero, so up to 25% less than COO. This saving is beneficial in terms of memory traffic
required to read the matrix arrays during the multiplication.

Figure 6: COO SymSpMV (s,x,y): SymSpMV listing for a COO submatrix s.

1 for l← 1 to s.nnz do
2 i← s.IA(l) + s.or
3 j ← s.JA(l) + s.oc
4 y(i)← y(i) + s.VA(l)x(j)
5 if i 6= j then
6 y(j)← y(j) + s.VA(l)x(i)
7 end

8 end
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Figure 7: CSR SymSpMV (s,x,y): SymSpMV listing for a CSR submatrix s.

1 for i← 1 to s.nr do
2 for l← s.PA(i) to s.PA(i+ 1)− 1 do
3 j ← s.JA(l)
4 y(i+ s.or)← y(i+ s.or) + s.VA(l)x(j + s.oc)
5 if i 6= j then
6 y(j + s.oc)← y(j + s.oc) + s.VA(l)x(i+ s.or)
7 end

8 end

9 end

Apart from the amount of memory occupation, with the assumptions made so far, the shown CSR and
COO kernels have similar memory access patterns, that we here summarize. The VA, JA arrays are traversed
sequentially one location forward at a time in (both COO and CSR). The x array is read at irregularly spaced
locations, specified by the column indices in JA. In case of the SpMV access type (Fig. 2, Fig. 4) the same
columns, and thus x locations might be accessed repeatedly across successive rows; this is often the case
when the matrix has some structure. At each access, an entire cache line (on the machine of our interest, 64
bytes, that is 8 x array locations) is loaded; if matrix rows are too long, eviction can occur before the cache
line being reused in a subsequent row. This is cause of a big inefficiency: in addition to the latency due to
cache misses, a relevant fraction of bandwidth (that of accessing one array out of five) is wasted. Access to
y is different: since rows are visited in a strictly ascending order, potential of cache lines reuse is retained
across consecutive memory locations updates. In the case of SpMV T (Fig. 3, F ig. 5), the cacheability of
x and y arrays is reversed: successive locations of x are read in one traversal (so, for a total of nr read
elements), while a location of y is updated for each JA location (so, for a total of nnz updates). Since
updating a memory location is more expensive than merely reading it, SpMV T are slower when using a
row major ordering, as it is the case here. Symmetric kernels (Fig. 6, F ig. 7) exhibit the behavior of both
SpMV and SpMV T at once.

Traversal of the IA array in COO and PA in CSR occurs only once and sequentially; as mentioned, the
size of IA may exceed that of PA in large measure. Although generally being an advantage of CSR over
COO, this may lead to cache misses on PA in case of very long rows, just as with y in SpMV.

In practice, there is a vast number of optimizations that can be applied to the base COO and CSR
kernels we listed. We describe a very common one that can improve write access to the y array. Assuming
nr � nnz, it is possible to accumulate the contributions for the y array in an auxiliary variable yaux, thus
postponing the update of y (line 4 in Fig. 4). The effective array update would be placed just outside
the inner loop, with a statement like y(i + s.or) ← y(i + s.or) + yaux. The memory access request rate
would be then reduced down to one location per row. One can apply a similar optimization also to COO
by rearranging the COO SpMV listing (Fig. 2) in two loops: an outer one iterating over consecutive row
indices, and an inner one iterating over consecutive column indices of the same row.

Another simple and effective optimization compatible with the aforementioned one can be unrolling
(either explicitly or relying on compiler support) the inner of the two loops by a specified amount. In
this way fewer loop control instructions would have to be executed, while the compiler may still have the
possibility of arranging the arithmetic and memory store/load instructions efficiently.

The two aforementioned techniques contribute to the efficiency of CSR and are often used. In general,
they assume nr < nnz (which is true for most commonly encountered matrices) and are most effective when
nr � nnz. However, by considering an arbitrary rectangular submatrix of a common matrix, this property
is not generally valid, and the mentioned optimization techniques may not be effective anymore. Indeed, in
the case of a submatrix with nnz < nr, CSR storage would use (nr + 1 − nnz) integer index entries more
than COO. Some authors call this property “hyper-sparsity”.

It is now evident that given an arbitrary subdivision in sparse blocks (submatrices): 1) traditional COO
and CSR optimization strategies may be less effective; 2) it is not obvious which representation (between
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COO and CSR) can be more advantageous; 3) a different class of optimizations may have to be considered.

2.4. The RSB format and parallel sparse matrix-vector multiply

RSB (Recursive Sparse Blocks) is a hierarchical representation format conceived to work with algorithms
that are both parallel and cache-efficient. It is based on the recursive partitioning of a matrix in quadrants
[7]. At the root of recursion, the (nr × nc) sized matrix A is subdivided as follows:

A =

∣∣∣∣A11 A12

A21 A22

∣∣∣∣ (1)

where A11 is dimensioned (dnr/2e × dnc/2e), A12 is (dnr/2e × bnc/2c), A21 is (bnr/2c × dnc/2e), A22 is
(bnr/2c × bnc/2c). Each nonempty quadrant is subdivided further according to the same criterion. A data
structure is allocated for each nonempty quadrant, thus defining a tree structure with submatrices as nodes.
Recursion of subdivision terminates when a condition on the submatrix (rows, columns, and nonzeroes
count) and machine parameters is satisfied; submatrices can be regarded as cache blocks. Nonzeroes are
stored in leaf submatrices only. A leaf submatrix format can be either COO or CSR. When appropriate, 16
bit (C’s short unsigned int) indices are used instead of the default 32 bit ones in COO’s IA, JA, or for
CSR’s JA arrays (recall Section 2.2); this feature was first introduced in RSB in [17]. We discuss subdivision
and indices choice criteria briefly in Section 2.5.

Within the matrix, leaf submatrices arrays are laid out in memory in a succession following the subdi-
visions (that is, depth first). This leads to a so-called Z-Morton layout (after Morton [18]); see Fig. 1 for a
visual representation of it.

The matrix-vector product operation could be reorganized into descending the tree structure recursively
and performing the computation at the leaf submatrices level, following this ordering:∣∣∣∣y1y2

∣∣∣∣← ∣∣∣∣y1y2
∣∣∣∣+

∣∣∣∣A11 A12

A21 A22

∣∣∣∣ ∣∣∣∣x1

x2

∣∣∣∣ ≡ ∣∣∣∣y1y2
∣∣∣∣← ∣∣∣∣y1y2

∣∣∣∣+

∣∣∣∣A11x1 + A12x2

A21x1 + A22x2

∣∣∣∣ (2)

This decomposition relies on the independence of the y1 and y2 updates, thus suggesting that an implemen-
tation can use two distinct threads to compute them.

Since it is often the case that submatrices stored successively are adjacent (either vertically or horizontally
— see Fig. 1), if the leaf submatrices are small enough, the chance of reusing cached x, y locations across
submatrices visits during a multiply execution is increased.

We employed this approach of tree descending and dual threaded parallelism in [7] with satisfying results.
However, in order to achieve a higher degree of parallelism we developed an additional algorithm, operating
on the individual submatrices but still retaining some of the aforementioned locality properties.

Let us assume S is the array containing (references to) A’s Ns leaf submatrices. Then, ∀ 1 ≤ si ≤
Ns, s = S(si) represents a rectangular submatrix of A, extending between rows 1 + s.or and s.nr+ s.or and
columns from 1 + s.oc to s.nc + s.oc. If we consider Aπ(si) to be the nr × nc dimensioned matrix (so, fully
dimensioned) containing only the nonzeroes in S(si), then:

A =

Ns∑
si=1

Aπ(si) ⇒ y + Ax = y +

Ns∑
si=1

Aπ(si)x (3)

By arranging the multiplication algorithm according to this decomposition, each s contributes to the
update of a delimited interval of y and reads only a part of x. In array notation, for each s = S(si):

y(1 + s.or : s.nr + s.or)← y(1 + s.or : s.nr + s.or)+
A(1 + s.or : s.nr + s.or, 1 + s.oc : s.nc + s.oc)·

x(1 + s.oc : s.nc + s.oc)
(4)

Here, multiple execution threads can be employed at once in the computation of different contributions
to y, each corresponding to a different submatrix. In the general case there could be multiple submatrices
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contributing to a given interval of y. The y array is written directly: no auxiliary buffer array is used.
Because of the lack of atomic updates for floating point number arrays on the computer architectures of our
interest ([19, V.3, Ch. 8.1]), multiple simultaneous updates to the same entries of y’s array might cause a
race condition, and consequently lead to incorrect results.

We use a synchronization technique to avoid this problem: when a thread is associated to a submatrix s
(or, picks the submatrix), the interval 1 + s.or...s.nr + s.or gets locked until operation on s is complete. As
long as the interval is locked, no other thread is allowed to use any submatrix whose rows interval intersects
s’s. We implemented the lock mechanism in our code using the omp parallel and omp critical OpenMP
[20] directives only.

In our implementation, the temporal order in which submatrices are multiplied is non deterministic;
each thread keeps reading a shared bits vector to identify submatrices not visited yet. When a thread finds
an unvisited submatrix on an available rows interval, it marks the interval as locked and the submatrix as
visited, so no other thread can use it. Having potentially several threads reading concurrently a shared
array might cause inefficiencies due to the cache coherency mechanisms. The cost of our locking technique is
difficult to estimate theoretically, so we have performed an experiment to do so empirically; the experiment
is described in Section 4.4. Although a non negligible impact has been observed on some matrices, we do
not find this to be problematic. However, it is clear that in a perspective of even more executing threads
contention is expected to grow, so we might consider alternative techniques as future work.

With slight modifications, the described SpMV algorithm for RSB has been extended to handle SpMV T
and SymSpMV as well. Adapting to SpMV T is straightforward: locking is applied to the submatrices
columns’ intervals and SpMV T kernels are invoked instead; by itself, transposed operation does not involve
additional locking costs. Adjustment for SymSpMV is different: locking of both the rows and columns
intervals is required to allow safe update of the two corresponding intervals of y. As a consequence of the
doubled amount of locked intervals, potential parallelism of SymSpMV is less than for SpMV.

Pseudocode implementing either SpMV, SpMV T or SymSpMV for RSB is sketched in Fig. 8.

2.5. Assembly of RSB matrices

In this section we give an outline of the CooToRSB procedure used to assemble an RSB matrix from the
three row-major ordered COO arrays (IA, JA,VA, with 32 bit indices — recall Section 2.2); details of this
procedure (such as pseudocode listings) have been published in [21]. RSB is a hybrid format representing
submatrices as either CSR or COO, eventually using 16 bit indices instead of the common 32 bit ones.
Given input matrix arrays, the exact subdivision in submatrices is determined after a recursive subdivision
process. Within CooToRSB, we distinguish a first phase where only symbolic information about the desti-
nation submatrices is collected (SubdToRSB), and a second one, where the individual submatrices arrays
are populated (ShufToRSB). The two phases operate consecutively, and both can be implemented as shared
memory parallel.

SubdToRSB scans the input COO arrays repeatedly to identify quadrant submatrices. It is implemented
with binary search operations and uses auxiliary compressed indices arrays; the amount of required work
memory does not exceed a few times the original indexing amount. As submatrices are identified, they are
considered for further subdivision.

Subdivision of different submatrices can be performed in parallel. Because of the irregular structure of
most matrices, the participating threads need to coordinate when choosing which submatrices to operate
on. Corresponding information is gathered in parallel as submatrices are being subdivided. This algorithm
is non deterministic; namely executing SubdToRSB on the same input might produce different partitionings
in different runs, because threads scheduling may cause a different runtime of some threads, and thus a
different sequence of matrices considered for subdivision. Because of the dependency among individual
subdivisions, parallelism of SubdToRSB is very limited in the beginning of the construction process; once a
sufficient number of subdivisions has been produced, more threads can start to work.

Terminating subdivision on a given submatrix and selecting a format for it proceeds according to a rule,
which takes into account: 1) a user specified or system detected cache size parameter, representative of the
amount of memory each submatrix shall ideally occupy in order to favor cache efficient computations; 2)
the number of available concurrent threads: subdivision is finer, the more threads are available.
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Figure 8: RSB SpMV (S,x,y)/RSB SpMV T (S,x,y)/RSB SymSpMV (S,x,y): Sketch of multithreaded SpMV /SpMV T -
/SymSpMV for leaf submatrices of a RSB matrix. It operates on the submatrices array S and arrays x, y. For simplicity,
we do not specify the lock mechanism. After the continue statement the thread execution continues at the next iteration
in the loop.

1 S ← (s0, s1, . . . , sNs−1) /*array of leaf submatrices*/
2 B ← (0, 0, .., 0) /*a zero bit for each unvisited submatrix in S*/
3 n ← 0 /*count of visited submatrices*/
4 begin parallel
5 while n < Ns /*enter the loop if any submatrix is unvisited*/ do
6 begin critical
7 s← pick up a submatrix s = ssi = S(si) such that B(si) = 0 (s is a yet unvisited submatrix)
8 if want SpMV then
9 (f, l)← (1+s.or, s.or+s.nr)

10 if interval (f, l) is locked then continue
11 lock interval (f, l) /*lock y on s’s rows interval*/

12 end
13 if want SpMV T then
14 (f ′, l′)← (1+s.oc, s.oc+s.nc)
15 if interval (f ′, l′) is locked then continue
16 lock interval (f ′, l′) /*lock y on s’s columns interval*/

17 end
18 if want SymSpMV then
19 (f, l)← (1+s.or, s.or+s.nr)
20 (f ′, l′)← (1+s.oc, s.oc+s.nc)
21 if either of (f, l) or (f ′, l′) intervals is locked then continue
22 lock interval (f, l) /*lock y on s’s rows interval*/
23 lock interval (f ′, l′) /*lock y on s’s columns interval*/

24 end
25 B(si)← 1 /*mark submatrix ssi as visited*/
26 n← n+ 1 /*increment visited submatrices counter*/
27 end critical
28 if want SpMV then
29 if s is stored as COO then call COO SpMV (s,x,y)
30 if s is stored as CSR then call CSR SpMV (s,x,y)

31 end
32 if want SpMV T then
33 if s is stored as COO then call COO SpMV T (s,x,y)
34 if s is stored as CSR then call CSR SpMV T (s,x,y)

35 end
36 if want SymSpMV then
37 if s is stored as COO then call COO SymSpMV (s,x,y)
38 if s is stored as CSR then call CSR SymSpMV (s,x,y)

39 end
40 begin critical
41 if want SpMV then unlock interval (f, l)
42 if want SpMV T then unlock interval (f ′, l′)
43 if want SymSpMV then unlock intervals (f, l) and (f ′, l′)
44 end critical

45 end
46 end parallel
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Then, the amount of memory accesses necessary for performing SpMV on a given submatrix s is es-
timated; if this amount is considered small enough, then subdivision terminates and s is kept as a leaf
submatrix. If not, the submatrix is marked for further subdivision. The mentioned formula resembles a
rough estimate of the memory footprint of CSR’s SpMV : 1) the total extension of the submatrix storage
arrays, to be read once; 2) the extent of the output vector y, to be updated once per location; 3) the extent
of the input vector x, to be read possibly multiple times (no more than s.nnz accesses). An important
property of this mechanism is that only submatrices with more nonzeroes than rows will be stored as CSR;
otherwise COO will be used. Submatrices dimensioned less than 216 will use 16 bit indices for JA (in both
COO and CSR) and IA (only in COO) arrays; remaining ones will use the default 32 bit indices. The
interested reader can find details in [21].

ShufToRSB operates by visiting the tree structure generated by SubdToRSB and shuffling the original
(input, unmodified) row-major ordered COO arrays according to the new ordering of submatrices, laying
each one consecutively by following the recursion tree. As mentioned, this defines a Z-Morton ordering of
the sparse blocks. The ShufToRSB phase can operate with a fairly high degree of parallelism if the matrix
has been partitioned in enough submatrices: different threads will shuffle the arrays in parallel. After
ShufToRSB the original IA, JA,VA arrays will be rearranged to host COO and CSR arrays of the different
submatrices, at offsets determined by SubdToRSB.

Please see Fig. 1 for an example of a large matrix partitioned in the case of different thread numbers.
Several optimizations may be applied to our algorithm for specific instances of the assembly problem, but
we keep them as future work.

We present and discuss speed results of our RSB assembly implementation in Section 4.5.

2.6. The Compressed Sparse Blocks (CSB) format

CSB is a format of recent introduction. Since its inception (see Buluç et al. [8]) it has been devoted
to provide equally efficient SpMV /SpMV T and reduced index occupation (or better, reduced memory
bandwidth at runtime operation). It has been recently extended to handle SymSpMV and it shows room for
further improvement [6]. This format shares the following ideas with RSB: a) rearrangement of the matrix
in sparse blocks sized roughly according to the cache size, and dynamic scheduling in the processing of these
blocks; b) increased symmetry (w.r.t. to formats like CSR or CSC) in the performance of SpMV /SpMV T ;
c) exploiting the locality properties of the Z-Morton curve: RSB arranges the sparse blocks on a two
dimensional Z-Morton curve, where CSB does so for the individual nonzeroes of each sparse block.

The main differences with RSB are: a) CSB achieves shared memory parallelism by employing the “Cilk”
extension syntax and runtime system for C++, whereas RSB uses OpenMP [20]; b) the symmetric format
and algorithms of CSB differ significantly from the unsymmetric ones; c) the current implementation of CSB
relies on machine specific optimizations (unlike RSB); d) CSB uses O(nnz) + O(nr · nc) storage for indices,
where RSB uses O(nnz). The CSB format algorithms differ substantially from RSB’s or CSR’s. For further
details, please refer to the works of Buluç et al.: [8] and [6].

3. Experimental Setup and Methodology

We performed our experiments on a computer equipped with two “Intel Xeon E5-2680” (“Sandy Bridge”)
CPUs, 8 cores each. Each such CPU has 3 levels of caches; associativity/line size/capacity parameters are
respectively for L1-data: 8/64/32KB, for L2-unified: 8/64/256KB, and for L3: 20/64/20MB. We run our
benchmark code to up to 16 (OpenMP) executing threads; for brevity we consider only 1 and 16 threaded
results. We compare our results to those of the proprietary, highly optimized Intel’s Math Kernel Library
(version string: “MKL 10.3-7, Product, 20111003, Intel(R) Advanced Vector Extensions (Intel(R) AVX)
Enabled Processor, Intel(R) 64 architecture”) routines for CSR stored matrices; specifically, we compare
with the mkl dcsrmv routine. We chose the double precision numerical representation; we do not consider
other representations for brevity reasons. According to the Intel MKL manual ([22, p. 2712]), elements
within each CSR row shall be strictly ordered by column, and both the row pointers and column indices
arrays have to be represented with 4 byte signed integers (C’s int). We have chosen to compare our
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implementation of RSB to MKL’S CSR implementation for two reasons: a) the CSR format is a traditional,
well known and widely used format; b) MKL is a widely used, highly efficient proprietary (as such, closed
source) library specifically optimized for the CPUs as the one we use. Thus, this study aims to compare
our RSB implementation with that of a reference standard real-world library using a typical sparse matrix
format. We compiled our C99 ([23]) code with the Intel icc compiler (“Intel(R) C Intel(R) 64 Compiler
XE for applications running on Intel(R) 64, Version 13.0.1.117 Build 20121010”); thread parallelism is
obtained by means of OpenMP; we use the -O3 -xAVX -fPIC -openmp compilation flags.

We only use publicly available matrices among the largest (> 107 nonzeroes) from the University of
Florida Sparse Matrix Collection (see Davis and Hu [24]). Such matrices do not fit in the cache memory:
storage of 107 nonzeroes requires twice the total amount of available L3 cache already for the numerical
arrays alone. See Table 1 for the list of matrices we consider. These matrices originate from a variety of
different problems in science, engineering, information technology. Of these matrices, two are non-square:
GL7d19 (1911130 × 1955309) and relat9 (12360060 × 549336). For plotting convenience, we shortened the
name of matrix channel-500x100x100-b050 to channel-500x100. We measure the performance by the

matrix symm nr nc nnz nnz/nr
arabic-2005 G 22744080 22744080 639999458 28.14
audikw 1 S 943695 943695 39297771 41.64
bone010 S 986703 986703 36326514 36.82
channel-500x100x100-b050 S 4802000 4802000 42681372 8.89
Cube Coup dt6 S 2164760 2164760 64685452 29.88
delaunay n24 S 16777216 16777216 50331601 3.00
dielFilterV3real S 1102824 1102824 45204422 40.99
europe osm S 50912018 50912018 54054660 1.06
Flan 1565 S 1564794 1564794 59485419 38.01
Geo 1438 S 1437960 1437960 32297325 22.46
GL7d19 G 1911130 1955309 37322725 19.53
gsm 106857 S 589446 589446 11174185 18.96
hollywood-2009 S 1139905 1139905 57515616 50.46
Hook 1498 S 1498023 1498023 31207734 20.83
HV15R G 2017169 2017169 283073458 140.33
indochina-2004 G 7414866 7414866 194109311 26.18
kron g500-logn20 S 1048576 1048576 44620272 42.55
Long Coup dt6 S 1470152 1470152 44279572 30.12
nlpkkt120 S 3542400 3542400 50194096 14.17
nlpkkt160 S 8345600 8345600 118931856 14.25
nlpkkt200 S 16240000 16240000 232232816 14.30
nlpkkt240 S 27993600 27993600 401232976 14.33
relat9 G 12360060 549336 38955420 3.15
rgg n 2 23 s0 S 8388608 8388608 63501393 7.57
rgg n 2 24 s0 S 16777216 16777216 132557200 7.90
RM07R G 381689 381689 37464962 98.16
road usa S 23947347 23947347 28854312 1.20
Serena S 1391349 1391349 32961525 23.69
uk-2002 G 18520486 18520486 298113762 16.10

Table 1: Matrices used for our experiments. Symmetric are marked by S, general unsymmetric by G.

conventional “floating point operations per second” metric; that is, for each of the matrix nonzeroes, we
canonically count two operations, and divide by the (wall clock) time the operation took. We measured
timings using the POSIX ([25]) gettimeofday() function. We consider the minimal time after 50 repetitions
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of the operation (either SpMV, SpMV T or SymSpMV ), or 5 repetitions in the case of the matrix assembly
operation. All our measurements were performed with hot caches; that is, we deliberately did not flush
cache contents in between subsequent multiply calls. Nevertheless, we exclude accidental reuse of cached
locations across the calls, because all measurements were performed on matrices much larger than the total
of last level cache. In this way we avoid artificially high results. We use the following linking flags for MKL:
“-lm -lmkl solver lp64 -lmkl intel lp64 -lmkl gnu thread -lmkl core”.

Additionally to measurements of RSB and MKL timings, we also considered the state-of-the-art CSB
format from the proof-of-concept code Buluç et al. used in their 2011 paper [6]. Here, we used the
same compiler suite, and C++ compilation flags as: -O3 -xAVX -fPIC -fno-rtti -parallel -restrict

-fno-inline-functions. We modified slightly the CSB code to use the same benchmarking criteria as
above.

4. Performance Results and Discussion

4.1. Notation, presentation notes

When discussing results, by “MKL” we intend MKL’s CSR implementation of the mkl dcsrmv rou-
tine (MKL’s driver for CSR SpMV,CSR SpMV T,CSR SymSpMV ). Since the sparse matrix-vector multiply
operation is implemented with slightly different algorithms for symmetric (SymSpMV ) and unsymmetric
matrices (SpMV, SpMV T ), we use different figures for their results (Figs. 9, 10, 11, 16 pertain to unsym-
metric matrices; Figs. 12, 14, 15, 17 pertain to symmetric ones). Since SpMV and SpMV T algorithms are
conceptually similar and apply to the same matrices, we chose to present their results on the same figure.
In the figures’ legend acronyms, transposed (untransposed) results are marked with a ’T’ (’N’) preceding
the number of considered parallel threads, and following the implementation label (either ’MKL’, ’CSB’ or
’RSB’).

4.2. Unsymmetric matrices: SpMV, SpMV T

In the SpMV and SpMV T results (Fig. 9), our first observation is that in contrast to MKL’s CSR,
RSB’s SpMV T performs almost the same as SpMV. Of the 7 considered matrices, 5 exhibit better RSB
performance for SpMV T than for SpMV, while MKL performance is always better for SpMV. For the tall
(nr > nc) relat9 this is especially marked (2.4 vs 1.3 GFlops — almost twice); we speculate it is so because
a much shorter vector is updated during SpMV T than SpMV (549336 vs 12360060 elements, so circa one
twentieth), leading to higher chances of cache hit. Comparing MKL’s SpMV to RSB’s, most of the matrices
favor RSB, being faster by some 15 to 50%. Exceptions are the information retrieval matrix indochina-2004,
being multiplied almost twice as fast with RSB; relat9, giving 2/3 of MKL’s performance; GL7d19 faster by
some 15% with MKL. A reason for relat9’s poor RSB performance is probably the index usage, circa 50%
higher than CSR (7.92 vs 5.27 bytes/nnz — see Fig. 10); only matrix GL7d19 had a significant increase in
index usage compared to CSR, and it’s also outperformed by it. Beside the balance in memory traffic (more
for indices, less for numerical data), almost all of relat9’s submatrices (an most of GL7d19’s) are stored in
the COO format, which is known not to be very efficient for SpMV.

In no case MKL performed SpMV T faster than RSB; the measured performance ratios ranged from
1.16 (arabic-2005) to 3.8 (GL7d19).

In SpMV comparison with CSB, RSB has performed substantially better (more than twice the speed) in
one case only, that of indochina-2004. In two cases (HV15R and RM07R) the results of CSB and RSB were
very similar, for both SpMV /SpMV T. CSB-16’s SpMV has performed better than RSB-16 on arabic-2005
and GL7d19; considerably (50%–100%) better on relat9 and uk-2002. On graph matrices arabic-2005, relat9,
uk-2002, CSB has not been able to provide symmetric performance: the transposed case is roughly slower
by half; in contrast, RSB has been able to provide symmetric performance for all matrices except the tall
relat9. Indeed, in the case of SpMV T, RSB-16 has been found to be slower than CSB in one case only
(GL7d19); in most remaining cases it has been faster than CSB’s by 10–30%.

A different view over these results is that of parallel scaling; that is the ratio of 16 threaded execution
performance to the single threaded one (Fig. 11). The best SpMV /SpMV T scaling results are for CSB,
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Figure 9: Unsymmetric matrices. SpMV and SpMV T performance, for 16 threaded CSB, MKL and RSB.

reaching around 10× in most cases; the best scaling for RSB is 9×, reached on one case. In most of the
cases, SpMV /SpMV T ’s RSB scales up to 4–5×, followed by MKL’s SpMV.

MKL’s best SpMV scaling is for matrix GL7d19 (7.86×); for SpMV T it is 3.13×, on relat9. MKL’s
SpMV T scaling is usually inferior to 3×. For RSB, SpMV and SpMV T scaling are close (within some 20%
of difference), for each matrix. Similarly for CSB; except in the cases arabic-2005 and uk-2002, where SpMV
scales twice as SpMV T (it’s not clear to us why). The reason for the very high scalability properties of CSB
is its relatively low performance for the single threaded case. CSB requires also less index usage (around
4 bytes per nonzero, whatever the matrix), but presumably more instructions (e.g.: indices arithmetic) to
execute, so it pays off with more executing threads.

Closely related to the high index usage of some matrices is the (very low) density of nonzeroes per row,
and the consequent negligible cache reuse of the vectors involved in SpMV /SpMV T ; GL7d19 and relat9
have the lowest densities (respectively, 19 and 3) among their group (see Table 1) and give the poorest
performance.

We chose not to present the throughput of intermediate choices of threads; however we collected data
also for the 8 threaded case and we comment it briefly. Although the relative results of MKL and RSB are
pretty similar here, in a couple of cases SpMV and SpMV T performance was better (by a few percent)
with 8 threads. In all cases, MKL’s SpMV T implementation exhibited the same performance for 8 and 16
threads. The CSB results for 8 threads were in all cases inferior to the 16 threaded ones.

4.3. Symmetric matrices: SymSpMV

On a symmetric matrix A(= AT ), the result of transposed multiply is the same as untransposed (Ax =
ATx). Both MKL’s CSR and our RSB implementation of SymSpMV take advantage of the symmetry, so
for each nonzero coefficient being read, two corresponding result vector entries are updated (by addition)
instead of one. The same holds for CSB, although here the data structure differs significantly from the
unsymmetric case (see [6, Sec.IV]). This leads to a write-to-read ratio higher than in SpMV /SymSpMV,
therefore leading to a higher average floating point performance.
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Indeed, results (see Fig. 12) are generally better than in the unsymmetric cases; moreover, at a first
glance we notice an even higher advantage of RSB over MKL. The difference in performance ranges from
4% (8.2 vs 7.9 GFlops for audikw 1) to 217% (1.52 vs 0.48 GFlops for road usa). The best results are circa
13 GFlops for RSB (Flan 1565) and around 8 GFlops for MKL (Cube Coup dt6, audikw 1); the worst ones
are (in both implementations) with europe osm (1.1 GFlops for RSB, 0.4 GFlops for MKL). CSB results
are often better than MKL for matrices where both of RSB and MKL are relatively slow, and worse for the
matrices exposing peak performance. Comparing RSB-16 to CSB-16 in the symmetric case shows similar
results on matrix gsm 106857. In one case (europe osm) CSB-16 performed more than twice as fast as
RSB-16. Other cases where CSB-16 is better are: channel-500x100x100-b050, delaunay n24, rgg n 2 23 s0,
rgg n 2 24 s0, road usa. On all the remaining symmetric cases, RSB-16 has been found to be superior to
CSB-16; often twice as fast. For three matrices (channel-500x100x100-b050, rgg n 2 23 s0, rgg n 2 24 s0)
CSB resulted to be the best format.

With single threaded RSB, matrices’ index occupation is near to that of CSR (see Fig. 14). When using
16 threads, occupation is lower: mostly by almost 30–40%, in the range of 2.4–4 bytes/nnz.

With certain matrices (delaunay n24, europe osm, road usa), indices occupy much with both CSR and
RSB. Furthermore, with these matrices RSB indices occupy more with 16 threads than with 1. It is easy
to see (Fig. 12) that the matrices leading to consistently the worst performance for both implementations
(delaunay n24, europe osm, road usa, gsm 106857, kron g500-logn20) are also the ones with the highest
index per nonzero average occupation. Indeed, most of these have a very low nonzeroes per row ratio,
which forces the assembly algorithm to select often the COO format for their submatrices (recall that COO
submatrices dimensioned less than 216 are being stored with 4 bytes of indices per nonzero, while larger
ones with 8 bytes of indices per nonzero). CSB employs very little (roughly 4 bytes) index data per nonzero,
whatever the matrix. This is very likely to be the main factor in its relatively good performance with the
above mentioned matrices.

Exception made for one case, the scaling (see Fig. 15) measure is better for RSB’s SymSpMV than
for MKL’s. Best scaling for RSB is reached with rgg n 2 24 s0 (7.26×), while for MKL it is reached with
Cube Coup dt6 (6.14×). Matrix rgg n 2 24 s0 is also the one where RSB scales the most (9.14×, versus
MKL’s 3.02×).

Indeed, higher parallel performance and scaling of RSB correlates with smaller differences in performance
for the single threaded (RSB vs MKL) comparison; there (we omit showing a plot for space reasons) RSB is
slightly slower than MKL (by circa 10–20%). Comparing Fig. 15 to Fig. 11, one can see how on the average,
the scalability of RSB’s SymSpMV is slightly better than that of SpMV /SpMV T.

The matrix on which the smallest advantage over MKL is found is audikw 1 (only 12%, see Fig. 15) —
as a consequence it is the only case with RSB SymSpMV scaling worse than MKL. Indeed, in most of the
cases the single-threaded (not shown in the plots) RSB’s SymSpMV is faster than MKL’s, between 20 and
25%.

Just as in the unsymmetric case, CSB performance scales much better than RSB and MKL’s CSR: up
to 14×. The worst cases scale around 9×, and that is more than the best RSB case. This good scalability
property is caused by the serial CSB SymSpMV performing significantly slower than MKL’s CSR or RSB.
Most of the RSB results when using 8 threads (omitted from the plots) are slower than with 16 threads
(up to some 30% difference with Flan 1565). For matrices europe osm, nlpkkt120, nlpkkt160, nlpkkt200,
nlpkkt240, rgg n 2 23 s0, rgg n 2 24 s0 RSB-16 performs more or less the same as RSB-8.

Results for MKL show a similar trend. It is worth to note that the three matrices with the highest index
per nonzero ratio (audikw 1, delaunay n24, europe osm) don’t exhibit any improvement between RSB-8
and RSB-16. In the case of CSB, the best results are for 16 threads. There is seemingly no performance
correlation between the RSB and CSB formats here, although both seem to improve the performance of
matrices as delaunay n24, europe osm, gsm 106857, road usa, where MKL’s CSR performing particularly
slow.

4.4. Submatrices Lock Contention in practice

As mentioned in Section 2.4, the simultaneous update of different y intervals is kept free of accidental
race conditions by the use of a custom row locking mechanism. This mechanism operates on ranges of the
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Figure 12: Symmetric matrices. SymSpMV performance, for 16 threaded CSB, MKL, and RSB.

x vector (recall Fig. 8). In the case of SymSpMV, two target y ranges (recall listings Fig. 6 and Fig. 7)
are locked for each submatrix, thus increasing the likelihood of additional lock contention (the lock impedes
other threads to use either of the two intervals).

To quantify the impact of the locking mechanism, we performed an experiment consisting in running the
usual multiplication algorithm (Fig. 8) with a fictitious lock mechanism; i.e.: the checks at lines 10, 15, 21
were skipped. With the lock constraint relaxed, task parallelism is maximized, and so potentially execution
speed. However, then the results are not guaranteed to be correct anymore, because floating point arithmetic
instructions (employed by the y array update code) have no guarantee of executing atomically on the
architecture we are using (see [19, V.3, Ch. 8.1]). In addition to the corrupt results, simultaneous concurrent
writes to the same cache lines by different threads lead to the false sharing (see [26, 8.4.5]) problem, which
induces an increased amount of expensive cache misses, thus degrading performance. Because of these two
opposed effects, one can expect either the prevalence of an extreme (either degradation or speedup) or a
certain mutual compensation, with no noticeable execution time differences.

In practice, out of the 22 symmetric matrices considered, one (gsm 106857) allowed SymSpMV to speed
up almost 100%, followed by audikw 1, relat9 with around 30%, and the rest below. Only matrix kron g500-
logn20) slowed down SymSpMV by some 70%. This suggests that: 1) the false sharing problem occurred
rather seldom; 2) current matrix partitionings do not pose an excessive limit to parallelism — this is
satisfactory, although the potential speedup for gsm 106857 could be explored in the future.

In the group of the (seven) unsymmetric matrices we use, certain matrices (arabic-2005, indochina-2004,
kron g500-logn20, GL7d19) slowed down SpMV by some 20–50%; the remaining ones executed between 10
and 40% faster, somehow similarly to SymSpMV. A markedly different behavior can be seen in SpMV T,
because in no case a notable (more than a few percent) speedup was encountered, and in three cases, even
a 40% slowdown was observed. At the COO/CSR level (recall Fig. 3, Fig. 5 and discussion in Section 2.3),
SpMV T exhibits a different pattern of memory accesses, namely updating y locations corresponding to
column indices, which are often non consecutive. This makes SpMV T of both COO/CSR (see Fig. 9
for the effect on RSB SpMV T ) less efficient than SpMV, and occurrence of false sharing exacerbates the
problem. Because of the limited scope and interest of this additional experiment, we omit plots.
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Figure 13: Symmetric matrices channel-500x100-b050 (left) and europe osm (right). While their partitionings look very similar
to that of matrix audikw 1 (see Fig. 1), which has 41.64 elements per row, they average respectively only 8.89 and 1.06 elements
per row. Due to its regular structure and low index overhead, channel-500x100-b050 performs slightly better than audikw 1,
and almost three times faster than europe osm (which has a regular structure, but almost twice the index overhead).

4.5. Cost of conversion from Row Ordered COO to RSB

In this section we consider the cost of obtaining instances of RSB data structures in practice. As
introduced in Section 2.5, the conversion procedure (that we call CooToRSB) is made up of two phases:
SubdToRSB and ShufToRSB. The first one is more exposed to latency, as it is intensive in binary searches and
other operations leading to irregular memory accesses. The second one can suffer of bandwidth limitations,
as it performs memory copy operations and linear array scans. Because of these differences, in addition to
the whole conversion process, we measure the two components timings individually.

RSB has been developed mainly for iterative methods, so the metric of our choice is the ratio of conversion
to matrix-vector multiply times (SpMV for unsymmetric matrices, SymSpMV for symmetric ones). Since,
when optimizing a particular application the number of iterations — and thus the multiplications count
— to solution is usually known and a conversion from COO is currently required in order to use RSB,
it is convenient to quantify the additional overhead in terms of equivalent matrix-vector multiplications.
Such information can be then used when deciding whether adopting RSB can bring overall speedup to an
application. To relate scalings of the assembly algorithms to that of the multiply operations, we also display
single threaded performance.

Results for unsymmetric matrices (Fig. 16) show that when using 16 threads, time spent in CooToRSB
is equivalent to around 20 SpMV ’s. When executing 1 threaded RSB, the relative cost is less, that is
between 10 and 20 SpMV ’s. This might suggest that CooToRSB scales less than SpMV does; this is only
partially true, since (recall from Section 2.5) the amount of work of CooToRSB grows with the threads
count, as additional subdivisions are needed. Indeed, the number of instantiated leaf submatrices increases
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Figure 14: Symmetric matrices. Index bytes per nonzero for representing either 1 or 16 threaded RSB, as well as for CSR
(independent from threads count) representations. We omit reporting values for CSB since all matrices used almost the same
(4–4.18) index bytes/nnz.
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Figure 16: Unsymmetric matrices. Time ratio of CooToRSB to SpMV for 1 or 16 threads.

around tenfold for most matrices. This is reflected by the cost of SubdToRSB (Fig. 20) scaling worse than
ShufToRSB (see Fig. 22). Indeed, ShufToRSB performs an almost constant amount of memory transfers
and other mostly bandwidth bound operations. Since SubdToRSB scales less than ShufToRSB does, with
more threads available it might end up dominating the CooToRSB cost. We consider its improvement as
future research.

In the case of symmetric matrices, CooToRSB to SymSpMV (Fig. 17) ratios are similar to the ones
for unsymmetric; that is mostly around 10 and 20 in the 16 threads case, and around half of that in
the single threaded case. Some cases stand out: matrix delaunay n24 needs more than the time of 29
SymSpMV ’s; dielFilterV3real around 26. Indeed for these matrices the SubdToRSB phase is particularly
expensive (Fig. 21). ShufToRSB costs between 3 and 14 SymSpMV ’s (Fig. 23), with much less variation
than for SubdToRSB.

Since most of our results with SpMV, SpMV T, SymSpMV gave an advantage over MKL’s CSR, we can
now compute how many (multiply) iterations are needed to amortize completely the cost of CooToRSB for
an application and save overall execution time. Because of the moderate advantage in SpMV (see Fig. 18),
depending on the matrix, from 19 to 155 iterations may be needed. If considering SpMV T, the significant
advantage of RSB over CSR enables execution times savings already after a few dozens of iterations. Similarly
with symmetric matrices (Fig. 19): the number of SymSpMV ’s necessary to justify adoption of RSB ranges
from a few to a few hundred; however the vast majority needs only a few dozens of them.

These results indicate aptness of RSB as a replacement of MKL’s CSR in applications meeting such
requirements (that is, repeated SymSpMV or SpMV T ).

Unlike RSB, the CSB code is not distributed in form of a library, but rather in a form of a collection of
prototype programs. The COO to CSB constructor is not explicitly timed in this prototype code; indeed,
it’s a serial procedure converting from CSC, and has not been written with benchmarking in mind. The
CSB author confirmed this (by private communication), adding that the conversion process can be improved
significantly. So for fairness and consistency reasons we chose to skip the inclusion of the to-CSB conversion
process costs.
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Figure 17: Symmetric matrices. Time ratio of CooToRSB to SymSpMV for 1 or 16 threads.
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Figure 19: Symmetric matrices. Amount of SymSpMV executions with RSB necessary to amortize time of CooToRSB, and
get advantage over MKL. 16 threads.
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Figure 20: Unsymmetric matrices. SubdToRSB (matrix subdivision) to SpMV execution time ratio, 1 and 16 threads.

21



x

RSB1 RSB16

audikw_1

bone010

channel−500x100x100−b050

Cube_Coup_dt6

delaunay_n24

dielFilterV3real

europe_osm

Flan_1565

Geo_1438

gsm_106857

hollywood−2009

Hook_1498

kron_g500−logn20

Long_Coup_dt6

nlpkkt120

nlpkkt160

nlpkkt200

nlpkkt240

rgg_n_2_23_s0

rgg_n_2_24_s0

road_usa

Serena

0
5

1
0

1
5

Figure 21: Symmetric matrices. SubdToRSB (matrix subdivision) to SymSpMV ratio, 1 and 16 threads.
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Figure 23: Symmetric matrices. ShufToRSB (input COO arrays shuffling) to SymSpMV execution time ratio for 1 and 16
threads.

5. Future Directions

There is a number of modifications that it may be worth investigating for improving RSB without
impacting too much on its current design. Given RSB’s hierarchical nature, potential optimizations may
target either its parallel algorithms or the serial ones. In the following list we briefly discuss possible
optimizations and their impact; some of these might be integrated with recent developments found in the
literature.

• Given the non determinism of both the RSB instancing algorithm and the corresponding matrix-
vector multiply algorithms, it may be desirable to refine a given matrix structure in a controlled way
to fulfill some optimizing property. As an example, one may consider submatrices of an assembled
RSB matrix for either aggregation or subdivision; in our experience, the former could lead into using
less memory for indices, while the latter could increase parallelism, depending on the case. With a
simple autotuning framework it would be possible to automatically explore the performance of different
variants and retain the matrix instance yielding the most efficient results. Benefits of such a feature
would probably be more limited than with efforts like the OSKI/pOSKI tuning framework with blocked
formats (see Byun et al. [27]), but we think in our context they may still be significant.

• During the course of a multiplication with RSB, each submatrix should be visited exactly once for
performing a local SpMV /SpMV T/SymSpMV and updating the result vector (see Fig. 8) in either
one or two intervals. We are using a busy wait technique in the submatrices locking mechanism. This
is a cause for potential false sharing over the shared lock structure, and may be overcome by using
alternative locking mechanisms. To this purpose, we may employ the task (see Ayguade et al. [28])
or other OpenMP constructs ([20]).

• Improvement of the scaling properties of the SubdToRSB portion of the COO to RSB assembly pro-
cedure (see Section 4.5) shall be addressed. As indicated in [21], this should be considered carefully
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because of the possible consequences for the partitioning quality with respect to multiplication perfor-
mance.

• Belgin et al. ([11]) propose pattern based representations (PBR) targeted at matrices exhibiting non-
contiguous nonzero patterns. Provided with apt matrices, RSB would probably benefit from such an
approach while still retaining its cache blocking properties. However, an efficient implementation of
PBR (according to its authors in [11]) should rely on machine specific intrinsics, and as such is of
limited portability.

• Pichel et al. [29] experimented with recent NUMA (Non Uniform Memory Access) processors and
different memory affinity options, obtaining an impact exceeding 30% in some cases. A memory affinity
oriented approach applied to RSB would first require different submatrices to be stored in different
arrays, allocated by different threads; then, a thread-to-submatrix mapping function should exist, and
thus each thread would only operate on affine memory banks, thus avoiding the penalty in accessing
non-local memory. Such an implementation of a memory affinity policy would be not practical with the
current form of RSB. In the first place it would be not trivial to obtain an optimal thread-to-submatrix
mapping — the execution order is currently determined only at runtime. A cheap way to compute
an approximately good submatrix-to-thread mapping would be running one multiplication first, and
annotating the visit ordering of submatrices (recall Fig. 8). Then the matrix tree structure would
be rebuilt, this time having each submatrix arrays allocated with NUMA awareness on a different
thread, according to the first execution annotation. Now on, multiplications on the given matrix
would follow strictly the order defined by the original annotation, thus also leading to much reduced
locking requirements. Such an approach, known as partial execution would certainly complicate usage
scenarios. A second major reason discouraging from submatrix-based NUMA awareness is usability:
in the current design, the RSB submatrices can be stored in the shuffled original input COO arrays.
Clearly, a NUMA aware storage could not support such use case.

• Zig-Zag CSR (ZZ-CSR): that is, reversing each second CSR line representation, in both the column
index and coefficients values arrays, thus increasing the chance of reuse of the right hand side vector, at
least in the first and last columns of each row. This approach was suggested by Yzelman and Bisseling
in [30, Sec. 5], and could be transparently applied to CSR and COO submatrices: these are processed
serially and independently of each other.

• In [31, Table 3], Guo and Gropp introduced a stream unrolling optimization for the CSR kernels, in
which more than one sparse row gets processed at a given time. This technique allowed the authors to
exploit the multiple memory streams available on the machines they considered, and increase reuse of
the right hand side vector, if cached. Each Sandy Bridge CPU features a hardware prefetcher mecha-
nism capable of up to 32 simultaneous streams, either ascending or descending (in its microarchitecture
jargon, “Streamer” — see [26, 2.1.5]). Considering that during CSR SpMV arrays PA, y are accessed
sequentially and once per row (see Section 2.3), arrays JA,VA sequentially and once per nonzero,
and x irregularly but once per nonzero, four streams may be probably identified with success by the
hardware, while for x this would not be possible in the general case. The situation would be similar in
the transposed and COO cases. The symmetric case would have additional two series of accesses (one
sequential read per row, one random write per nonzero), so for a total of five identifiable streams.

We observe that using all 8 cores of a Sandy Bridge processor for running RSB’s COO and CSR kernels,
all the 32 prefetch streams are likely to be used. For this reason it is unclear whether increasing the
number of streams per thread would be beneficial in our context, at least when using all available
cores.

Finally, no machine specific tuning has been applied so far; therefore such optimizations could be investigated
in forthcoming work, especially to address specific problem instances.
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6. Conclusions

In this work we continued performance analysis of our hierarchical sparse matrix format (RSB) matrix-
vector implementation in a real world scenario: we compared with Intel Math Kernel Library (MKL)’s
mkl dcsrmv routine for CSR matrices, on a set of 29 large sparse matrices from real world applications,
either symmetric or unsymmetric. Results were very encouraging: RSB was able to deliver over twice
the performance in SymSpMV and SpMV T, and up to twice the performance in SpMV. Moreover, the
transposed product of unsymmetric matrices scaled nearly as the untransposed. Of the considered matrices,
only two (both not square, and with a high index bytes/nonzero ratio) did not outperform MKL in SpMV.
In all cases, SpMV T and SymSpMV outperformed MKL. According to our initial goals of maximum
generality and leaving room for further optimization, we did not employ any non portable optimization
technique (e.g.: assembly code, intrinsics, library, specific programming construct or language). The better
efficiency of RSB over mkl dcsrmv seems to be structural — the reorganization of a matrix in smaller sparse
blocks (submatrices) is likely to increase cache reuse within each block; the obtained coarse level parallelism
impacts especially favorably on SpMV T and SymSpMV.

Since RSB is not a standard format, our analysis took also in consideration the time for assembling it
from row ordered COO. We observe that for most of our symmetric matrices, assembly time can be amortized
by the time saved with already a couple of dozens of (SymSpMV ) multiplications. For the unsymmetric
matrices considered, were necessary from a couple of dozens to a few hundred SpMV s. However, SpMV T
speedup allowed to amortize RSB conversion costs already with a few dozens of executions.

In our SpMV /SymSpMV performance results comparison, we also took in consideration the research
format CSB. In SpMV, we found CSB to be slightly better than RSB, whereas RSB beats CSB in most
symmetric cases (SymSpMV ) by being twice as fast or even more; in SpMV T, RSB prevails by a lesser
amount.

These results suggest predisposition of the RSB format to iterative methods which are intensive in either
symmetric matrices multiplication, or the transposed matrix-vector multiply operation.
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