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Abstract 

Diffusion MRI (dMRI) measurements allow us to infer the microstructural properties of 

white matter and to reconstruct fiber pathways in-vivo. High angular diffusion imaging 

(HARDI) allows for the creation of more and more complex local models connecting the 

microstructure to the measured signal. One of the challenges is the derivation of 

meaningful metrics describing the underlying structure from the local models. The aim 

hereby is to increase the specificity of the widely used metric fractional anisotropy (FA) by 

using the additional information contained within the HARDI data. 

A local model which is connected directly to the underlying microstructure through the 

model of a single fiber population is spherical deconvolution. It produces a fiber orientation 

density function (fODF), which can often be interpreted as superposition of multiple peaks, 

each associated to one relatively coherent fiber population (bundle). Parameterizing these 

peaks one is able to disentangle and characterize these bundles. In this work, the fODF 

peaks are approximated by Bingham distributions, capturing first and second order statistics 

of the fiber orientations, from which metrics for the parametric quantification of fiber 

bundles are derived. Meaningful relationships between these measures and the underlying 

microstructural properties are proposed. The focus lies on metrics derived directly from 

properties of the Bingham distribution, such as peak length, peak direction, peak spread, 

integral over the peak, as well as a metric derived from the comparison of the largest peaks, 

which probes the complexity of the underlying microstructure. These metrics are compared 

to the conventionally used fractional anisotropy (FA) and it is shown how they may help to 

increase the specificity of the characterization of microstructural properties. 

Visualization of the micro-structural arrangement is another application of dMRI. This is 

done by using tractography to propagate the fiber layout, extracted from the local model, in 

each voxel. In practice most tractography algorithms use little of the additional information 

gained from HARDI based local models aside from the reconstructed fiber bundle directions. 

In this work an approach to tractography based on the Bingham parameterization of the 

fODF is introduced. For each of the fiber populations present in a voxel the diffusion signal 

and tensor are computed. Then tensor deflection tractography is performed. This allows 

incorporating the complete bundle information, performing local interpolation as well as 

using multiple directions per voxel for generating tracts. 
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Another aspect of this work is the investigation of the spherical harmonic representation 

which is used most commonly for the fODF by means of the parameters derived from the 

Bingham distribution fit. Here a strong connection between the approximation errors in the 

spherical representation of the Dirac delta function and the distribution of crossing angles 

recovered from the fODF was discovered. 

The final aspect of this work is the application of the metrics derived from the Bingham fit 

to a number of fetal datasets for quantifying the brain’s development. This is done by 

introducing the Gini-coefficient as a metric describing the brain’s age. 
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1 Introduction 

1.1 Motivation 

The human brain is an utterly complex organ and still many parts of its structure and 

working remain unknown. It consists in large parts of so called neurons (nerve cells), which 

are responsible for the transfer of information. The neurons prolongation is called axon 

(nerve fiber). These axons are in most cases organized in directionally aligned populations 

(bundles). The only ways to gain insight on the architecture of these fiber bundles and their 

properties used to involve cerebral dissection (Curran, 1909). The greatest advance for the 

study of the brains architecture in-vivo was diffusion magnetic resonance imaging (dMRI). 

The foundation for dMRI is that molecules are in constant motion due to their thermal 

energy (Brownian Motion) (Brown, 1827). The pathway of a particle is guided by the 

collision with other molecules, membranes or structural barriers. In dMRI this random 

displacement (diffusion) can be observed within a small (size 1-30   ) spatial volume 

(voxel) in terms of the dephasing of water molecules in the presence of a spatially varying 

magnetic field (Bihan et al., 1986; Merboldt et al., 1985; Taylor and Bushell, 1985). Hereby 

the diffusion is observed in a number of angular directions, guided by the so called diffusion 

gradients. This leads to a voxel-wise signal profile reflecting the local tissue structure, as the 

fiber bundles hinder diffusion perpendicular to their main direction (P J Basser et al., 1994a, 

1994b). The number of diffusion gradients determines the angular resolution at which the 

signal profile is measured. If a large number of diffusion gradients (more than 40) are used, 

this method is referred to as high angular resolution diffusion imaging (HARDI). 

In order to draw conclusions on the underlying fiber structure from the measured diffusion 

weighted signal, it is necessary to impose a model connecting anatomy and diffusion signal. 

This model is called the local model, because it describes the influence of the local 

microstructural boundaries within a voxel on the spatial displacement of water molecules 

(i.e. diffusion), thereby it describes the influence on the measured signal from that voxel. In 

many cases, approximations of the average water diffusion propagator        in the voxel 

are constructed. This function gives the ensemble averaged probability of a water molecule 

traveling the distance   within time   (Callaghan, 1991; Cory et al., 1990). It is related to the 

underlying tissue structure by the diffusion equation and the appropriate boundary 

conditions. In practice, probing the diffusion propagator is constrained by sensitivity of the 

measurement with respect to diffusion direction, governed by the diffusion gradients, and 
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diffusion time and length, which is expressed by the b-value. Both together they form the 

so-called q-space. The propagator is related to the signal attenuation, that is, the quotient 

of the signals measured in presence of a diffusion gradient and without the influence of a 

gradient, via Fourier transform. Modeling the entire propagator, however, impossible in 

practice, since it would require infinitely dense sampling of the whole q-space (  ) and the 

diffusion time. Therefore usually simple models are used for describing the propagator. This 

leads a reduction in necessary measurements due to certain modeling assumptions. In the 

simplest case one assumes anisotropic Gaussian diffusion, which leads to a diffusion 

propagator that can be approximately described by a tensor. This technique is called 

diffusion tensor imaging (DTI) (P J Basser et al., 1994a). Theoretically this approach is 

appropriate in situations with only one, approximately coherent, fiber population per voxel. 

A different approach involves a less constrained reconstruction of the diffusion propagator. 

An approach which circumvents the limitation of having to sample the entire q-space was 

first introduced by Tuch (D. S. Tuch, 2004). He uses the Funk-Radon transform to only 

evaluate the marginal probability of the diffusion in a given direction, leading to the 

orientation profile of the diffusion propagator for a fixed, sufficiently high, b-value. This 

result is referred to as the diffusion orientation density function (dODF) or q-ball. It has 

recently been shown that the original dODF formulation by Tuch (D. S. Tuch, 2004) 

overvalues points which are located close to the origin, due to it using a linear radial 

projection. This has led to the introduction of more accurate dODFs by considering the 

properties of the spherical coordinate system (Aganj et al., 2010; Alan Barnett, 2009; 

Canales-Rodríguez et al., 2009; Tristán-Vega et al., 2009). 

A model which is not based on the diffusion propagator is spherical deconvolution (D. C. 

Alexander, 2005a; Dell’Acqua et al., 2007; Kaden et al., 2007; Tournier et al., 2007, 2004). 

Here the signal is assumed as constituted by the convolution of the signal associated to a 

single fiber or group of coherently oriented fibers with a fiber ODF (fODF). This requires an 

estimate of the signal attenuation generated by a single fiber bundle, the so-called 

deconvolution kernel. In return this model gives fiber and not diffusion information. 

Several more local models exist. The three models discussed above, however, are some of 

the most prevalent. Therefore in this thesis the focus is mainly on these models. For an 

overview over more local models see the work of Assemlal and colleagues (Assemlal et al., 

2011). 

All local models can be used to define metrics. These describe distances in a parameter 

space and are characterized by their specificity and sensitivity towards differences in the 

physical quantities they are meant to reflect. These metrics are used for inferring the 

microstructural information from the local model. The most widely used metric is fractional 
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anisotropy (FA) (P J Basser, 1995). It is based on the tensors geometry and describes the 

isotropy of the observed diffusion. While this metric is very sensitive to changes in the 

microstructure, it is not very specific towards the type of change observed. Although the 

limited amount of acquired data makes it impossible to achieve absolute specificity, the fact 

that the tensor represents only part of the available information in the data gives reason for 

hope that more specific metrics than FA might be possible. Such metrics should be designed 

to improve the situation in one of the following two ways: (1) They reproduce results which 

are also uncovered by FA, thus endowing them with additional meaning. In other words, the 

fact that a new metric shows the same differences as the FA may tell us something about 

the possible origin of the FA changes, thereby increasing specificity. (2) The metrics uncover 

microstructural changes, which are not seen in FA, thus increasing sensitivity. Since the FA is 

very sensitive but not very specific in its nature, one can expect to mostly encounter the 

former situation. Not many HARDI metrics are used in practice. Actually the most commonly 

used HARDI metric the generalized FA (GFA) has been shown to correlate linearly with the 

FA (Gorczewski et al., 2009). It therefore does not offer much more in terms of specificity. 

The central question of this thesis can be formulated as: Can one meaningfully characterize 

the voxel-wise bundle microstructure in terms of metrics derived from HARDI 

measurements? For this we first have to ask ourselves: Can we identify the contribution of 

fiber bundles in each voxel separately? To answer this question several local models were 

investigated. However, since the fODF directly describes the microstructural arrangement it 

is a natural choice when trying to derive microstructural metrics. The fODF is usually 

represented as SH series expansion, which is difficult to interpret directly. The goal of this 

work was therefore to find a robust parameterization of the fODF, which identifies multiple 

compartments, each representing a relatively coherent fiber bundle described by a set of 

meaningful parameters, and to interpret these parameters, as far as possible, in terms of 

microstructural properties, increasing the specificity of the assertions made from changes in 

FA. For determining the bundles present within a voxel the criterion that each peak of the 

fODF is caused by a distinct bundle present within a voxel was chosen. Each of the peaks is 

then described using a Bingham distribution, as this has been shown to be an accurate 

description for coherent fiber bundles (Kaden et al., 2007; Kiran K Seunarine et al., 2007). 

In this thesis I will introduce a Bingham fitting scheme which is able to characterize the 

peaks of the fODF. Then I introduce metrics based on the Bingham fit, which can be used for 

the characterization of microstructural properties. An application of the Bingham fit beyond 

the description of metrics is for the use in the reconstruction of fiber pathways from the 

local model (tractography), as the separation of the fODF into compartments allows 

deciding which population to follow more easily. Additionally I applied the Bingham fit to 
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fetal MRI data describing the microstructural development and introducing the Gini 

coefficient as novel metric for determining the developmental age of the brain. 

1.2 Outline and Contributions 

In Chapter 2 I start off by explaining the brains tissue composition and the anatomical 

position of some of the important fiber bundles. Afterwards I discuss the basics of MRI 

focusing especially on the physics behind MRI and dMRI, as for the interpretation of local 

models knowledge on what is measured is fundamental. 

I discuss the math behind spherical harmonics (SH) in Chapter 3. This chapter covers the 

mathematical basis needed for two of the main local models (dODf and fODF). I derive the 

SH functions from Laplace’s equation, define the spherical harmonic base and discuss the 

interpretation of the coefficients of the SH expansion. Afterwards I introduce the Funk-

Hecke theorem and give the spherical convolution theorem. These are the basic tools 

needed for working with SH. 

In Chapter 4 I introduce several local models. These are the diffusion tensor, the dODF and 

the fODF. Here I especially focus on the dODF and the fODF. Since the approach of 

calculating the dODF by Tuch (D. S. Tuch, 2004) uses a linear simplification, I discuss the 

methods by Aganj and colleagues (Aganj et al., 2009) as well as Tristan-Vega and colleagues 

(Tristán-Vega et al., 2009) and introduce a common framework for these two methods. 

Finally I discuss the fODF and the implications on the accuracy of the method from the use 

of the SH basis. I furthermore explore the correlation between the distribution of crossing 

angles derived from the fODF and the Dirac delta approximation of the SH expansion, 

showing a connection which might be used for detecting bias in the reconstructions. 

In Chapter 5 I introduce the Bingham fitting scheme, for characterizing the peaks of the 

fODF. The idea is to use the fODF calculated via spherical deconvolution, since the fODF 

describes the fiber bundle configuration, as basis. This assumes the peaks of the fODF to 

reflect the underlying properties of one fiber bundle each. The fODF peaks are then 

approximated with Bingham functions. These are then used for the separate 

characterization of the fiber bundles present within a voxel. The Bingham functions and the 

fitting scheme introduced in this chapter form the foundation for most of the work done in 

this thesis. 

Metrics derived from the Bingham fit are discussed in Chapter 6. In this chapter the 

Bingham fit is used to capture first and second order statistics of the fiber orientations, from 

which metrics for the parametric quantification of fiber bundles are derived. Furthermore 

meaningful relationships between these measures and the underlying microstructural 



 

5 
 

properties are proposed. The focus hereby lies on metrics derived directly from properties 

of the Bingham distribution, such as peak length, peak direction, peak spread, integral over 

the peak, as well as a metric derived from the comparison of the largest peaks, which 

probes the complexity of the underlying microstructure. These metrics are then compared 

to the conventionally used FA and show how they may help to increase the specificity of the 

characterization of microstructural properties. 

Chapter 7 discusses a simple tractography method derived directly from the Bingham fit and 

the inversion of the convolution theorem. A Bingham fit is performed for each of the fiber 

populations present in a voxel. From the Bingham fit the diffusion signal and tensor are 

computed. Afterwards a tensor deflection tractography modified for multiple tensors per 

voxel is applied. This allows incorporating the complete bundle information, performing 

local interpolation as well as using multiple directions per voxel for generating tracts, 

thereby avoiding several of the problems arising when performing tractography directly on 

the basis of HARDI models. 

Finally in Chapter 8 the Bingham metrics are applied to fetal dMRI data. Here for 

developmental landscapes from the tensor based metrics apparent diffusion coefficient 

(ADC) and FA as well as from the complexity (CX) are calculated. I then introduce the Gini 

coefficient as metric describing the homogeneity of the distribution of these values 

throughout the brain, giving an index for the developmental state of the brain. This is done 

on the assumption that the brain starts out very homogenous and becomes more 

inhomogeneous in its structure as it differentiates. 

The important contributions of this thesis are the introduction of a method for 

characterizing the peaks of the fODF and the introduction of metrics derived from this 

characterization. The direct connection between fODF and microstructure enables specific 

metrics. Since the characterization of the fODF allows for the investigation of the fODF 

behavior in detail, I also uncovered some problems of the SH formulation of the fODF, 

which also translate to the dODF. I specifically examine the problem of spurious peaks and 

the connection to the Dirac delta function. Furthermore I propose a novel fODF based 

tractography approach and introduce a common framework to the dODF formulations of 

Tristan-Vega et al. (Tristán-Vega et al., 2009) and Aganj et al. (Aganj et al., 2009). 
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2 Background 

2.1 Introduction 

Gaining insight on the working of the human brain is a difficult task. To this day it remains 

unknown how information is carried through the brain and how different parts are 

connected. At microscopic scale the brain consist of over 15-33 billion neurons, which 

exchange electrical signal pulses (action potentials) along protoplasmic fibers called axons. 

The axons are often referred to as nerve fibers and form directionally aligned populations of 

axons, which are called fiber bundles. 

Up to about 40 years ago, the only mean to access the brain’s neural architecture for 

studying the anatomy involved dissection. With the advent of magnet resonance imaging 

(MRI) investigating the brain in-vivo became possible (Lauterbur, 1973; Mansfield, 1977). 

MRI uses the principles of nuclear magnetic resonance (NMR) (Bloch, 1946; Purcell et al., 

1946; Rabi et al., 1938) to measure a signal from spinning nuclei, in case of MRI mostly 

hydrogen nuclei. In essence this is done by placing a patient inside a large magnet, aligning 

the spins of the hydrogen nuclei with the field and then using radio waves to excite the 

nuclei at their resonance frequency. This disturbs the equilibrium state of the nuclei. The 

 

Figure 2.1: MRI images and fiber reconstruction. On the left a    image is shown (a). On the 
rightthe corresponding fiber reconstruction from dMRI is shown (b). Both images are visualized 
with an iso-surface calculated on the basis of the dMRI dataset. 
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return to the equilibrium state after applying the radio frequency pulse is referred to as 

relaxation and can be measured in terms of an electrical signal induced into a receiver coil. 

This signal is sensitive to different types of biological tissue, allowing us to probe the brain’s 

anatomy in terms of tissue composition in-vivo. A typical MR image is shown in Figure 2.1. 

In the middle of the 1980’s diffusion weighted MRI (dMRI) was introduced (Bihan et al., 

1986; Merboldt et al., 1985; Taylor and Bushell, 1985). Diffusion MRI is based on the spatial 

dislocation (diffusion) of water molecules due to their thermal energy propelled motion 

(Brownian motion) (Brown, 1827). It allows probing the microstructural organization of the 

fiber bundle layout, since coherent populations of nerve fibers reduce diffusion 

perpendicular to their orientation. In contrast to MRI, which probes tissue composition, 

dMRI probes tissue microstructure in terms of fiber arrangement. From the local fiber 

arrangement probed by dMRI long range connections can be calculated by means of 

tractography (shown in Figure 2.1), allowing to explore the connection between different 

areas of the brain. 

 

Figure 2.2: Full Brain. This image was taken from the brain museum (www.brainmuseum.org). 
The image shows a coronal slice taken from a human specimen. One can clearly observe the 
white matter (a) and grey matter (b). As can be seen the grey matter area close to the surface 
(cortex) is darker, while the more central white matter areas are lighter. The areas marked as 
ventricles (c) are filled with CSF. The difference in composition of these types of tissue is the 
main cause for contrast in MRI. 

http://www.brainmuseum.org/
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In this chapter I will first discuss the composition of the brain’s tissue to give some 

background on what causes the contrast in MRI. Then talk about the physics of MRI by 

explaining how NMR works. I will introduce the b-value,    and    weighting, as well as the 

standard MRI sequences. Then I will introduce dMRI. This chapter does not contain 

contributions from my part, but rather introduces the basics of the measurements, which 

are necessary for understanding the further work, since for interpretation of data and 

especially the introduction of metrics it is important to have a deep understanding of what 

actually is measured. 

2.2 Brain Tissue 

Visually the brain’s interior can be divided into light areas, the so called white matter, and 

darker areas of so-called grey matter (see Figure 2.2). It is surrounded by cerebrospinal fluid 

(CSF). These three types of tissue and their differences in composition are the main 

influence for the contrast in MRI. The distinct coloring of the different areas is influenced by 

the cellular configuration of the tissue. 

At cellular level the brain consists mainly of two types of cells, glia cells and neurons. Glia 

cells mainly function as physical support for the neurons (Jessen and Mirsky, 1980). 

Furthermore they supply nutrients and oxygen to neurons, insolate neurons from each 

other and play a role in the modulation of neurotransmission (Auld and Robitaille, 2003). 

The neurons transmit signals as electrical impulses to target cells over long distances. These 

signals are transmitted by the means of axons as electrochemical pulses (action potentials). 

Most space in the brain is occupied by axons, which are often covered in myelin sheaths. 

 

Figure 2.3: The anatomic reference planes. Images acquired in MRI are usually presented 
in terms if section on reference plains. In (a) the axial, in (b) the coronal and in (c) the 
sagittal reference plain is shown. Additionally the terminology used for describing 
directions is introduced. 
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This white substance serves to increase the speed of signal propagation. Due to the 

myelination, areas of the brain filled with lots of nerve fibers appear white, while areas with 

a high density of neuron cell bodies appear darker. This causes the visual divide of the 

brain’s interior. 

The most common way of viewing the brain is to use slices along anatomical reference 

planes. The three planes are axial, coronal and sagittal planes. They are shown in Figure 2.3. 

The axons are often referred to as nerve fibers and form directionally aligned populations, 

which are called fiber bundles. The investigation of the fiber bundle arrangement is one of 

the main advances of dMRI. In this work I am looking to describe properties of fiber bundles 

in terms of the number of fibers involved, their configuration, their thickness, collinearity 

and spread. I am therefore very interested in the influence these bundles have on the 

observed signal in dMRI. The significant fiber bundles mentioned in this work are shown in 

Figure 2.4. 

 

Figure 2.4: Significant fiber bundles. In this image some of the most significant fiber bundles, 
which are used in this thesis and their location in the brain are shown. On the left (a) the 
corticospinal tract (CST) is shown in blue, while the arcuate fasciculus (AF) is shown in red. On the 
right (b) the corpus callosum is depicted. It is divided into a frontal (red), medial (orange) and 
lateral (yellow) section. 
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2.3 Physics of MRI 

2.3.1  Spins and Magnetic Fields 

The spin of a particle is a fundamental property of nature (Dirac, 1982). The protons and 

neutrons in every nucleus have a spin (angular momentum). If the total number of neutrons 

and protons in the nucleus is even, the spins cancel. In case of an uneven number, like for 

example in hydrogen, which only has a single proton, the proton’s spin leads to the 

generation of a small magnetic field, since a moving electrically charged particle produces a 

magnetic field. The magnitude of the magnetic field depends on the amount of electrical 

charge and the speed at which the charged particle moves. Generally speaking the faster a 

particle moves and the larger the charge is, the larger the generated magnetic field is. In 

case of hydrogen the proton does not have a specifically large charge (           ) but 

moves very fast, leading to a small, but observable magnetic field. In the following when 

talking about nuclei I only refer to those with a non-zero spin, which therefore possess a 

small magnetic field, similar to a small bar magnet (as shown in Figure 2.5). 

The physical basis for MRI is NMR. This physical phenomenon describes the behavior of 

nuclei in a constant magnetic field, which absorb and re-emit electromagnetic radiation. It 

was simultaneously described by Purcell (Purcell et al., 1946) and Bloch (Bloch, 1946). When 

applying a constant external magnetic field (  ) the magnetic fields of the nuclei align with 

the external magnetic field (see Figure 2.5). There are two states in which the nuclei’s fields 

can align with the external field, a low-energy-state aligned with the direction of the 

external magnetic field (parallel) and a high-energy-state aligned against the direction (anti-

parallel) of the external magnetic field. Both of these states are shown in Figure 2.6. The 

number of parallel aligned magnetic fields in relation to the anti-parallel aligned is governed 

by thermodynamic equilibrium and can be described by the Maxwell-Boltzmann distribution. 

On a more macroscopic scale this leads to a net magnetic field of a substrate, depending on 

the relation of the nuclei’s magnetic fields in the two energy states. The net magnetic field 

is described by a vector, the net magnetization field vector. At room temperature a small 

excess number of the nuclei’s magnetic fields will be aligned with the external magnetic 

field, therefore the net magnetic field vector is aligned with the external magnetic field. Due 

to their angular momentum the nuclei precess around the external field’s direction, rather 

than completely aligning with (or against) the   -field. The frequency of precession is the so 

called Larmor frequency (  ), which is specific to each atomic nucleus. The Larmor 

frequency is proportional to the external magnetic field’s strength and depends on the 

nucleus’s charge ( ), mass ( ) and the so called gyromagnetic factor ( ), which describes 

the relation between the nucleus’s magnetic dipole momentum and its spin: 
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         (2.1) 

 

The quantity     
 

  
 is referred to as the gyromagnetic ratio. The Larmor frequency 

usually lies in the radio frequency (RF) range of the electromagnetic spectrum. 

It should be pointed out, that even though the individual magnetic fields precess around the 

  -field’s direction, the net magnet field does not naturally precess. This is due to the 

precession of the individual nuclei being out of phase and therefore canceling. 

In order for a nucleus to absorb energy, it has to be excited, such that it switches from the 

low-energy state to the high-energy state. The energy difference between these two and 

therefore the energy needed to switch from the lower to the higher energy state is equal to: 

where   stands for Planck’s constant. If one applies an electromagnetic RF-pulse with 

energy    at their Larmor frequency to the particles in the external magnetic field, they 

start to resonate. This causes nuclei in the low energy state to absorb energy, bringing them 

      
  

  
  (2.2) 

 

Figure 2.5: Spins in a magnetic field. In a magnetic field, nuclei (which due to their spin act as 
small magnets) align with the external field’s axis. They hereby precess around the field’s axis. 
This precession is similar to the precession of a gyroscope. It is characterized by its frequency and 
its phase. The frequency defines how fast a spin is rotating and the phase defines the current 
position of rotation. The frequency of precession is called the Larmor frequency    and depends 
on the external    field’s strength, as well as the nuclei specific gyromagnetic ratio. 
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to the higher energy state. This rotates their magnetic field to align anti-parallel to the 

external field. In addition the phases of the precessing nuclei synchronize, which causes the 

net magnetization vector to rotate away from the   -field direction and to start precessing 

at the nuclei’s Larmor frequency. The amount of rotation is dependent on the strength and 

duration of the RF-pulse. The RF-pulses are usually classified by the rotation they induce on 

the net magnetization vector. The two most important pulses are the 90° RF-pulse and the 

180° RF-pulse. The frequency spectrum of the RF-pulse determines the spatial extension 

and the homogeneity of the nuclei for which the net magnetization is influenced. 

After stopping to apply the RF-pulse two phenomena can be observed. First the spins start 

to return to an energy state distribution governed by thermodynamic equilibrium as before 

applying the RF-pulse (  -relaxation). Second the spins which were brought into phase by 

the RF-pulse start dephasing (  -relaxation). For a more detailed description of these 

phenomena, which cause the net magnetization vector to return into alignment with the    

field, I will view the net magnetization vector as composed of two vector components, one 

longitudinal magnetization vector (  ) in direction of the   -field and an orthogonal 

transversal magnetization vector (  ). In the terms of these two vectors   -relaxation 

 

Figure 2.6: The two energy states. The two energy states a nucleus can take are a low energy 
state (parallel) shown in (a) and a high energy state (anti-parallel) shown in (b). The difference in 
energy states is                . Due to thermal effects, a slightly higher number of 
nuclei are in parallel than in anti-parallel alignment with the external field. This leads to an excess 
magnetization of a substance in the magnetic field in alignment with the orientation of the   -
field. This is also referred to as net-magnetization. 
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describes the change in net longitudinal magnetization, while   -relaxation describes the 

change in transversal magnetization. 

2.3.2  T1-relaxation 

The shift from the lower energy state to the higher energy state, caused by the RF-pulse, 

leads to some of the nuclei’s magnetic fields switching from parallel to anti-parallel 

alignment with the external field. This decreases the net magnetization in longitudinal 

direction. After stopping to apply the RF-pulse, the net magnetization in   -field direction 

can be observed to increase again. This is due to nuclei dissipating excess energy in terms of 

heat to their environment (in solids this environment is called lattice), returning the relation 

between parallel and anti-parallel aligned nuclei to the thermal equilibrium. This process 

depends on the difference between the current state and the thermal equilibrium state. It 

therefore can be described by an exponential. The relaxation process is referred to as spin-

lattice relaxation. The time    characterizes the rate at which the net magnetization vector 

recovers towards alignment with the external field, it thereby describes the average time a 

nuclei remains in the high energy state. The recovery of the longitudinal magnetization is 

exponential and can be described by: 

           (      ( 
 

  
))  (2.3) 

where        describes the magnetization vector’s z-component at equilibrium. From this 

one can see that the longitudinal magnetization is recovered to about 63% of the 

equilibrium value after time    and that it takes about      to recover to 99% of the 

equilibrium. The value for    is dependent on the nuclei and its gyromagnetic ratio and 

furthermore the lattice’s mobility. The recovery rate is therefore dependent on the spin’s 

environment. In case of biological tissue this implies a dependence on the local properties 

of the tissue. 

The time    depends on the magnetic field strength. The higher the external   -field 

strength is, the higher the relaxation time gets. This is due to higher Larmor frequencies 

being needed at higher field strength, which reduces the spectral densities at the Larmor 

frequency. This causes fewer nuclei to be excited and therefore the number of nuclei which 

are able to transfer energy to the lattice are reduced. 
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The net magnetization in longitudinal direction is several magnitudes smaller than the 

strength of the external   -field. It therefore is difficult to measure directly (Kelso et al., 

2009). If the longitudinal magnetization, however, is rotated orthogonal to the main 

magnetic field, then the net magnetization starts precessing around the main direction. This 

precession induces a free-induction-decay (FID) signal, which can be measured by a receiver 

coil in terms of an electrical signal. For this a 180° RF-Pulse is applied, which allows 

longitudinal relaxation to occur during a recovery time and then a 90° RF-pulse is applied, 

which rotates    in the xy-plane orthogonal to the external field. This process is called 

inversion recovery. The amplitude of    is then measured in terms of the induced electrical 

current from the receiver coil. 

The    values vary between different types of tissues. In case of a long    time of the tissue 

a small signal-amplitude is measured, while a short    time causes observing a large signal-

amplitude. The recovery time is chosen in order to maximize the contrast between the 

observed signals. In praxis one wants a short recovery time, as the longer one waits, the 

smaller the contrast is. 

In a    weighted image the axons and nerve connections in the white matter give a high 

signal, while the grey matter gives a medium signal. Nearly no signal can be observed in the 

 

Figure 2.7: Axial view of a    and a    image. The composition of the tissue is the source for the 
contrast in MRI. In (a) the light areas correspond to white matter areas. The grey areas show the 
grey matter, while the CSF shows no signal and is therefore dark. In (b) the dark areas correspond 
to white matter areas. The light areas show the grey matter, while the CSF shows a high signal 
and therefore is white. 
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areas of CSF. Therefore the white matter appears white in a   -image, while grey matter 

appears grey and the CSF appears dark (as can be seen in Figure 2.7). 

2.3.3  T2-relaxation 

Applying the RF-pulse causes the nuclei in a sample to precess in phase. This generates a 

magnetic field rotating at the nuclei’s Larmor frequency. This can be described in terms of a 

rotating transversal component of the net magnetization vector. As soon as the application 

of the RF-pulse ends, the nuclei begin to dephase. This happens as the spins interact with 

the neighboring spins influencing each other’s rotation speed and leads to decay of the 

induced magnetic field and therefore of the net-magnetization-vector’s transversal 

component. This effect is known as    relaxation or spin-spin relaxation. In terms of the 

transversal magnetization it can be described as: 

As the    relaxation is caused mainly by the interaction of neighboring spins,    is higher in 

neighborhoods where a lot of spins are present. In case of biological tissue the main source 

of spins are protons in the hydrogen of water. Macromolecular environments therefore 

display shorter spin-spin relaxation times while water based fluids carry higher    values. It 

should be noted, that the    decay is completely independent of the    field and only 

depends on the spin-spin interactions. 

Measuring a    weighted signal is relatively straightforward. A 90° RF-pulse is applied. This 

causes an observable transversal magnetization. This signal is measured after a time    

during which the spins start dephasing. Again    controls the contrast between tissues with 

a longer or a shorter relaxation time. In contrast to measuring    a large signal corresponds 

to a high    relaxation time, while a small signal corresponds to low    relaxation time. In 

practice, one wants a large time    for observing a large contrast between areas with 

different    times. 

In theory the signal decay only depends on the spin-spin interactions. Imperfections in   -

field, chemical shifts, and differences in magnetic susceptibility as well as tissue boundaries 

can lead to signal decay which is faster than   . This smaller relaxation time is referred to as 

  
  and can be seen as the superposition of    with a fixed   

 
: 

             ( 
 

  
)  (2.4) 

 
 

  
  

 

  
 

 

  
 
  (2.5) 
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In order to preserve the MR signal and increase the    contrast it is desirable to reduce the 

influence of the fixed   
 

 and thereby reduce the difference between    and    
 . As 

mentioned before, after applying a 90° RF pulse, nuclei that were in phase begin to dephase 

in the xy-plane. If a 180° RF pulse is applied after a certain time, the nuclei’s spins will rotate 

over to the opposite axis. This pulse will cause these spins to start rephasing, reach 

alignment, forming a maximal signal, before starting to dephase again. The rephasing will 

cause a so called spin echo. Now another 180° RF pulse can be applied. The    relaxation 

curve covers the signal peaks caused by spin echo. The cause of this is described in the work 

of Pooley (Pooley, 2005). 

The contrast between the three main types of tissue in the human brain is inverse in    

compared to    measurements. In    weighted images, the white matter appears dark, due 

to a low signal, while the grey matter and especially the CSF provide a high signal and 

appear very bright. The difference between the two types of images is the sensitivity to 

different aspects of tissue. They therefore display different types of contrast and uncover 

different aspects of tissue composition (see Figure 2.7). 

 

Figure 2.8: Connection between k-space and MR image. In (a) the k-space image, which was read 
line wise, is shown. In (b) the resulting MR image is shown. The connection between the two 
images is the 2D-Fourier transform. 
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2.3.4  MRI Measurements 

If one investigates biological tissue the spatial positions at which one measure the 

relaxation are of great interest for investigating the spatial arrangement. For this a process 

called spatial encoding is used. The spatial encoding is performed by using spatial gradient 

fields. These superimpose three fields, one for each x-, y- and z-direction, thereby encoding 

the positions within the sample in terms of x-, y- and z-coordinates. These gradient fields 

provide a discretization of the measured signal, leading to the signal within a small volume 

element being measured. This volume element is referred to as voxel. The basic idea behind 

spatial encoding is to vary the field dependant Larmor frequencies of the excited nuclei, 

thereby encoding their position. 

The gradient in z-direction is usually referred to as the slice selection gradient, as it selects 

the plane in which the image is taken. A gradient varying along the z-axis, which is along the 

direction of the external field, is applied, while administering the RF-pulse. As the Larmor 

frequency varies with the field strength, only nuclei in the slice targeted by the RF-pulse are 

excited. It should be noted that the slice selection has to be completed before subsequent 

spatial encoding magnetic field gradients can be applied. The thickness of the selected slice 

depends on the bandwidth of the RF-pulse used for exciting the nuclei and the slope and 

thereby the strength of the slice selection gradient. 

The gradient in x-direction is called the frequency encoding gradient. It is applied left to 

right for spatial encoding in x-direction. It influences the Larmor frequencies and is applied 

during the recording phase of the signal acquisition. It causes the frequency of the 

measured signal to vary in x-direction. After measuring one can use Fourier analysis to 

determine the frequency, which then translates to the x-position of the measured signal. As 

the frequency encoding gradient changes the Larmor frequency, it also causes dephasing of 

the spins. As a result the signal decays faster. 

For determining the y-position a gradient is used, which modifies the phase of the spin in y-

direction. When the phase shift gradient is turned on, the nuclei spin faster or slower than 

their Larmor frequency. After the y-gradient is switched off, they return to their initial 

Larmor frequency, however their phase remains unchanged. The position in y-direction can 

then be determined by Fourier analysis of the measured signal, as the y-position 

corresponds with the phase. The application of all of the gradient pulses is shown in Figure 

2.10. 

The slice-wise measurements are stored in k-space, which is also referred to as the raw-

signal space. It is the 2-dimensional space of frequency and phase. The columns in k-space 

correspond to different frequencies, while the rows correspond to different phases. The 
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value at each point corresponds to the amplitude of the observed signal. The MR image is 

created from k-space via 2D-Fourier transform. This connection is visualized in Figure 2.8. 

For each slice a separate k-space image is created. 

2.3.5  Diffusion MRI 

Diffusion MRI is based on the spatial dislocation of water molecules. Propelled by thermal 

energy water molecules freely move in an isotropic medium. The movement of a single 

particle appears random as its direction changes by the constant collision with other 

particles (Einstein, 1956). This random movement is referred to as Brownian motion (Brown, 

1827). On a larger scale this movement leads to a so called diffusion process (Fick, 1855). 

Diffusion itself is a bulk-motion-free transport phenomenon which results in molecule or 

particle mixing. Within biological tissues this process is hindered by the microstructural 

boundaries of the tissue (P J Basser, 1995). From the measurement of the influence of the 

tissue on the diffusion one can then infer the microstructural arrangement. 

Observing the diffusion process is done by exploiting the electromagnetic properties of 

hydrogen nuclei (protons) in water molecules. When applying a magnetic field to biological 

tissue the nuclei’s spins align themselves with the magnetic field, precessing about the field 

direction. In dMRI one observes the dephasing of spins of hydrogen nuclei in the presence 

of a directional, spatially-varying magnetic field (diffusion gradient field) by observing the 

 

Figure 2.9: The diffusion encoding process. In this image the influence of the diffusion 
gradient on the phase of the spins is visualized. After the application of the RF pulse the 
spins are all in phase (a). Here the signal    can be observed. In (b) the application of the 
diffusion gradient can be seen. The spins now possess a spatially varying phase. Due to 
diffusion the spins randomly displace, which causes the phase to lose its spatial 
connection (c). Afterwards a refocusing gradient is applied (d), which is the inverse of the 
gradient which was applied before. This should cause the spins to return to phase 
coherence. The diffusion has caused phase incoherence, which manifests in a signal      
that is smaller than the signal at phase coherence. 
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amount of signal loss due to diffusion effects (Bihan et al., 1986; Stejskal, 1965; Taylor and 

Bushell, 1985). These measurements are applied to an array of diffusion gradient direction, 

which are usually distributed on a half sphere. This gives the hindrance of diffusion in terms 

of a reduced signal for each of the observed gradients, thus indirectly creating a directional 

profile of diffusion, which can be put into microstructural context using a local model. 

For measuring diffusion a so called diffusion gradient is applied. Movement along the 

applied gradient field leads to a change of the corresponding Larmor frequency, which in 

turn leads to a phase change. The longer the water molecules can diffuse, i.e. the higher the 

diffusion time   is, the more they will distribute over different distances, which leads to 

higher phase dispersion and in turn to a loss of signal coherence and therefore a reduction 

of the measured signal amplitude after applying a refocusing pulse, which is opposite to the 

diffusion-gradient. This diffusion encoding process is shown in Figure 2.9. The quotient of 

the signal without diffusion encoding and signal in presence of a diffusion gradient is called 

the signal attenuation and characterizes the portion of dephasing caused by displacement. 

As this influences the phase coherence of the spins, this effect affects    relaxation times 

and is observed by    measurements. 

 

Figure 2.10: The Stejskal-Tanner pulse gradient echo diffusion sequence. This image 
show the application of different gradients, the RF pulses as well as the signal readout 
over time. The type of gradient is marked on the left. The letters Gx, Gy and Gz mark the 
encoding gradients for the respective spatial direction, G marks the diffusion gradient. At 
the top the repetition time (TR) is shown. The gradient length   and the time   during 
which the particles diffuse are marked as well. 
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The diffusion encoding happens in three steps. The spins in the magnetic field are subjected 

to the spatially varying diffusion gradient pulse. This step is also known as diffusion 

weighting. Afterwards the magnetization is flipped by applying a 90° RF-pulse. Then the 

gradient pulse is applied again. Since the magnetization had been flipped in between, in 

case of no diffusion the same signal as without applying gradients is measured. However, 

due to Brownian motion the spins undergo different phase shifts by the spatially varied 

gradient pulse in the time   lying between application of the first and second pulse. This 

pulse-sequence which is known as Stejskal-Tanner sequence (Stejskal, 1965) is shown in 

Figure 2.10. The dephasing leads to a drop in    signal attenuation, which is defined as the 

quotient of the signal      ⃑  to which a gradient  ⃑  was applied and the signal       

measured without application of a gradient field. One can assume the signal       to be 

approximately free of diffusion effects. The quotient therefore eliminates the effects of 

relaxation and the attenuation signal can then be related to the diffusion in the 

corresponding gradient direction. The relation between signals and diffusion is discussed in 

depth in Chapter 4 (Local Modeling). The number of diffusion gradients defines the angular 

resolution of the dMRI measurement. For simple local models as few as 6 gradient 

directions are sufficient (Pierpaoli et al., 1996). In high angular resolution diffusion imaging 

(HARDI) a large number of gradients (more than 40) are used to acquire more information 

on the diffusion profile. One of the assumptions required in dMRI is that negligible diffusion 

occurs during the application of the gradient pulse. This assumption is also called the 

narrow pulse approximation. 

2.4 Conclusions 

In this chapter I first discussed the composition of the brain in terms of its microstructure. I 

then introduced MRI as well as dMRI. For this I discussed the physical principles of NMR and 

the phenomena    and    relaxation and the sequences necessary for measuring the 

changes in magnetization in terms of an electrical signal. I introduced diffusion and the 

diffusion weighting in terms of a diffusion gradient as well as defined signal attenuation. 

These are the basics of measuring one has to know, in order to understand how to model 

the microstructural influence on the diffusion signal. I did not yet give the connection 

between the measured diffusion signal and the microstructural arrangement, but will do so 

in depth in Chapter 4 (Local Modeling). 
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3 Spherical Harmonics 

3.1 Introduction 

In dMRI one acquires positive, antipodal symmetrical signal data sampled at discrete points 

on the sphere. From this data one estimates local models describing the influence of the 

tissue microstructure on the signal. As these local models and the data lives on the sphere it 

is desirable to describe it using a representation in terms of analytical functions. One of the 

most straightforward ways to achieve this is by the means of spherical harmonic (SH) 

expansion, which is the approximation of the function using a sum of coefficients and SH 

base functions. 

The SH functions are the solution to Laplace’s equation in spherical coordinates. They form 

an orthonormal base. Spherical deconvolution and q-ball, two of the main local models used 

in dMRI, are usually represented using a SH expansion.  

In this chapter I will discuss the derivation of SH from Laplace’s equation. I introduce the SH 

base, the SH expansion and the spherical convolution theorem, that the spherical 

deconvolution method is based upon. Additionally I introduce the spherical sampling 

theorem and the Funk-Hecke theorem, which are necessary as well in spherical 

deconvolution, as in the calculation of the q-ball. 

I discuss the meaning of the first SH expansion coefficient and prove the connection to the 

integral of the expanded function over the sphere. This is a small and simple result which 

seems genuine to the field of neuroscience. 

3.2 Laplace’s Equation 

Laplace’s equation is one of the simplest second-order partial differential equations (PDE). It 

can be found in many physical problems such as fluid flow and electrostatics. Using the 

Laplace operator ( ) it can be written as: 

In three dimensions this leads to the following. Let        be a twice differentiable 

function of the variables  ,   and  . Then Laplace’s equation can be written as: 

        (3.1) 
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The solutions of Laplace’s equation follow the principle of superposition, which states that if 

two functions are the solution to Laplace’s equation, their sum is also a solution. Since one 

is dealing with discrete samplings of spherical data in HARDI, one needs to use Laplace’s 

equation in spherical coordinates         with   [   ]   [    ], which amounts to: 

This PDE can be solved by separation of variables in a radial, azimuthal and zenithal portion: 

The solutions to Laplace’s equation are called harmonic functions. They are analytic in the 

domain in which the equation is specified. In case of the functions being the solution to 

Laplace’s equation in spherical coordinates the solutions are referred to as SH functions. 

The radius independent part of equation (3.4) is referred to as the Laplace-Beltrami 

operator. It is defined as: 

and satisfies the relation: 

This relationship is especially interesting for the purpose of regularization. For example 

Descoteaux and colleagues proposed a Laplace-Beltrami regularization in their analytical q-

ball calculation approach (Descoteaux et al., 2007). 

3.3 Spherical Harmonic Functions 

Using the separation of variables discussed in the previous section and assuming constant 

radius, which is reasonable in case of single shell (single b-value) HARDI acquisitions, one 

can derive a solution to Laplace’s equation in spherical coordinates. The solution of 

Laplace’s equation in spherical coordinates is as follows:  
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where   
  stands for the associated Legendre polynomial of order   and degree  . For in-

depth derivation of the solution see the work of Descoteaux (Descoteaux, 2010). The 

associated Legendre polynomials used in the solution to Laplace’s equation are defined as: 

The summands of equation (3.7) which are multiplied by coefficients   
  are called spherical 

harmonics (SH). This gives the definition of SH as: 

These functions are orthogonal with respect to the inner product. In many cases it is 

desirable to have an orthonormal set of function. This can be achieved by a normalization 

term which fulfills: 

In conjunction with the normalization term the SH functions are referred to as SH base 

functions. For rank   and order   they are defined as: 
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                 (3.11) 

Several normalizations are in use for the SH functions. The particular SH base functions used 

here have been proposed by Descoteaux and colleagues (Descoteaux, 2010), which is the 

same version as commonly used in physics and seismology. 

3.4 Spherical Harmonic Expansion 

The SH base functions can be used to describe any complex function on the sphere, 

analogously to sines and cosines in the Fourier series expansion. This process is called SH 

expansion. In the case of diffusion measurements, values distributed on the surface of the 

sphere, describing the signal attenuation caused by the diffusion of water molecules are 

measured. These HARDI signal values are by definition real and antipodally symmetric. One 

can therefore simplify the defined SH base functions for the purpose of describing the 
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attenuation. The SH base functions have the property that even order harmonics are 

antipodally symmetric, while odd orders are antipodally anti-symmetric. The symmetry 

behavior can be described as: 

   
           {

  
                   

   
                  

 
  (3.12) 

For describing the symmetric HARDI signals, one only needs to take into account even 

orders. In addition one only has to take into account the real part or the complex part of the 

SH functions, depending on the order. This can be summarized in terms of a modified SH 

base. Using the index   
 

 
          . This base can be written as (Descoteaux, 

2010): 

Again there are several possibilities of defining the SH. In this work I use the formulation 

given by Descoteaux and colleagues (Descoteaux, 2010). The base functions are shown in 

Figure 3.1. 
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 (3.13) 

 

Figure 3.1: The SH base functions. Here glyphs of the SH base functions are shown for orders 
         . Negative function values are indicated in grey and positive values in color, indicating 
direction. 
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Using these base functions one can describe a function        in terms of a SH expansion. 

This is defined as: 

The coefficients are defined as: 

Due to the orthonormality of the SH base functions this can be understood as forming the 

inner product between the function        and the SH. Thus the coefficient    can be 

determined by calculation of: 

When applying the SH expansion to dMRI data one does not have an analytical 

representation of the function        but rather a discrete representation in terms of a 

HARDI attenuation signal, which is observed at a set of   discrete diffusion encoding 

directions. Thus only a truncated spherical harmonic expansion can be determined. This 

expansion then smoothly interpolates between the observations. Let   be the attenuation 

signal estimated at the points        , then the discrete SH expansion can be formulated as: 

The order of the expansion is determined by the maximum order   that can be found in the 

definition of the SH function   . The upper limit of the summation is then given by the term: 

which also determines the minimum number of observation points for an expansion of 

order  . It should be pointed out that the restriction of the expansion to a finite number of 

summands can lead to the result taking positive and negative values due to the oscillating 

nature of the base functions. 

As shown in the work of Descoteaux (Descoteaux, 2010), the coefficients of the discrete SH 

expansion can be calculated from an over-determined linear system using the coefficient 
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vector ( ⃑           
 ), the attenuation signal vector   ⃑⃑                          

and the matrix   containing the modified SH base: 

The matrix B containing the modified SH base is an      -dimensional matrix defined as 

follows: 

Solving the linear system can then be done in least square sense by using the Moore-

Penrose pseudoinverse. The coefficients can therefore be calculated directly from the 

equation: 

The signal can then be approximated for arbitrary points on the sphere by evaluating the 

sum shown in (3.14), using the calculated coefficients and an updated set of base functions. 

In other words, for evaluating the function at the point (     )  one evaluates the 

expression: 

This requires the recalculation of the SH base function at the point of interest. 

3.5 Interpretation of the Coefficients 

For many applications it is of interest how to interpret the coefficients of the SH series 

expansion. In the following I will derive a simple relationships between the described 

geometry and a SH coefficient, which is not commonly known in neuroscience yet. As 

shown earlier the coefficients are defined as: 
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This gives a direct connection between the first coefficient and the described shape. By 

using equation (3.11) and (3.13) the first coefficient can be calculated: 

This expression is equal to the integral of the function        over the surface of the 

sphere, scaled by a factor. This is an important relationship for the interpretation of local 

models described by SH. The meanings of the other coefficients are not understood 

properly. For completeness sake I listed the second order coefficients (       in the 

following: 

I have not found a simple ways of interpreting the meaning of these coefficients. 

Investigation of these integrals and their geometric interpretation may help for gaining 

further insight into the results of spherical deconvolution (Chapter 4.5) and q-ball (Chapter 

4.4). This is especially interesting for the construction of metrics, as well as in the context of 

investigating spurious peaks and negative lobes. 

3.6 Funk-Hecke Theorem 

The Funk-Hecke theorem is an important integral for simplifying manipulations with 

spherical harmonics. For example, it is used for the derivation of the analytical solution in 

calculating the local model called q-ball (Descoteaux et al., 2010; D. S. Tuch, 2004). The 

Funk-Hecke theorem states that every surface SH is an eigenvector of integral operators 
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integrating over the surface of the sphere, whose kernels depend only on the distance 

between points in spherical geometry. 

Formally this is defined by assuming   [    ]    to be a continuous, bounded and 

measurable function. The integral over the surface of the sphere ( ) of the product of   

with a spherical harmonic function then can be written as: 

with      being defined as: 

Here       stands for the Legendre polynomial of degree  , which is not to be confused with 

the associated Legendre polynomial as defined in equation (3.8). The Legendre polynomial 

of degree   is defined as: 

An important corollary of the Funk-Hecke theorem concerns the expansion of the Dirac 

delta function ( ), which is needed for the math behind both the local models q-ball and 

spherical deconvolution. This corollary is provided in the thesis of Descoteaux (Descoteaux, 

2010). It states: 

The Legendre polynomial of degree   evaluated at zero can be greatly simplified: 

Investigation of this function provides a great deal of insight on many problems arising in 

spherical deconvolution, which are discussed in depth in Chapter 4.5. 
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3.7 Spherical Convolution Theorem 

Just like the Fourier expansion the SH expansion has some useful properties, which are 

utilized for example for computing local models. In this section I will focus on the spherical 

convolution theorem (Driscoll and D M Healy, 1994). It states that the spherical expansion 

of a convolution is equal to the point-wise product of the spherical expansions of the 

functions to be convolved. This is analogous to the result that the Fourier expansion of a 

convolution can be calculated by multiplication of the corresponding Fourier expansions. 

This theorem is the mathematical base for the computation of the spherical deconvolution 

local model (Tournier et al., 2007, 2004). 

For properly phrasing the theorem I will for a second have to move away from the notation 

using the index  , introduced in equation (3.13) and instead define the SH expansion in 

terms of the order   and rank   of the SH base functions: 

Let     be functions defined on the surface of the sphere. Then the convolution is a point-

wise product of the transforms: 

It should be noted that convolution is not a symmetric operator on the sphere. The version 

stated above is the theorem for a right convolution (Driscoll and D M Healy, 1994). As can 

be seen for the function   only the SH functions of rank     contribute to the 

convolution. This can be interpreted as the part of the function, which contributes to the 

convolution being z-aligned and rotational symmetric, since the SH functions representing 

other orientations do not contribute to the functions expansion. The function   in the 

equation is referred to as convolution kernel. 

In terms of the expansion’s coefficients the convolution theorem can be formulated using 

the index  : 
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where      corresponds to the rank of the index  . 

This theorem is especially important for the calculation of the local model spherical 

deconvolution (Tournier et al., 2004). Here one assumes the signal to be constituted by the 

convolution of the signal of fiber orientation distribution and the signal of a single z-aligned 

rotational symmetric fiber population. The calculation of the local model from the discrete 

SH expansions of the measured signal and the estimated kernel then amounts to the 

inversion of the convolution process shown in equation (3.33), which is a simple scalar 

division. 

3.8 Sampling Theorem 

When approximating a function, known only at discrete points, in terms of a SH expansion, 

the maximum rank   of the approximation strongly depends on the number of points at 

which the function is sampled. As stated before an upper limit can be defined by 

  
          

 
  However, this does not take into account the distribution of the samples and 

is a soft criterion based only on the number of parameters to estimate in the spherical 

harmonic model, not taking into account the distribution of points and therefore the 

sampling frequency. The fitted functions are then prone to aliasing or interpolation artifacts. 

However, sampling theorems only exist for equiangular sampling grids. A version of the 

spherical sampling theorem can be found in the work by Healy and colleagues (Dennis M. 

Healy et al., 1998). 

Extension to the application in the area of local modeling would require the measurement 

of diffusion on equiangular grids as proposed by Daducci and colleagues (Daducci et al., 

2011). On such a grid the sampling theorem holds. Otherwise a weighting of points needs to 

be introduced as a correction for not having sampled at the same frequencies. Furthermore 

the calculation then can be performed using fast spherical reconstruction algorithms such 

as the one presented by Driscoll and Healy (Driscoll and D M Healy, 1994). 

I sadly cannot propose a sampling theorem for the grids used in MRI. This is however an 

area where further research could greatly improve the theory behind both SD and q-ball by 

mathematically defining sharp boundaries on the maximum SH order that can be used for a 

given number of diffusion measurements. 

3.9 Conclusion 

In this chapter I discussed the math of SH with the goal of introducing the necessary 

theorems and basics for understanding the derivation of certain local models (spherical 
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deconvolution, q-ball). I introduced the SH functions, the SH base as well as the SH 

expansion. The SH base is an orthonormal base for real and symmetric functions defined on 

the sphere. In terms of this base I introduced the SH expansion and discussed the meaning 

of the first coefficient. Interpretation of the other coefficients is still an open question which 

could lead to more insight in the results of SH based local models. I showed the Funk-Hecke 

theorem which is important for the simplification of SH expressions and solving integrals 

over the surface of the sphere. Afterwards I introduced the spherical convolution theorem, 

which spherical deconvolution is based upon. In this context a spherical sampling theorem 

would be of great interest which does not only cover equiangular samplings. This would be 

especially interesting in the context of determining the SH order for the use in the local 

models. 

Something I have not discussed in this chapter, but will discuss later on (Chapter 4.5), are 

the problems which arise from the spherical representation of the local models. These 

problems include, but are not limited to, estimating maximum approximation order, arising 

of negative lobes, regularization issues and concealing of directional peaks. 

In his thesis Descoteaux (Descoteaux, 2010) called SH a natural way to decompose signals 

on the sphere. In context of the problems arising in local modeling we should ask ourselves 

if there may be better alternatives to represent spherical data, especially when only having 

measured a sparse representation of a function of interest. I discuss this question more in 

depth in chapter 4.5.5. However, completely answering this would require an applicable 

sampling theorem, which can tell us the reliability of SH expansion depending on the order, 

when using the sparse data representation given through MRI. 
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4 Local Modeling 

4.1 Introduction 

Using dMRI the signal decay caused by the dephasing of spins of hydrogen nuclei can be 

measured. From this signal one wants to infer the microstructure in the human brain. 

However, one can only measure the microstructure indirectly. As stated in Chapter 2, 

microstructural barriers are observed in terms of reduced diffusion, which is a slower signal 

decay perpendicular to the boundary, than in an isotropic medium. From the signal profile 

one can therefore implicitly infer the microstructure. 

To relate the measured diffusion weighted signal to the microarchitecture and especially 

the local fiber arrangement, it is necessary to impose a model connecting anatomy and 

diffusion signal. This model is called the local model, as it describes the influence of the 

local microstructural boundaries within a voxel on the spatial displacement of water 

molecules in that voxel, and it also describes the influence on the measured signal from that 

voxel. 

One of the ways to determine the local arrangement is by reconstructing approximations of 

the so called diffusion propagator, which gives the probability of a particle diffusing from 

one position to another within the diffusion time (Callaghan, 1991; Cory et al., 1990). In 

practice not the true propagator, but the average water diffusion propagator within a voxel 

is reconstructed. Furthermore probing the diffusion propagator is constrained by sensitivity 

of the measurement with respect to diffusion direction, governed by the diffusion gradients, 

and diffusion time and length, expressed by the b-value. Together the diffusion direction 

and the diffusion time form the so-called q-space. The propagator is related to the tissue 

microstructure by the diffusion equation and appropriate boundary conditions (Fick, 1855). 

It can be calculated via Fourier transform from the signal attenuation. Reconstructing the 

full diffusion propagator, however, is impossible in practice, since it would require infinitely 

dense sampling of the whole q-space (  ) and the diffusion time. One idea is to 

approximate the propagator by using a representative subspace, sampled at finite intervals 

in q-space and at a fixed diffusion time. This technique is known as diffusion spectrum 

imaging (DSI) (Wedeen et al., 2005). Since a rather large number of gradient directions and 

different b-values have to be examined, DSI significantly increases the necessary acquisition 

time, thereby reducing its clinical applicability. 
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One of the most used approximations of the diffusion propagator is the diffusion tensor. 

Here anisotropic Gaussian diffusion is assumed, leading to a diffusion propagator, which is 

described by a multivariate normal distribution, characterized by its covariance matrix, 

which is referred to as diffusion tenser. This technique is called diffusion tensor imaging (DTI) 

(P J Basser et al., 1994b) and is appropriate in situations with only one, approximately 

coherent, fiber population per voxel. One of the most significant limitations of this method 

lies in its inability to resolve the micro-structure in areas of more complex fiber geometries, 

for example crossing fibers. This situation, however, is rather common affecting between 

30-60% (T. E. J. Behrens et al., 2007; Descoteaux et al., 2009; Jeurissen et al., 2010) of the 

measured white matter voxels at current resolutions. 

In order to ease this situation multi-tensor models have been introduced, which allow more 

than one coherent fiber bundle within one voxel (Cook et al., 2005; Makris et al., 2002; D. 

Tuch, 2002). These methods are very attractive as long as the assumption holds, that the 

fibers belong to a small number of fairly coherent bundles. The advantage of these models 

is that they separate multiple fiber populations and describe each of these with the well-

investigated diffusion tensor. However, in the work of Scherrer and Warfield (Scherrer and S 

K Warfield, 2010) it was shown that generalizing the multi-tensor model to any number of 

tensors per voxels leads to numerical problems stemming from the collinearity of the multi-

tensor parameters. Therefore a single b-value is insufficient for estimating the full model of 

multiple tensors. This problem is usually mitigated by the introduction of additional 

constraints, such as restricting the number of tensor components (e.g.: two components; 

Caan et al., 2010; Geoffrey J M Parker and Daniel C Alexander, 2003), incorporating 

physiological constraints (Makris et al., 2002), reducing the complexity of the model by only 

allowing identical tensors (Tabelow et al., 2012). Other approaches use additional 

regularization or estimate a solution for optimization by using other local models. These 

approaches include stabilizing the problem by using Monte-Carlo algorithms (Kreher et al., 

2005), regularizing over a spatial neighborhood (J. G. Malcolm et al., 2010; Pasternak et al., 

2008), and incorporating other local models to estimate the initial non-linear optimization 

of the parameters of the multi-tensor model (Schultz et al., 2010). 

A more sophisticated approximation of the diffusion propagator was introduced by Tuch (D. 

S. Tuch, 2004). He uses the Funk-Radon transform to evaluate only the marginal probability 

of the diffusion in a given direction, leading to the orientation profile of the diffusion 

propagator. The resulting profile is referred to as diffusion orientation density function 

(dODF) or q-ball. From its directional profile one can infer certain aspects of the orientation 

distribution of the underlying nerve fibers, in particular the main directions of the fiber 

bundles. The original dODF formulation uses a linear radial projection. It therefore 

overvalues points which are located close to the origin. This has led to the introduction of 
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more accurate dODF by considering the properties of the spherical coordinate system 

(Aganj et al., 2010; Alan Barnett, 2009; Canales-Rodríguez et al., 2009; Tristán-Vega et al., 

2009). The two main approaches, however, differ in their description of the dODF. The 

differences between these two are investigated in more depth in Chapter 4.4. I additionally 

provide a framework which unifies the approaches and shows that their main difference lies 

in the assumption of the signal behavior beyond the measured sphere in q-space. This has 

also been investigated by Zhang an colleagues (N. Zhang et al., 2013). 

All approaches mentioned so far involve models of the diffusion propagator, describing the 

relation between the measured signal and the water molecule displacement. The 

interpretation in terms of microstructure is then done rather intuitively, without any 

formalized relationship. A method that leads directly to a description of the fiber anatomy is 

spherical deconvolution (Dell’Acqua et al., 2007; Kaden et al., 2007; Tournier et al., 2007, 

2004). In this model the signal is assumed to be constituted by the convolution of the signal 

associated to a single fiber or group of coherently oriented fibers with a fiber orientation 

density function (fODF). This method therefore requires a model of the signal of a single 

fiber or group of coherently oriented fibers, which is referred to as the convolution kernel. 

Alternatively, it is possible to calculate the fODF based on the dODF using an estimate of the 

dODF of a single fiber bundle as kernel (Descoteaux et al., 2009). A common framework for 

the different approaches to spherical deconvolution is given by Jian and Vermuri (Jian and 

Vemuri, 2007). Since spherical deconvolution requires an additional model the approach is 

classified as a so called model based approach, while the ones discussed earlier are called 

model free. 

In this chapter I begin by introducing the diffusion propagator, which is a fundamental 

quantity of diffusion. Then I introduce the local models I investigated in depth, which are 

the diffusion tensor, the q-ball and spherical deconvolution. Furthermore I describe their 

calculation from the measured signal as well as their advantages and limitations. I 

investigate briefly the metrics which can be derived from each of these models. Metrics 

describe distances in a parameter space and are characterized by their sensitivity and 

specificity towards the differences in the physical quantities they are meant to reflect. In 

the context of dMRI, a sensitive metric should react to differences in a wide range of 

microstructural properties of the tissue, while a specific metric should be linked directly to a 

certain microstructural property. 

Again for clarity I should mention that there basically are three distinct spaces one deals 

with when talking about local models. The first is the signal space. This is given in terms of 

the measured signal in each gradient direction. The second is the diffusion space. It is 

related to the measurement space by the Fourier relationship of the diffusion propagator 
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and describes the amount of diffusion occurring in each direction. The third is the fiber 

space, which can be calculated from as well the diffusion space as from the signal space by 

means of deconvolution using an appropriate representation of a single fiber population 

(kernel). As I discuss in Chapter 4.5.5 the connection between the kernel and the 

reconstructed fODF is not linear in the crossing fiber case. Therefore interpretation of 

results in any other space cannot be related directly to the underlying structure. 

My main contribution in this chapter lies in the comparison of the math behind the dODF 

methods which do not use the linear radial projection used by Tuch. I formulate a common 

framework for the calculation of the corresponding dODFs. Additionally I investigated the 

crossing angle distribution for CSD and the relationship of these results to the 

approximation error of the Dirac delta function. This leads to insights on how identifying 

spurious peaks might be possible by variation of SH order. 

4.2 The Diffusion Propagator 

One of the most important quantities of diffusion is the diffusion propagator, as it can be 

used for describing the relation between diffusion and attenuation. The diffusion 

propagator    ⃑   ⃑     (Callaghan, 1991) gives the probability of a particle traveling from  ⃑  

to  ⃑  in time  . It is related to the underlying tissue by the diffusion equation and can be 

calculated from the signal attenuation via the Fourier transform (     . For a given 

gradient direction  ⃑ in terms of the propagator the signal attenuation amounts to the 

following: 

The magnitude of the signal-loss in presence of diffusion encoding depends on the diffusion 

gradient strength ( ) and duration ( ), which determines how sensitive the signal reacts 

towards diffusion, as well as the spatial distribution of the displacement during the time  . 

The quantities  ,   and   are known and incorporated in the so called b-value, which is 

defined as         (  
 

 
), where   is the gyromagnetic ratio (Stejskal and Tanner, 

1965). The above-mentioned relation only holds under the assumption of a narrow pulse 

approximation, which states that no significant diffusion occurs during the diffusion 

encoding process, i.e. the application of the diffusion gradient. 
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In practice the resolution at which one can observe diffusion is dictated by the voxel size, as 

one can only observe the average particle displacement in a given direction for the entire 

voxel. Therefore one cannot observe the diffusion propagator, but rather observes the 

propagator reflecting the spatial sum over the local microstructural environments present 

within the voxel (D. Tuch, 2002). Instead of traveling from position  ⃑  to  ⃑  one therefore 

rather observes the relative spin displacement, i.e.  ⃑⃑   ⃑   ⃑ . The resulting propagator, 

which can be described as the diffusion propagator averaged over all initial positions within 

the given voxel, is often referred to as the ensemble-average propagator (EAP) (D. Tuch, 

2002). The relation to the diffusion propagator can be described using the position-

dependent spin density ( ). 

The EAP is related to the measured signal by a simple inverse Fourier relationship. This 

relation is derived for example in the work of Tuch (D. S. Tuch, 2004). 

This relation describes a method for the reconstruction of the EAP. Reconstructing the full 

EAP, however, is impossible in practice, since it would require infinitely dense sampling of 

the whole q-space (  ) for all diffusion times. Several of the local models can be linked to 

the diffusion propagator and the question, how to efficiently sample q-space to maintain 

the significant features of the propagator. 

It should again be noted, that even if one was able to completely reconstruct the diffusion 

propagator, that the connection to microstructure is still implicit, as the propagator 

describes the diffusion profile. For relating the propagator to the microstructure additional 

models are necessary, especially since the observed propagator is the EAP. This is discussed 

in more detail in the work by Jones and colleagues (Derek K Jones et al., 2013). 

4.3 Diffusion Tensor 

4.3.1  Introduction 

The simplest way to approximate the diffusion propagator is by using a Gaussian 

assumption for modeling the radial profile of the diffusion signal. For an isotropic medium 
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this amounts to the diffusion tensor (P J Basser et al., 1994a). In the following I will derive 

the diffusion tensor and describe the most popular method for calculating the tensor from 

the measured signal data. 

The diffusion process can be characterized by a diffusion coefficient, which describes the 

mean square displacement of a particle undergoing Brownian motion. According to the 

Einstein-Smoluchowsky equation (Einstein, 1956) the diffusion coefficient, which describes 

the direction independent mobility of a molecule or particle in an isotropic medium, is given 

by: 

where  ⃑   ⃑   ⃑ , i.e. the displacement of a spin from the position  ⃑  to the position  ⃑  in 

time   and the operator 〈 〉 denotes the average over the spin ensemble. The diffusion 

coefficient for a fixed gradient direction  ⃑ can be related to the attenuation signal of a dMRI 

measurement by the Stejskal-Tanner equation (Stejskal and Tanner, 1965): 

It should be noted that the Stejskal-Tanner equation was initially derived from a NMR pulse 

sequence. Since in dMRI there are many more influences on the diffusion gradient and the 

dMRI pulse sequence is much more complex than in the original experiment by Stejskal and 

Tanner, the diffusion coefficient measured is actually an apparent diffusion coefficient (ADC) 

and not the true diffusion coefficient. In clinical application the ADC is sometimes still used 

as an easily calculated metric. Instead of using the ADC in a single direction the average ADC 

is calculated for several directions (Moseley et al., 1990). 

The idea of a diffusion tensor was introduced to dMRI by Basser and colleagues (P J Basser 

et al., 1994a), who showed that the ADC was highly direction dependent in parts of the 

brain. They concluded that an isotropic diffusion model does not correctly represent the 

brain’s cell microstructure. The simplest generalization is to assume anisotropic diffusion 

hindered by a single barrier. This leads to the generalization of Einstein’s diffusion equation 

to a tensor instead of a single coefficient, which can be understood as relation between the 

covariance matrix of the average particle displacement  ⃑⃑ for a diffusion time  : 
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Campbell (Campbell, 2004) showed that if one uses Einstein’s diffusion equation and the 

first order Taylor expansion of the EAP about  ⃑⃑ and  , then the propagator is defined by the 

differential equation: 

     ⃑⃑   

  
     ( ⃑⃑  )  (4.7) 

The solution to this gives the Gaussian propagator: 

  ( ⃑⃑  )  
 

√             
     

 

  
 ⃑⃑     ⃑⃑   (4.8) 

This can be seen as approximating the full propagator in terms of a 3-variate normal 

distribution. The diffusion tensor then describes the symmetric covariance matrix of the 

water molecules’ Brownian motion. 

 

Figure 4.1: The diffusion tensor. The tensor is usually visualized as an ellipsoid. Here an isotropic 
(a) and an anisotropic tensor (b) are shown. The dimensions of the tensor are described by the 
tensor’s eigenvalues (  ) and eigenvectors (  ). The ellipsoid describes the distance a particle 
travels within the diffusion time  . As the eigenvalues describe the dimensions of the tensor, 
similar eigenvectors indicate isotropy, while a difference between the eigenvalues indicates 
anisotropy. 
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4.3.2  Calculation of the Tensor from the Diffusion Signal 

The connection between the measured signal and the diffusion tensor is in principle given 

by the Stejskal-Tanner equation (4.5). In the following I will discuss the calculation of the 

diffusion tensor from the diffusion signal. 

As stated above the tensor can be seen as the symmetric covariance (   )-matrix of the 

water molecules’ Brownian motion. It consequently can be described by a matrix with 3 

unique diagonal entries and 3 unique off diagonal entries, i.e. 6 unique entries. 

Consequently at least 7 image acquisitions (1 non-diffusion-weighted for determining the 

attenuation and 6 diffusion-weighted) are necessary for fully determining the diffusion 

tensor. In the following    shall denote the non-diffusion-weighted signal and    ⃑   the 

diffusion-weighted signal at a b-value of   for   gradients  ⃑⃑⃑  (  
    

    
 ) with         . 

With these definitions one can formulate a system of linear equations for estimating the 

diffusion tensor. The Stejskal-Tanner Equation (4.5) can be written in terms of the diffusion 

tensor: 

In practice this can be solved using a linear equation system. First the      -matrix   is 

defined: 

The tensor then is described in terms of a single vector  ⃑ containing the six values which 

have to be determined for defining the tensor, that is: 

By taking the logarithm of the measured signal attenuation, a vector  ⃑ is defined: 
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Using the matrix   and the vectors  ⃑ and  ⃑ equation (4.10) can be rewritten as: 

  ⃑    ⃑  (4.14) 

This over determined linear system can be solved by least square fitting of  ⃑ by calculating 

the Moore-Penrose pseudoinverse (Penrose, 2008). The resulting entries of  ⃑ then define 

the tensor. As a comment it should be noted, that the noise on dMRI data is not Gaussian 

distributed but follows a Rician distribution (Andersen, 1996; Gudbjartsson and Patz, 1995). 

 

Figure 4.2: Tensors colored using the RGB color map. The tensors are visualized as ellipsoids and 
colored using the first eigenvector. Red stands for left-right, green for anterior-posterior and blue 
for dorsal-ventral direction. Round tensors indicate more than one fiber population being 
present, while elongated tensors indicate collinear fiber populations. 
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By performing least square fitting one implicitly assumes the noise to have the same 

distribution as the underlying process. This can lead to a bias of the reconstructed tensor. 

As a solution, more complex tensor fitting approaches have been introduced (Arsigny et al., 

2006; Lenglet et al., 2006). An overview over clinically applied diffusion tensor estimation 

methods is found in the work of Fillard and colleagues (Fillard et al., 2007). A typical tensor 

ellipsoid is shown in Figure 4.1. 

4.3.3  Tensor Metrics 

The diffusion tensor can be characterized in terms of its eigenfunctions. These are the three 

eigenvectors ( ⃑ ) and eigenvalues (  ). Since the tensor characterizes the covariance matrix 

of the Gaussian diffusion propagator these have a close relation to the propagator. 

The tensor’s eigenfunctions are calculated by eigendecomposition of the       diffusion 

tensor matrix: 

     ⃑  ⃑  ⃑  (

    
    
    

)   ⃑  ⃑  ⃑  
  (4.15) 

By convention the eigenvalues and their eigenvectors are sorted by size. The largest is the 

first eigenvalue (  ). The eigenvectors are normalized to be orthonormal. As shown in 

Figure 4.1, the eigenvalues gives the distance that a particle maximally moves in the 

direction of the corresponding eigenvector. 

The diffusion tensor is usually visualized as an ellipsoid. The ellipsoid is then colored using 

an RGB color map (Pajevic and Pierpaoli, 1999), which is obtained by encoding the 

coordinates of the first eigenvector ( ⃑         ) in terms of a color. The corresponding 

RGB map gives an indication of the spatial orientation of the diffusion tensor. An example is 

shown in Figure 4.2. 

The eigenvalues are used to calculate several metrics, which are indicators of the tissue 

microstructure. The most prominent and most widely used metric is the fractional 

anisotropy (FA) (Pierpaoli and P J Basser, 1996; Westin et al., 2002). It basically describes 

the shape of the diffusion tensor, by characterizing the mean spread of the eigenvalues. It is 

defined as: 

     √
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with 〈 〉 denoting the mean eigenvalue, which is also referred to as mean diffusivity. This 

metric is zero in case of the eigenvalues being identical and is close to one if one is larger 
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than the others. If it is zero it therefore describes a sphere like tensor and if it is close to one 

it describes an elongated tensor. Of the various metrics calculated from MRI this is the one 

which has been studied the most and is used the most in clinical application (Leow et al., 

2009; Yamada et al., 2009). For an overview of applications see the work by Jones and 

colleagues (Derek K Jones et al., 2013). However the FA does not characterize the tensor 

shape completely as different combinations of eigenvalues can generate the same FA (A. L. 

Alexander et al., 2000). Exemplary maps of the tensor metrics are depicted in Figure 4.4. 

It should be pointed out, that while the low degrees of freedom of the tensor make it very 

easy to compute, it also means that metrics derived from the tensor are very unspecific. 

This fact is visualized for the FA in Figure 4.3. 

Two other important metrics derived from the diffusion tensor are the radial and the axial 

diffusivity. The axial diffusivity corresponds to the largest eigenvalue, while the radial 

diffusivity is the mean value of the second and third eigenvalue. It has been shown, that 

these metrics are sensitive to certain pathologies (S.-K. Song et al., 2002). However, so far it 

has not been possible to find a robust, quantitative relationship between a single 

 

Figure 4.3: Specificity and sensitivity of FA. On the left the same fiber configuration is 
shown. In the top image (a) the secondary fiber bundle (red) is increased, while in the 
second image the primary fiber population (blue) is decreased. Both of these changes 
lead to a reduction of FA. The FA therefore is sensitive to both changes, however cannot 
discern the changes. This implies that the FA is sensitive to changes in configuration, but 
not specific to the type of change. 
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microstructural property and the parameters extracted from the tensor (Derek K Jones et al., 

2013). An overview over the tensor metrics is given in Figure 4.4. 

4.3.4  Advantages and Limitations of the Diffusion Tensor 

The Gaussian approximation of the diffusion propagator uses the assumption, that the 

diffusion in a voxel is hindered by a single barrier. While this assumption is violated in large 

parts of the brain it leads to a fairly useful approximation of the propagator, since this 

approximation is easily computed, needs only a few measurements and is fairly robust. 

The advantage of this local model lies in the ease of estimation, as only seven image 

acquisitions are necessary. This has led to this method becoming the standard clinical 

method (Leow et al., 2009). Therefore vast literature covering the model, its application and 

the analysis of the method is available. For an overview see the work of Jones and 

colleagues (Derek K Jones et al., 2013). However, it has severe limitations. The Gaussian 

diffusion assumption is violated in large parts of the brain, as more complex geometries 

than a single fiber are present. While this method is highly accurate in some regions, the 

Gaussian assumption makes it insufficient for a lot of applications. Furthermore only 

sampling at a constant radius, that is a constant b-value, disregards the radial information of 

the diffusion signal. 

 

Figure 4.4: Maps of tensor metrics. Here the tensor metrics are visualized using a coronal section. 
The metrics are FA (a), MD (b), AD (c), RD (d). Each of these metrics describes a different aspect 
of the shape of the diffusion tensor. 
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When calculating the diffusion tensor from HARDI measurements, the measurement space 

is reduced strongly. This leads to a very good robustness towards noise. On the other hand, 

this also leads to a considerable loss of information. In case of HARDI it therefore is 

recommended to use more complex models to incorporate more of the information 

contained in the data. 

4.4 Diffusion Orientation Density Function 

4.4.1  Introduction 

The diffusion tensor assumes the diffusion signal to be constituted by a single coherent 

fiber population hindering anisotropic Gaussian diffusion. Therefore it cannot describe 

more complex configurations properly. Instead of using an explicit model for the diffusion, 

like in the tensor case, one can model the diffusion propagator directly by exploiting the 

Fourier relationship between the propagator and the diffusion signal (Callaghan, 1991). A 

method directly using this relationship is QSI, which uses a representative sampling of q-

space in order to locally reconstruct the diffusion propagator. This method however is very 

time-consuming, since a large number of samples is required, rendering the method 

infeasible for clinical application. 

This limitation was first circumvented by Tuch (D. S. Tuch, 2004), who used the Funk-Radon 

transform to estimate the marginal probability of diffusion in a given direction from the 

diffusion signal, measured on a sphere in q-space (q-ball). This result is referred to as the 

diffusion orientation density function (dODF). From its directional profile one can infer 

certain aspects of the orientation distribution of the underlying nerve fibers, in particular 

the main directions of the fiber bundles. In the definition of the dODF used by Tuch, 

however, not the true marginal probability of diffusion from the EAP is calculated. A linear 

radial projection of the EAP is computed instead, which disregards the quadratic growth of 

the volume element with its distance to the origin. Therefore points close to the origin are 

overvalued which distorts the dODF. This in turn leads to the need of normalization of the 

dODF, since it does not integrate to unit mass. Additionally the dODF is not dimensionless, 

but has the unit     where   stands for the spaces length dimension. These problems are 

reconciled in the work by Aganj and colleagues (Aganj et al., 2010), in the work by Tristan-

Vega and colleagues (Tristán-Vega et al., 2009) and in the work by Zhang and colleagues (N. 

Zhang et al., 2013). I investigated the works of Aganj and colleagues as well as Tristan-Vega 

and colleagues in depth. 

In the following subchapters I will first give an overview over the calculation of the dODF in 

the frameworks by Tuch and colleagues, Aganj and colleagues as well as Tristan-Vega and 
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colleagues. As the dODF is computed from a q-ball, that is a sphere in q-space, the method 

for calculating the dODF is referred to as q-ball imaging (QBI). I compare the three 

approaches for calculating the dODF discussing the similarities and the differences in their 

assumptions and provide a common framework. 

4.4.2  General Definitions 

Instead of reconstructing the full EAP, in QBI one seeks to reconstruct the dODF. The dODF 

is a probability density function, which gives the probability of a particle diffusing from the 

origin to the infinitesimal solid angle volume element    lying in direction  ⃑⃑ within the 

diffusion time  . The dODF can be written in Cartesian coordinates. However, in dMRI one is 

mostly interested in the spherical representation of the dODF. The volume element    in 

spherical coordinates can be written as: 

where   stands for the surface of the unit sphere and has the property            . 

Subsequently the radial integral of the EAP in spherical coordinates can be written as: 

where  ⃑⃑ is a unit vector and   is the radial coordinate in the diffusion space coordinate 

system. For a fixed diffusion time this defines the dODF  . For comparison, the linear 

projection used in the work of Tuch is defined as: 

with a normalization constant  , which ensures that      is of unit mass. In the following I 

will refer to      as linear dODF. As can be seen from comparing (4.18) and (4.19) the linear 

projection introduces a weighting by the factor    . This leads to overvaluing of values close 

to the origin. 

Computing the linear dODF as well as the general dODF requires the Funk-Radon transform 

(    ), which is a transformation of the sphere onto itself. This transformation gives a 

value in direction  ⃑⃑ by integrating the function   on the sphere over the great circle in the 

plane perpendicular to the direction  ⃑⃑. Formally this is defined by: 

            (4.17) 
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where   stands for the Dirac delta function. 

For all methods the Fourier connection between the measured signal and the diffusion 

propagator is required. The relation is defined in equation (4.3), which is related to the 

inverse Fourier transform as follows: 

Since from here on one can assume the diffusion time to be fixed I will not continue to carry 

the variable  , which describes the diffusion time in the following formulas. 

4.4.3  Linear dODF 

As shown by Tuch (D. S. Tuch, 2004) the linear dODF is related directly to the Funk-Radon 

transform of the attenuation signal: 

where    is the 0th order Bessel function, which is used in the Funk-Radon transform to 

approximate the Dirac delta function. For the linear dODF equation (4.21) simplifies to the 

following: 

It should however be noted that due to the Funk-Radon transform some blurring is 

introduced. The equation (4.23) can be solved analytically by using the Funk-Hecke theorem 

and a spherical representation of the measured signal attenuation. As shown in the work of 

Descoteaux (Descoteaux, 2010) the Funk-Hecke transform of the signal attenuation 

amounts to: 

  [   ⃑⃑⃑ ]  ⃑⃑  ∫    ⃑⃑⃑    ⃑⃑⃑

 ⃑⃑⃑  ⃑⃑⃑ 
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The estimation of the linear dODF      then can be performed by simple multiplication of 

the coefficients of the spherical representation of the signal with        . In other words, let 

the matrix   be the SH base as defined in equation (3.20), the vector  ⃑  (
   ⃑⃑  

  
   

   ⃑⃑  

  
) 

be the signal attenuation vector observed for the   gradient directions (       ) and   be 

the diagonal matrix with entries            . Then the calculation of the dODF coefficients 

of the SH expansion amounts to: 

In the work of Descoteaux (Descoteaux, 2010) a Laplace-Beltrami regularization parameter 

is introduced. Including the regularization parameter in equation (4.25) leads to the 

expression: 

where   is a regularization parameter and the matrix   is a diagonal matrix with entries 

                  . This introduces additional smoothness constraints by suppression of 

higher order values. 

Evaluation of the dODF for points in the SH base    is then done by simple matrix vector 

multiplication: 

This requires the calculation of the SH base at all points at which the dODF is of interest. 

In practice, the normalization parameter 
 

 
 from equation (4.23) is not explicitly calculated. 

Instead the dODF is usually min-max normalized. This of course leads to a 

misrepresentation of rounder glyphs. In theory the dODF would have to be scaled, using 

their first spherical harmonic coefficients, since the first coefficient gives the integral of      

over the sphere (see Chapter 3.5). 
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4.4.4  General dODF 

The basic idea behind the general dODF formulation is that the Fourier transform of the 

spherical EAP is related to the Laplacian    of the signal. This result uses a basic relation of 

Fourier analysis theory and is provided in the work of Aganj and colleagues (Aganj et al., 

2009). The relationship amounts to: 

where  ⃑⃑ is an arbitrary unit vector. In spherical coordinates        , the Laplacian of the 

signal is defined as: 

which can be split into a radial part and a radius independent part for calculating the 

general dODF: 

The operator   
  is the Laplace-Beltrami operator. Using this relation and the Funk-Radon 

transform the general dODF can be written analogously to equation (4.26): 

Applying the Funk-Radon transform leads to a sum of two integrals, one representing the 

radial part and the other the angular part: 

where  ⃑⃑  stands for the plane perpendicular to the vector  ⃑⃑. As shown in the work by Aganj 

and colleagues (Aganj et al., 2010), the radial part is constant, assuming that the diffusion 

signal and its radial derivative go to zero (relatively fast) as the radius goes to infinity. Under 

these assumptions the radial part is constant: 
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The difficulty lies in the evaluation of the angular portion of the integral. This is also the 

point where the works by Aganj and colleagues (Aganj et al., 2010) as well as the work of 

Tristan-Vega and colleagues (Tristán-Vega et al., 2009) diverge. Zhang and colleagues (N. 

Zhang et al., 2013) take a completely different approach, which tries to minimize the 

approximation error due to the Funk-Radon transform, by replacing the radial part with its 

mean value over the sphere. Since I investigated the differences and similarities in the dODF 

reconstruction methods before the work of Zhang et al. was published, I will only discuss 

the other two approaches in depth. 

After calculating the radial portion the equation (4.32) simplifies to: 

The approach by Aganj and colleagues to calculate the dODF is often referred to as planar 

orientation probability density transform (p-OPDT), while the approach by Tristan-Vega and 

colleagues is referred to as circular orientation probability density transform (c-OPDT). This 

stems from their assumptions for solving the angular portion of the integral. 

Aganj and colleagues assume the signal to decay mono-exponentially with the radius, in 

order to approximate the behavior of    ⃑  in the entire q-space. This approximation is 

required for evaluating the integral in (4.34) within the entire plane  ⃑⃑ . This results in the 

dODF   : 

Tristan-Vega and colleagues on the other hand calculate the dODF    by approximating the 

integral in the entire plane  ⃑⃑  by the integral on a disk in the plane. This assumes that the 

attenuation signal changes much faster than the shape of the ADC does. This allows the use 

of Stokes’ theorem for solving the integral: 

The function     hereby stands for: 
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which describes the signal decay with the radius, substituting the mono-exponential decay 

assumed in the work of Aganj and colleagues. For more information on the calculation of 

the function     see the work of Tristan-Vega and colleagues (Tristán-Vega et al., 2010). In a 

common framework the dODF   could be described by: 

where   is a function describing the assumption of the radial signal decay. To distinguish 

between the results of p-OPDT and c-OPDT, I will refer to    as p-dODF and to    as c-dODF. 

The framework (4.38) allows the use of different assumptions on the signal decay. 

4.4.5  Calculation of the dODF from the Diffusion Signal 

As discussed in the previous chapter the c-dODF and the p-dODF vary mainly in their 

assumption of the radial signal decay. For defining a common framework I therefore first 

need to introduce a term covering the signal approximation, which is denoted by the vector 

 ⃑( ⃑), while  ⃑ denotes the signal attenuation vector, as defined in Chapter 4.4.3. The vector 

of coefficients  ⃑  of the generalized ODF   can then be written as: 

where the matrices  ,   and   are the SH base matrix, the diagonal Funk-Radon transform 

matrix and the diagonal Laplace-Beltrami regularization matrix. In case of the c-dODF and p-

dODF the vector  ⃑ is defined differently: 

The calculation of the corresponding dODF values is less straightforward than in the case of 

the linear dODF, as for evaluating the dODF at points contained in the SH base    requires 

an extra addition step: 
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4.4.6  dODF Metrics 

The dODF describes the probability of a particle diffusing in a particular direction. Therefore 

the peaks of the dODF can be interpreted as a large number of particles diffusing in the 

corresponding direction. This is a strong indicator that a collinear fiber population exists 

which is aligned with that direction. For quantifying this in terms of geometric properties, 

which again would lead to an interpretation in terms of the underlying microstructure, 

metrics describing this connection are of great interest. However, calculation of metrics 

from the dODF is not as straightforward, as for example in the tensor case. This is mainly 

because of the dODF describing diffusion and not structure, but also because of the 

description of the dODF in terms of a SH expansion and the dODF being a multimodal 

distribution. Due to the SH representation one can only infer information in terms of SH 

expansion coefficients directly (see Chapter 3.5). This currently does not exceed the first 

coefficient of the SH expansion which is basically the integral of the dODF over the sphere, 

which should be equal to 
 

√  
 (as shown in Chapter 3.5). On the other hand, the multimodal 

distribution structure makes derivation of metrics from the dODF difficult, since each of the 

distribution’s peaks has to be characterized separately in terms of microstructure. This 

requires an additional computation step identifying the dODF maxima. 

A rotation invariant scalar measure similar to FA was introduced by Tuch and colleagues (D. 

S. Tuch, 2004). They call this metric the generalized fractional anisotropy (GFA), as it 

extends the idea of characterizing the overall anisotropy to more generalized geometries. It 

is defined analogously to the tensor FA: 

where 〈 〉 stands for the average dODF value, which is constant in case of the c-dODF and 

p-dODF. This metric basically describes the variation of the dODF. 

The GFA can be used for the characterization of results from arbitrary local models, like for 

example spherical deconvolution (see Chapter 4.5.4). However, the GFA value differs for 

each local model. This is also the case for each of the dODF formulations. It behaves very 

similar to FA. In the work of Gorczewski and colleagues (Gorczewski et al., 2009) it even 

could be shown, that a linear dependence between FA and GFA exists.  
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An extension of GFA to the separate peaks of the dODF has been proposed by Ghosh and 

Deriche (Ghosh and Deriche, 2011). This metric is called the peak fractional anisotropy (PFA) 

and describes the anisotropy of each peak separately. This approach then can be extended 

to a total PFA, which is calculated as a weighted sum of the separate PFA values. 

In case of using a metric derived from the dODF for the characterization of the 

microstructure it should always be kept in mind, that the dODF strictly only models the 

diffusion and not the microstructure. Any connection to the fiber anatomy should be 

formed using an explicit model. 

4.4.7  Advantages and Limitations of the dODF 

The great advantage of the dODF in comparison to the diffusion tensor is its ability to 

resolve more complex fiber geometries. Furthermore no prior assumptions are necessary 

for estimation of the dODF, it therefore is classified as a model free approach. In case of the 

c-dODF and the p-dODF explicit assumptions are made on the radial profile of the diffusion 

propagator. Other advantages of these methods are the computation speed and that only 

about 60 directions have to be measured for an adequate reconstruction of the dODF 

(Khachaturian et al., 2007). On the other hand this model only describes the diffusion 

propagator and thereby only implicitly models the underlying fiber microstructure. 

Therefore the classification as model free is a little bit misleading as an implicit model is 

then used for interpretation, without explicitly being stated. This is to be seen extremely 

cautious when not comparing dODF based properties between each other, but formulating 

results in terms of properties of the underlying microstructure. 

4.5 Fiber Orientation Density Function 

4.5.1  Introduction 

All approaches mentioned so far are models of the diffusion propagator and do not need an 

explicit model of a fiber response function (signal of a single collinear fiber population). The 

connection to the microstructure is given implicitly and often used in a non-formularized 

fashion during the interpretation of the results in terms of microstructure and its properties. 

A method which leads to an explicit model of the fiber configuration in each voxel is 

spherical deconvolution (D. C. Alexander, 2005a; Dell’Acqua et al., 2007; Kaden et al., 2007; 

Tournier et al., 2007, 2004). It translates the direction dependent signal attenuation into a 

fiber orientation density function (fODF). It is measured in the unit           . 

This method is based on the spherical convolution theorem introduced in Chapter 3.7. In 

the spherical deconvolution model the signal is seen as constituted by the signal associated 
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to a single fiber or group of coherently oriented fibers (convolution kernel), which is 

convolved with a fODF. This is visualized in Figure 4.5. 

This is a model dependent method, as it requires the model of the convolution kernel. The 

resulting fODF greatly depends on the estimated model of the single fiber response. For the 

calculation of the kernel several approaches have been introduced. An overview of the 

different convolution methods and a common framework can be found in the work of Jian 

and Vemuri (Jian and Vemuri, 2007). 

The fODF calculated from spherical deconvolution can be understood as an angular spatial 

distribution of the fiber density. That means for a given direction it represents the fiber 

density with regards to the voxel of interest. 

In this chapter I will focus on the spherical deconvolution method introduced by Tournier 

and colleagues (Tournier et al., 2007, 2004) especially constrained spherical deconvolution 

(CSD) (Tournier et al., 2007). CSD  was used for the fitting of the Bingham function (Chapter 

5) and is implemented in the software package MRtrix (Tournier et al., 2012). 

4.5.2 Math of Spherical Deconvolution 

Spherical deconvolution can be seen as a generalization of mixture models. In mixture 

models one assumes a discrete number of fiber populations   for each voxel. In spherical 

deconvolution the problem of having to assume a number of fiber populations within a 

voxel is circumvented by using a continuous distribution of fibers rather than a discrete 

number to describe the microstructure. This is done, as described by Tournier and 

colleagues (Tournier et al., 2004), by generalizing the discrete problem: 

 

Figure 4.5: The principle of spherical deconvolution. In spherical deconvolution the signal is assumed 
to be constituted by the convolution of the signal of a single fiber (kernel) with a fODF. In theory the 
fODF is a sum of Dirac delta functions. Since spherical deconvolution is formulated in the space of 
spherical harmonic functions the fODF is blurred and appears rounder. 
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The variable      stands for the axially symmetric response function, which is defined to be 

aligned with the z-axis and rotated onto the direction of the fiber population  ⃑          

by the rotation operator   . The value    gives the volume fraction of the  -th fiber bundle in 

the voxel. 

In the continuous case this can be expressed as the convolution of the kernel function      

with the fODF       : 

If one assumes           , then the convolution theorem (3.32) states: 

Hereby the expression    ̂ 
  stands for the corresponding coefficients of order   and degree 

  of the SH expansion. Assuming a single fiber being present in certain voxels, i.e. the fODF 

in these voxels corresponding to a Dirac delta function, one can estimate the response 

function   from the signal attenuation   in areas of a single z-aligned rotationally 

symmetric fiber population. This is done by applying the Funk-Hecke theorem (3.29) to 

describe the Dirac delta function in terms of a SH expansion. The coefficients of the 

response function can then be estimated by calculation of: 

The calculation of the fODF coefficients  ̂ 
  then amounts to: 

In order to convey the fODF with more meaning it is desirable to scale the signal 

attenuation to that of a single fiber. This is done by dividing the kernel’s signal attenuation 

by the corresponding voxel fiber density. This can be estimated from histological work, for 

example by Aboitiz and colleagues (Aboitiz et al., 1992). If one deconvolves the diffusion 
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signal from a particular voxel using the kernel estimated as described, the resulting fODF 

represents (an estimate of) the angular fiber density in the respective voxel to the extent to 

which the fibers in that voxel are similar to the average kernel voxel fiber. Without this 

normalization not the true fiber density is described but rather the density is measured in 

the unit of kernel fibers. 

4.5.3  Calculation from the measured signal 

In practice the calculation of the fODF from the measured signal is fairly straightforward. It 

requires a vector  ⃑⃑ of the coefficients of the response of a single fiber. As this is assumed to 

be z-aligned and symmetric only the values for degree     are required. This kernel is 

calculated using the pseudoinverse of the SH base. The symmetry is guaranteed either by 

generating the signal from a symmetric diffusion tensor representing the single fiber 

population or by disregarding the coefficients for degree     and using the measured 

signal in an area where the populations are known to be relatively collinear and rotating the 

signal to z-alignment. For such a kernel signal vector  ⃑    , the response amounts to: 

In case of using the measured signal for the kernel estimation, the population has to be 

aligned with the z-axis. This is done by rotation of the gradients in the corresponding voxel 

on the basis of a tensor fit. Therefore an individually calculated base has to be used for each 

voxel. 

After estimating the response the fODF   is calculated by applying the discretized version of 

equation (4.47): 

where       is the Legendre polynomial, defined in equation (3.28), and      is the kernel 

coefficient with index    
 

 
         of the vector  ⃑⃑ . The values    are the SH 

coefficients of the attenuation signal’s SH expansion with index  
 

 
           . The 

coefficients of the SH representation are calculated in terms of the vector  ⃑ using the vector 

of measured signals  ⃑ and the corresponding voxel’s    signal   : 
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Using a diagonal matrix   defined as follows, the calculation of the fODF can be written in 

terms of a matrix vector multiplication. 

   

(

  
 

     

  
 

 

 
     

   )

  
 
  (4.51) 

The deconvolution can then be written as: 

  ⃑⃑⃑    ⃑  (4.52) 

where  ⃑⃑⃑ is the vector of SH coefficients representing the fODF. This calculation of the fODF 

 , however, leads to problems in terms of negative value peaks (negative lobes) arising due 

to the oscilating nature of the SH base functions. For suppressing these, several strategies 

are employed. These reach from using a regularization vector for suppressing higher orders 

(Tournier et al., 2004), employing nonlinear fitting algorithms with a positivity boundary 

condition (Schwab et al., 2012) or fitting the fODF on a grid, on which positivity is iteratively 

enforced (Patel et al., 2010). 

An approach introduced by Tournier and colleagues (Tournier et al., 2007) is to minimize 

the occurring negative lobes iteratively while at the same time minimizing the residuum of 

the reconstruction. This method is called CSD and is implemented in MRtrix (Tournier et al., 

2012). For describing this method I need to introduce two base matrices   and  . These are 

generated by computing the attenuation signal for a tessellation on the sphere using a base 

  and then dividing this base into compartments. The division is based on the value of the 

reconstructed attenuation signal at the points on the tessellation. By introducing a 

threshold the base   is divided. The points which have a value above the threshold are used 

 

Figure 4.6: Effect of the CSD normalization. On the left (a) the first coefficient of the CSD is shown 
after normalization. On the right (b) the non-normalized image is shown. 
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for building the base  , while the others are used for generating the base  . This method at 

once minimizes the residuum of the signal reconstruction and the error introduced from 

negative lobes: 

       {‖(
 
  

)  ⃑⃑⃑   (
 ⃑

  

 

)‖

 

}  (4.53) 

where  ⃑⃑⃑ is the vector of the fODF coefficents, which is subject to the optimization and   is a 

parameter weighting the non-negativity constraint with the residuum of the signal 

reconstruction. For an exemplary dataset the fODF is visualized in Figure 4.7. 

Note that the MRTrix software package (Tournier et al., 2012) applies the CSD to the 

diffusion weighted signal rather than the signal attenuation. This introduces a weighting of 

 

Figure 4.7: fODF from spherical deconvolution mapped onto the brain. The glyphs are shown 
using an axial slice. As can be seen in the highlighted section, the fODF can discern crossing 
voxels, from non-crossing voxels. 
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the fODF by the ratio between the    (or   ) signal (         ) in the respective voxel and 

the average    signal (          ) in the kernel. Hence, the results must be corrected by a 

factor resulting from the quotient of the two (                   ⁄ ). The effect of the 

normalization is shown in Figure 4.6. 

 

4.5.4  Metrics from Spherical Deconvolution 

Deriving metrics from the fODF is one of the most straightforward ways of finding 

connections to the underlying fiber microstructure. However, for the fODF the same 

problems concerning the SH representation and the multi-modal distribution structure arise 

as for the dODF (described in Chapter 4.4.6).  

An easyliy derived metric comes from the description of the fODF in terms of an SH 

expansion. As shown in Chapter 3.5 the first coefficient of the fODF describes the integral of 

the fODF over the surface of the sphere. Integrating an angular spatial density in such 

manner leads to a spatial density. In case of the fODF this is the voxel-wise fiber density, 

which can be translated to a fiber count by multiplication with the voxel size. 

A metric that can also be used for describing the anisotropy of the fODF is the GFA. 

However the concept of anisotropy is lost when moving from diffusion to a fiber 

configuration. In that case the GFA rather describes the structural variance of the 

underlying angular-spatial fiber density, which is not a very intuitive metric easily related to 

the microstructure. 

A metric describing the underlying structure which is derived from spherical deconvolution 

is the apparent fiber density (Raffelt et al., 2012), which uses the maximum peak length of 

the fODF as a bundle specific metric. The quantity described, however, is not the fiber 

density but actually the angular fiber density within the peak’s maximum direction, which 

for sufficiently high b-values is closely related to the apparent fiber density. An explanation 

of the connection is given in the work of Raffelt and colleagues (Raffelt et al., 2012). With a 

different scaling the same metric is used in the work of Dell’Acqua and colleagues 

(Dell’Acqua et al., 2012). Here it is called the hindrance modulated orientational anisotropy 

(HMOA) and calculated by putting the length of the peak into relation to a reference 

amplitude. This metric derived as a parameter of the Bingham function fitted to the fODF is 

used as described in Chapter 6. Here it is defined as the bundle specific maximum angular 

fiber density (      ). 
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4.5.5  Problems arising in Spherical Deconvolution 

When working with the local model of spherical deconvolution and deriving metrics from 

the fODF, I came across several problems resulting from the SH representation of the fODF. 

The most prominent of these problems is the occurrence of negative lobes. It stems from 

the truncation of the SH series expansion. These also appear for the dODF but are more 

prevalent in the fODF as it intrinsically has sharper peaks.. Since the functions used for 

fitting are oscillating functions, the truncation of the spherical expansion leads to ringing 

artifacts in terms of negative lobes in the approximation of the (strictly positive) fODF. 

Together with the negative lobes spurious positive peaks appear. This is compensated to a 

certain degree by CSD, however, the regularization influences the shape of the fODF and 

may lead to regularization artifacts. The danger here lies in the misrepresentation of peaks, 

but also, the regularization may cause further spurious positive peaks to arise as well as 

virtually reducing the order of the fODF’s SH expansion which leads to a loss of the 

measured information that is integrated into the fODF. The spurious positive peaks are 

particularly dangerous, as these peaks cannot be discerned from peaks caused by the 

underlying microstructure. The stability and the occurrence of spurious peaks may also be 

improved by using the damped Richardson-Lucy deconvolution (Dell’Acqua et al., 2007; G. D. 

Parker et al., 2012). 

 

Figure 4.8: Map of integral over the negative lobes. Figure (a) shows the absolute value of 
integral over negative lobes, while figure (b) shows the relative value of integral over negative 
lobes. The highest values occur in areas where only a single fiber population is present. 
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For further analysis of the influence of the negative lobes the maps shown in Figure 4.8 

were generated. In these I show the integral of the fODF’s negative lobes over the unit 

sphere. As can be seen negative lobes arise mainly in areas where the kernel is similar to 

the observed signal. In other words, the largest errors occur in areas where only a single 

fiber population is present, causing a sharp Dirac delta like fODF. The sharpness of the fODF 

is governed by the SH expansion order and the shape of the convolution kernel. 

I investigated the approximation of the Dirac delta function and its negative lobes as well as 

spurious peaks. These depend strongly on the deconvolution order. I investigated the shape 

of the Dirac delta approximation in terms of Legendre polynomials. The results can be seen 

in Figure 4.9. As can be seen the Dirac delta SH expansion introduces severe ringing artifacts, 

according to the SH order used for the approximation. These ringing artifacts manifest as 

positive and negative spurious peaks. 

A further aspect of the SH representation of the fODF is that the truncation of the SH 

expansion smoothes the expanded function. This leads to the description of the fODF in 

 

Figure 4.9: Approximation of Dirac delta function. The number of negative lobes of the Dirac 
delta function as well as the corresponding spurious positive peaks can be seen in (a). The higher 
the order is, the better the Dirac delta function is approximated, but the spurious peaks and 
negative lobes significantly increase as well. In (b) one sees the corresponding CSD glyphs. The 
glyphs seem much larger for higher orders. However the integral of the CSD over the sphere is 
constant. The glyphs are perceived as larger due their increase in volume. 
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terms of rounded lobes. However, in theory the fODF is a sum of sharp impulse functions 

(Tournier et al., 2004). The effect of the smoothening on the shape of the reconstructed 

fODF is difficult to assess quantitatively, especially since these effects are additional to the 

effects induced by the kernel mismatch, which I discuss later on. As can be seen from Figure 

4.9 the SH expansion order plays a large role in the sharpness of the reconstructed delta 

function. If one classifies the opening angle of the Dirac delta function in a similar way as 

described in Chapter 6.2, then one can see that the minimum opening angle is 14° for an 8th 

order reconstruction and 17° for a 6th order reconstruction. These hard boundaries are very 

important to be kept in mind when dealing with metrics derived from the fODF describing 

the spread of fibers (such as the metrics described in Chapter 6). As soon as one is 

interested in the shape of bundles with an opening angle below the minimum opening 

angle, one needs to use a higher order SH expansion and therefore need measurements 

using more gradient directions. Finding an optimal solution to this problem would require 

the introduction of a spherical sampling theorem, which gives the connection between the 

highest frequency which can be reconstructed and the number of samples. 

Higher numbers of measurements alone, however, do not solve the shape resolution 

problem. This is due to higher order reconstructions introducing a stronger need for 

regularization, as the problem of reconstructing the fODF becomes more unstable the more 

degrees of freedom are added. In other words, the regularization artificially limits the order 

used for reconstruction. Using a low effective order due to strong regularization leads to the 

reconstructed Dirac delta function is again not represented appropriately. 

Overall the main problem of the fODF reconstruction seems rooted in the reconstruction of 

Dirac delta like functions. An approach to avoid these problems during the fitting process is 

presented by Dell’Acqua and colleagues (Dell’Acqua et al., 2010), who use an approach 

which is not SH expansion based during calculation, introducing the SH expansion after 

computation of the results. All of this calls into question seeing the SH functions as a natural 

way to decompose signals on the sphere (Descoteaux, 2010) when main features of interest 

are the peaks of the SH approximated functions. 

In context of the problems arising in local modeling we should ask ourselves if there may be 

better alternatives to represent spherical data, especially when only having measured a 

sparse representation of a function of interest. An approach to this problem might be the 

use of a matching library basis for the generation of the fODF. This would have to be 

designed such, that the matching library basis representation of the fODF can be estimated 

from the 60 diffusion directions and that sharper peaks can be reconstructed. 

Problems do not only occur in terms of negative lobes. As Dell’Acqua and colleagues 

describe in their work (Dell’Acqua et al., 2012), mismatch of the kernel shape, that is a 
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difference between the kernel response and the true fiber signal, leads to blurring of the 

fODF. 

Basically two types of mismatch concerning the kernel of the fODf can occur. Either it has a 

too wide or a too sharp kernel function. Since the reconstruction algorithm is linear with 

regard to scaling a mismatch in scaling is not of concern. If one uses a too narrow response 

function, that is a too narrow signal for a single fiber, then basically more fibers are needed 

to explain the observed signal. This leads to a wider fODF. In case of using a too wide 

response function the fODF gets sharper. Furthermore this sharpening can lead to inclusion 

of multiple populations within a single peak, which, with the correct kernel, could have 

been identified as separate populations. 

The kernel mismatch occurs intrinsically to the spherical deconvolution methods. This is due 

to one of the base assumptions of the spherical deconvolution method, which is that the 

shape of the response function is constant over the whole brain. This assumption, however, 

is unlikely to be correct, as the measured signal varies slightly in amplitude throughout the 

brain and the structure of a single fiber probably varies as well. The use of the signal 

attenuation leads to suppression of the signal amplitude’s variance. However, differences in 

the microstructural properties may lead to a local difference of the true response. One 

would therefore need to at once estimate the kernel as well as the fODF. This is not possible 

in practice, as this could only be solved by inputting external information on the structure, 

which one is looking to reconstruct. In the work of Parker and colleagues they discuss the 

differences between the reconstructed fODFs for different kernels (G. D. Parker et al., 2012). 

It should be noted that all of these problems also arise in the dODF formulation (see 

Chapter 4.4) in two ways. First the resulting dODF is also subject to the smoothing artifacts 

due to truncation of the SH expansion. Second the highly nonlinear influence of the kernel 

on the fODF also plays a role for the dODF, where the kernel is not formulated explicitly. 

Instead the changes in dODF are interpreted in terms of microstructural properties without 

this highly complex connection. Therefore on the surface these problems seem inherent to 

the fODF reconstruction, even though they play a role for the SH expansion based 

computation of the dODF as well. A method to connect dODF and fODF was given by 

Descoteaux (Descoteaux, 2010). In his work he applies the deconvolution framework to the 

dODF, using the dODF of a single fiber as local model. This method again formularizes the 

connection between fibers and diffusion. 

4.5.6  Crossing Angle Distribution Derived from CSD 

A question which was strongly discussed between Wedeen and colleagues (Wedeen et al., 

2012a, 2012b) on the one side and Catani and colleagues (Catani et al., 2012) on the other 
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side, was the question of the distribution of the angles at which the fibers in the brain cross. 

Wedeen and colleagues claim that 90° crossings are prevalent, while Catani and colleagues 

claim the crossing angles to be more evenly distributed. Methodology wise, Wedeen and 

colleagues use DSI, while Catani and colleagues investigated the question using a dODF. 

I investigated the crossing angle between the largest two peaks of the fODF derived from 

CSD, thresholding the second peak at 10% of the largest peak. I calculated the results for 4th, 

6th and 8th order SH expansions. The results are shown in Figure 4.10. The main result is that 

the distribution of crossing angles is strongly dependent on the order of the SH expansion. 

In case of a 4th order approximation, the crossings occur mainly at close to 90° angles. An 

increase of the order shifts the angles closer to 60° which is the angle at which separate 

bundles can be discerned using a 6th order expansion additionally only a low number of 90° 

crossing can be observed. In case of using an 8th order CSD one finds both a peak at 50° as 

well as a peak at 90°. This indicates that the spherical harmonic base plays a large role in the 

determined crossing angle. 

In the 4th order case one can detect crossings mainly at large angles, due to not being able 

to completely resolve small crossing angles. Additionally the Dirac delta function has a 

spurious peak at 90° (as can be seen in Figure 4.9), which may manifest in terms of 

incorrectly found fiber populations at this angle. The spurious peak of the Dirac delta 

function shifts to about 68° for a 6th order SH approximation. At the same time no spurious 

peak occurs at 90°. This again corresponds to the peaks in the crossing angle distribution. 

When using 8th order the oscillations of the SH functions cause two spurious peaks in the 

Dirac delta approximation. These are at 90° and around 50° which again correspond to the 

peaks in the crossing angle distribution. This leads to the conclusion that the crossing angle 

 

Figure 4.10: Connection between the crossing angle distribution and the SH reconstruction order. 
As can be seen the distribution’s shape and peak vary greatly depending on the spherical 
deconvolution order (90° for 4th order, 70° for 6th order and 50° as well as 90° for 8th order). 
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distribution is strongly biased by the deconvolution process and correlated to inaccuracies 

in the approximation of the Dirac delta function. Since the fODF in many voxels (about 30%-

60% (T. E. J. Behrens et al., 2007)) can be approximated by a Dirac delta function it can be 

hypothesized that the errors of the Dirac delta function approximation are responsible for 

the behavior of the crossing angle distribution. 

4.5.7  Advantages and limitations 

In the following I will summarize the advantages and limitations of the local model spherical 

deconvolution. The greatest advantage of this model compared to the diffusion propagator 

based models is that it directly models tissue microstructure. It is able to resolve crossing 

configurations without requiring prior knowledge on the number of fibers present within a 

voxel and can be computed relatively easy, due to its linear nature. Furthermore it only 

requires about 60 directions to give a useful approximation of the fiber structure in terms of 

and fODF. 

The greatest disadvantage of this method is the need for formulating an explicit model on 

the response of a single collinear fiber population. Furthermore, as discussed in Chapter 

4.5.5, several problems arise due to the SH approximation. These include, but are not 

limited to estimating maximum approximation order, arising of negative lobes, 

regularization issues and concealing of directional peaks. The assumption of a constant 

kernel is not necessarily accurate as well as the Gaussian modeling of the radial profile of 

the measured signal, which is used implicitly (Assemlal et al., 2011). 

As showed in Chapter 4.5.6 the approximation error of the Dirac delta function is strongly 

correlated with the errors in the CSD result and especially to errors in the crossing angle 

estimation. Further analysis would be necessary to determine the exact nature of the 

connection between the Dirac delta function approximation errors and the fODF 

reconstruction. 

4.6 Conclusion 

In this chapter I first introduced the diffusion propagator, then derived the diffusion tensor 

and the dODF from this fundamental property of diffusion. I discussed the linear dODF 

approach (D. S. Tuch, 2004) and introduced a framework common to the c-dODF (Tristán-

Vega et al., 2010) and p-dODF (Aganj et al., 2010) approach. Afterwards I introduced 

spherical deconvolution as an approach to model the fODF which is connected to the fiber 

architecture more explicitly and discussed the problems arising from the SH representation 

of the fODF. For each of the introduced local models I showed their mathematical definition, 

the process of calculating the model from the signal, some exemplary metrics and discussed 
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their advantages and disadvantages. For more information on these and further local 

models see the work of Assemlal and colleagues (Assemlal et al., 2011). 

If I view the models discussed in this chapter under the aspect of clinical feasibility, then DTI 

is still one of the most useful methods. This is mainly due to the low acquisition time. 

However, this shorter time comes at the cost of a loss of information and therefore 

inaccuracies in the reconstructions. Especially when investigating the microstructural 

arrangement within a voxel, it is desirable to use a large number of diffusion gradients. 

However, a high number of gradients usually come at the expense of the spatial resolution, 

due to limited scanning time. For exploring the microstructural arrangement, high spatial 

resolution is also necessary. If I use a too low spatial resolution, then I get a large amount of 

partial volume effects. These effects describe the influence of structurally diverse 

microarchitectures on diffusion in the same voxel. It occurs mainly in regions close to 

macrostructural tissue boundaries, as observed for example at the boundary of the white 

matter and the CSF in the corpus callosum. 

One of the main applications of the local models is tractography, which is the process of 

extrapolating long range connections from the local fiber arrangement. For tractography 

again one not only wants a large number of diffusion gradients in order to correctly identify 

the diffusion directions, but also a high spatial resolution, since tractography can be seen as 

solving an integration problem. The spatial resolution is the basis for calculating a lower 

boundary on the step width. Tractography requires accurate local models, as errors 

propagate when tracking. This also shows that the dODF and fODF and especially their SH 

expansion can lead to problems in tracking, since in tractography the shape of the 

corresponding function is often used as an indicator of fiber spread. The SH representation 

can, however, introduce an error in the fitted shape. This is one of the reasons that leads to 

questioning the use of SH expansion based local models and incentivizes deriving local 

models on a different basis. Since most of the difficulties and their extent were discovered, 

due to using the spherical deconvolution model, this work is still based on spherical 

deconvolution.  

Additionally I mainly use the local model of spherical deconvolution due to the intrinsic 

connection between the fODF and the fiber microarchitecture. This connection is 

fundamental as the goal of this work is to discuss parameterizations of local models in 

terms of metrics which can specifically be related to certain changes in the tissue 

architecture. 
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5 Bingham Fit 

5.1 Introduction 

One of the main advances of dMRI is the ability to investigate the brain’s microanatomy in-

vivo. For the interpretation of the results it is desirable to have access to models, which can 

be directly related to the anatomy in terms of microstructural properties. As often more 

than one fiber population is present in a voxel it would be especially desirable to 

characterize these bundles separately. 

Models which inherently have these properties are multi-tensor models (D. C. Alexander, 

2005b; Makris et al., 2002). These allow for multiple coherent fiber bundles within one 

voxel and describe the contribution of each fiber population in the voxel in terms of a 

diffusion tensor, which is an easily parameterized well known model. For a given number of 

tensors per voxel these models are very reliable. However, a generalized model allowing 

any number of diffusion tensors leads to numerical problems. In the work of Scherrer and 

Warfield (Scherrer and S K Warfield, 2010), it has been shown that these problems stem 

from the collinearity of the multi-tensor parameters. Therefore a single b-value is 

insufficient for estimating the full model of multiple tensors. Additionally the tensor 

describes diffusion, while this work aims at modeling fiber properties. 

A different approach to the problem of separately characterizing the fiber bundles present 

in a voxel is choosing a more complex local model, which can properly assess the 

microstructure and then to extract features from this model, which accurately represent the 

properties of single fiber populations. The two local models which come to mind for this 

task are dODF and fODF. Both of these are usually represented by analytical SH functions. In 

this parameterization, the parameters do not usually bear any direct meaning, which makes 

direct interpretation in terms of fiber properties, such as mean directions and spreading of 

the particular fiber populations, difficult (as discussed in Chapter 4). Additionally, the SH 

representation does not allow for separate characterization of the different fiber bundles 

present in one voxel, since these are part of the multimodal distribution structure 

represented by the SH. Therefore, a different parameterization is desirable for partitioning 

the fODF into contributions from individual underlying fiber populations and providing 

interpretable measures, which might be used as biomarkers for anatomical properties. 
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As discussed in the chapter on local modeling (Chapter 4), methods describing the diffusion 

do not explicitly model microstructural fibers properties, but rather implicitly describe them 

in terms of reduced diffusion perpendicular to the main fiber directions. As approach to this 

problem the fODF was chosen as base model, from which to extract the microstructural 

properties. The fODF is assumed to be constituted by the overlaying of multiple coherent 

fiber populations, leading to peaks in the multimodal distribution structure of the fODF. 

Since the true angular distribution of fiber densities within a single bundle is not known, 

they were approximated using the Bingham distribution as spherical equivalent to the 

normal distribution. This use of the Bingham distribution to describe coherent fiber bundles 

has been discussed previously. For example, Seunarine and colleagues (Kiran K Seunarine et 

al., 2007) used the Bingham distribution for describing the uncertainty of the fiber direction 

for its use in tractography. Kaden and colleagues (Kaden et al., 2007) proposed fitting a 

multi-compartment model composed of Bingham distributions into the measured data. In 

contrast in this work the Bingham distribution is used as model of a single fiber and fit to 

the peaks of the fODF. 

In this chapter I will first introduce the Bingham distribution and describe the related 

Bingham function, used for describing the fODF peaks. Afterwards I will describe the fitting 

problem and show how to linearize the fitting process. Finally I will discuss the relation 

between the Bingham function and the diffusion signal, introducing a method to calculate 

the diffusion signal for each of the fiber bundles in a voxel separately and introduce a 

tracking method based on the fitted Bingham functions. The work within this chapter is an 

original contribution and has been submitted (Riffert et al., 2013). 

5.2 Bingham Distribution 

The Bingham distribution was introduced by Christopher Bingham (Bingham, 1974) for the 

purpose of treating bimodal elliptical data. It is an antipodally symmetric probability 

distribution with an elliptical cross-section and can be constructed by constraining 

multivariate normal distributions to lie on the surface of a unit sphere. It can be described 

by the following density function: 

where  ⃑⃑ is a point on the sphere. This function has two maxima, which due to the antipodal 

symmetry are located on opposite sides of the sphere. The cross-section of this peak is an 

ellipse. The spread and the ovality of the profile of the Bingham distribution are 

characterized by the concentration parameters    and    (     ). The larger the 

    ⃑⃑   
 

   
         ⃑  ⃑⃑       ⃑  ⃑⃑     (5.1) 
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concentration parameters are, the sharper the peak becomes. The directions of the 

Bingham distribution are described by its direction vectors  ⃑  and ⃑ , which characterize the 

axis of the oval profile. Hereby  ⃑  is the major axis and  ⃑  is the minor axis. The 

distribution’s main orientation, i.e. the direction of the distribution’s mean ( ⃑ ), is 

orthogonal to  ⃑  and  ⃑ . The distribution’s normalization constant    is the confluent 

hypergeometric function of matrix argument. This constant can be computed by integrating 

the exponential part of the equation (        ⃑   ⃑⃑       ⃑   ⃑⃑   ) over the surface of the 

unit sphere. A more direct way of computing the confluent hypergeometric function of 

matrix argument is by means of Laplace approximations (Abramowitz and Stegun, 1964). 

Since the Bingham distribution is used for the characterization of the peaks of the fODF it 

has to be ensured, that they are scaled to fit. As the fODF does not characterize a 

probability distribution, but an angular-spatial distribution of fibers, it is not necessarily 

scaled in such a manner that the Bingham distribution can be used for direct classification. 

Therefore a scaling parameter is introduced (      ), which together with    defines the size 

parameter              . The size parameter corresponds to the maximum amplitude of 

the fODF within the peak currently characterized. In order to distinguish the probability 

distribution from the scaled version of the Bingham distribution I from here on refer to the 

scaled Bingham distribution   as Bingham function. It is defined as: 

This function is not a probability density function anymore, since it does not integrate to 

unit mass. For fitting an fODF peak with a Bingham function the five parameters    ,  ⃑ ,  ⃑ , 

   and    need to be estimated. 

5.3 fODF Fitting Process 

Fitting the Bingham functions to the peaks of the fODF is a three step process. First the 

maxima of the fODF are identified using a spherical tessellation, second the Bingham 

function’s direction vectors are fitted via an orientation matrix and third the concentration 

parameters are computed by solving a system of linear equations. 

For fitting the fODF peaks with Bingham functions one first estimates the peaks of the fODF. 

For this the fODF is overlaid with a discrete search grid. Then a regular tessellation is 

constructed by iteratively refining a regular icosahedron resulting in 10,242 vertices and 

20,480 faces. This corresponds to a spherical grid with an angular resolution of 2°. On this 

search grid points are identified, which are close to a local maximum. This is done by 

calculating the discrete local maxima on the search grid and using them as starting points 

for further optimization. The discrete local maxima of the fODF are found by comparison of 

    ⃑⃑              ⃑   ⃑⃑       ⃑   ⃑⃑    (5.2) 
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the values of the fODF at grid points with the fODF values at neighboring points on the 

tessellation. I use the criterion, that a point on the search grid is a discrete local maximum if 

the fODF value at that point is larger than that at the neighboring points. In practice the 

fODF is computed at all grid points by matrix-vector-multiplication of the SH base, 

calculated for the tessellation points, with the SH expansion coefficients of the fODF. 

Each of the discrete local maxima is assumed to represent a peak of the fODF. The Bingham 

functions main direction is taken to coincide with the direction of the respective fODF peak. 

Using the fODF maxima and a certain number of surrounding points (neighborhood) an 

orientation matrix is computed for each peak. Assuming  ⃑                  , to be 

neighboring points of the estimated discrete local maximum, the orientation matrix is 

defined as: 

    

[
 
 
 
 
 ∑  

 ∑    ∑    

∑    ∑  
 ∑    

∑    ∑    ∑  
 
]
 
 
 
 
 

 (5.3) 

 

Figure 5.1: The Bingham neighborhood and fit. The fODF is shown in light grey. The maximum 
direction  ⃑  of its largest peak is visualized as the red line. The directions of the Bingham 
distribution (green) are fitted using a small neighborhood of the maximum direction. The points 
considered part of the peak are those within the yellow line. To ensure that the neighboring 
peaks do not have too large an impact, only the neighbors of first, second and third degree are 
considered, which corresponds to the points in the blue area. 



 

70 
 

As shown in previous works (Onstott, 1980; Tanaka, 1999), the eigenvectors of   

correspond to the principal directions of the Bingham function, fulfilling the maximum 

likelihood estimate for the points  ⃑ . However this estimation of the maximum direction is 

biased towards the points used in the estimation. Therefor the vectors  ⃑ ,  ⃑ and   ⃑  from 

the eigenvalue decomposition of   are used as starting points for a gradient descent 

optimization, to improve the estimates of the Bingham function directions. 

The calculated values for the vectors  ⃑ ,  ⃑ and   ⃑  can then be substituted in equation (5.2). 

Since the maximum direction  ⃑⃑    ⃑  is orthogonal to  ⃑  and   ⃑ , the scaling parameter is 

given by the fODF value at the maximum: 

Then the vector  ⃑ is defined. This vector is obtained by taking the logarithm of the fODF 

values at the   neighborhood points  ⃑ , which were scaled by the fODF’s maximum value: 

The matrix   of the scalar products of the neighborhood points with the direction 

parameters is calculated, that is: 

   (
  ⃑   ⃑  

   ⃑   ⃑  
 

  
  ⃑   ⃑  

   ⃑   ⃑  
 
)  (5.6) 

The concentration parameters can then be calculated in least-square sense from the 

following linear equation system using the Moore-Penrose pseudoinverse: 

              ⃑    (5.4) 

    (   (
   ⃑  

    
))

 

  (5.5) 

 

Figure 5.2: Fit of the fODF by Bingham functions. (a) fODF calculated by spherical deconvolution, 
(b) Bingham functions representing the separate peaks. The shape of each of the fitted Bingham 
functions closely corresponds to the fODF peak shape. 
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  ⃑   (
  

  
)  (5.7) 

An important aspect of this approach is the neighborhood of the fODF peak, which is used 

for as well the least square fit of the concentration parameters, as the fit of the Bingham 

function directions. Therefore it is important to ensure that the neighborhood represents 

the properties of the selected fiber peak as accurately as possible. This is done by using an 

adaptive neighborhood estimation, which successively adds points to the neighborhood as 

long as the sign of the slope of the fODF does not change. This way every point is included 

that can be identified with a certain peak and the number of points used for the Bingham fit 

is maximized. However, one does not want to include too many points in the estimation of 

the orientation matrix, since this may shift the maximum direction due to bias introduced 

from the other bundles present in the voxel. Therefore a smaller area is used for estimation 

of the orientation matrix, comprised only of first-, second- and third-degree neighbors 

(about 35 points on the search grid). For fitting the concentration parameters a larger 

number of points is used, determined adaptively as described above. The fitting result and 

the areas used for estimating the parameters are exemplified in Figure 5.1. 

While the Bingham fit is able to characterize each of the separate fODF peaks, it does not 

provide a decomposition of the fODF. This is due to overlap between the Bingham functions. 

Main source for the overlap are the wide tails of the Bingham distribution. When comparing 

the Bingham fit to the fODF, then one can also observe a mismatch in the areas where the 

fODF drops to zero. This, however, does not imply that the fibers are not necessarily 

Bingham distributed. Instead the mismatch may be caused by the blurring introduced to the 

 

Figure 5.3: fODF and Bingham fit visualized on the brain. This image is taken from the coronal 
area, where the corticospinal tract and the corpus callosum cross. In (a) the fODF is shown. In (b) 
the Bingham fit for the largest peak can be seen, extracting the main bundle behavior. 



 

72 
 

fODF due to the SH fit. As discussed in Chapter 4.5.5 this has the effect of widening of the 

fitted Bingham functions, which also manifests in thicker tails. 

5.4 Conclusion 

In this chapter I presented an approach for fitting a Bingham distribution to the fODF. This 

gives a parameterization of the fODF, which can be directly interpreted in terms of 

microstructural arrangement (see Chapter 6). I discussed the three steps for fitting the fODf, 

which are finding the maximum, fitting the peak directions and calculation of the 

concentration parameters. As can be seen in Figure 5.2 this method is able to describe each 

of the fODF peaks separately. 

One of the most interesting findings was the mismatch in shape between Bingham 

functions and the fODF. Since this mismatch also appears in regions with a single fiber 

population, I can conclude that the mismatch is not due to the separate fit of the individual 

fODF peaks. It either stems from the Bingham function being ill suited to describe the 

distribution of fibers within a fiber population or from errors in the fODF description of the 

underlying structure. I cannot answer this question completely, however, as discussed in 

Chapter 4.5.5 the SH expansion introduces blurring to the fODF. It therefore is likely that 

this blurring leads to the mismatch, especially as it causes peaks to be wider than they in 

fact are. 

Another phenomenon is the overlap of the individual fitted Bingham functions. This may be 

mitigated by taking into account the overlap during fitting and not fitting each peak 

individually. However, this reintroduces a model selection problem. An approach to solving 

this was presented in the work of Kaden and colleagues (Kaden et al., 2007), where the 

Bingham distributions are fitted directly to the signal. 

In summary the Bingham fit is a useful tool for characterizing the separate peaks and 

thereby characterizing underlying fiber populations, without the need for solving a model 

selection problem. It thereby characterizes not only the microstructure, but also describes 

the properties of the fODF which are most commonly used in tractography. The fitted 

functions can then be used for the calculation of tractograms (see Chapter 7) and the 

definition of metrics (see Chapter 6). These results can then be used for gaining insight on 

the workings of the human brain. 
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6 Bingham Metrics 

6.1 Introduction 

The human brain to this day remains one of the big mysteries. To gain more insight on the 

human brain, describing its microstructure is fundamental. In this chapter I will introduce a 

few metrics I derived directly from the Bingham fit, introduced in Chapter 5. Due to them 

being derived directly from the fit of the fODF, they are inherently connected to the brains 

fiber architecture. This makes these metrics sensitive to variations in particular changes in 

fiber arrangement and shape, which is the big advantage of these metrics compared to FA. 

Generally speaking metrics quantify physical quantities by reflecting them in terms of a 

distance in a parameter space. In biological tissue a large number of properties can be 

reflected. This leads to metrics usually having only one of two characteristics. They can 

either be very specific in describing the difference in a certain microstructural property or 

they can be sensitive to changes in a more general sense. An example for a sensitive but 

unspecific metric is the FA. The anisotropy in a region may be lower because of a reduction 

in myelination or an increase in the variance of fiber orientation, but also because there is a 

larger axon diameter, a lower packing density (S. Takahashi et al., 2002) – both of which 

denote fewer barriers to diffusion in a given space – or it could be due to increased 

membrane permeability (reducing the effectiveness of a boundary). However, as this 

example already shows one is not able to determine the particular type of microstructural 

change simply from a change in FA. Other metrics derived from the tensor, such as radial, 

axial and mean diffusivity, have also been shown to correlate with microstructural 

properties, but not to be quantitatively related to certain microstructural properties. 

In summary, the goal of the work presented within this chapter is to use the introduced 

parameterization of the fODF (see Chapter 5), which identifies multiple compartments, each 

representing a relatively coherent fiber bundle described by a set of meaningful parameters, 

and to interpret the parameters of this model, as far as possible, in terms of microstructural 

properties, hopefully increasing the specificity of the assertions made from changes in FA. 

The fODF describes the angular spatial fiber density, while the Bingham function describes 

the bundle wise angular spatial fiber density. This enables us to extract metrics for each of 

the bundles present within a voxel, which is observable as fODF peak. This connection of 
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the Bingham fit to the microstructure is of fundamental importance for the interpretation of 

the meaning of the derived metrics. 

In this chapter, I explore several metrics derived directly from the Bingham functions used 

to characterize the fODF and with it the tissue microstructure. These are for example the 

parameters of the Bingham distribution itself, which are scaling parameters and 

concentration parameters, characterizing the size and shape of the underlying fiber bundles. 

In addition I use more complex parameters such as the bundle specific fiber density, the 

fiber spread and a complexity metric, which reflects the fiber populations present within 

each voxel and their relative sizes. This allows us to examine the microstructure in the voxel. 

The work within this chapter is an original contribution and has been submitted (Riffert et 

al., 2013). 

6.2 Bingham Function Parameters 

The metrics which are most easily estimated from the Bingham fit are the parameters of the 

Bingham function (equation (5.2)). These are the scaling parameter   , the concentration 

parameters        and the directions  ⃑ ,  ⃑  and  ⃑ . 

The scaling parameter corresponds to the angular density of fibers (AFD) which are aligned 

with the peak’s main direction. I therefore named this parameter the maximum angular 

fiber density (      ). It has the same unit as the fODF            and is defined as: 

           (6.1) 

The two concentration parameters characterize the peak anisotropy and provide a measure 

for the spread of fiber orientations within one bundle. Large concentration parameters 

stand for a sharp peak. The relation between the two concentration parameters provides 

information on the fODF’s cross section. If the concentration parameters differ strongly in 

their amplitude, the peak’s cross section is very oval, indicating fan-like spreading as 

expected in thin sheet-like fiber populations. Concentration parameters of similar value 

correspond to a round fODF profile. In order to make the concentration parameters more 

accessible to intuition I translated them to directional peak opening angles along the axes 

 ⃑  and  ⃑  (     ; see Figure 6.1). The opening angles are defined analogously to the angle 

at which a normal distribution has a distance of one standard deviation to its mean. 

When viewing the Bingham function as angular function in one of the planes spanned by 

the main direction and one of the minor directions (i.e.  ⃑   ⃑  or  ⃑   ⃑ ), then one can 

write the Bingham function in dependence of the angle   between the direction for which 
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one wants to examine the concentration parameter and the main direction (as shown in 

Figure 6.1). As function of  , the Bingham function reduces to: 

            (            ) (6.2) 

The concentration parameter dependent opening angle       are defined as: 

          √
 

      
 (6.3) 

This angle describes the distance to the main direction at which the function dropped to 

           of its maximum value. This is analogous to the angle at which a Normal 

distribution reaches 1-sigma level, that is: 

Therefore the angle   can be seen as the standard deviation angle of the Bingham function. 

In the following I will use both descriptions of the concentration parameters. It should, 

however, always be clear from context if I am referring to the opening angle or the actual 

concentration parameters. 

The Bingham function’s directions were not used for quantitative evaluations. For 

describing more complex properties of the fibers one can generate more complex metrics 

 (     
 

 √  
   ( 

 

 
)) (6.4) 

 

Figure 6.1: Relation between the directional peak opening angle and the concentration 
parameters. On the left the Bingham function is shown in blue as polar plot (a). The green circle 
shows the value   . The angle to the main direction of the Bingham function is noted as  . On the 
right the Bingham function is shown as function of   in Cartesian coordinates (b). The angle   
describes the angle at which the function dropped to            of its maximum value. 



 

76 
 

describing the fODF by combining these parameters or using the information of the distinct 

populations within the voxel, as these are all fitted by Bingham functions. 

6.3 Fiber Density (FD) 

A quantity I already discussed in the context of the first SH expansion coefficient (Chapter 

4.4.6) is the fiber density. This metric was extracted from the connection between the first 

SH expansion coefficient and the integral of the expanded function over the sphere. The 

integral over the Bingham function represents the angular spatial fiber density of a single 

fiber population therefore gives us the fiber density within the corresponding bundle. 

This connection can be formulated mathematically as: 

The resulting value is the bundle’s fiber density (FD). Since the unit of the AFD is 

           integration over the radial part leads to the unit     . 

As this integral cannot be solved analytically it has to be solved using numerical integration. 

This is done using the tessellation of the sphere for calculating the Bingham function value 

at each of these points and then solving the integral using a discrete sum and the area of 

the triangles used in the tessellation as described in the work of Atkinson (Atkinson, 1982). 

It should be noted that the total FD in a voxel cannot be calculated from adding the 

individual FD. This is due to the Bingham fit not being a decomposition of the fODF, but a 

successive description of its features. 

6.4 Fiber Spread (FS) 

A fundamental quantity for describing the configuration of a fiber population is its spread or 

collinearity. This can be described in terms of the concentration parameters of the Bingham 

function. These parameters, however, are as I will show later on (see Chapter 6.6) not very 

robust. 

Using the metrics        and   , one is able to define a robust metric, which describes the 

fiber spread (  ) by using their quotient. 

     ∫               

  

  (6.5) 

    
  

      
  (6.6) 
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This metric compares the maximum AFD to the average AFD. In case of a wide peak the 

average and maximum value are closer than in case of a sharp peak. This leads to the    of 

a wide peak to be larger than that of a sharp peak. The    can also be interpreted as the 

width of a rectangular distribution of constant height with equal   . 

The unit of the FS is radians. It should be noted that the value of the metric    is equal to 

the value of the normalization constant of the non-scaled Bingham distribution. 

6.5 Structural Complexity (CX) 

A possibility of deriving metrics from a separate description of the fiber bundles within a 

voxel is to describe the relation of the different bundles to one another. The quantity most 

suited for such a comparison is the voxel wise FD. This is due to the fact, that comparing the 

FD within a voxel is equivalent to comparing the number of fibers within the bundles. 

A property which is of great interest is the structural complexity (CX) within a voxel. This 

metric describes the fiber fraction not contained by the largest bundle. This metric is called 

the (structural) complexity, as the more complex the fiber structure becomes the fewer of 

the fibers in the voxel are contained in the largest bundle alone. 

If one defines FDi to be the fiber density of the  -th largest peak of the fODF and     to be 

a predefined number characterizing the number of peaks investigated per voxel, then CX is 

defined by: 

The value is scaled to lie between zero and one. In case of a single fiber being present within 

a voxel the    is zero. It becomes one, when all peaks contain the same number of fibers. 

A bundle specific metric implicitly used in the    metric is the fiber fraction (  ) which I am 

not going to investigate further, but which was used in the work of Schreiber and colleagues 

(Schreiber et al., 2013). It is defined as: 

This metric describes how dominant a fiber population is compared to all the fiber 

populations in the voxel, by describing the fraction of fibers in the voxel contained within 

the specific population. Using this metric the    can be written as: 

     
 

   
(   

   
 

   

∑    
 
   

)  (6.7) 
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  (6.8) 
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          (6.9) 

6.6 Evaluating Metrics 

6.6.1 Introduction 

After defining the metrics it is important to ensure their connection to the microstructural 

properties they are meant to describe. One way of doing this is by applying the metrics to 

data with a known ground truth. The easiest ways to control the ground truth is to use 

simulated data as well as phantom data. 

 

Figure 6.2: Comparison of FA and parameters of different fiber configuration. In the top row 
glyphs representing the fODF (purple) and the diffusion tensor (green) are visualized. Below a 
few of the Bingham metrics and the FA are shown for the larger and smaller peak. Image adapted 
from the work of Schreiber et al. (Schreiber et al., 2013). 
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The two main questions I aim to answer by using this data are: How well are the ground 

truth values reconstructed and how well do the metrics specify the information gained from 

FA. Figure 6.2 shows some Bingham metrics and the FA for a small set of different fiber 

configurations. 

In the following I will discuss the generation of the test data and the measurement of the 

brain data the metrics were applied to. Then I will go over the results in case of simulated 

data, phantom data and the measured human brain data. Application of the metrics to fetal 

dMRI data will be discussed in Chapter 8, where I classify structural changes in the brain due 

to brain development in terms of Bingham fit derived metrics. 

6.6.2  Data Generation and Measurements 

For evaluation, I applied the introduced method to three types of data: computer simulated 

data, measured data from a physical phantom, and human brain data. 

The simulated data was generated in such a way that the underlying fiber distributions were 

exactly covered by the model (i.e., Bingham functions) and the ground truth was known. 

This was achieved by Bingham distributing the signal generated from a diffusion tensor, 

which was taken to represent the diffusion profile of a single fiber. For these Bingham 

distributions the parameters were varied randomly and then the reconstructed values were 

correlated with the ground truth. The diffusion signal was calculated by computing the 

forward model, that is, convolution (as described in Chapter 7.3). This was done for a single 

bundle as well as for a configuration involving two bundles that cross at a random angle. It 

was assumed that the signal attenuation generated by a single fiber, that is the 

deconvolution kernel, to be appropriately described by a diffusion tensor with an FA of 0.86 

and the eigenvalues           and               , which corresponds to a MD of 

0.0006. This kernel was estimated from the corpus callosum voxels of a human dMRI data 

set. The parameters of the Bingham distributions were chosen to be uniformly distributed 

within intervals estimated from real data, so                              in the 

single fiber case. For the crossing case two Bingham distributions were assumed, crossing at 

an arbitrary angle between 60° and 90°. Furthermore the parameter space was reduced 

(                             ) to ensure that crossing are properly resolved and to 

minimize Bingham function overlapping. Sixth and eighth order constrained spherical 

deconvolution were performed on these datasets. Afterwards the correlation between the 

reconstructed values of the metrics and the ground truth was calculated. 

To test the Bingham fit and to find out how it behaves in more intricate geometries and 

under more realistic conditions, while still having ground truth knowledge to validate the 

results, the phantom data from the fiber cup contest was used (Fillard et al., 2011). The 
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creation of the physical phantom is described in (C. Poupon et al., 2008). The dataset used 

was measured at a b-value of 2000 and with a spatial resolution of 3 mm (isotropic voxels). 

As the kernel a diffusion tensor was used. It was defined by the eigenvalues           

and              which corresponds to an FA of 0.12, which is the average FA in the 

single fiber areas of the physical phantom. Due to the different properties of the synthetic 

fibers, the FA is much lower than in human datasets. 

Finally, the introduced methods were applied to an in-vivo human diffusion data. The 

experimental setup was approved by the local ethics committee of the University of Leipzig 

and the participant gave written informed consent before being included in the experiment. 

A 3D T1 weighted structural MPRAGE scan (spatial resolution = 1 mm³) as well as a high 

resolution dMRI scan from a young right-handed volunteer were acquired on a whole-body 

3 Tesla Siemens Tim Trio magnetic resonance scanner (Siemens, Erlangen, Germany) 

equipped with a 32-channel head array coil. For the dMRI a spin-echo echo planar imaging 

(EPI) sequence was applied (TE = 85 ms; TR = 13.8 s; 144 x 144 image matrix; FOV = 220 x 

220 mm²; 85 axial slices (no gap); spatial resolution: 1.5 x 1.5 x 1.5 mm³, GRAPPA 

acceleration factor 3, no cardiac gating, 60 diffusion directions evenly distributed over the 

hemisphere, b-value = 1000 s/mm2). Seven images without any diffusion weighting (b0) 

were obtained: one at the beginning of the scanning sequence and one after each block of 

10 diffusion-weighted images as anatomical reference for offline motion correction. To 

increase signal-to-noise ratio (SNR), the measurement was repeated three times. The 

structural scan was reoriented to the sagittal intercommisural plane and the brain was 

segmented from the skull. The b0 images were used to estimate motion correction 

parameters of the dMRI sequence using the rigid-body registration (Jenkinson et al., 2002), 

implemented in FSL (FMRIB Software Library, University of Oxford, 

http://www.fmrib.ox.ac.uk/fsl/). The motion correction for the dMRI data was combined 

with the global registration to the T1 anatomy. Furthermore the gradient direction was 

corrected for each volume with the rotation parameters. The registered images were 

resampled to an isotropic voxel resolution of 1.5 mm and the three acquisitions were 

averaged. Finally, the diffusion tensor, the three eigenvectors, and the FA value for each 

voxel were computed. On this dataset an eighth-order SH approximation of the fODF using 

MRtrix (Tournier et al., 2012) was performed. After applying CSD to the signal attenuation 

the result was normalized to the number of fibers in the deconvolution kernel. The kernel 

FD was estimated as           fibers per mm³ in accordance to (Aboitiz et al., 1992). The 

same form of normalization was applied to the phantom data using the fiber density of 

1900 fibers per mm³, as described by Fillard and colleagues (Fillard et al., 2011). 
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Then the parameters of the Bingham functions were calculated, assuming each of the fODF 

maxima represented a single fiber population. To estimate the maxima of the SH a regularly 

tessellated search grid was used, which was constructed by 5 iterative refinements of a 

regular icosahedron resulting in 10,242 vertices and 20,480 faces. 

The three largest peaks found on the search grid were chosen and the corresponding fODF 

peaks were approximated. In principle, more peaks are possible, depending on the quality 

and quantity of the available measurement information. The Bingham fit was performed 

using a neighborhood size of 35 points, that is all direct neighbors and neighbors of second 

and third order, around each maximum, which corresponds to an angle of maximal 6° per 

direction were used for determining the parameters of the Bingham function. 

 

Figure 6.3: Correlation of ground truth and reconstruction. Here the correlation of metrics 
calculated using the Bingham fit and their ground truth values are depicted. Ground truth and 
reconstructed values are shown in the unit of their respective metric. The left column shows 
metrics reconstructed for a single fiber population being present within a voxel. The middle and 
right column show the metrics for the first (middle column) peak and second (right column) peak 
in the case of fiber crossing. In each of the pannel the reconstructions are plotted for 6th (blue) 
and 8th (red) order SH series representation of the fODF. The lines show the linear regression 
results. The corresponding Pearson coefficients (R²) are displayed on the bottom right of each 
pannel. As can be seen the spread of each of the parameters is smaller for the single fiber case, 
which leads to higher correlations. 
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6.6.3  Simulated Data 

After establishing a method for generating metrics from the approximation of the fODF I 

established the relation of these metrics to the ground truth. This was done using simulated 

data. The main goal here was to derive rules on how to interpret the metrics when having 

applied the Bingham function based fODF peak fit to real data. For this one needs to focus 

on several questions.  

First, one needs to know how well the metrics correlate with the ground truth and how the 

order of the SH reconstruction affects this correlation? This tells us in which range one can 

be sure, that the metrics and the ground truth are well connected.  

I found that in the single fiber case the reconstructed values correlate to the ground truth 

very well. This can be seen in the left column of Figure 6.3. Here the ground truth and the 

reconstructed data show a correlation    very close to 1 for the metrics AFDmax, FD, FS and 

  . Merely    is correlated slightly worse. Of interest hereby is the strong bias in both 

concentration parameters for angles smaller than approximately 17° in case of 8th order SH 

reconstruction and 20° in the 6th order case. Outside of this area the concentration 

parameters show perfect alignment with the ground truth values, as do the values observed 

for the other metrics. Below those angles the concentration parameters are, however, 

reconstructed as nearly constant value independent of their ground truth value. This 

indicates an inability of the SH series of lower order to fit sharper peaks. Since this fit error 

has impact on the other metrics as well, I used only concentration angles larger than 20° for 

the analysis of the other metrics (AFDmax, FD, FS). 

Next I analyzed the crossing fiber case. The results are shown in the middle and right 

column of Figure 6.3. As can be seen the crossing causes interference between the two 

peaks, which leads to a lower correlation of the reconstructed values to the ground truth 

 

Figure 6.4: Correlation of CX as well as the crossing angle to the ground truth. Here the 
correlation for the metric CX as well as for the resolved crossing angle between the two peaks 
involved in the simulated crossing are shown. Colors and labels are same as in Figure 2. 
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than in the single fiber case. The metrics AFDmax, FD and FS are more stable than the 

concentration parameters, i.e. they show a higher correlation to the ground truth. 

I also calculated the correlations for the CX metric and the crossing angle. These results are 

shown in Figure 6.4. The CX is recovered fairly well, i.e. it shows high correlation and only 

little bias, although the design of the simulation experiment leads to unevenly distributed 

CX values. The crossing angle on the other hand shows a strong bias depending on the order 

of SH reconstruction. 

For further evaluation I mapped the crossing angle dependence of the correlation of the 

reconstructed values and the ground truth for 6th and 8th order SD (shown in Figure 6.5). 

 

Figure 6.5: Angular dependence of the metrics ground truth correlation on the fiber crossing 
angle. These plots show the how the correlation between the reconstructed values and the 
ground truth depends on the fiber crossing angle and the order of spherical harmonic series 
approximation. While the correlation of the values reconstructed from the largest peak are quite 
high (between 0.80 and 1.00), except for the area between 10° and 40°, where lower values can 
be observed for some parameters (FD, FS and especially   ), the second peaks parameters do not 
correlate well with the ground truth until a crossing angle of 50° is reached. Generally the higher 
order reconstruction shows better correlation to the ground truth. 
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The noteworthy point is that the reconstructed parameters of the first peak highly correlate 

with the ground truth (values between 0.8 and 1.00), except between 10° and 40°, where 

the correlation drops off strongly for the parameters FS (0.6), FD (0.5) and    (0.25). For the 

second peak the correlation is low up to an angle of 50°, which is the angle for which the 

peaks can correctly be separated. Furthermore one can observe how a higher order leads to 

a better correlation. 

6.6.4  Phantom Data 

To evaluate the metrics in a more meaningful, albeit somewhat less controlled, setting the 

decomposition method was applied to phantom data. Here I was especially interested if the 

metrics would be able to uncover the underlying fiber structure from the data. I focused on 

the metrics AFDmax, FD, FS and CX, as well as the FA for comparison. The goal was to check 

in a controlled environment what extra information could be revealed from the metrics 

derived from the fODF decomposition. The results are shown in Figure 6.6. The color maps 

in each example were scaled to maximize the contrast visible in the images. Values larger 

than the maximum value were set to red, while values smaller than the minimum were set 

to dark blue. 

It should be noted that due to the different diffusion properties of the phantom the FA 

values are all much lower than in biological tissue. This change in diffusion properties, 

however, does not influence the values derived from the fODF as they are captured by the 

diffusion kernel. 

I will begin by focusing on comparing the FA and the CX. Since one knows the actual fiber 

configurations for the phantom, shown in panel a) of Figure 6.5, one can validate the 

structural complexity metric by applying it to these configurations and compare it to the FA. 

While the complexity measure is mostly inversely proportional to the FA, in the area 

marked as A and circled in red, the complexity further specifies the information gained from 

the FA. In this area the complexity is high. This indicates a crossing fiber configuration. The 

value of 0.5 for the complexity metric (using a peak number of n = 3) indicates a crossing of 

one large bundle containing approximately 2 times the number of fibers as the smaller 

bundles combined. The FA in the circled area is rather high despite of the crossing, since the 

smaller bundles do not influence the tensor as strongly as the larger one. When following 

the two crossing bundles separately one can derive the information for the voxel from the 

local surroundings. 
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The complexity measure thereby not only increases the specificity, but in this case uncovers 

more microstructural information than the FA by indicating the underlying structure 

without the need to evaluate the surrounding structure. Similar information can be gained 

from the comparison of the AFDmax and FD for the different peak sizes. The AFDmax and the 

FD of the first peak show a very similar qualitative behavior to the FA. The further structural 

information can almost completely be gathered from the second and third peak. 

An anomaly of this phantom, compared to biological data is uncovered by the metric FS. 

This metric is close to constant over the whole phantom, barring some noise voxels. This 

indicates than no significant fanning is present in this phantom and shows that the bundles 

 

Figure 6.6: Metrics from phantom data. Here the metrics calculated from the phantom data are 
mapped upon the b0 image. The images were scaled for contrast. Values above the maximum 
value are set to red, ones below set to zero. The geometry is depicted in panel a). The metrics are 
shown in panels b) through l). 
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are all configured almost the same way. This especially leads to AFDmax and FD being very 

similar, since they are then related by a constant factor. 

6.6.5  Human Brain Data 

Next I applied the Bingham fit to fODFs from in-vivo MRI data of a human brain and 

evaluated the derived metrics. I will first take a look at the results from the metrics of the 

first peak, as well as FA and CX. To increase the visual effect of these metrics I applied a 

smoothing with a gauss kernel of 1 mm. The original maps are show in Figure 6.11 and 

Figure 6.12. The smoothened results are depicted in Figure 6.7 and Figure 6.8. Again the FA 

and the AFDmax as well as the FD of the first peak appear qualitatively similar, with high 

 

Figure 6.7: Primary metrics mapped on the human brain. Here the smoothed maps of the metrics 
FA, CX as well as the three metrics AFDmax, FD and FS which characterize the first peak are 
displayed. The metrics images were masked to the white matter using an FA map with a 
threshold of 0.15, which were manually expanded to match the white matter. These maps were 
then overlaid on an interpolated T1 image and scaled for contrast. The boundaries for the scaling 
are marked in the histograms at the bottom. The value n represents the number of voxels in 
which a certain value occurs.  These are the images obtained from smoothing the original metrics 
before applying the white matter maps. The results without the smoothing steps can be found in 
Figure 6.11. 
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values in the corpus callosum (CC) and the cortical spinal tract (CST) and low values in 

crossing areas and in the vicinity of the cortex (correlations as shown in Figure 6.9: FA to 

AFDmax and FA to FD both 0.62). The CX metric appears to be negatively correlated to these 

metrics (-0.57). One is clearly able to distinguish the crossing areas from areas with aligned 

fiber structure from the CX map. In other words this metric has higher values in the crossing 

and fanning regions, while CC and CST are shown to have medium to low structural 

complexity. The fiber spread also shows the expected behavior for the first peak by being 

higher in the corona radiata and other fanning white matter regions, while being lower and 

close to constant in the other regions. It is especially high in the subcortical white matter. 

The metrics derived from the Bingham functions fitting the secondary and tertiary peaks of 

the fODF are shown in Figure 6.8. As can be seen the maps for the higher order peaks get 

more and more sparse due to those peaks not being present in the fODF. 

The AFDmax parameter is significantly smaller for the second and third peak, than for the 

first peak. It also is the parameter by which the peaks are sorted. While the map of this 

parameter of the first peak was similar to the FA, the parameter is significantly different for 

second and third peak. In the CC and CST the second and third peaks AFDmax is low while 

being large in the crossing regions and at the grey-white-matter boundary. 

 

Figure 6.8: Metrics of secondary and tertiare fODF peaks. These maps were created as those in 
Figure 6.7, including the scaling and the histograms at the bottom. The maps for the non-
interpolated metrics can be found in Figure 6.12. 



 

88 
 

The FD maps show strong dissimilarity between the first, second and third peak. While the 

first peak’s map is similar to the FA, the second peak’s map resembles the CX. The third 

peak’s FD on the other hand is relatively smooth and has significantly smaller values. 

Finally the correlations between the metrics are depicted in Figure 6.9. Here some 

interesting observations can be made. The FA is negatively correlated to the CX as well as 

positively correlated the AFDmax and FD of the first peak. It shows little to no correlation to 

any other metric, especially those of the non-primary peaks. This indicates a strong 

connection of the FA to the shape of the first peak. The CX, on the other hand, is correlated 

to all metrics, while the AFDmax and FD are mainly correlated within corresponding peaks, 

showing little to no inter-peak relationship. For inferring the spatial connection between the 

metrics AFDmax, FD, FS, CX and the FA, the spatial distribution of the summands of the 

Pearson correlation coefficient (  ) was visualized in Figure 6.10. 

The average of all the summands gives the correlation between the FA and the metric, as 

depicted in Figure 6.9. Here one can observe that FA and the metrics AFDmax, FD and CX are 

strongly connected in areas without a high number of fiber crossings. 

 

Figure 6.9: Correlation between metrics. This image shows the correlation structure of the 
metrics. For correlation purposes a white matter skeleton was used on which the metrics were 
mapped. All voxels for which either of the metrics was equal to zero was dismissed. As can be 
seen 3 clusters can easily be identified. The first contains FA, CX, AFDmax1, FD1, the second 
AFDmax2, FD2 and FS2, the third AFDmax3, FD3 and FS3. This indicates a strong connection 
between FA, as well as shape of the first peak and the microstructural properties at the same 
time. 
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The FS shows only a low correlation overall and also the spatial map does not reveal any 

areas of high connection, except for small positive summands in the crossing areas and 

negative values in the areas without strong crossings. 

6.7 Conclusion 

I used Bingham functions, that is, scaled Bingham distributions, to characterize the peaks of 

the fODF estimated from constrained spherical deconvolution (CSD). It was assumed that 

the peaks of the fODF to reflect the microstructural fiber bundles present in a voxel. The 

fitted Bingham functions share geometric properties with the fODF, which can directly be 

translated to metrics describing properties of the underlying fiber bundle. The introduced 

metrics were the fiber density (FD), maximum angular fiber density (AFDmax), the fiber 

spread (FS) and the structural complexity (CX). I validated the metrics using simulations and 

then investigated their behavior using a physical phantom. Here, the known fiber layout 

enabled us to investigate how these metrics compare to the FA and show areas where they 

increase its specificity. Finally the introduced methods were applied to in-vivo brain scans. 

Ie demonstrated how the proposed metrics can be used on their own to draw conclusions 

 

Figure 6.10: Spatial mapping of contribution to correlation with FA. The values correspond to the 
summands of the Pearson correlation coefficient. The average of these values over the whole 
masked region gives the correlation, which is shown in Figure 6.9. As can be seen, for AFDmax, FD 
and CX high values (in case of CX) low values can be found in the main fiber bundles, i.e. 
especially in regions without major crossings. The FS shows small negative values mainly in areas 
without fiber crossings. 



 

90 
 

on the underlying microstructure, and how they may help to provide findings from the FA 

with additional meaning, thus increasing specificity. 

In detail I found, that as expected, the AFDmax specifies areas of high fiber colinearity, the FD 

gives insights into the fiber density, and the CX correctly identifies regions of fiber crossings. 

Furthermore, I found that the CX and the AFDmax as well as the FD of the largest peak 

strongly correlate to the FA (as shown in Figure 8). Besides this, I showed that the 

correlation mainly originates from areas without major fiber crossings (Figure 9), therefore 

these metrics can be believed to hold information additional to that of the FA. This confirms 

that the FA is a metric describing a mixture of properties, which can be specified using the 

CX, FD and AFDmax metrics. Moreover, it confirms that the FA can be explained purely by 

properties of the fiber configuration and does not necessarily reflect changes in fiber 

properties, such as myelination. 

When mapping the bundle specific metrics a bundle correspondence problem arises, that is, 

between neighboring voxels it is not a priori clear which fODF peaks represent the same 

fiber bundle. As a result of this problem, the acquired maps for bundles appear less smooth 

than those of non-bundle specific metrics. The elegant solution to this problem is to map 

the parameters along single fiber pathways obtained from tractography. The decomposition 

of the fODF then allows the estimation of metrics along the fibers. This was investigated in 

the work by Schreiber and colleagues (Schreiber et al., 2013). Here a novel tractography 

method is used for estimating the most probable connection between two regions of 

 

Figure 6.11: Unsmoothed metric maps for the first peak, FA and CX. 
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interest. Then, bundle dependent metrics like those described here are mapped along the 

pathways, thereby giving information on the change of the microstructure along distinct 

fiber bundles. A similar problem arises when bundle specific metrics need to be compared 

between subjects (e.g.; Jbabdi et al., 2010, Raffelt et al., 2012a). 

While the increase in specificity already provides the means for more accurate investigation 

of regions with changing FA (or other tensor based measures) there are of course some 

limits concerning the spatial and angular resolution of this method, imposed by the voxel 

size and by the angular sampling. Moreover, the use of a constant deconvolution kernel 

inevitably obscures any changes in fiber properties. Hence, if there is a change in 

myelination or axonal diameter, this will be projected into changes in fiber density. In order 

to improve this situation, higher angular and especially spatial resolutions are needed (see 

e.g. Heidemann et al., 2012). Using multiple b-values and diffusion times does further 

improve the ability to resolve microstructural properties, such as axonal density and axonal 

diameter (Assaf and Basser, 2005, Alexander et al., 2010). 

A different issue, also related to the resolution of the fODF, comes from the use of spherical 

harmonic representations, which, as with every truncated series expansion, introduces a 

bias into the reconstruction. This can be seen in the results from the conducted simulated 

data experiments. Here a higher order leads to a more accurate recovery of the ground 

truth used in the simulations. The order one can use, however, is limited by the number of 

gradient directions (and therefore the amount of information) measured and of course by 

the SNR (Jones et al., 2013). If the order of the spherical harmonic series expansion is too 

low, then peaks of certain sharpness (opening angle less than 20°, see Figure 2) cannot be 

 

Figure 6.12: Unsmoothed metric maps for the second and third peak.  
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represented accurately. This also leads to crossings at small angles (for eighth order below 

50° as shown in Figure 4) not being resolved properly, but rather being interpreted as a 

single large peak. As shown in Figure 8, the higher order leads to better correlation between 

ground truth and reconstructed values. However, with real data, stability requirements 

enforce regularization, which limits the effectively used model order. 

A more fundamental point concerns the use of the SH representation in the spherical 

deconvolution scheme. Although this basis is very convenient for the calculation, it suffers 

from substantial limitations concerning its ability to represent the fODF. Especially if the 

kernel is estimated from voxels with relatively parallel fiber arrangement, such as the 

corpus callosum, the underlying fODF in these voxels as well as similar ones is per definition 

a Dirac delta function. In other words, very sharp functions have to be approximated, in 

particular within the large fiber bundles. On the other hand, the angular resolution of the 

SH representation is rather limited (as discussed in Chapter 4.6). Hence, especially for 

parallel fiber bundles, the SH representation is particularly weak. 

Summarizing the Bingham function based fODF peak characterization is a useful tool for 

gaining insight into the fiber structure with higher specificity than with the FA. The direct 

link between the metrics and the fODF especially allows a direct correlation of differences in 

the metrics to changes in the structural configuration of the fiber configuration. However, 

this specificity also implies a loss in sensitivity, due to a loss of SNR caused by more complex 

models. Therefore they are best suited for the investigation of areas where one suspects 

changes in structure to cause changes in FA. 
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7 Bingham Fit Tractography 

7.1 Introduction 

The local information on the fiber layout can be used to propagate the local fiber 

information, allowing uncovering the larger scale fiber configuration. This process is called 

tractography. One of the first tractography algorithms (streamline tracking) was introduced 

by Mori and colleagues (S Mori et al., 1999). In this method the fiber layout is propagated 

starting in a seed point and then following the main direction recovered in a voxel, as long 

as certain conditions (e.g. FA threshold, curvature) are met. More sophisticated approaches, 

such as Runge-Kutta integration of the local directions (Chen and A. W. Song, 2008) and 

tensor lines (D. Weinstein et al., 1999), have been well established for the diffusion tensor. 

In particular the tensor deflection method (Lazar et al., 2003) has proven itself to produce 

robust tractography results and was implemented in various software packages (Fillard et 

al., 2007). 

These improvements in tractography were not jet extensively applied to multi-directional 

complex models. Another advantage of the tensor based algorithms is the ease of 

interpolation, compared to higher order models.  

Here I propose a novel scheme for integration of the improvement in tractography offered 

by tensor deflection to the multi-directional fODF based on the local model of spherical 

deconvolution. The idea is to use the additional information gained from using a higher 

order model, while being able to apply the framework of tensor based tracking methods, 

adapted only for multiple directions per voxel. This is achieved by applying the Bingham 

function based fODF peak fitting approach (see Chapter 5) to calculate Bingham functions 

representing the individual bundles present in each voxel. Afterwards I use the spherical 

convolution theorem (Driscoll and D M Healy, 1994) to calculate the corresponding diffusion 

signal for each of these bundles independently. The diffusion signal then can be used for the 

estimation of multiple diffusion tensors per voxel. Applying a tensor deflection algorithm, 

modified for selecting the tensor aligned to the current direction of propagation, I 

calculated a fiber tracking for visualizing the microstructure. 

The work within this chapter is an original contribution. 
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7.2 Tensor Deflection 

Tensor deflection is a deterministic tractography algorithm. Tractography is usually done by 

starting at a seed point and stepwise adding points based on the information gathered from 

the local model in each voxel. The most basic form of doing this is by using only the main 

direction in each voxel and following it. This method is called stream line tractography. The 

main idea behind tensor deflection (D. Weinstein et al., 1999) is to use the shape of the 

entire tensor for updating the direction of the tract’s trajectory instead of just the main 

direction, thereby incorporating more of the measured information. This is done by 

multiplying the current direction  ⃑   with the diffusion tensor  : 

to obtain the updated direction  ⃑   . The algorithm usually terminates a path if either the 

FA in a voxel becomes too small or the curvature of the path exceeds a predefined 

threshold. The deflection methods can be coupled with tensor interpolation. One strategy is 

to interpolate the tensor at a given point in space from the neighbors by log-Euclidian 

interpolation (Arsigny et al., 2006). I extended the tensor deflection to a field of tensors 

given in each voxel. First one has to select a tensor within a voxel for performing the 

deflection. This is done by choosing the tensor with the smallest angular difference 

between its main direction and the current direction of propagation. The same method was 

used for choosing the tensors within the neighboring voxels for interpolation. The selected 

tensors then are interpolated using the log-Euclidian metric. 

7.3 Tensor Calculation from the Bingham Fit 

The calculation of the tensor from the Bingham fit happens in two steps. First the signal of a 

Bingham distributed fiber population is computed. Second a diffusion tensor is fitted to the 

calculated signal. The basis for the computation of the signal from the fitted Bingham 

functions is the convolution theorem (3.33) as defined in Chapter 3.7. For the vector  ⃑⃑     

of the Bingham function evaluated at the points    this is done by transformation into 

spherical harmonic space, convolution with the signal kernel and then back-transformation 

of the total signal to the gradient space. This requires a SH base matrix   which transforms 

to the gradient space and a SH base matrix   which is used to transform the vector  ⃑⃑     to 

the SH space. In short this can be written as: 

  ⃑⃑                ⃑⃑  (7.2) 

  ⃑       ⃑    (7.1) 
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with the vector  ⃑⃑ representing the diffusion attenuation signal in the gradient directions 

used for the generation of   and the matrix   being the deconvolution matrix defined in 

equation (4.51). The calculation of the diffusion tensor is then done, as described in Chapter 

4.3.2. The resulting tensors are shown in . 

The presented algorithms and methods are implemented in the open source software 

BrainGL (https://code.google.com/p/braingl/). Using this the diffusion tensor, the three 

eigenvectors, and the FA value for each voxel, were computed. For comparison an 8th order 

spherical harmonic approximation of the fODF using MRTrix (Tournier et al., 2012) was 

performed. The kernel was estimated from corpus callosum voxels with an FA of 0.8 or 

higher, indicating a single bundle direction being present within these voxels. Then Bingham 

functions were fitted to the largest three fODF peaks using BrainGL. Afterwards the 

diffusion signal corresponding to the fitted bundles was calculated and a tensor fit was 

performed on the reconstructed signal. For these tensors whole brain tensor deflection 

tractography was carried out. Every voxel in the brain’s white matter was chosen as seed 

point and the main direction of the tensor of the peak with the largest magnitude was 

 

Figure 7.1: Bingham fit derived tensors. Here the tensors calculated from the Bingham fit are 
shown mapped onto an axial slice of the brain. 

https://code.google.com/p/braingl/
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chosen as starting direction. For comparison tensor deflection tractography based on the 

single diffusion tensor, as well as fODF streamline propagation, as implemented in MRTrix 

(Tournier et al., 2012), were performed. 

7.4 Results 

The Bingham fit allows for the separation of peaks and for calculating the corresponding 

diffusion signal for these peaks separately. The tensors fitted to this signal represent the 

direction and shape of the fitted Bingham functions. This multi-tensor representation 

provides the framework for a robust multi-tensor-deflection. The resulting streamlines are 

locally smooth and robustly reconstruct the crossing fiber structure, as can be seen in Figure 

7.2. 

To illustrate the performance of the algorithm, the crossing region, where arcuate fasciculus, 

fibers of the corpus callosum and corticospinal tract cross, was used. Fibers in a crossing 

area from the whole brain tractography were selected using a          selection box 

implemented using a quad-tree selection (Blaas et al., 2005) in the software BrainGL. For 

the comparison of tractography results tractograms were calculated using the fODF peak 

deflection algorithm as well as the more traditionally used algorithms of tensor deflection 

and fODF streamline propagation. The tensor deflection was computed using BrainGL and 

the fODF streamline propagation was computed using MRTrix (Tournier et al., 2012). The 

results are shown in Figure 7.3. 

 

Figure 7.2: Bingham representation of peaks used in tractography. The colored peaks hereby 
represent peaks which the interpolation was based on. From these peaks then the diffusion 
signal and subsequently the tensor was calculated. 
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The fibers were visualized using as well textured triangle strips and point sprites employing 

GPU programming (Merhof et al., 2005) as GPU based glyph visualization (Hlawitschka et al., 

2008). As can be seen the tensor tracking is not able to completely resolve the crossing, but 

instead finds only the corticospinal tract and parts of the corpus callosum. In fODF 

streamline propagation the spreading of fibers in the crossing area between the arcuate 

fasciculus and the corticospinal tract is resolved. However, the corpus callosum is not 

resolved completely. The fODF peak deflection algorithm is able to clearly represent each of 

the bundles present in the crossing area. The local smoothness and robustness is reflected 

on a global scale as can be seen from the comparison of the tractography results. 

7.5 Conclusion 

Corresponding diffusion signals were calculated for the three largest fiber bundles present 

in a voxel. This was done by fitting the peaks of the fODF with Bingham distributions and 

forward calculating the diffusion signal. Then a diffusion tensor was estimated for each of 

these signals and then a tensor deflection algorithm was applied, which was modified for 

multiple tensors being present in each voxel. 

The fODF peak deflection algorithm was able to produce a tracking result, which in contrast 

to tensor tracking is able to resolve the crossing areas properly and uses more of the fODF 

 

Figure 7.3: Comparison of tracking methods. From left to right the results from tensor deflection 
(a), spherical harmonic streamline tracking (b) and the results of the Bingham fit based peak 
deflection approach (c) are visualized. For selection of the bundles a selection box was positioned 
in the crossing region. The same box was used for all three datasets. For orientation an iso-
surface of the brain is shown in the top right. The view is from posterior left. The main bundles 
are labeled (CC: corpus callosum, AF: arcuate fasciculus, CST: corticospinal tract). In the 
background the used local models are depicted, i.e. (a) the diffusion tensor, (b) the fODF and (c) 
the Bingham functions. 
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information, than the fODF streamline approach (see Figure 7.3). It can be seen that the 

information on the peak spread is necessary for completely resolving the crossings. The 

resulting fiber tracts of the fODF peak deflection algorithm are very smooth in comparison 

to the fODF streamline results. This phenomenon has been described by Westin and 

colleagues (Westin et al., 2002) as well as Lazar and colleagues (Lazar et al., 2003) for the 

tensor deflection case, as it introduces a regularization of the curvature of the 

reconstructed streamlines. This allows a more robust reconstruction compared to the fODF 

streamline propagation algorithms, based on extracting the peaks and following the local 

maxima. This approach takes advantage of the peak separation. The peak separation 

enables directly identifying the bundle used for tracking and thereby would allow direct 

mapping of parameters estimated for each of the peaks onto the tracking result. 

It has been shown that simply by using the multi-directional information of the fODF for 

streamline tracking, the result drastically improves tensor tracking and is one of the most 

accurate tractography approaches (Fillard et al., 2011). Further evaluation of the quality of 

the proposed tractography method would be necessary to quantify the increase in accuracy 

compared to the streamline fODF approach. The fODF peak deflection algorithm is only one 

realization of a tensor tracking algorithm applied to the fODF by the peak fitting framework 

introduced in Chapter 5. This framework can easily be applied to more sophisticated 

tractography methods based on the diffusion tensor. Therefore the contribution of this 

work lies not only in the introduction of a more accurate tractography algorithm, but in 

presenting a framework for applying tensor based algorithms to spherical deconvolution 

results. 
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8 Fetus Data Analysis 

8.1 Introduction 

Investigation of the development of the human brain using dMRI based analysis is becoming 

increasingly important (Blondiaux and Garel, 2012). Since the fetal brain is much smaller 

than the adult brain many of the standard techniques for data acquisition and evaluation 

are inadequate. This presents a whole number of challenges for developing appropriate 

algorithms and methods as well for measuring the fetal brain data as for data processing 

and modeling. 

One of the main questions in the analysis of fetal brain data is assessing if the brain’s 

development is progressing in a normal manner. The point of interest is therefore the 

investigation of dMRI based metrics which describe the microstructure and allow for the 

analysis of the morphological changes. Since the Bingham metrics give a direct connection 

to the underlying microstructure, they are well suited for this type of analysis. So far the 

brain’s development is measured mainly by using the brain's size and weight (Guihard-Costa 

and Larroche, 1992), volume (Gholipour et al., 2011; Habas et al., 2008), degree of 

gyrification (Chi et al., 1977), laminar organization (Z. Zhang et al., 2011) as well as simple 

DTI derived metrics (Huang et al., 2012). 

In this chapter I present the application of the Bingham fit based metrics to fetal dMRI. 

Besides using the Bingham metrics themselves the change of the distribution of the values 

of the different metrics was observed. The more the brain develops the more it changes 

from a homogenous to a heterogeneous microstructural composition. An easy way to 

describe the distribution of the metrics for different ages is using 2D histograms of two 

metrics (developmental fingerprints). In the collaborative work with Viehweger and 

colleagues (Viehweger et al., 2013) the Gini coefficient (GC) was introduced as a way to 

describe the homogeneity of the measured values and therefore the brain’s developmental 

age. The GC (Gini, 1912) is a dimensionless number, which broadly speaking describes the 

inequality amongst values of a frequency distribution. It is used in a variety of contexts, 

such as for example economics (Sen, 1983), biology (Damgaard and Weiner, 2000) and even 

astrophysics (Lisker, 2008). 
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In the context of this analysis the GC is computed from the voxel-wise defined joint 

distribution of the metrics ADC, FA and CX. The hypothesis is that the GC correlates with the 

brain’s developmental state, in other words that the GC is sensitive to the loss of 

homogeneity due to aging until the brain reaches a certain age. 

The data analysis is based on 31 fetus scans, aborted due to a variety of causes (see Figure 

8.1). Informed parental consent was obtained for all the following procedures, no financial 

incentives were given and the studies were approved by the ethics committee of the 

University of Leipzig. The specimens were kept at 4°C until they were scanned. The scans all 

happened within 24 hours of the termination of pregnancy. To not harm the brains 

structure all scans were conducted in-situ. 

 

Figure 8.1: Data basis. List of the subjects used for the evaluation of metrics and reasons for 
truncation of the pregnancy. It additionally shows the age of the fetuses as well as the 
postmortem diagnostics. The age was determined using sonography as well as using 
morphological development milestones. The age included in this list is the age determined from 
sonography. 
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The work within this chapter is an original contribution. Part of it has been submitted 

(Viehweger et al., 2013). 

8.2 Measurements 

Since the fetal brain is too small for the use of standard MRI techniques, a more complex 

imaging protocol was used. As stated in the collaborative work with Viehweger and 

colleagues (Viehweger et al., 2013), the data was acquired using a 3T whole-body MR 

scanner (Tim Trio 3T, Siemens Healthcare, Erlangen, Germany) equipped with Siemens-

AC038 whole body gradient coils (peak gradient strength: 38 
  

 
, maximum slew rate: 200 

 

 

 
), and an 4 channel phased array RF knee coil. 48 axial slices were acquired with a 2D 

single shot DW-STEAM-EPI (TR/TE/Delta/delta = 12000/59/121/16  ) sequence giving 0.7 

mm isotropic resolution. The TE, diffusion time, and gradient duration were optimized to 

provide maximum SNR for a maximum b-factor of 1600 s mm-2. The bandwidth was 950 
  

     
. K-space was partially sampled at 5/8 and parallel imaging was not used. The DWI 

protocol was acquired with 60 gradient directions at b-value of 1600 s     and 6 directions 

at 150       . The measurement was repeated 9 times, taking a total of 1 hour 38 

minutes. A vendor-provided spatial matched filter approach that linearly combines complex 

image data from different receiver coils at each pixel separately was used for reconstructing 

the multichannel data from the phase array coils. The weights for the linear combination 

were derived from the sensitivities of each coil in that pixel and the noise correlation matrix. 

The virtual autopsy was performed on a 3.0 T scanner, SIEMENS, Germany. The employed 

sequences were T2-Trufi, T2-Trufi dynamic and T1 GE. 

After acquiring the data FLIRT was used (Jenkinson et al., 2002) to remove motion artifacts 

caused by the vibration of the scanner (Gallichan et al., 2010) and calculated the diffusion 

tensor, the ADC and the FA. Then spherical deconvolution was applied using MRtrix 

(Tournier et al., 2012). As single fiber response manually selected regions of the 

corticospinal tract were used, which one can assume to be constituted of a single collinear 

fiber population. Basis for this mask was an FA mask, which was manually refined to mask 

only the brain. On the resulting fODF the Bingham fit was computed and the Bingham 

metrics were calculated. Then the developmental fingerprints and the Gini coefficient were 

determined from the ADC, FA and CX metrics for comparison of the different age groups. 
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8.3 Results 

The tensor metrics FA and ADC as well as the Bingham metrics were calculated and 

compared for different developmental ages of the brain. As can be seen they seem 

relatively independent of age and are unable to characterize structural changes. This is due 

to the limits of the tensor model. Next the Bingham metrics were investigated. 

Due to strong variations in the kernel used for the calculation of the fODF on each of the 

datasets, a quantitative comparison of the calculated metrics is difficult. However, due to 

the large differences using a combined kernel is impossible as well. Additionally the strong 

variation in brain size makes quantitative comparison even more difficult due to very 

different amounts of partial volume effects occurring for the different age groups. One 

therefore is bound to not compare absolute but relative metrics. 

 

Figure 8.2: Developmental fingerprint. The top row shows an exemplar developmental 
fingerprint for each combination of metric using a 31 weeks old brain. Below the developmental 
fingerprint from FA and CX are shown as a function of age. As can be seen the fingerprints 
progress towards low FA and high CX values. 
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For this so called developmental fingerprints of two metrics were introduced. These are 2D 

histograms in which each bin corresponds to the number of voxels where both metrics fall 

into the respective interval. These histograms then describe the joint distribution of the two 

metrics. Due to them being most independent from changes in signal, the metrics FA, ADC 

and CX were chosen for further evaluations. An example for their developmental fingerprint 

is shown in Figure 8.2. 

These developmental maps show a strong connection to the age of the fetal brain. However, 

these maps are difficult to assess quantitatively. For the quantitative analysis of the metric 

the GC, calculated from all three metrics, is used. In this context the GC describes the 

degree of inhomogeneity in the brain. The more homogenous the metrics are the lower the 

GC is. The hypothesis was that young brains are very homogenous and become more and 

more inhomogeneous during their development. This can be seen as the process of the 

brain progressively differentiating with age. 

The GC was correlated with the brains age (estimated from somnography) and therefore its 

developmental state using a linear model. As shown in Figure 8.3 the GC is strongly 

connected to the brain’s age for a range between 16 and 26 weeks. Outside this range it is 

difficult to assess the connection properly in this work, due to a lack of data. 

 

Figure 8.3: Connection between the Gini coefficient and age. As can be seen the Gini coefficient 
correlates well to the age in the range between 16 and 26 weeks. The red lines depict the 95% 
confidence interval and the blue line shows the prediction interval. Analysis of brain’s older than 
26 weeks was not possible in a meaningful way, due to the available data. It should be noted that 
the Gini coefficient is shown scaled by a factor of 100. The regression line is shown in black 
(             ). 
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8.4 Conclusions 

The fODF and the Bingham metrics were calculated for a set of fetal datasets. In this study a 

strong relation between the developmental brain age and the GC calculated from FA, ADC 

and CX could be shown. This is a metric with a high potential for clinical use, as it is a simple 

quantitative metric, with high predictive strength. A further strong point of the use of the 

GC is that it can be calculated from any type of metric. It therefore can be easily adapted to 

newly developed HARDI metrics. 

The scans the analysis is based on were conducted post-mortem. However, the goal of this 

work was to develop metrics which can be used for in utero diffusion imaging. Therefore in 

future work one would have to show that these findings transfer to such a setting. This 

requires estimating to which degree the found connections can be transferred to non-

pathological fetuses, as most of the datasets used were from pathological fetuses. While 

only brains without macroscopic pathologies were used in the analysis, it cannot be 

guaranteed that no microstructural pathologies are present. This also implies that for the 

creation of Gini-coefficient nomograms in clinical use one would have to increase the 

number of samples significantly. 

For a more detailed analysis of the Bingham metrics a follow up project has been defined in 

which the changes of the metrics are investigated over more locally constrained regions. In 

this case the analysis was done over the entire brain, which, due to the large differences in 

size and shape of the brains, did not allow for a good comparison of different areas within 

the brain. In future work it is planned to divide the brain manually into anatomical 

subsections in which the change in metrics can be compared quantitatively. 
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9 General Discussion 

In this thesis I first investigated the local models focusing on their feasibility for deriving 

metrics. Hereby I introduced a common framework for the dODF approaches by Tristan-

Vega and colleagues (Tristán-Vega et al., 2009) as well as Aganj and colleagues (Aganj et al., 

2010). Due to the explicit connection between the fODF and the microstructure, I chose the 

fODF as local model basis for the metrics. I investigated the meaning of the coefficients of 

the SH representation and derived the connection between the first coefficient and the 

integral of the expanded function over the sphere, but did not find an easily interpretable 

connection between the higher order coefficients and the geometry. I therefore decided to 

research a parameterization of the fODF which is more easily interpretable. The first 

assumption was that each of the peaks of the fODF represents a single collinear fiber 

population. This is a reasonable assumption, as the fODF formally describes an angular 

spatial fiber density. The Bingham function was used, which is a scaled Bingham distribution 

for approximating the peaks. The basis for this was the assumption of having Bingham 

distributed fibers in each population, as the Bingham distribution can be seen as the 

spherical extension of the normal distribution. Similar approaches have been used by others, 

too, but not in the context of characterizing the fODF peaks for establishing metrics (Kaden 

et al., 2007; Kiran K Seunarine et al., 2007). Next I defined and investigated numerous 

metrics derived from the fitted Bingham distributions and verified the meaningfulness of 

these metrics through the use of simulation and phantom data analysis. After showing the 

connection to the ground truth and the relation to the FA, these metrics were used for 

computing maps of the human brain. Finally the extracted metrics and the Bingham 

functions were applied to tractography as well as the analysis of the morphological changes 

in the developing brain. Several parts of this work were presented and three papers 

describing the Bingham fit method, its application and specific findings are currently under 

review (Riffert et al., 2013; Schreiber et al., 2013; Viehweger et al., 2013). 

The main result of this thesis is a method for classification of the peaks of the fODF and 

derivation of voxel-wise metrics which are meaningfully connected to the ground truth fiber 

arrangement and the properties of the fiber populations present within the voxel. These 

metrics were used for generation of parameter maps. This is, however, not the most useful 

way to display this metrics. Rather they can be used for investigation of the spatial variation 

of metrics along fiber populations. This is done by combination of tractography with the 

bundle-wise metrics. In the work of Schreiber and colleagues (Schreiber et al., 2013) the 
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variation of the Bingham metrics is investigated across fiber populations. This allows for 

example answering questions on the behavior of fibers in the vicinity of crossings, i.e. do 

fibers branch out or does their density increase. Furthermore it enables us to increase the 

specificity of FA. If a change in FA is observed in an area, for example due to a learning task, 

then one is able to investigate what structural change causes the FA change. This endows 

results with further meaning making them more interpretable. As shown by the application 

of the Bingham metrics on the fetal brain datasets, the metrics can be used for the 

characterization of structural changes due to development. Further application in analysis 

of anatomical change (e.g. tumor) seems promising. Overall the Bingham fit and related 

metrics are a step which brings us closer to the description of anatomy using metrics 

derived from MRI. 

One of the very significant aspects of this work, which was not anticipated in the beginning, 

was the analysis of the SH expansion of the fODF by means of the fitted Bingham functions. 

The main result is that the SH base is probably not a particularly useful expansion, when the 

peak information is the property of interest. This is analogous to not using a Fourier series 

expansion when the main characteristics of interest are the maxima of a function, since the 

oscillating base functions lead to spurious peaks. The low number of sampling points further 

amplifies this effect, since it leads to a low maximum order for the SH expansion (maximum 

of 8th order for 60 directions). 

If one combines the results from the analysis of crossing angles (Chapter 4.5.6), the Dirac 

delta function (Chapter 4.5.5) and the Bingham metrics connection to simulated ground 

truth values (Chapter 6.6.3), one can see the flaws of the SH representation of the fODF 

manifest. These are mainly (1) the introduction of spurious crossings correlating with the 

approximation error of the Dirac delta function and (2) the related problem of not being 

able to represent structures sharper than a certain threshold, which manifests in the peak 

spread becoming constant and equal to the sharpest representable spread even for an 8th 

order SH reconstruction. The correlation between the crossing angles and the spurious 

peaks of the Dirac delta approximation, however, might allow identification of spurious 

peaks by observing the change in crossing angle when using a different SH order, since the 

spurious peaks do not align for different SH orders. 

The first of these two flaws has extensive consequences for tractography based on the fODF, 

since the peak directions are followed without discerning between true and spurious peaks. 

Distinguishing the spurious peaks from the true peaks is a difficult if not impossible task in 

scenarios where the ground truth is not known, as one would need to establish that the 

present microstructure is not responsible for the observed fODF peak configuration. Here 

again different order approximations might give a hint. The second problem makes 
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interpretation of microstructure close to impossible in the corresponding areas, as sharper 

peaks appear to have the same width. With high enough angular resolution one would 

theoretically be able to represent the sharper peaks by using higher SH order. When using 

higher orders other problems gain significance, which are the susceptibility to noise and the 

need for regularization. On the surface regularization does not seem like a big problem, 

however, as stated higher orders are needed for describing the sharp peaks. Regularization 

suppresses higher orders artificially reducing the overall order. 

In my opinion the solution to both of these problems lies in the use of a different set of base 

functions. Especially the oscillating nature of the SH functions is critical when trying to 

describe functions, whose main feature is their peak structure. Of course this in turn means 

more difficult calculation of the deconvolution itself, as this base is prone to not having a 

simple convolution theorem. An approach which partially utilizes this is the dampened 

Richardson-Lucy approach, Dell’Aqua and colleagues use for deconvolution (Dell’Acqua et 

al., 2007). Overall a different base would need the properties of being able to describe 

sharp functions, be suited for description of functions on the sphere and represent the 

attenuation signal profiles as well as the deconvolution result accurately even when 

working from a sparse representation. 

One of the problems in extracting information on anatomical configurations is that distinct 

configurations can lead to the same diffusion profile and the same fODF for that matter, as 

shown in the work by Jones and colleagues (Derek K Jones et al., 2013). As mentioned there 

this can only be handled by using a higher spatial resolution, which again leads to problems 

regarding the isotropy of voxels or the SNR. 

A different problem lies in the evaluation of the accuracy of metrics. I compared the derived 

metrics with simulated data and phantom data in order to estimate the accuracy. Using 

simulated data has the problem of only describing an optimal environment in which the 

influence of unknown properties (such as the true SNR and its distribution) is not properly 

reflected. This leads to the need for fiber phantoms. However, realistic phantoms with 

known ground truth of fiber configuration as well as known fiber properties do not exist so 

far. The phantom data used (Fillard et al., 2011) for example does not realistically reflect 

even simple metrics, such as FA. While the deconvolution process is able to eliminate this 

effect to a certain degree using a kernel of fibers from the phantom, one cannot be certain 

that some of the properties of the synthetic fibers used and their behavior are reflected in 

the metrics. 

A question more closely related to this work is the question on how to avoid the Bingham 

function overlap occurring due to the separate fit of the Bingham functions to the fODF 

peaks. There are two approaches to this: (1) Fitting the Bingham functions simultaneous 
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instead of separately or (2) using a cut off Bingham function for fitting only the peak. Fitting 

the Bingham functions simultaneously leads to problems similar to those in multi tensor 

fitting, reintroducing the model selection problem. This has been investigated for fitting the 

Bingham distribution to the diffusion signal (Kaden et al., 2007). Cutting off the Bingham 

function leads to a violation of the fibers within each bundle being Bingham distributed. 

All the methods introduced in this work are implemented ready to use in the open source 

software BrainGL (https://code.google.com/p/braingl/). Furthermore the methods are 

integrated in a standard protocol used for the processing of fetal datasets. 

Can we meaningfully characterize the voxel-wise bundle microstructure in terms of metrics 

derived from HARDI measurements? This was the question which we stated as the central 

point of this thesis. The answer is yes, within the accuracy of the fODF model, we can. 

 

https://code.google.com/p/braingl/
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10 Abbreviations 

ADC: apparent diffusion coefficient. 

AF arcuate fasciculus 

AFD: angular fiber density. 

AFDmax: maximum angular fiber density. 

CC: corpus callosum. 

c-dODF: circular orientation density function. 

c-OPDT: circular orientation probability density transform. 

CSD: constrained spherical deconvolution. 

CSF: cerebrospinal fluid. 

CST: cortical spinal tract. 

CX: complexity. 

dMRI: diffusion weighted MRI. 

dODF: diffusion orientation density function. 

DTI: diffusion tensor imaging. 

EAP: ensemble-average propagator. 

EPI: echo-planar imaging. 

FA: fractional anisotropy. 

FD: fiber density. 

FF: fiber fraction. 

fODF: fiber orientation density function. 

FOV: field of view. 

FS: fiber spread. 

GC Gini coefficient. 

GFA: generalized fractional anisotropy. 

GRAPPA: generalized auto calibrating partially parallel acquisitions. 

HARDI: high angular resolution diffusion imaging. 
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HMOA: hindrance modulated orientational anisotropy 

MD: mean diffusivity. 

MPRAGE: magnetization prepared rapid acquisition gradient echo. 

MRI: magnetic resonance imaging. 

NMR: nuclear magnetic resonance. 

PDE: partial differential equations. 

p-dODF: planar orientation density function. 

PFA: peak fractional anisotropy. 

p-OPDT: planar orientation probability density transform. 

QBI: q-ball imaging. 

SH: spherical harmonics. 

SNR: signal-to-noise ratio. 

TE: echo time. 

TR: repetition time. 
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11  List of Figures 

Figure 2.1: MRI images and fiber reconstruction. On the left a    image is shown (a). On the 

rightthe corresponding fiber reconstruction from dMRI is shown (b). Both images are 

visualized with an iso-surface calculated on the basis of the dMRI dataset. ................... 6 

Figure 2.2: Full Brain. This image was taken from the brain museum 

(www.brainmuseum.org). The image shows a coronal slice taken from a human 

specimen. One can clearly observe the white matter (a) and grey matter (b). As can be 

seen the grey matter area close to the surface (cortex) is darker, while the more 

central white matter areas are lighter. The areas marked as ventricles (c) are filled with 

CSF. The difference in composition of these types of tissue is the main cause for 

contrast in MRI. ................................................................................................................. 7 

Figure 2.3: The anatomic reference planes. Images acquired in MRI are usually presented in 

terms if section on reference plains. In (a) we see the axial, in (b) the coronal and in (c) 

the sagittal reference plain. Additionally the terminology used for describing directions 

is introduced. .................................................................................................................... 8 

Figure 2.4: Significant fiber bundles. In this image some of the most significant fiber bundles, 

which are used in this thesis and their location in the brain are shown. On the left (a) 

the corticospinal tract (CST) is shown in blue, while the arcuate fasciculus (AF) is shown 

in red. On the right (b) the corpus callosum is depicted. It is divided into a frontal (red), 

medial (orange) and lateral (yellow) section. ................................................................... 9 

Figure 2.5: Spins in a magnetic field. In a magnetic field, nuclei (which due to their spin act 

as small magnets) align with the external field’s axis. They hereby precess around the 

field’s axis. This precession is similar to the precession of a gyroscope. It is 

characterized by its frequency and its phase. The frequency defines how fast a spin is 

rotating and the phase defines the current position of rotation. The frequency of 

precession is called the Larmor frequency    and depends on the external    field’s 

strength, as well as the nuclei specific gyromagnetic ratio. ........................................... 11 

Figure 2.6: The two energy states. The two energy states a nucleus can take are a low 

energy state (parallel) shown in (a) and a high energy state (anti-parallel) shown in (b). 

The difference in energy states is      -         . Due to thermal effects, a 

slightly higher number of nuclei are in parallel than in anti-parallel alignment with the 

external field. This leads to an excess magnetization of a substance in the magnetic 
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field in alignment with the orientation of the   -field. This is also referred to as net-

magnetization. ................................................................................................................ 12 

Figure 2.7: Axial view of a    and a    image. The composition of the tissue is the source 

for the contrast in MRI. In (a) the light areas correspond to white matter areas. The 

grey areas show the grey matter, while the CSF shows no signal and is therefore dark. 

In (b) the dark areas correspond to white matter areas. The light areas show the grey 

matter, while the CSF shows a high signal and therefore is white. ................................ 14 

Figure 2.8: Connection between k-space and MR image. In (a) the k-space image, which was 

read line wise, is shown. In (b) the resulting MR image is shown. The connection 

between the two images is the 2D-Fourier transform. .................................................. 16 

Figure 2.9: The diffusion encoding process. In this image the influence of the diffusion 

gradient on the phase of the spins is visualized. In (a) we see the spins all in phase after 

the application of the RF pulse. Here the signal    can be observed. In (b) the 

application of the diffusion gradient can be seen. The spins now possess a spatially 

varying phase. Due to diffusion the spins randomly displace, which causes the phase to 

lose its spatial connection (c). Afterwards a refocusing gradient is applied (d), which is 

the inverse of the gradient which was applied before. This should cause the spins to 

return to phase coherence. The diffusion has caused phase incoherence, which 

manifests in a signal    that is smaller than the signal at phase coherence. ................ 18 

Figure 2.10: The Stejskal-Tanner pulse gradient echo diffusion sequence. This image show 

the application of different gradients, the RF pulses as well as the signal readout over 

time. The type of gradient is marked on the left. The letters Gx, Gy and Gz mark the 

encoding gradients for the respective spatial direction, G marks the diffusion gradient. 

At the top the repetition time (TR) is shown. The gradient length   and the time   

during which the particles diffuse are marked as well. .................................................. 19 

Figure 3.1: The SH base functions. Here glyphs of the SH base functions are shown for 

orders          . Negative function values are indicated in grey and positive values in 

color, indicating direction. .............................................................................................. 24 

Figure 4.1: The diffusion tensor. The tensor is usually visualized as an ellipsoid. Here an 

isotropic (a) and an anisotropic tensor (b) are shown. The dimensions of the tensor are 

described by the tensor’s eigenvalues (  ) and eigenvectors (  ). The ellipsoid describes 

the distance a particle travels within the diffusion time  . As the eigenvalues describe 

the dimensions of the tensor, similar eigenvectors indicate isotropy, while a difference 

between the eigenvalues indicates anisotropy. ............................................................. 38 

Figure 4.2: Tensors colored using the RGB color map. The tensors are visualized as ellipsoids 

and colored using the first eigenvector. Red stands for left-right, green for anterior-
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posterior and blue for dorsal-ventral direction. Round tensors indicate more than one 

fiber population being present, while elongated tensors indicate collinear fiber 

populations. .................................................................................................................... 40 

Figure 4.3: Specificity and sensitivity of FA. On the left the same fiber configuration is shown. 

In the top image (a) the secondary fiber bundle (red) is increased, while in the second 

image the primary fiber population (blue) is decreased. Both of these changes lead to a 

reduction of FA. The FA therefore is sensitive to both changes, however cannot discern 

the changes. This implies that the FA is sensitive to changes in configuration, but not 

specific to the type of change. ........................................................................................ 42 

Figure 4.4: Maps of tensor metrics. Here the tensor metrics are visualized using a coronal 

section. The metrics are FA (a), MD (b), AD (c), RD (d). Each of these metrics describes a 

different aspect of the shape of the diffusion tensor. ................................................... 43 

Figure 4.5: The principle of spherical deconvolution. In spherical deconvolution the signal is 

assumed to be constituted by the convolution of the signal of a single fiber (kernel) 

with a fODF. In theory the fODF is a sum of Dirac delta functions. Since spherical 

deconvolution is formulated in the space of spherical harmonic functions the fODF is 

blurred and appears rounder. ........................................................................................ 53 

Figure 4.6: Effect of the CSD normalization. On the left (a) the first coefficient of the CSD is 

shown after normalization. On the right (b) the non-normalized image is shown. ....... 56 

Figure 4.7: fODF from spherical deconvolution mapped onto the brain. The glyphs are 

shown using an axial slice. As can be seen in the highlighted section, the fODF can 

discern crossing voxels, from non-crossing voxels. ........................................................ 57 

Figure 4.8: Map of integral over the negative lobes. (a) absolute value of integral over 

negative lobes (b) relative value of integral over negative lobes. We can see the highest 

values occur in areas where only a single fiber population is present. .......................... 59 

Figure 4.9: Approximation of Dirac delta function. The number of negative lobes of the Dirac 

delta function as well as the corresponding spurious positive peaks can be seen in (a). 

The higher the order is, the better the Dirac delta function is approximated, but the 

spurious peaks and negative lobes significantly increase as well. In (b) we see the 

corresponding CSD glyphs. The glyphs seem much larger for higher orders. However 

the integral of the CSD over the sphere is constant. The glyphs are perceived as larger 

due their increase in volume. ......................................................................................... 60 

Figure 4.10: Connection between the crossing angle distribution and the SH reconstruction 

order. As can be seen the distribution’s shape and peak vary greatly depending on the 
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spherical deconvolution order (90° for 4th order, 70° for 6th order and 50° as well as 90° 

for 8th order). .................................................................................................................. 63 

Figure 5.1: The Bingham neighborhood and fit. The fODF is shown in light grey. The 

maximum direction    of its largest peak is visualized as the red line. The directions of 

the Bingham distribution (green) are fitted using a small neighborhood of the 

maximum direction. The points considered part of the peak are those within the yellow 

line. To ensure that the neighboring peaks do not have too large an impact, only the 

neighbors of first, second and third degree are considered, which corresponds to the 

points in the blue area. ................................................................................................... 69 

Figure 5.2: Fit of the fODF by Bingham functions. (a) fODF calculated by spherical 

deconvolution, (b) Bingham functions representing the separate peaks. The shape of 

each of the fitted Bingham functions closely corresponds to the fODF peak shape. .... 70 

Figure 5.3: fODF and Bingham fit visualized on the brain. This image is taken from the 

coronal area, where the corticospinal tract and the corpus callosum cross. In (a) the 

fODF is shown. In (b) we see the Bingham fit for the largest peak, extracting the main 

bundle behavior. ............................................................................................................. 71 

Figure 6.1: Relation between the directional peak opening angle and the concentration 

parameters. On the left the Bingham function is shown in blue as polar plot (a). The 

green circle shows the value   . The angle to the main direction of the Bingham 

function is noted as  . On the right the Bingham function is shown as function of   in 

Cartesian coordinates (b). The angle   describes the angle at which the function 

dropped to      -     of its maximum value. ............................................................... 75 

Figure 6.2: Comparison of FA and parameters of different fiber configuration. In the top row 

glyphs representing the fODF (purple) and the diffusion tensor (green) are visualized. 

Below a few of the Bingham metrics and the FA are shown for the larger and smaller 

peak. Image adapted from the work of Schreiber et al. (Schreiber et al., 2013). .......... 78 

Figure 6.3: Correlation of ground truth and reconstruction. Here the correlation of metrics 

calculated using the Bingham fit and their ground truth values are depicted. Ground 

truth and reconstructed values are shown in the unit of their respective metric. The 

left column shows metrics reconstructed for a single fiber population being present 

within a voxel. The middle and right column show the metrics for the first (middle 

column) peak and second (right column) peak in the case of fiber crossing. In each of 

the pannel the reconstructions are plotted for 6th (blue) and 8th (red) order SH series 

representation of the fODF. The lines show the linear regression results. The 

corresponding Pearson coefficients (R²) are displayed on the bottom right of each 
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pannel. As can be seen the spread of each of the parameters is smaller for the single 

fiber case, which leads to higher correlations. ............................................................... 81 

Figure 6.4: Correlation of CX as well as the crossing angle to the ground truth. Here the 

correlation for the metric CX as well as for the resolved crossing angle between the 

two peaks involved in the simulated crossing are shown. Colors and labels are same as 

in Figure 2. ...................................................................................................................... 82 

Figure 6.5: Angular dependence of the metrics ground truth correlation on the fiber 

crossing angle. These plots show the how the correlation between the reconstructed 

values and the ground truth depends on the fiber crossing angle and the order of 

spherical harmonic series approximation. While the correlation of the values 

reconstructed from the largest peak are quite high (between 0.80 and 1.00), except for 

the area between 10° and 40°, where lower values can be observed for some 

parameters (FD, FS and especially   ), the second peaks parameters do not correlate 

well with the ground truth until a crossing angle of 50° is reached. Generally the higher 

order reconstruction shows better correlation to the ground truth. ............................ 83 

Figure 6.6: Metrics from phantom data. Here the metrics calculated from the phantom data 

are mapped upon the b0 image. The images were scaled for contrast. Values above the 

maximum value are set to red, ones below set to zero. The geometry is depicted in 

panel a). The metrics are shown in panels b) through l). ............................................... 85 

Figure 6.7: Primary metrics mapped on the human brain. Here the smoothed maps of the 

metrics FA, CX as well as the three metrics AFDmax, FD and FS which characterize the 

first peak are displayed. The metrics images were masked to the white matter using an 

FA map with a threshold of 0.15, which were manually expanded to match the white 

matter. These maps were then overlaid on an interpolated T1 image and scaled for 

contrast. The boundaries for the scaling are marked in the histograms at the bottom. 

The value n represents the number of voxels in which a certain value occurs.  These are 

the images obtained from smoothing the original metrics before applying the white 

matter maps. The results without the smoothing steps can be found in Figure 6.11. .. 86 

Figure 6.8: Metrics of secondary and tertiare fODF peaks. These maps were created as those 

in Figure 6.7, including the scaling and the histograms at the bottom. The maps for the 

non-interpolated metrics can be found in Figure 6.12. .................................................. 87 

Figure 6.9: Correlation between metrics. This image shows the correlation structure of the 

metrics. For correlation purposes a white matter skeleton was used on which the 

metrics were mapped. All voxels for which either of the metrics was equal to zero was 

dismissed. As can be seen 3 clusters can easily be identified. The first contains FA, CX, 

AFDmax1, FD1, the second AFDmax2, FD2 and FS2, the third AFDmax3, FD3 and FS3. This 
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indicates a strong connection between FA, as well as shape of the first peak and the 

microstructural properties at the same time. ................................................................ 88 

Figure 6.10: Spatial mapping of contribution to correlation with FA. The values correspond 

to the summands of the Pearson correlation coefficient. The average of these values 

over the whole masked region gives the correlation, which is shown in Figure 6.9. As 

can be seen, for AFDmax, FD and CX high values (in case of CX) low values can be found 

in the main fiber bundles, i.e. especially in regions without major crossings. The FS 

shows small negative values mainly in areas without fiber crossings............................ 89 

Figure 6.11: Unsmoothed metric maps for the first peak, FA and CX. ................................... 90 

Figure 6.12: Unsmoothed metric maps for the second and third peak. ................................ 91 

Figure 7.1: Bingham fit derived tensors. Here the tensors calculated from the Bingham fit 

are shown mapped onto an axial slice of the brain. ....................................................... 95 

Figure 7.2: Bingham representation of peaks used in tractography. The colored peaks 

hereby represent peaks which the interpolation was based on. From these peaks then 

the diffusion signal and subsequently the tensor was calculated. ................................. 96 

Figure 7.3: Comparison of tracking methods. From left to right the results from tensor 

deflection (a), spherical harmonic streamline tracking (b) and the results of our peak 

deflection approach (c) are visualized. For selection of the bundles a selection box was 

positioned in the crossing region. The same box was used for all three datasets. For 

orientation an iso-surface of the brain is shown in the top right. The view is from 

posterior left. The main bundles are labeled (CC: corpus callosum, AF: arcuate 

fasciculus, CST: corticospinal tract). In the background the used local models are 

depicted, i.e. (a) the diffusion tensor, (b) the fODF and (c) the Bingham functions. ..... 97 

Figure 8.1: Data basis. List of the subjects used for the evaluation of metrics and reasons for 

truncation of the pregnancy. It additionally shows the age of the fetuses as well as the 

postmortem diagnostics. The age was determined using sonography as well as using 

morphological development milestones. The age included in this list is the age 

determined from sonography....................................................................................... 100 

Figure 8.2: Developmental fingerprint. The top row shows an exemplar developmental 

fingerprint for each combination of metric using a 31 weeks old brain. Below the 

developmental fingerprint from FA and CX are shown as a function of age. As can be 

seen the fingerprints progress towards low FA and high CX values. ........................... 102 

Figure 8.3: Connection between the Gini coefficient and age. As can be seen the Gini 

coefficient correlates well to the age in the range between 16 and 26 weeks. The red 

lines depict the 95% confidence interval and the blue line shows the prediction interval. 
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Analysis of brain’s older than 26 weeks was not possible in a meaningful way, due to 

our data basis. It should be noted that the Gini coefficient is shown scaled by a factor 

of 100. The regression line is shown in black (        -    ). ................................. 103 
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