
Diploma thesis

on

Computer simulations of
macromolecular systems with

external constraints

submitted by

Franziska Müller

April 16th, 2014

Faculty of physics
Johannes Gutenberg University Mainz

Affidavit

Mainz, April 16th, 2014

I, Franziska Müller, student of physics at Johannes Gutenberg University Mainz,
hereby confirm that this thesis is the result of my own work. I did not use any sources
other than the ones specified. Furthermore, I confirm that this thesis has not yet been
submitted as part of another examination process neither in identical nor in similar
form.

Franziska Müller

Contents

1. Introduction 1

2. Theory 3
2.1. Static structure factor . 3

2.1.1. Collective structure factor . 4

2.1.2. Single-chain and intramolecular structure factor 7

2.1.3. Relation to other quantities . 8

2.1.4. Restrictive choice of scattering vectors q 10

2.2. Mean-square displacement . 10

2.2.1. Displacements g1, g2 and g3 . 11

2.2.2. Monomer displacement in entangled linear melts 11

3. Creation of new analysis tools 15
3.1. Simulation software ESPResSo++ . 15

3.2. Static structure factor . 18

3.3. Mean-square displacement . 24

3.3.1. Particle and chain decomposition 24

3.3.2. Statistics for different time intervals 26

4. Systems 27
4.1. Model and chain generation . 27

4.2. Equilibration . 29

4.3. Configurations from simulation . 31

5. Results 33
5.1. Implementation results . 33

5.1.1. Static structure factor . 33

5.1.2. Mean square displacement . 35

5.2. Computation results . 35

5.2.1. Single chain structure factor . 35

5.2.2. Collective structure factor . 37

6. Further improvements 45

i

Contents

7. Conclusion 53

8. Acknowledgement 55

A. Appendix 57
A.1. Complete source codes . 57

A.1.1. Static structure factor . 57
A.1.2. Particle decomposition . 67
A.1.3. Mean squared displacement . 77

A.2. Alternative codes . 84
A.2.1. Static structure factor . 84

A.3. Additional graphs . 87

Bibliography 89

ii

1
Introduction

Polymers are widely used in the materials, chemical and food industry. They often
serve as functional ingredients, which emphasis or even evoke desired features of the
material. Therefore a detailed understanding of polymeric behavior is of interest. To
examine specific properties of polymers, their molten state is most suitable. Although
a broad knowledge about influencing and processing polymeric materials with desired
behavior already exists, the connection between microscopic and macroscopic properties
is still lacking in many cases. Computer simulations provide a great tool in bridging
this gap. Especially, because the very same polymeric system, in computer experi-
ments, is available to as many investigations as desired. However, in real experiments
the configuration of a polymeric system can be destroyed during a measurement or at
least changes in time. The properties of polymers are particularly interesting in en-
tangled systems. Entanglements are topological constraints that occur in melts of long
polymer chains due to the property that two chains cannot pass through each other.
Entanglements were first discussed in 1940 ([Bus31], [Tre40]) and since then different
theories predicting their effects have been developed. One category of these models are
tube models. They subsume the effects of surrounding chains on a certain chain and
describe them as a tube which confines the motion of that chain. With equilibrated
systems of long polymer chains one could directly verify these tube models and draw
the connection between microscopic theories and macroscopic behavior for entangled
polymers. Present simulations mostly reproduce experiments only qualitatively, mainly
because they are conducted with very small systems. Although reaching the macro-
scopic range of 1023 particles is a distant objective, advancing to bigger systems can
provide quantitatively worthy results in the future. The major obstacle in computer

1

1. Introduction

simulations with polymers is their equilibration. This is the procedure that transfers
the system to a thermodynamic stable state, the equilibrium, which real systems adopt
automatically after a long enough time. The initial setup of a simulated polymeric sys-
tem often is so far away from equilibrium, that starting a simulation would fail. This
will be explained in chapter 4. In addition computational time ranges are very small
compared to real time and a straight equilibration would take too long, even if it was
possible. Moreover, time scales for polymer motion are directly related to the lengths
scale under ivestigation. The movement of a monomer influences its bonded neighbours
and the motion of larger segments of a polymer prevails longer than the one of shorter
segments. The time corresponding to the motion of the whole polymer is called relax-
ation time. For entangled polymer chains, this relaxation time rises rapidly with chain
length. For example: the relaxation time increases by a factor of ten, when the chain
length doubles.

For all the above reasons a powerful simulation software is needed along with an equili-
bration technique and criteria that indicate that the equilibrium is reached. This thesis
exploits configurations obtained by simulations with ESPResSo++, a parallel software
that uses molecular dynamics as a simulation method. Two quantities that provide
criteria for the equilibrium are the static structure factor and the mean squared dis-
placement of monomers. They were implemented within ESPResSo++ as a part of
this thesis. Theoretical background on these two quantities can be found in chapter
2. Chapter 3 explains the parts of ESPResSo++ important to this work including the
code for the two new analysis tools. The equilibration technique that was applied to
relax even long chains is described in chapter 4 along with information on the model,
its potentials and details about the chains. Performance and computation results of the
structure factor and the monomer displacement are provided in chapter 5 and chapter
6 contains suggestions for further improvements of the computation.

2

2
Theory

This chapter explains the theoretical background to the two quantities examined in this
thesis. First, theory on the static structure factor is provided, both for the collective and
the single-chain structure factor. Their relation to other quantities, namely the form
factor and the compressibility is given. Furthermore a peculiar feature of the struc-
ture factor for simulated systems is explained. Second, the definition and meaning of
monomer displacement in polymer physics is explained. The three forms of appearance
are given along with their meaning in systems of entangled linear polymer melts.

2.1. Static structure factor

The static structure factor S(q) describes how a material scatters incident radiation.
Experimentally, it is determined by elastic scattering. In the case of polymers X-Rays
or neutrons are used as projectiles. The intensity of scattered radiation measured in
elastic scattering experiments is determined essentially by three factors as equation 2.1
shows. C(q) combines factors due to the detector, such as the detector efficiency and
its solid angle, f(σ) contains information about the interaction between projectiles and
target and S(q) about the positions of the scattering centers. ([Hig94], 9)

I(q) = C(q)f(σ)S(q). (2.1)

The variable q is related to the scattering angle and the difference in wavelength between
the incident and the scattered wave and will be defined in the next section. S(q) is called
the static structure factor or scattering function.

3

2. Theory

2.1.1. Collective structure factor

This section uses the following notations for incident (subscript i) and scattered(subscript
f for final) wave vectors (as in [Hig94], 12):

ki =
2π

λ
· k̂i (2.2)

kf =
2π

λ
· k̂f , (2.3)

where k̂i and k̂f are the directions of travel and λ is the wavelength, which, in elastic
scattering, is the same for the incident and the scattered wave. The scattering vector q
is defined as their difference.

q = kf − ki =
1

~
m(vf − vi) (2.4)

It is also referred to as momentum transfer as can be seen from the right equality in 2.4,
where the de Broglie wavelength enters and m and v denote the mass and velocities of
the projectile.

~̂ki

~̂kf

~rij

~̂ki · ~rij
~̂kf · ~rij ~ki

~kf ~q

Figure 2.1.: Left side: elastic scattering from two point scatterers with relative vector
rij. The travel distance difference of the scattered waves (blue vectors) can

be calculated as vertical projections of rij to the wave vectors k̂i and k̂f .
Right side: geometrical representation of the scattering vector q.

The phase difference caused by scattering on different scattering centers is obtained by
q · rij as figure 2.1 depicts (cf. [Hig94], 12).

4

2.1. Static structure factor

Figure 2.2.: (a) Static structure factor of polybutadiene melts (T = 270 K) and
glasses (T = 4 K, 160 K) measured by neutron scattering due to Arbe
et al.([Arb96]). The scattering background is not subtracted here, there-
fore the zero of the Y axis is not known precisely. (b) Static structure
factor of silicon dioxide at T = 300 K. Circles denote data points obtained
by neutron scattering from Price and Carpenter ([Pri87]). Data for the
solid line was obtained by molecular dynamics simulations of Horbach and
Kob ([Hor99]). The graph is taken from [Hor99].

The static structure factor is defined as (cf. [Rub03], 123)

S(q) =
1

N ·M

N ·M∑
i=1

N ·M∑
j=1

〈
e−iq·(ri−rj)

〉 , (2.5)

where ri and rj are the positions of scatterers and N ·M their total number. The angled
brackets denote the average over different configurations. For ergodic systems it does
not matter wether they are time or ensemble averages. In this thesis the structure factor
is computed for polymeric systems. Hence, N ·M is the total number of monomers in
the system. The degree of polymerization N of the polymer describes the number of
monomers that belong to one molecule. The number of molecules is represented by
M . Since the computation is performed for a computer simulated system in this thesis
“monomers” refers to the monomers of the particular model system. In experiments the
total number of scatterers denotes the nuclei in the scattering volume only ([Rub03],
123) and the scattering length of the atoms has to be taken into account as well ([Cat00],
177).

Figure 2.2(a) shows the typical form of the static structure factor for a dense fluid1.

1Polymer melts are dense fluids. Since the coherent collective static structure factor does not dis-
tinguish between monomers of different chains, it exhibits the same form as for ”any other dense
fluid”([Bin05], 94). Scattering is called ”coherent”, when scattering centers are identical. Experi-
mentally this is conducted by deuteration of all chains.([Hig94])

5

2. Theory

Figure 2.3.: Static structure factor for a bead-spring model of polymers obtained from
simulations of Baschnagel et al. ([Bas00]). Beads interact via a Lennard
Jones-potential. Temperature and lengths are given in units of the Lennard-
Jones parameters ε and σ , respectively (cf. equation 4.1).

It was obtained experimentally by neutron scattering. The first and highest peak at
q1 ≈ 1.5Å

-1
corresponds to the distance rnn of nearest neighbouring atoms, which is

given by rnn = 2π
q1

. The second, smaller peak at about q2 ≈ 2.8Å
-1

corresponds to
intramolecular correlations along the chain. Figure 2.2(b) shows the structure factor
for a silicon dioxide (SiO), obtained from both experiment and molecular dynamics
simulation. It is shown as an example for a substance, where the first peak of the
structure factor does not correspond to the distance of nearest neighbouring atoms. In
the silicon dioxide network the nearest neighbour of a silicon atom is always an oxygen
atom (see figure 2.4). This Si-O distance occurs in the further peaks at higher values

Figure 2.4.: Silicon dioxide network. From [Fil12]

6

2.1. Static structure factor

of q. In this case the first peak at q1 ≈ 1.6Å
-1

corresponds to the distance between
neighbouring silicon atoms. ([Bin05], 42 ff.)

The structure factor of a bead-sping model of a polymer is shown in figure 2.3. It
also has the typical form of a dense fluid. A combination of Lennard-Jones and FENE
potential were used to model the system. The minimum of the total potential is located
at 0.96σ. As a result the favoured bondlength is 0.96σ, which does not match the first
peak of the structure factor plot. The position of the peak is around q1 ≈ 7, which can
be interpreted as rnn = 2π

7 ≈ 0.90. This mismatch conflicts crystalline ordering and
indicates that the system is amorphous ([Bas00], 6366).

2.1.2. Single-chain and intramolecular structure factor

The structure factor can be decomposed into inter- and intramolecular parts (as in
[Hig94], 123 f.).

S(q) =
1

NM

N ·M∑
i=1

N ·M∑
j=1

〈
e−iq·(ri−rj)

〉 (2.6)

=
1

N

 M∑
p=1

M∑
q=1

N∑
k=1

N∑
l=1

〈
e−iq·(rp,k−rq,l)

〉 (2.7)

In the above equation M is the number of chains, or generally the number of molecules
and N is the number of particles per molecule or for the case of this thesis the number
of beads per chain. Indices p and q denote chains, k and l beads of a chain. Separating
terms belonging to one chain from those belonging to different chains yields

S(q) =
1

N

 M∑
p=1

N∑
k=1

N∑
l=1

〈
e−iq·(rp,k−rp,l)

〉
+

M∑
p=1

M∑
q 6=p

N∑
k=1

N∑
l=1

〈
e−iq·(rp,k−rq,l)

〉 . (2.8)

The first term is called the single chain structure factor or the form factor P (q) of the
molecule and corresponds to intermolecular interferences. The second term corresponds
to interferences between radiation emitted from different molecules and is named Q(q)
in [Hig94](124).

S(q) =
1

N

[
MN2P (q) +M2N2Q(q)

]
= NP (q) +MNQ(q) (2.9)

P (q) =
1

M

1

N2

M∑
p=1

N∑
k=1

N∑
l=1

〈
e−iq·(rp,k−rp,l)

〉
= Ssingle-chain(q) (2.10)

7

2. Theory

Q(q) =
1

M2

1

N2

M∑
p=1

M∑
q 6=p

N∑
k=1

N∑
l=1

〈
e−iq·(rp,k−rq,l)

〉
(2.11)

The double sum over chains in 2.11 produces M · (M − 1) terms. Since the number of
chains is usually very high, it is approximated by M2 (both in equation 2.9 and 2.11).
In computer simulations one might also investigate systems with a rather small number
of chains. One system used for testing purposes within this thesis only contained ten
chains, so it would be appropriate to use the exact formula. However, equation 2.11 is
not used in any implementation, since only the collective and the single-chain structure
factor were implemented.

2.1.3. Relation to other quantities

Form Factor

The form factor usually describes the shape of the target particles. It can be the shape
of the nucleus or a molecule. In the case of polymers, a molecule’s shape is composed
of the positions (and orientations) of its monomers. Even more general, in polymer
models it is composed of the positions of the units the polymer is divided into. This
can be, depending on the model, beads representing monomers or blobs representing
bigger segments of a polymer.

The form factor is defined as

P (q) ≡ Is(q)

Is(0)
, (2.12)

where Is(0) := lim|q|→0 Is(q). The form factor is measured from a polymer in dilute
solution, because molecules are seperated here. Since only the form and no motion is of
interest, only elastic scattering is taken into account. The scattered intensity for such
an experiment calculates from the incident intensity Ii as

Is(q) = IiA
2
N∑
k=1

N∑
l=1

cos[q · (rk − rl)], (2.13)

where A contains factors such as the polarizability of the target particle. Thus, the
form factor for polymers in dilute solution computes as

P (q) =
1

N2

N∑
k=1

N∑
l=1

cos[q · (rk − rl)]. (2.14)

In fact this relates directly to the single-chain structure factor from equation 2.10.
([Rub03], 82)

8

2.1. Static structure factor

Pair distribution function

The pair distribution function is defined as

g(r) =
1

ρ

∑
j 6=i
〈δ(r− ri + rj)〉. (2.15)

For amorphous substances g(r) ≡ g(r) is called the radial distribution function. The
relation of the static structure factor to the pair distribution function is given in equation
2.16.

S(q) = 1 + ρ

∫
e−iq·rg(r)dr (2.16)

Conversely, the fourier transform of [S(q)− 1]

g(r) =
1

ρ

1

(2π)3

∫
e−iq·r [S(q)− 1] dq (2.17)

provides the pair distribution function. ([Bin05], 37 f.)

Compressibility

In the limit of low wavenumbers, i.e. q approaches zero, the structure factor can be
written as

lim
q→0

S(q) ≡ S(q → 0) = 1 + ρ

∫
[g(r)− 1] dr. (2.18)

Here the limit g(r → ∞) = 1 is substracted in the integrant. The integration would
transform it to a delta-distribution at q = 0, which does not contribute to the limit
q → 0. Equation 2.18 relates to density fluctuations (equation 2.19, [Han86], 29 f.),
which also relate to the compressibility (equation 2.20).

〈N2〉 − 〈N〉2
〈N〉 = 1 + ρ

∫
[g(r)− 1] dr (2.19)

〈N2〉 − 〈N〉2
〈N〉 = ρkBTκT , (2.20)

where ρ is the mass density, kB is the Boltzmann constant, T the temperature and
κT the isothermal compressibility. Thus, the static structure factor is related to the
isothermal compressibility by eqation 2.21.

lim
q→0

S(q) = ρkBTκT , (2.21)

This paragraph follows [Bin05](45).

9

2. Theory

2.1.4. Restrictive choice of scattering vectors q

All simulation configurations used in this project have been run with periodic boundary
conditions. The periodicity in coordinates yields a restriction in the choice of scattering
vectors q for the calculation of the structure factor. This can be understood from
the following equations 2.29. Considering only one dimension for a start, the periodic
boundary conditions require the same result for (rx+Lx) as for rx, where Lx is the box
length in x-direction:

e−iqxrx
!

= e−iqx(rx+Lx) (2.22)

1
!

= e−iqxLx (2.23)

1
!

= cos (qxLx)− i sin (qxLx) (2.24)

1
!

= cos (qxLx) ∧ sin (qxLx)
!

= 0 (2.25)

⇒ qx
!

=
2π

Lx
· n for n ∈ N0 (2.26)

Since the periodicity condition must always be true, the same restriction applies to y-
and z-direction, in particular if two components of the scattering vector are zero.

e−iq·r = e−iqxrx · e−iqyry · e−iqzrz (2.27)

for qy = qz = 0 (2.28)

⇒ e−iqxrx
!

= e−iqx(rx+Lx) (2.29)

So it is only possible to choose scattering vectors, whose components qi are multiples
of 2π

Li
. In other words, scattering vectors are lying on a grid with spacings of 2π

Li
. This

grid will be discussed again in chapter 6.

Furthermore a restriction for the largest sensible scattering vector can be obtained by
the bond length. Since q space is proportional to reciprocal coordinate space, q vectors
larger than 2π

b correspond to distances smaller than the bond lenght, a scale on which
the probability of finding more than one particle vanishes.

2.2. Mean-square displacement

For melts of polymer chains commonly three types of time displacements are calculated:
The displacments of monomers, the monomer displacement in the chain’s center-of-mass
frame and the displacement of chains. This classification was introduced by K. Kremer
in [Kre83](1635).

10

2.2. Mean-square displacement

2.2.1. Displacements g1, g2 and g3

The mean-square monomer displacement is referred to as g1 and calculates as

g1(t) = 〈[ri(t)− ri(0)]2〉, (2.30)

where r are the coordinates of a monomer relative to the total system’s center of mass
and 〈〉 is the average over all NM monomers. The monomer displacement with respect
to its chain’s center of mass rCM is

g2(t) = 〈[ri(t)− ri(0)− rCM(t) + rCM(0)]2〉 (2.31)

and the mean-square displacement of the chain’s center of mass, g3, is defined as

g3(t) = 〈[rCM(t)− rCM(0)]2〉, (2.32)

where rCM is the center of mass of the chain relative to the system’s center of mass.
Consequently, the angled brackets in g3 indicate an average only over the M chains of
the system.(cf. [Bul08], 17)

Subtracting the center of mass of the system excludes drift from the above displace-
ments. For g2 this is not necessary explicitly because it is included in the subtraction
of the chain center of mass (if the system drifts, whole chains drift).

2.2.2. Monomer displacement in entangled linear melts

The motion of monomers in entangled systems is restricted by both the bonds to the
other monomers of the molecule and by neighbouring molecules. In entangled polymer
chains the restrictions arising from neighbour molecules are described by tube models.
A single chain is confined by a tube of diameter a, i. e. its monomers’ motion per-
pendicular to the tube’s axis is restricted by the tube diameter and motion parallel to
the tubes axis is not limited by surrounding chains. The different effects on monomer
motion become notable only on the corresponding length- or timescales, respectively.
Figure 2.5 represents the mean square monomer displacement for entangled chains over
different time regimes. Between the relaxation time of a Kuhn monomer τ0 and the
entanglement time τe the motion of a monomer is mainly restricted by the bonded
neighbours, because this interval is too short for movements of the order of the tube
diameter. It was long assumed that hydrodynamic interactions are screened beyond the
monomor length in melts2. Then the motion can be described by the subdiffusive part
of the Rouse model, which is given by equation 2.33.

g1(t) = 〈[r(t)− r(0)]2〉 ∝ b2
(
t

τ0

) 1
2

for t < τe (2.33)

2Farago et al. have shown in [Far11] that this is not valid. Viscoelastic hydrodynamic interactions
contribute to the dynamics for short time scales. In this range the motion has to be corrected. The
formulas in this section and figure 2.5 still follow the old assumtion.

11

2. Theory

Figure 2.5.: Monomer displacement of entangled linear melts (“reptation”) compared to
unentangled displacement (“Rouse”)([Bul08], 19)

At times greater than the entanglement time effects of the tube become notable. The
motion described above only occurs along the tube’s axis. Hence, equation 2.33 now
applies to the curvilinear coordinates s(t) as long as the relaxation time of the chain is
not exceeded.

〈[s(t)− s(0)]2〉 ∝ b2
(
t

τ0

) 1
2

∝ a2
(
t

τe

) 1
2

for τe < t < τR

The second proportionality is obtained by switching from the description of Kuhn
monomers to the one of entanglement segments. As well as the chain can be described
as a random walk of step length b, the tube can be described by a random walk with
step length a 3. Whereas each monomer is in coherent motion with

√
t/t0 neighbouring

monomers, each segment is in coherent motion with
√
t/te neighbouring segments. The

transformation back to canonical coordinates follows 4

〈∆r2〉 ∝ a
√
〈∆s2〉

3or rather of the order of the tube diameter a. This is a reasonable assumption, since we are considering
scaling laws (rather than absolute dependencies)

4This transformation can be understood from the relation between the contour length and the end-
to-end distance of a freely-jointed chain with fixed bond length (which describes a random walk).
The two quantities are connected by 〈R2〉 ∝ bRmax, because Nb2 = b(Nb). Curvilinear coordinates
are defined along the contour and the end-to-end distance refers to a distance in canonical space.
So ∆s(t) scales with ∆r2 in the same way that Rmax scales with 〈R2〉. The prefactor for the former
is the tube’s random walk step length a, since it is the chain’s random walk step length b for the
latter.

12

2.2. Mean-square displacement

yielding a monomer displacement in space of

g1(t) = 〈[r(t)− r(0)]2〉 ∝ a
√
〈[s(t)− s(0)]2〉 ∝ a2

(
t

τe

) 1
4

for τe < t < τR. (2.34)

At times larger than the chain’s relaxation time τR the effects of the bonded neighbours
can be disregarded, leaving the restrictions of motion to the tube. So displacements
of monomers is mainly determined by the center of mass of the chain, which moves in
diffusive Rouse motion along the tube. In curvilinear coordinates this purely diffusive
motion can be described as

〈[s(t)− s(0)]2〉 ∝ Dct ∝ b2N
t

τR
∝ a2 N

Ne

t

τR
for τR < t < τrep

leading to a displacement in space of

g1(t) = 〈[r(t)− r(0)]2〉 ∝ a
√
〈[s(t)− s(0)]2〉 ∝ a2

(
N

Ne

) 1
2
(
t

τR

) 1
2

for τR < t < τrep.

(2.35)

In the above relation τrep is the reptation time which describes the time the chain needs
to diffuse out of the tube. Or, more precisely, the time that corresponds to a motion
of order of the tube length aN

Ne
. For times larger than the reptation time the tube

restrictions can be neglected and the monomers follow the chain’s diffusive motion in
space. The Rouse model provides a diffusion coefficient of

Drep ∝
R2

τrep
∝ kT

ρ

Ne

N2
,

so the mean square monomer displacement is proportional to t on this large timescale:

g1(t) = 〈[r(t)− r(0)]2〉 ∝ Drept ∝
kT

ρ

Ne

N2
t for t > τrep (2.36)

13

3
Creation of new analysis tools

In this project computer simulated polymer melts are analyzed. These are linear melts
up to a chainlength of 2000. Since long chains have large relaxation times, their equi-
libration takes both time and computational power. Therefore a parallel simulation
software is used for the equilibration, namely ESPResSo++ ([Hal13]). Wether the sys-
tems reached equilibrium is indicated by various quantities, such as the mean-square
internal distance, the mean-square monomer displacement and the static structure fac-
tor. The last two are implemented as analysis tools of ESPResSo++. In this chapter
the software is described briefly (section 3.1). Subsequently the way it computes the
structure factor and the monomer displacement is described (sections 3.2 and 3.3).

3.1. Simulation software ESPResSo++

The Extensible Simulation Package for Research on Soft matter systems (ESPResSo++,
[Hal13]) is a free and open-source software. It is parallelized and object oriented and
targeted for a broad range of computer architectures. ESPResSo++ is designed for
many-particle systems of condensed soft matter and uses Molecular dynamics and Monte
Carlo algorithms. Its high modular kernel is written in C++, whereas it has a Python
user interface. This makes the software very flexible and enables it to deal with a wide
range of systems. Since the main design objective is extensibility, it is easy to add new
features to ESPResSo++ and therefore the software package is still growing. Figure
3.1 shows the basic work flow of ESPResSo++, including the connection between the

1Sources: homepage of ESPResSo++ ([Stü]) and Openclipart.org ([OCAc], [OCAb], [OCAa])

15

3. Creation of new analysis tools

ESPResSo++

User

C++ Python

uses simple
commands
defined in

translates
commands

passes
results on

progress
output

submits
results

executes
Python script

computes

Figure 3.1.: Work flow of ESPResSO++ 1

two programming languages. The user writes and runs a Python script, which contains
the commands for building the desired system, starting a simulation and analyzing
the results. These commands are defined on the Python level of ESPResSo++. The
definition mainly consists in connecting the commands to the appropriate C++ code,
which performs all computations. The simulation results are then passed to the Python
level before they are submitted to the user.

Usage

A minimal example of a user’s Python script is given below. It uses an analysis routine
of ESPResSo++ added during this thesis: the static structure factor. Commented
lines start with a hash tag (#) in Python. All ESPResSo++ scripts have to start with
the import of espresso (line 2). The analyzed system can either be created with an
ESPResSo++ simulation (within the same script)or read in from a file (if it was created
and saved before). An object of the desired analysis has to be created (here StatS, line
8) before calling the corresponding function (here StatS.compute()). This is typical
for all analysis with ESPResSo++.

1 #script for calculation of static structure factor

2 import espresso

16

3.1. Simulation software ESPResSo++

4 #read in your configuration from a file(the system) ...

5 #or get it from a running simulation

7 #creating the StatS object

8 StatS = espresso.analysis.StaticStructF(system)

10 #compute the collective static structure factor

11 result_collective = StatS.compute (10,10,10,1, conf1)

13 print "collective static structure factor:", result_collective

Connection between Python and C++

They way ESPResSo++ connects the Python to the C++ level is now shown for anal-
ysis. The static structure factor computation of ESPResSo++ serves as a typical ex-
ample.

For analysis, usually three internal files correspond to the computation of a quantity:

• a C++ header file: StaticStructF.cpp

• a C++ source file: StaticStructF.hpp

• a Python module: StaticStructF.py

The latter contains the connections between the user’s commands (in the Python script)
to the functions and classes implemented in C++. For example, in the script above
in line 11 compute() is called. In the following, the connection to the C++ function
that performs the main computation in this script is explained. The Python function
compute() is defined in the corresponding Python module StaticStructF.py in lines
39 till 43:

34 class StaticStructFLocal(ObservableLocal , analysis_StaticStructF):

35 ’The (local) compute the static structure function.’

36 #Python constructor ...

39 def compute(self , nqx , nqy , nqz , bin_factor , ofile = None):

40 if ofile is None:

41 return self.cxxclass.compute(self , nqx , nqy , nqz , bin_factor)

42 else:

43 #same call PLUS creation of an output file ...

In line 41 the first part of the connection to the C++ function is made. The second part
can be found at the end of the source file StaticStructF.cpp in the lines listed below.
In line 392 the function compute() is connected to the C++ function computeArray().
computeArray() contains the computation of the structure factor and is defined in the
same file.

388 void StaticStructF :: registerPython () {

389 using namespace espresso :: python;

390 class_ <StaticStructF , bases < Observable > >

17

3. Creation of new analysis tools

391 #registration of constructor ...

392 .def("compute", &StaticStructF :: computeArray)

393 #analog for single chain function ...

394 ;

395 }

The definition and connection of constructors is implemented analogously to the one of
functions. A description of C++ functions computing analysis results is given in the
next section.

3.2. Static structure factor

This section describes the implementation of the static structure as an analysis routine
of ESPResSo++. The choice of the formula, or rather its analytic transformation
is explained at first. Since ESPResSo++ is a parallel software, this routine is also
parallelized and the way it is conducted is also stated in this section. Information
about binning used in the implementation is provided along with the parameters of the
main function of the routine (which are important to the user). The main loop of the
code is given below, for full source codes see appendix A.1.1.

S(q) =
1

N

 N∑
i=1

N∑
j=1

e−iq·(ri−rj)

 (3.1)

S(q) =
1

N

(N∑
i=1

cos (q · ri)
)2

+

(
N∑
i=1

sin (q · ri)
)2
 (3.2)

The calculation of the static structure factor was implemented in ESPResSo++ within
a class named StaticStructF. It inherits from Observable, making the system of
particles available on C++ level. For the calculation two methods computeArray()

and computeArraySingleChain() of StaticStructF were written, which compute the
collective and the single chain structure factor, respectively. The definition of the static
structure factor can be transformed algebraically as in equations 3.1 - 3.2. For the
implementation equation 3.2 was chosen, because it neither contains a double sum nor
an exponential function resulting in fastest performance.

The time consuming step of the computation is the access of memory. Therefore q-
vectors are created as a part of the main computation loop rather than prior to it. This
leaves the access of memory to the part of the summation loop, where the particle’s
position is requested. Accessing these positions N times, rather than N2 causes a major
acceleration scaling with the number of particles.

18

3.2. Static structure factor

Furthermore equation 3.2 is favored due to the substitution of the exponential by sine
and cosine and the absence of imaginary numbers. Both causing a small speedup in the
calculation.

After deciding on the formula, the decision on parallelization was taken. The algorithm
for computing the structure factor has to contain, in principle, two loops: one over
different scattering vectors q and one over particle positions ri. Therefore parallelization
can be performed clearly by distributing either the scattering vectors or the particle’s
to different tasks. Since ESPResSo++ is designed to calculate particularly big systems,
consisting of 105 or 106 monomers, and one is sometimes interested in only a small
range of scattering vectors (e.g. for calculation of the compressibility, cf. section 2.1.3),
parallelization over the particles was chosen, so a great number of cores can be used
even for a small number of scattering vectors2.

For a two dimensional plot of the structure factor S(q) one needs to reduce its de-
pendency to a one-dimensional quantity. Since the systems under investigation are
isotropic, changing from the scattering vector to its length is appropriate. Hence, an
averaging over the values for scattering vectors of the same length has to be performed
in addition to the calculation of S(q),

S(q) = 〈S(q)〉|q|=q =
1

nq

∑
|q|=q

S(q) (3.3)

where q = |q| and nq is the number of q-vectors with modulus q. According to [Bas94] it
is advisable to not only average over scattering vectors of the same length, but average
over vectors of similar length. The range of lengths averaged over then becomes a
bin size and the averaging is replaced by binning. The computation for this binning
can easily be used for the regular averaging of equation 3.3, by decreasing the bin size
in such a way, that only vectors of the same length belong to one bin. Conversely,
using the averaging calculation as binning is not as obvious. Therefore binning was
implemented in the computation of the static structure factor (see lines 124 - 130 of
the code below). Since users might want to go back to regular averaging, the bin size
is kept adjustable via the parameter bin_factor. This factor is multiplied with the
minimum grid distance (i.e. 2π

Lmax
) providing the size of the bins (line 130). A factor

was chosen instead of an absolute value since the distance between q-vectors is directly
related to the size of the box. Thus, the number of q-vectors sorted into a fixed bin
scales with the box size as well. Scattering vectors that lie exactly on the boarder of
two adjacent bins are sorted into the upper bin. This basically arbitrary choice matches
the break condition for scattering vectors at the corners of the grid (see figure 6.1 and
explanation below).This way to pigeonhole the q-vectors also causes bin 0 to be empty,
or more precisely, to only contain the structure factor for the zero scattering vector,
which is the number of monomers. The numbering of bins is not shifted to keep the

2This decision is not crucial and will be different where appropriate, as in chapter 6

19

3. Creation of new analysis tools

code more readable. Instead, bin 0 is taken out of the result by skipping it in the python
list (appendix A.1.1 line 209).

Besides the bin_factor, StaticStructF::compute has three more parameters, nqx,
nqy and nqz. These determine how far the creation of scattering vectors moves away
from the middle of the grid on which they must lie (see section 5.2.1). Limiting the
size of the scattering vector’s components in this way causes the grid to have corners.
Taking these corner vectors into account in the calculation gives rise to bad statistics
at large moduli of the scattering vectors. Therefore scattering vectors of the corners
were taken out by a modulus request inside the if statement of line 173.

116 //step size for qx , qy, qz

117 real dqs [3];

118 dqs[0] = 2. * M_PIl / Li[0];

119 dqs[1] = 2. * M_PIl / Li[1];

120 dqs[2] = 2. * M_PIl / Li[2];

122 Real3D q;

124 // calculations for binning

125 real maxX = nqx * dqs [0]; // maximum x value of a q vector

126 real maxY = nqy * dqs [1]; // maximum y value of a q vector

127 real maxZ = nqz * dqs [2]; // maximum z value of a q vector

129 real shortestDir = min(maxX , min(maxY ,maxZ)); //#include <algorithm >??

130 real bin_size = bin_factor * min(dqs[0], (dqs[1], dqs [2]));

133 // real q_sqr_max = nqx * nqx * dqs[0] * dqs[0]

134 // + nqy * nqy * dqs[1] * dqs[1]

135 // + nqz * nqz * dqs[2] * dqs [2];

136 // real q_max = sqrt(q_sqr_max);

137 int num_bins = (int) ceil(shortestDir / bin_size);

138 vector <real > sq_bin;

139 vector <real > q_bin;

140 vector <int > count_bin;

141 sq_bin.resize(num_bins);

142 q_bin.resize(num_bins);

143 count_bin.resize(num_bins);

145 if (myrank == 0) {

146 cout << nprocs << " CPUs , new routine\n\n"

147 << "bin size \t" << bin_size << "\n"

148 << "q_max \t" << shortestDir << "\n";

149 }

151 real n_reci = 1. / num_part;

152 real scos_local = 0; //will store cos -sum on each CPU

153 real ssin_local = 0; //will store sin -sum on each CPU

154 int ppp = (int) ceil((double) num_part / nprocs); // particles per proc

156 Real3D coordP;

158 python ::list pyli;

160 //loop over different q values

20

3.2. Static structure factor

161 // starting from zero because combinations with negative components

162 //will give the same result in S(q). so S(q) is the same for

163 //the 8 vectors q=(x,y,z),(-x,y,z), (x,-y,z),(x,y,-z),(-x,-y,z) ,...

164 for (int hx = -nqx; hx <= nqx; hx++) {

165 for (int hy = -nqy; hy <= nqy; hy++) {

166 for (int hz = 0; hz <= nqz; hz++) {

168 // values of q-vector

169 q[0] = hx * dqs [0];

170 q[1] = hy * dqs [1];

171 q[2] = hz * dqs [2];

172 real q_abs = q.abs();

173 if (q_abs > shortestDir){break;}

175 // determining the bin number

176 int bin_i = (int) floor(q_abs / bin_size);

177 q_bin[bin_i] += q_abs;

178 count_bin[bin_i] += 1;

180 // resetting the variables that store the local sum on each proc

181 scos_local = 0;

182 ssin_local = 0;

184 //loop over particles

185 for (int k = myrank * ppp; k < (1 + myrank) * ppp && k < num_part;

186 k++) {

187 coordP = config ->getCoordinates(k);

188 scos_local += cos(q * coordP);

189 ssin_local += sin(q * coordP);

190 }

191 if (myrank != 0) {

192 boost::mpi:: reduce (* system.comm , scos_local , plus <real > (),

0);

193 boost::mpi:: reduce (* system.comm , ssin_local , plus <real > (),

0);

194 }

196 if (myrank == 0) {

197 real scos = 0;

198 real ssin = 0;

199 boost::mpi:: reduce (* system.comm , scos_local , scos , plus <real >

(), 0);

200 boost::mpi:: reduce (* system.comm , ssin_local , ssin , plus <real >

(), 0);

201 sq_bin[bin_i] += scos * scos + ssin * ssin;

202 }

203 }

204 }

205 }

Furthermore, the limits of the scattering vector loop deserve explanation. The Z com-
ponent hz ranges from zero to nqz whereas hx and hy include negative values. With
this, double calculations are avoided. More precisely: Two vectors only differing in sign
give the same contribution to the static structure factor. These vectors can be covered
by leaving out the ones with negative Z component as table 3.1 shows. The vectors are
grouped in pairs of q and −q with q1 = −q8, q2 = −q7 and so on.

Each vector of a pair has the same contribution to S(q) as can be seen easiest from

21

3. Creation of new analysis tools

equation 3.4.

S(q) =
1

N

 N∑
i=1

N∑
j=1

e−iq·(ri−rj)

 =
1

N

 N∑
i=1

N∑
j=1

eiq·(ri−rj)

 (3.4)

Double summation over all particles makes it possible to switch summation indices and
since ri − rj = −(rj − ri) the averaging over scattering vectors can be reduced to the
set Q+, which is the left side of table 3.1:

S(q) =
1

8

∑
|q|=q

S(q) =
1

8

 ∑
q∈Q+

S(q) +
∑
q∈Q−

S(q)

 =
1

4

∑
q∈Q+

S(q) (3.5)

Since an averaging over scattering vectors of the same (or similar) length is performed,
vectors with the same contribution can be left out of the calculation without additional
correction. In other words, the factor 1

4 in 3.5 is covered by the binning calculations,
i.e. including it explicitly is not necessary. As figure 3.2 shows, the result differs,
when a second component’s negative values are kept out of the computation. From a
mathematical point of view the above reasoning is enough to not consider the matter
any further.

Thinking in terms of physics, the isotropy of the system suggests that using one octant
(see figure 3.3) of q-vectors3 should be sufficient. However, isotropy is only assumed
for the averaged system. In an averaged system the computation for one octant of q-
vectors comes very close to that with the full range. For one particular (not averaged)
configuration, each octant yields slightly different results. In this sense the usage of
four instead of one octant for the calculation is an averaging over octants. Besides this
reasoning points out, that averaging over q-vectors with the same modulus is only valid
for isotropic systems. For the computation of the single chain static structure factor,
the same method was used for a start, although a better distribution could be achieved
here by parallelizing over the scattering vectors. In the computation for the single chain

3The isotropy of the system can easily be transferred to scattering vectors. The vectors of octant I
give same result as the ones from octant II if the system is rotated by 90◦.

1© 2© 3© 4© 5© 6© 7© 8©
qx -qx qx -qx qx -qx qx -qx
qy qy -qy -qy qy qy -qy -qy
qz qz qz qz -qz -qz -qz -qz︸ ︷︷ ︸ ︸ ︷︷ ︸

Q+ Q−

Table 3.1.: The eight scattering vectors of the same length grouped in pairs only differing
in sign, where q1 = −q8, q2 = −q7 and so on.

22

3.2. Static structure factor

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35

S
(q
)

q

all possible q-vectors
qy and qz only positive

qz only positive

Figure 3.2.: Static structure factor calculated for all possible q vectors (green x), for
all with non-negative Z component (blue asterisks) and for all with non-
negative Z and non-negative Y component (red crosses).

Figure 3.3.: Octants. Author: Lars H. Rohwedder (User: RokerHRO), URL:
http://en.wikipedia.org/wiki/File:Octant numbers.svg

23

3. Creation of new analysis tools

structure factor, parallelizing over particles is subject to the condition that particles of
one molecule have to be assigned to the same task. There is no such condition for
scattering vectors. More importantly, the single chain computation is not affected by
the box size of the whole system. This allows for a continuous choice of scattering
vectors, making scattering vectors the preferable variable for the parallelization (cf.
chapter 6).

3.3. Mean-square displacement

One of the three common mean-square displacement calculations was already imple-
mented in ESPResSo++ previous to this work. The displacement of monomers with
respect to the whole systems center of mass, g1, is implemented as the member function
compute() in the class MeanSquareDispl. The displacement of monomers in the chain’s
center-of-mass frame, g2, and the chain’s displacement in the system’s center-of-mass
frame, g3, were implemented as computeG2() and computeG3, respectively as a part of
this thesis.

They are implemented similar to g1, but since they contain the chain’s center of mass, it
is necessary here to take into account the chain length. MeanSquareDispl inherits from
the class ConfigsParticleDecomp which prepares the parallelization over particles. It
decomposes the system by assigning a preferably equal number of particles to each
task. The assignment is stored in a protected member variable idToCpu. This is a
map, which means it contains ’keys’ and ’values’ and maps each key to a corresponding
value. Here the keys are particle ID numbers and they are mapped to a CPU number4.
With this map parallelization can be performed easily in all classes inheriting from
ConfigsParticleDecomp.

3.3.1. Particle and chain decomposition

For a parallel computation of g1 assigning the same number of monomers to each
MPI task is desirable. The same holds true for every collective quantity which takes
individual monomers into account, without considering to which molecule they be-
long. For these quantities the map idToCpu contains the information for a uniform
distribution of monomers. It is filled within the constructor ConfigsParticleDe-

comp(shared_ptr<System> system) of ConfigsParticleDecomp:

116 int nodeNum = 0;

117 int count = 0;

4’Task number’ is the more accurate term, since the parallelization with boost::mpi uses MPI tasks.
The tasks are distributed depending on the hardware. So a ’task’ can stand for a CPU, a core of a
CPU or some other computing unit. In the following code variable names contain ’CPU’ (or some
’node’), such as idToCpu. This is why I used the term above.

24

3.3. Mean-square displacement

118 for (vector <int >:: iterator it = tot_idList.begin(); it!= tot_idList.end

(); ++it) {

119 idToCpu [*it] = nodeNum;

120 count ++;

121 if(count >= local_num_of_part){

122 count = 0;

123 nodeNum ++;

124 }

125 }

In the above code tot_idList is a vector storing the ID numbers of all particles. The
map filling is performed using an iterator. Iterators guarantee to loop over every entry
of the corresponding object (in this case a vector), but they do not ensure the order of
accessing the elements. In MD simulations of polymers the monomers are commonly
numbered consistent with the molecule they belong to, e.g. particles belonging to
molecule 0 are numbered from 0 till 99, particles belonging to molecule 1 from 100 to
199, and so on. Therefore the order of monomers is essential for the computation of a
molecules center of mass. Therefore, in the implementation of g2 and g3 the iterator-
loop is replaced by a regular integer-loop. This way the particles are distributed in way,
such that whole molecules are assigned to one task. This ’chain decomposition’, instead
of (single) particle decomposition, is implemented inside an overloaded constructor of
ConfigsParticleDecomp. It contains the chain length as an additional parameter:

150 ConfigsParticleDecomp(shared_ptr <System > system , int _chainlength):

SystemAccess (system){

151 //...

164 //for monodisperse chains

165 int num_chains = num_of_part / chainlength;

166 int local_num_chains = (int) ceil((double)num_chains / n_nodes);

167 int local_num_part = local_num_chains * chainlength;

169 //in case the chainlength does not match the total number of particles

170 if(num_of_part % chainlength != 0){

171 cout << "chainlength does not match total number of particles\n"

172 << "chainlength: " << chainlength

173 << "\n num_of_part " << num_of_part << "\n\n";

174 }

176 //CPU0 will use particles 0, 1, 2, ... local_num_particles -1.

177 //CPU1 will use particles local_num_particles , local_num_particles

+1,...

178 int nodeNum = -1;

179 for(long unsigned int id = 0; id < num_of_part ;id++){

180 if(id % local_num_part == 0) ++ nodeNum;

181 idToCpu[id] = nodeNum;

182 }

The chain decomposition is prepared in line 115 by calculating the number of chains
per MPI task. The local number of particles is then a multiple of the number of the
chain length, ensuring that whole chains are computed by one MPI task.

25

3. Creation of new analysis tools

3.3.2. Statistics for different time intervals

Besides chain decomposition, the implementation mostly consists of translating the def-
initions of g2 and g3 (see equation 3.6) into C++ code. The only difference being an
averaging over different time intervals.

MSD ≡ 〈(x(t)− x(0))2〉 =


g1(t) where xi = xi,abs − xCMS

g2(t) where xi = xi,abs − xCMC

g3(t) where xi = xCMC − xCMS

(3.6)

Omitting this averaging for a start, the principal computation composes as follows:
First, the number of gathered snapshots is obtained. Here ’snapshot’ denotes a text file
(usually with extension ’.xyz’ or ’.pdb’) which stores data for the configuration at one
point in (simulation) time. The data contains inter alia particle ID numbers, positions
and velocities. Snapshots are usually stored regularly during simulation, i.e. after a
fixed number of MD steps corresponding to a fixed (simulation) time interval. For the
calculation of the mean-square displacement only ID numbers and positions are needed,
amongst their respective time. So here the snapshot number corresponds to the time.
The respective centers of mass are calculated for each snapshot (i.e. for each available
point in time). Subsequently the mean-square displacement is calculated within a loop
over all snapshots (see line ...). Eventually the results from all MPI tasks are summed,
divided by the number of particles and returned within a python list.

The formula above suggests to use a certain (and then every desired) snapshot at a
time t together with the snapshot at time zero for the computation, e.g. snapshot
t = 5 together with snapshot t = 0 for an interval of 5. Since we are interested in
the displacement per time interval (rather than at absolute times), we can also use
snapshot t = 6 together with snapshot t = 1 and snapshot t = 7 with snapshot t = 2
and so on (for an interval of 5). The averaging over different time intervals is introduced
as another loop inside the (first) snapshot loop. With this, all intervals of the same
length are taken into account in the calculation (see equation 3.7, ∆τ denotes the time
difference between subsequent snapshots).

g(n ·∆τ) = 〈(x(τj)− x(τi))
2〉 with n ·∆τ = τj − τi (3.7)

This yields better statistics for each interval, except for the largest one. The precision
of the calculated value increases with decreasing time difference. At the same time this
procedure averages out differences that might occur in the course of the simulation. So
if, for example, all particles would have a greater change in position during a certain
interval at the beginning of the simulation than at the same interval in the middle and
end, this would not be visible in the result, only the results would be slightly greater.
For a displacement per simulation time, only the averaging over particles can be used.
With equilibrated systems, one is interested in the mean-square displacement per time
interval, so this second averaging is valid and improves the accuracy of the results.

26

4
Systems

All polymeric model systems investigated in this thesis are linear melts, i.e. they purely
consist of polymer chains in a liquid state without solvent. The chains are modeled by
beads and springs, where the beads represent the monomers and the springs represent
the bonds connecting two monomers of a chain. The interaction between monomers
belonging to different chains is also integrated in the model by a so called non-bonded
potential, which is different from the bonded spring potential. Analysis is performed on
equilibrated systems. Producing such consists of mainly three steps. First, the chains
are generated. Secondly, they are equilibrated and thirdly the data required for further
investigation is saved. Systems of different chain stiffness were examined, which means
their distributions of angles between bonds differed. The stiffness is accounted for at
both the first step of chain generation and the second step of equilibration, whereas the
potentials are only applied in the equilibration stage (and in the simulation itself; see
section 4.3). This chapter explains the three steps to obtain equilibrated configurations.
The model and the equlibration are based on the work of Moreira et al. [Mor14].

4.1. Model and chain generation

The chains are modeled as bead-spring systems. Each bead represents a monomer as a
sphere of fixed diameter σ and mass m. Chains are generated as non-reversal random
walks. A random walk is a procedure of setting up a chain with an equal and fixed
bond length b. It starts with one bead and places the second bead a distance b apart,
but in a random direction. The next step uses the second bead as a starting point and,

27

4. Systems

again, the third bead is placed in a random direction in a distance of b from the second
bead. These steps are repeated up to the last bead. A freely-jointed chain is described
by a (completely) random walk. In a non-reversal random walk the steps are executed
mainly in the same way, but with a restriction on subsequent beads. Assume the beads
are numbered consecutively, then bead (i − 1) and bead (i + 1) are required to have
a minimal distance lmin. This distance corresponds to the stiffness of the chain. Stiff
chains (stiffness kθ > 0) are created with a bigger distance lmin, whereas freely-jointed
chains (kθ = 0) are created without a minimal distance between beads (i − 1) and
(i + 1), tantamount to a random walk. This also means that a random walk can fold
back, meaning two beads (i− 1) and (i+ 1) are assigned the same position. Therefore
the freely-jointed chains are also referred to as fully flexible chains. In a non-reversal
random walk folding back is prohibited by the demanded distance lmin. A chain with
stiffness is described by a non-reversal random walk and it is also called semi-flexible
chain.

After the creation via a (non-reversal) random-walk, the chains are randomly placed in
a cubic simulation box. The size of the box is chosen such that the number density of
beads reaches a value of 0.85σ-3 for each system.

Interactions apply when a simulation is started. The unit of energy for the simulation is
ε and the suitable unit of time is τ , with τ =

√
(σ2m/ε) (σ and m are the diameter and

the mass of a bead). Equations 4.1 show the potentials which model the interactions
of the system.

UWCA(r) =

{
4ε{(σ/r)12 − (σ/r)6 + 1

4} for r ≤ rc
0 for r > rc

(4.1a)

UFENE(r) =

{
−0 5kR2

o ln[1− (r/Ro)
2] for r ≤ Ro

∞ for r > Ro
(4.1b)

Ubend(θ) = kθ(1− cos θ) (4.1c)

The bonded potential, for the neighboring beads of a chain, is described by a finite
extensible non-linear elastic potential (FENE). The spring’s constant k in the FENE
potential is set to k = 30 ε/σ2 and its maximum extension Ro is set to Ro = 1.5σ.
Interactions between non-bonded beads are described by a truncated Lennard-Jones
potential. If one cuts the Lennard-Jones potential at its minimum rc = 21/6σ shifts the
left part (r ≤ rc) by the minimum value, such that the repulsive wall eases to zero at
rc and sets the right part to zero entirely, one attains a purely repulsive short range
potential. It is called WCA potential after Weeks, Chandler and Anderson ([Wee71],
5238).The point where it reaches zero is labeled rc because it is the cutoff radius. In the
case of chains with stiffness constant kθ 6= 0 another potential is applied. This bending
potential is described by Ubend, where θi is the angle between beads i−1, i and i+1 (see
figure 4.1). The steps where the potentials are used are described in the next section.

28

4.2. Equilibration

Figure 4.1.: Illustration of the bond angle θ

4.2. Equilibration

Thermodynamic systems reach, after a long enough time, an equilibrium at which the
quantities examined in this work are measured. In order to achieve this state also for
the simulated system, one has to apply suitable interactions to the particles for a long
enough time. Since the chains are generated and placed in the simulation box ran-
domly, a great overlap of beads is probable. Because the potentials (4.1) rise rapidly
for short distances, this will produce huge repulsive forces. These lead to distorsions in
the system. Moreover, the high forces evoke numerical errors and huge particle veloc-
ities, which spread cascaded and do not ease. This is called an explosion. Hence, one
cannot apply the forces at once, but needs an equilibration technique, which prevents
from the explosion. As mentioned earlier, a goal of computer simulations is to further
investigate how microscopic behavior relates to macroscopic quantities. In order to do
so, microscopic characteristics must be the same as in experiments. Here this means,
the single-chain statistics must be preserved. The equilibration procedure is mainly the
one suggested by Auhl et al. ([Auh03]), slightly modified in the warm-up.

This equilibration consists of three phases: pre-packing, warm-up and relaxation. Pre-
packing uses the Monte Carlo method to reduce local density fluctuations1. During the
pre-packing the chains are moved as rigid bodies. As a consequence, the correct single-
chain characteristics, which apply to the intial chains, are kept during pre-packing.
Possible movements are translation, rotation, reflexion, inversion and the swap of two
chains. A move is accepted and conducted, if it reduces local density fluctuations.

The next stage of equilibration is the warm-up phase. It consists in a molecular dy-
namics simulation (MD simulation). So this stage makes use of the potentials above

1An even density distribution is one characteristic of equilibrium. Smoothing dense regions is also a
first step in preventing from a numerical explosion, since particle overlaps are more likely in denser
areas.

29

4. Systems

0

20

40

60

80

100

0.6 0.7 0.8 0.9 1 1.1 1.2

U

r

WCA

rfc = 21/6

rfc = 1.0

rfc = 0.9

rfc = 0.8

Figure 4.2.: The WCA potential is truncated via a force-capped radius rfc during the
warmup.

(4.1). Again, the system must be prevented from explosion. Therefore the friction of
the system is set to high value (of Γ = 1.0) and the basic time step of the simula-
tions is chosen very small (∆t = 0.0001 τ). During small times particles can only move
short distances and when they departed a little the forces will be less in the next time
step. Most notably, at the beginning of the warm-up potentials are truncated in a way
that keeps the chain characteristics, but counteracts numerical errors. They are slowly
morphed into full potentials given in section 4.1. The morphing is realized via a force-
capped radius rfc as shown in figure 4.2. For distances greater than rfc the potential
equals the regular WCA potential. To the left of rfc the potential extends linearly with
the same slope, resulting in a constant force for small distances. During the first part
of the warm-up the force-capped radius is adjusted such that mean squared internal
distances between the beads of chain remain the same. In the last part of the warm-up
force-capped radius is reduced linearly and the full WCA potential is reached.

After pre-packing and warm-up the last phase of equilibration starts: the relaxation.
This is an MD simulation, too, where the friction coefficient is reduced compared to the
warm-up (Γ = 0 5) and the time step is enlarged (first ∆t = 0 001 τ , later ∆t = 0 005 τ).
The relaxation uses full potentials (eq. 4.1).

30

4.3. Configurations from simulation

4.3. Configurations from simulation

Once an equilibrated system is produced, further simulations are conducted. They
produce the data from which the desired quantities are calculated. There are pricipally
two ways of analyzing the data: online, which means while simulating or from files
after the simulation. In order to perform online analysis with ESPResSo++, the user
writes the analysis commands in the same Python script as the simulation commands
so they are executed together. This is especially advisable for small systems, where a
new generation of the system takes less time and computational power than reading in
a stored configuration from a textfile2. The analysis from files is performed with two
separate scripts. The simulation script contains commands to save data necessary for
analysis in files. The analysis script starts with reading the files and calls the analysis
functions subsequently.

In this thesis files are used to analyze the structure and the monomer displacement of
the systems. The mean squared displacement computes from particle positions together
with their time. The particular centers of mass for the computation are also calculated
from those values. The data is collected during an MD simulation as in [Mor14]. All
particle positions are stored at the desired number of time steps. This is realized by
taking snapshots. Here, a snapshot is a file, which contains particle positions (together
with id numbers and velocities. File extension ’.xyz’.). The static structure factor com-
putes from different configurations. Those are obtained basically in the same manner.
Only the interval between the snapshots used for the structure factor is large. This is
why I refer to them as different configurations rather than different snapshots (in time).
Of course, different configurations can also be taken from different initial setups.

All MD simulations mentioned in this section are executed with ESPResSo++. The
software uses a velocity verlet algorithm ([All89], 78 ff.) in the integrator. Further-
more, all simulations named in warm-up, relaxation and simulation are performed at a
constant volume (NVT simulations) and use periodic boundary conditions ([All89], 24
ff.).

2This process is not parallelized up to now.

31

5
Results

This chapter presents the results of the implementations of the static structure factor
and the mean-square displacement described in chapter 3. In the first section, perfor-
mance of the usage of multiple tasks is shown. The second section lists some results of
computations executed with the newly implemented functions.

5.1. Implementation results

This section shows how the speed of the computations scales with the number of tasks
used.

5.1.1. Static structure factor

Figure 5.1 shows the speedup of computation time using a higher number of cores. The
speedup is the quotient of the computation time with one core and the time with n
cores:

speedup ≡ time (1 core)

time (n cores)
(5.1)

The dashed line is the identity. The non-linear increase in speedup for the computation
with eight cores could be due to the “CPU caches”. A cache is a hidden temporary
storage each CPU possesses, designed to increase computational efficiency (see figure

33

5. Results

5.2). In the computation of the static structure factor the important temporarily stored
data consists of the particle positions. Therefore the amount of data decreases with
increasing number of cores. From eight cores on, it might be that all local particle
positions fit in the cache, speeding up the computation at a higher rate than before.
For a further increase of the number of cores this effect still occurs. So I would expect
the data points to have a constant offset of the dashed line (the identity) from the point
where the cache effect occurs on. The slope will still be close to one at first, but decrease
at the number of cores where inter-core communication takes more time than the usage
of that number of cores saves. For larger systems (more particles) both effects should
occur at a higher number of cores.

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9

sp
ee
d
u
p

number of cores n

N = 100, M = 1000
8000 q-vectors

Figure 5.1.: Speedup for static structure factor computation

Figure 5.2.: Minimum cache configuration

34

5.2. Computation results

5.1.2. Mean square displacement

An additional speedup as for the computation of the static structure is also visible
(figure 5.3) for the mean square displacement. It is due to the same effect, since the
implementation uses particle decomposition.

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12

sp
ee
d
u
p

number of cores n

N = 100, M = 1000
1000 snapshots

Figure 5.3.: Speedup for the computation of g1

5.2. Computation results

This section shows computation results performed with the static structure factor anal-
ysis routine of ESPResSo++. Their physical meaning is discussed in relation to the
equilibration procedure (described in chapter 4). Also polymer chains of different length
and stiffness are considered. The first subsection contains results of the computation of
the single-chain structure factor. The second subsection portrays the collective struc-
ture factor computed for different systems. All results are obtained as an average over
five different configurations, if not stated differently.

5.2.1. Single chain structure factor

The single-chain structure factor, or the form factor, is a measure for the structure of
individual chains. In figure 5.4 the single-chain structure factor is plotted along with

35

5. Results

10

20

30

40

50

60

70

80

90

100

0.01 0.1 1

S
(q
)

q

kθ = 0.00
kθ = 0.75
kθ = 1.00
kθ = 1.50
kθ = 2.00

Figure 5.4.: The static structure factor for initial non-reversal random walk systems.
The solid lines stand for the single chain structure factor, the markers stand
for the collective structure factor. All systems contained 1000 chains with
100 beads per chain. The data is obtained by an average over three con-
figurations. For the single chain structure factor the prefactor is adjusted
matching the collective one (1

M ·N instead of 1
M ·N2 in eq. 2.10). Markers

were computed with ESPResSo++ (prefactor 1
M ·N).

the collective structure factor. Solid lines correspond to the single chain structure fac-
tor (multiplied by the chain length N). The markers stand for the collective structure
factor. The markers resemble the lines, especially for values from q = 0.4 on. This
conformity implies, the structure of the whole system is similar to the one of a single
chain. Since the investigated system is the initial non-reversal random walk config-
uration, structure can only result from single chains. The position of chains cannot
contribute, for the chains are placed randomly in the simulation box.

The graph also exhibits some general charcteristics of a structure factor from a simulated
system as well as some consequences of the particular implementation. A lower limit
for data points is visible between q = 0.1 and q = 0.2. This is an artefact of periodic
boundary conditions, which limit scattering vectors to multiples of qmin = 2π

L , where L
is the box length (see section). So in a system of 100 000 beads with a number density

36

5.2. Computation results

of 0.85σ-3 the shortest scattering vector has a length of

qmin =
2π

L
=

2π

(V)1/3
= 2π ·

(
100000

0.85

)− 1
3

≈ 2π

49.00
≈ 0.13. (5.2)

This matches the position of data points for the smallest scattering vector in the graph.
Conversely, there is no lower limit to the single chain structure factor values, because the
restriction of the periodic boundary does not apply to single chains. Thus, scattering
vectors can be chosen densely here, even for small q-values giving rise to the continuous
lines.

Another consequence of the restriction on scattering vectors is inferior statistics for
smaller scattering vectors. More precisely, for those values of S(q), which are computed
from a small number of scattering vectors. In the computation conducted in this work,
with increasing length of q, a growing number of scattering vectors is used to calculate
one value of the structure factor (see figure 6.1). For example, only three scattering
vectors of the minimal length qmin can be created for a cubic simulation box: (qmin, 0, 0),
(0, qmin, 0) and (0, 0, qmin). Hence, the value of S(q) for q = qmin is only averaged over
three values of S(q).

As a result, the fluctuation of the static stucture factor between different configurations
is higher for small q. In figure 5.4 this characteristic becomes visible at the difference
between markers and lines. Collective values for the smallest q-moduli deviate majorly
from the single chain structure factor data, whereas the collective markers are in perfect
agreement with the lines for higher q-moduli.

Albeit hidden within the logarithmic scale of the X axis, the even bin spacing of the the
implementation becomes visible: One can see that vertical spaces between data points
follow the logarithmic scale. More easily, the constant bin size can be seen from the
figures in the following subsection (5.2.2, especially figures 5.5 and 5.8).

5.2.2. Collective structure factor

The collective static structure factor is a measure for structure and density fluctuations
on all length scales. An even density distribution is characteristic for the desired equi-
librium configurations. A flat structure factor at low wavenumbers indicates an even
density distribution. The initial systems of non-reversal random walk chains used in
this project do not exhibit this flattening, as the green markers of figure 5.5 depict.
Contrawise, they increase steeply as q-vectors approach zero. Pre-packing, the first
stage of the equlibration procedure, already improves the density distribution closer
towards equilibrium, as markers go down for small q-values. A better resolution of the
benefits of pre-packing is given in figure 5.6. The plot is displayed on non-linear scales
to make the difference at small q-values visible in more detail. At small q pre-packing

37

5. Results

Figure 5.5.: Collective structure factor for the initial and the pre-packed configuration
of 1000 fully flexible chains of chain length 20

0.01

0.1

1

10

0.1 1 10 100

1/
S
(q
)

q2

initial
pre-packed

Figure 5.6.: Reciprocal structure factor for the initial and the pre-packed configuration
of 1000 fully flexible chains of chain length 20

38

5.2. Computation results

reduced the structure factor by two orders of magnitude. Since small values of q cor-
respond to large distances in space, density fluctuations are reduced globally and in
mid-size areas of the system. At large wave numbers, i.e. large values of q, the results
are the same for the initial and the pre-packed configuration. Pre-packing moves chains
as rigid bodies, which means that, on length scales smaller than the chain size, it does
not alter the structure of the system. Hence, the equality for large values of q agrees
with the expectation. Therefore, the kink in the plot for the pre-packed configuration
probably corresponds to the chain size. As further evidence, the kink disappears both

0.1

1

10

100

0.1 1 10 100

1/
S
(q
)

q2

warmed-up
equilibrated

Figure 5.7.: Reciprocal structure factor for the warmed-up and the equilibrated config-
uration of 1000 fully flexible chains of chain length 20

in the warmed-up and in the equilibrated stage, as figure 5.7 shows.

The results of the static structure factor computations for a system of 1000 fully flexible
chains with 20 beads each are plotted in figure 5.8. The typical form of a structure factor
for equilibrated polymer chains is now visible (cf. figure 2.2(a)). The flat beginning of
the plot at low values of q indicates an even distribution of beads, which is characteristic
for equilibrated melts and at the same time indicates low compressibility (see equation
2.21). The first peak corresponds to the most probable distance between particles in the
system ([Bin05], 43). In this case its position agrees with the bondlength. One reason
is, that the neighbouring beads of a chain are connected by FENE springs which give,
together with the WCA potential (for all pairs of beads), a narrow minimum. So the
distances between neighbouring beads are similar. Also the point at which the first peak
occurs, at about q ≈ 7 compares to the average value of the bond length 〈b2〉 12 = 0.97σ,
since 2π

qmin
≈ 0.90. One might argue that the difference is significant. For a crystal

lattice, in which the distance 0.97 between neighbouring atoms is the most frequent,

39

5. Results

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 2 4 6 8 10 12 14 16 18 20

S
(q
)

q

0.02
0.04
0.06
0.08
0.1
0.12

1 2 3

0.02
0.04
0.06
0.08
0.1
0.12

1 2 3

warmed-up
equilibrated

Figure 5.8.: Static structure factor for the warmed-up (blue squares) and equilibrated
(red circles) configurations. They consisted of 1000 fully flexible chains of
chain length 20. The vertical line corresponds to the favoured bondlength
b = 0.96σ with its position at 2π

b .

the peak in the static structure factor, would be at 2π
0.97 ≈ 6.48. In figure 5.8 the peak

is at a greater q value. This shift must be a consequence of the non-crystlline structure
([Bas00], 6366). Non-bonded nearest neighbours can only have a minor contribution.

type of distance distance d corresponding q = 2π
d

favoured bondlength 0.96 6.54
initial bondelength 0.97 6.47
average distance
between nearest neighbours 1.06 5.95

(0.851/3)

Table 5.1.: Characteristic distances in the system

Table 5.1 lists the typical distances in the system along with their value in reciprocal
space. The average distance between two beads is calculated from the average density
of beads. If it was structurally important, it would produce a peak further to the left
of the one observed in figure 5.8 or rather shift that peak further. This indicates, that
the variation of the non-bonded shortest distance is significantly larger than that of the
bondlength. Since this is true for covalently bonded monomers, the model potentials
are chosen appropriately in this regard. In table 5.1 both the favoured bondlength
(obtained from the minimum of the model potential) and the initial bondlength (used
for the creation of chains) are mentioned, in order to show, that the favoured bondlength
provides a slightly better estimate of the peak. However, the two are too close together
to draw a conclusion on the structure from this fact. Since the factor is always an

40

5.2. Computation results

average over different configurations it still contains deviations. The smaller peaks at
greater q-values indicate a loss of spacial correlation.

0.1

1

10

100

1000

0 0.5 1 1.5 2 2.5 3

S
(q
)

q

20/1000
100/1000
500/1000

2000/1000
20/100000

Figure 5.9.: Structure factor for the initial configurations of 1000 fully flexible chains
with different chainlenght (colored markers). Gray markers correspond to
a system of 100 000 chains with chainlenght 20. The numbers in the key
refer to chainlength N and number of chains M as ”N/M”. The data is
obtained from an average over three configurations for systems with 1000
chains. The data for the case of 100000 chains is unaveraged.

As figure 5.9 shows, chainlength effects the structure factor of the initial configurations
only in the range of small q. The longer the chain, the higher the value of the S(q)
if q appoaches zero. A high value can be interpreted as high density fluctuations and
means that the system is highly compressible. For the shortest examined chainlegth,
a second sample with 100 times as many beads was investigated. Its structure factor
resembles the one of the first system with chainlegth 20. This is a first indication that
the number of chains does not effect the structure here1.

Figure 5.10 explores the dependence on the number of chains further. It shows the
structure factor of intial systems with different numbers of chains and two different
stiffness constants. Just as in the case for short chains (chainlength 20, in figure 5.9),
the structure factor is independent of the number of chains for medium sized chains
(chainlength 350). The data points for the semi-flexible chains are lower than the
ones for fully flexible chains. Since the plot shows low wavenumbers, this means stiffer

1Density is kept constant by adjusting the box size.

41

5. Results

0.1

1

10

100

1000

0 0.5 1 1.5 2 2.5 3

S
(q
)

q

kθ = 0.0 M = 10
kθ = 1.5 M = 10

M = 20
M = 50
M = 100
M = 200
M = 500

M = 1000

Figure 5.10.: Structure factor for initial configurations of a different number of chains
with 350 beads each. Circles correspond to fully flexible chains (kθ = 0),
squares to semi-flexible chains with a stiffness constant of kθ = 1.5. The
data is obtained by an average over three configurations.

chains show, in their initial setup, less density fluctuations on large length scales. On the
largest scale they assimilate, since the graphs meet for the smallest scattering vectors.
In the limit of low scattering vectors, the structure factor relates to the isothermal
compressibility (see equation 2.21). This relation fits descriptively to the interpretation
in terms of density fluctuations. If there are global or medium scale density fluctuations,
which can be depicted as big holes, the system is more compressible. A plot of the limit
limq→0 S(q) is given in figure 5.11. It shows the limit values depending on the chain
length for all investigated chain flexibilities. The first feature that attracts attention
is the insignificance of chain stiffness. It does barely contribute to S(q → 0) and
hence neither to the compressibility. Only at the pre-packing stage (empty markers)
a very slight trend is visible: Stiff chains (marked by red diamonds) are slightly less
compressible than fully flexible chains (purple squares) of the same length. Or in other
words, after pre-packing the density fluctuations in fully flexible systems are slightly
bigger than in the stiffest investigated systems. However, this minor difference can be
neglected compared to big jumps that occur between the three stages of equilibration.
The general trend is a reduction of the compressibility in agreement to the desired
reduction of density fluctuations. Pre-packing reduces S(q → 0) by two orders of
magnitude and warm-up and equilibration reduces it further. For the initial and the
pre-packed configurations the low wavenumber limit of the structure factor increases
with chain length. Descriptively, longer chains produce bigger holes when randomly

42

5.2. Computation results

0.01

0.1

1

10

100

1000

10000

10 100 1000

S
(q

→
0)

chainlength

(a) kθ = 0.00
kθ = 0.75
kθ = 1.00
kθ = 1.50
kθ = 2.00

Figure 5.11.: The low-q-limit of the collective structure factor for different chain lengths,
stiffnesses and stages in the equilibration procedure. Filled markers belong
to the initial configuration, empty markers to the pre-packed stage and
crosses to equilibrated configurations. The dashed line shows the identity.
All systems contained 1000 chains. The data is obtained from an average
over three configurations each.

43

5. Results

placed in a simulation box. The equlibrated configurations show no dependence on
chain length, which means, in the picture of holes, that holes vanish during equilibration
for every investigated chain length. For the shortest chains (N = 20) the data points
in the pre-packed configuration almost meet the ones from the equilibrated one. This
means that, for short chains, already pre-packing nearly evens out density fluctuations.
It should also be noted, that the data points for the initial configurations are directly
proportional to the chainlength. They follow the dashed line, which is the identity.
For all systems used for the plot contained the same number of chains (1000). Since
they also have the same density, the box volume grows together with the chainlength.
Therefore the observed dependency might be due to the box size rather than the chain
length. However, figure 5.10 shows that the structure factor is not sensible to the
number of chains for short q-vectors and therefore neither to the box size. In fact, the
compressibility for initial configurations grows with the chain length. This trend can
be understood from the relation to the single chain structure factor (see figure 5.4). As
mentioned earlier, the structure of initial configurations only results from the structure
of individual chains. The intermolecular sum becomes zero. Thus, the second term of
equation 5.3 vanishes (cf. theory, p. 7).

S(q) = NP (q) +MNQ(q) (5.3)

The intramolecular or single-chain part becomes one as q approaches zero:

lim
q→0

P (q) =
1

N2

N∑
k=1

N∑
l=1

lim
q→0

cos[q · (rk − rl)] =
1

N2

N∑
k=1

N∑
l=1

1 = 1, (5.4)

leaving the limit of the collective structure factor S(q) as q approaches zero proportional
to the chainlenght N.

44

6
Further improvements

This chapter suggests and describes ideas to enhance the computation of the static
structure factor, as described in this work. The current version can be improved mainly
by a reduction of computation time. A minor improvement consists in a more intuitive
way of user input for the parameters. Further speedup can be obtained by reducing
the number of scattering vectors of a given length that are used for the calculation,
especially in the case of long q-vectors. At first the way of reduction is described.
Subsequently some tests of this methods are displayed. At last an impementation is
provided.

Since, for systems with periodic boundary conditions, scattering vectors have to lie on a
usually cuboid shaped grid, and binning is executed according to the vector’s modulus,
bins of higher number contain the results for more scattering vectors. Figure 6.1 shows
these circumstances for two dimensions.

A first and easy approach to reduce the number of scattering vectors was performed
by skipping certain grid points by using a modified box size for the computation of the
static structure factor. More precisely, a cubic system with an actual box length L was
assigned a fake box length of 1

2L for the computation resulting in a skip of every other
grid point. See figure 6.2 for a geometrical representation. Figure 6.3 shows the results
of analysis with modified box lengths. The results were obtained from a version of the
program which still contained the scattering vectors at the corners of the grid producing
a tail with bad statistics. Along with the modification of the box length comes a change
in the bin size, since this is directly related to the box length. So for a coarser grid
of scattering vectors, a coarser binning is applied automatically. Figure 6.4 shows the

45

6. Further improvements

Figure 6.1.: Showing a squared grid with evenly spaced circles. The grid points corre-
spond to scattering vectors, the shells (here in green and white) represent
the bins in the static structure factor computation. Vectors on the boarder
count to their inner shell, vectors in the corners (gray background) are left
out of the computation.

Figure 6.2.: Skipping every other grid point by providing a fake box length of half the
size as the actual one

46

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25

S
(q
)

q

original box length
1
5 of box length

1
10 box length

N = 100, M = 1000,
kθ = 0.75, (nq = 20)

Figure 6.3.: Results of the static structure factor computation with artificial box
lengths. Green crosses: actual box length of the system. Red circles: 1

5
of the actual box length, i.e. every fifth q-vector is taken into account.
Blue triangles: 1

10 of the actual box length

47

6. Further improvements

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25

S
(q
)

q

N = 100, M = 1000
(nq = 20)

Figure 6.4.: Structure factor for three different configurations. Each type of marker
corresponds to a single configuration, i.e. an independent snapshot of the
equilibrated system.

structure factor of three different configurations. The box length in the computation
was modified by the factor 1

10 . The appendix contains the graph for the actual box
length (A.1) and the one with box length modification by 1

5(A.2) for the same system.
In comparison of 6.3 and 6.4 one can see, that the graphs for different coarse grained
grids of scattering vectors show deviations of the same order as the variance of different
configurations. Combining different grid spacings is possible within the deviation of the
results. Therefore this method provides a valid speedup for the static structure factor
computation, at least as far as the accuracy of results is concerned.

Regarding usability, an internal modification of the box length is preferable, such that
the user only chooses his or her desired range and resolution of scattering vectors and
keeps the box length at its correct value. I suggest to introduce a new grid of scattering
vectors. It consists of layers with fixed lattice constants. The innermost layer contains
the smallest grid spacings. In the outward following layers the spacings become bigger
and bigger in order to reduce the number of scattering vectors corresponding to one
modulus. How many layers the new grid contains is left to the user’s choice. Also the

48

Figure 6.5.: Showing reducded number scattering vectors for greater q-moduli. One
layer consists of three steps each. The picture shows two full layers and on
the outside the beginning of the third (red, biggest dots).

layer size is user-adjustable. Such a grid, with layers of three steps each, is portrayed
in figure 6.5 .

In the following, my ideas for an implementation are sketched. A grid structured in
such a way is easy to built via a loop over layers with an internal loop over steps.
Within these loops only the integer multipliers (hx, hy, hz) of the components of the
scattering vectors are created making the creation fast and clear. Already at this stage
the respective corner vectors can be skipped to prevent an overhead of scattering vectors
which, again, would give rise for bad statistics (see figure 6.5 for corner vectors at the
switchover to the next layer). Skipping the corners early, i.e. after the creation of the
multipliers, but before the calculation of the actual modulus of the scattering vector,
speeds up the computation. However, this is only possible in a cubic box, since only in
that case the grid is isotropic.

As foreshadowed in chapter 3 (on the implementation of the static structure factor) a
different choice for the parallelization improves the computation for certain cases. If
the parallelizing over monomers is replaced by one over scattering vectors, this would

49

6. Further improvements

affect the computation of the single-chain structure factor.

The previous implementation restricts the distribution of monomers to tasks by the
chain length if the single-chain structure factor is computed. As a result, monomers
are not distributed evenly. Especially for polymers with a high polymerization index,
this probably contributes to a major slow down. Scattering vectors can be distributed
evenly for both the single-chain and the collective computation. The parallelization
over q-vectors should be combined with the new grid. It can be realized inside of the
grid creating double loop by using a counter for the even distribution of q-vectors to
the available number of MPI tasks. All in all, the suggested new version of the static
structure factor computation results in the code of figure 6.6. Where computeS is a
function containing the scaling of the scattering vector with the lattice constants and
the calculation of the static structure factor for the given scattering vector, including the
loop over monomers. A slightly different version can be found in the appendix (A.2). It
creates all scattering vectors within the loops avoiding the quad call of computeS. This
makes the construction of an additional array, prior to the actual loop over scattering
vectors, necessary. Furthermore a calculation to reobtain the layer number is needed
making the code less readable than the version of figure 6.6.

50

0 //this is designed with a cubic symmetry (as far as interger multipliers for

the scattering vectors are concerned)

1 int qcount = -1; // counts the q vectors that are used for the computation. is

also used for parallelization

3 int num_layers = 10; // number of layers. example value (specified by user in

final code)

4 int num_steps = 3; // number of steps per layer. example value (specified by

user in final code)

6 int layer; //the layer in which a gridpoint is positioned

8 int hx = 0;

9 int hy = 0;

10 int hz = 0;

12 int stepsize_x = 1; // starting value , grows exponentially with jump to next

layer

13 int stepsize_y = 1; // starting value , grows exponentially with jump to next

layer

14 int stepsize_z = 1; // starting value , grows exponentially with jump to next

layer

16 // x - loop

17 for(int layer_x = 0; layer_x < num_layers; layer_x ++){

18 for(int step_x = 0; step_x < num_steps; step_x ++){

19 hx += stepsize_x;

20 layer = layer_x;

21 // y - loop

22 for(int layer_y = 0; layer_y < num_layers; layer_y ++){

23 for(int step_y = 0; step_y < num_steps; step_y ++){

24 hy += stepsize_y;

25 layer = max(layer_x , layer_y);

26 // z - loop

27 for(int layer_z = 0; layer_z < num_layers; layer_z ++){

28 for(int step_z = 0; step_z < num_steps; step_z ++){

29 hz += stepsize_z;

30 layer = max(layer , layer_z);

31 //skip overhead of q vectors on edges

32 int longestQ = num_steps * 2 ^ (layer + 1);

33 if(hx*hx + hy*hy + hz*hz > longestQ*longestQ)

34 break;

35 else{

36 qcount ++;

37 // assign proc to current q-vector and call computeS

38 if(qcount%nprocs == myrank){

39 computeS(hx,hy,hz);

40 computeS(-hx,hy,hz);

41 computeS(hx,-hy,hz);

42 computeS(-hx,-hy,hz);

43 }

44 }

45 }//end of step_z loop

46 stepsize_z *= 2;

47 }//end of layer_z loop

48 }//end of step_z loop

49 stepsize_y *= 2;

50 }//end of layer_y loop

51 } //end of step_x loop

52 stepsize_x *= 2;

53 } //end of layer_x loop

Figure 6.6.: Static structure factor computation, which is parallelized over scattering
vectors and uses less scattering vectors for larger q 51

7
Conclusion

A parallel implementation of the static structure factor S(q) as well as the single-chain
structure factor as an analysis routine for the simulation software ESPResSo++ is
given. It was used as one criterion to determine equilibrium for entangled linear melts.
Furthermore it served as a measure to show that pre-packing reduces local density
fluctuations and is therefore suitable as a first stage of an equilibration procedure.
Preparations for further improvements of the computation were made. At the same
time, they can serve as the basis of an implementation for the dynamic structure factor
S(q, t), which takes time into account:

S(q) =
1

N

 N∑
i=1

N∑
j=1

e−iq·(ri(t)−rj(0))

 (7.1)

Besides, the computation for the mean-square displacement was extended. The monomer
displacement g1 was already implemented in ESPResSo++ previous to this thesis. The
displacement of monomers with respect to the center of mass of the chain was added as
well as the displacement of the chain’s center of mass g3. Furthermore two new struc-
tures were added to the software, namely to maps within the base class that handles
the distribution of particles to different tasks. They will make further implementation
of those quantities clear and easy that involve the belonging of individual monomers to
a certain chain. All in all, one basic class of ESPResSo++ was extended and the par-
allel computations of four quantities were added. Two of which contributed to a major
challenge in computer simulations of long chains, their equilibration. The results of the
computations indicated that equilibrium was achieved. Hence they served as evidence

53

7. Conclusion

for the success of the applied equilibration technique. The software, including the new
routines, is able to simulate big systems. This gives reason for hope that computer
simulations can provide quantitative forecasts for real experiments in the future. This
would help towards a more specific processing or modification of polymeric substances,
which is great, for polymers are widely and specifically used in different industries.

54

8
Acknowledgement

Last but not least I want to thank everyone who helped me accomplish this thesis.
Starting with my Professor who provided me the opportunity to write a thesis such as
I desired: one in which I could improve and practice my programming skills (without
learning FORTRAN). Great thanks I owe to the whole group, above all to my academic
supervisor, who had many good suggestions of what to try next and often encouraged
me to ask questions. What is more, he always took his time to explain or discuss my
matter and even answered questions beyond the scope of making my code work. My
office mate helped me with many small things, such as Linux commands as well as
some bigger issues, such as explanations and discussions of my ideas. She also provided
her equilibrated systems, so I could test and she collaborated with me in the use of
my code. The same applies to my other office mate, who also helped me with his
scientific remarks. Miscellaneous questions were answered by various group members.
Thanks for explaining the use of the boost library of C++ and discussing your code for
g1, for help with Mercurial, for general C++ help, for answering a cluster question, for
advice on the structure factor and for finding a flawed kde-setting. Everyone else helped
with pleasant coffee breaks, cakes, encouraging, inspiring or just fun chats in the K-
bar. Moreover, I’d like to thank my friends, especially Matthias, Katharina, Christina,
Miriam, Adeline and Vera for being there for me even during exhausting times of the
thesis and my parents for ensuring their safe backup no matter what would happen.
Needless to say that I would not have been able to write my thesis without all these
people. Thank all of you very much!

55

A
Appendix

A.1. Complete source codes

This section shows the source code for whole classes StaticStructF and MeanSquare-

Displ, precisely the respective files with extensions ’.cpp’ and ’.hpp’. Also included are
the corresponding Python files, which define the constructors and functions on Python
level. These constructors and functions are called from the user’s python script and con-
nect them to the corresponding C++ implementation. All files printed in this section
can be found in the ESPResSo++ directory src/analysis.

A.1.1. Static structure factor

Static structure factor - source file

1 /*

2 Copyright (C) 2012 ,2013

3 Max Planck Institute for Polymer Research

4 Copyright (C) 2008 ,2009 ,2010 ,2011

5 Max -Planck -Institute for Polymer Research & Fraunhofer SCAI

7 This file is part of ESPResSo ++.

9 ESPResSo ++ is free software: you can redistribute it and/or modify

10 it under the terms of the GNU General Public License as published by

11 the Free Software Foundation , either version 3 of the License , or

12 (at your option) any later version.

57

A. Appendix

14 ESPResSo ++ is distributed in the hope that it will be useful ,

15 but WITHOUT ANY WARRANTY; without even the implied warranty of

16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

17 GNU General Public License for more details.

19 You should have received a copy of the GNU General Public License

20 along with this program. If not , see <http ://www.gnu.org/licenses/>.

21 */

23 #include "python.hpp"

24 #include "storage/DomainDecomposition.hpp"

25 #include "iterator/CellListIterator.hpp"

26 #include "Configuration.hpp"

27 #include "StaticStructF.hpp"

28 #include "esutil/Error.hpp"

29 #include "bc/BC.hpp"

31 #include <boost/serialization/map.hpp >

33 #include <math.h> // cos and ceil and sqrt

34 #include <algorithm > // std::min

35 #include <functional > // std::plus

36 #include <time.h> // time_t , for particle -distribution -to-cpu time

38 #ifndef M_PIl

39 #define M_PIl 3.1415926535897932384626433832795029L

40 #endif

42 using namespace espresso;

43 using namespace espresso :: iterator;

44 using namespace std;

46 namespace espresso {

47 namespace analysis {

48 // currently only works for particles numbered like 0, 1, 2,...

50 // nqx is a number which corresponds to the different x-values of the

51 // diffraction vector q. greater nqx produces more different x-values

52 // bin_factor determines the size for the binning of q-vectors in

using

53 // dq = 2*PI/boxlength as a reference value such that

54 // bin_size = bin_factor * dq

55 // more in detail:

56 // dq is the shortest step of dqx , dqy , dqz - corresponding to the

57 // longest side of the box. dq = min(dqx , dqy , dqz)

58 // dqx , dqy , dqz are the cell length of the grid of possible q-vectors

59 // dqx = 2*PI/Lx, dqy = 2*PI/Ly, dqz = 2*PI/Lz

61 python ::list StaticStructF :: computeArray(int nqx , int nqy , int nqz ,

62 real bin_factor) {

63 time_t start;

64 time(&start);

65 cout << "collective calc starts " << ctime(&start) << "\n";

66 //fist the system coords are saved at each CPU

67 System& system = getSystemRef ();

68 esutil ::Error err(system.comm);

69 Real3D Li = system.bc->getBoxL (); //Box size (Lx, Ly, Lz)

71 int nprocs = system.comm ->size(); // number of CPUs

72 int myrank = system.comm ->rank(); // current CPU’s number

58

A.1. Complete source codes

74 if (myrank == 0) {

75 cout << "collective calc starts " << ctime(&start) << "\n";

76 }

78 int num_part = 0;

79 ConfigurationPtr config = make_shared <Configuration > ();

80 // loop over all CPU -numbers - to give all CPUs all particle

coords

81 for (int rank_i = 0; rank_i < nprocs; rank_i ++) {

82 map < size_t , Real3D > conf;

83 if (rank_i == myrank) {

84 CellList realCells = system.storage ->getRealCells ();

85 for (CellListIterator cit(realCells); !cit.isDone (); ++cit

) {

86 int id = cit ->id();

87 conf[id] = cit ->position ();

88 }

89 }

90 boost::mpi:: broadcast (* system.comm , conf , rank_i);

92 // for simplicity we will number the particles from 0

93 for (map <size_t , Real3D >:: iterator itr = conf.begin(); itr !=

conf.end(); ++itr) {

94 size_t id = itr ->first;

95 Real3D p = itr ->second;

96 config ->set(id, p[0], p[1], p[2]);

97 //config ->set(num_part , p[0], p[1], p[2]);

98 num_part ++;

99 }

100 }

101 if (myrank == 0) {

102 time_t distributed;

103 time(& distributed);

104 cout << "particles on all CPUs " << ctime(& distributed) << "\n

";

105 cout << "distribution to CPUs took "

106 << difftime(distributed , start) << " seconds \n";

107 }

108 // now all CPUs have all particle coords and num_part is the total

number

109 // of particles

111 // use all CPUs

112 // TODO it could be a problem if n_nodes > num_part

114 // here starts calculation of the static structure factor

116 //step size for qx, qy, qz

117 real dqs [3];

118 dqs[0] = 2. * M_PIl / Li[0];

119 dqs[1] = 2. * M_PIl / Li[1];

120 dqs[2] = 2. * M_PIl / Li[2];

122 Real3D q;

124 // calculations for binning

125 real maxX = nqx * dqs [0]; // maximum x value of a q vector

126 real maxY = nqy * dqs [1]; // maximum y value of a q vector

127 real maxZ = nqz * dqs [2]; // maximum z value of a q vector

59

A. Appendix

129 real shortestDir = min(maxX , min(maxY ,maxZ)); //#include <

algorithm >??

130 real bin_size = bin_factor * min(dqs[0], (dqs[1], dqs [2]));

133 // real q_sqr_max = nqx * nqx * dqs[0] * dqs[0]

134 // + nqy * nqy * dqs[1] * dqs[1]

135 // + nqz * nqz * dqs[2] * dqs [2];

136 // real q_max = sqrt(q_sqr_max);

137 int num_bins = (int) ceil(shortestDir / bin_size);

138 vector <real > sq_bin;

139 vector <real > q_bin;

140 vector <int > count_bin;

141 sq_bin.resize(num_bins);

142 q_bin.resize(num_bins);

143 count_bin.resize(num_bins);

145 if (myrank == 0) {

146 cout << nprocs << " CPUs , new routine\n\n"

147 << "bin size \t" << bin_size << "\n"

148 << "q_max \t" << shortestDir << "\n";

149 }

151 real n_reci = 1. / num_part;

152 real scos_local = 0; //will store cos -sum on each CPU

153 real ssin_local = 0; //will store sin -sum on each CPU

154 int ppp = (int) ceil((double) num_part / nprocs); // particles per

proc

156 Real3D coordP;

158 python ::list pyli;

160 //loop over different q values

161 // starting from zero because combinations with negative components

162 //will give the same result in S(q). so S(q) is the same for

163 //the 8 vectors q=(x,y,z),(-x,y,z), (x,-y,z),(x,y,-z),(-x,-y,z)

,...

164 for (int hx = -nqx; hx <= nqx; hx++) {

165 for (int hy = -nqy; hy <= nqy; hy++) {

166 for (int hz = 0; hz <= nqz; hz++) {

168 // values of q-vector

169 q[0] = hx * dqs [0];

170 q[1] = hy * dqs [1];

171 q[2] = hz * dqs [2];

172 real q_abs = q.abs();

173 if (q_abs > shortestDir){break;}

175 // determining the bin number

176 int bin_i = (int) floor(q_abs / bin_size);

177 q_bin[bin_i] += q_abs;

178 count_bin[bin_i] += 1;

180 // resetting the variables that store the local sum on

each proc

181 scos_local = 0;

182 ssin_local = 0;

184 //loop over particles

60

A.1. Complete source codes

185 for (int k = myrank * ppp; k < (1 + myrank) * ppp && k

< num_part;

186 k++) {

187 coordP = config ->getCoordinates(k);

188 scos_local += cos(q * coordP);

189 ssin_local += sin(q * coordP);

190 }

191 if (myrank != 0) {

192 boost::mpi:: reduce (* system.comm , scos_local , plus <

real > (), 0);

193 boost::mpi:: reduce (* system.comm , ssin_local , plus <

real > (), 0);

194 }

196 if (myrank == 0) {

197 real scos = 0;

198 real ssin = 0;

199 boost::mpi:: reduce (* system.comm , scos_local , scos ,

plus <real > (), 0);

200 boost::mpi:: reduce (* system.comm , ssin_local , ssin ,

plus <real > (), 0);

201 sq_bin[bin_i] += scos * scos + ssin * ssin;

202 }

203 }

204 }

205 }

206 // creates the python list with the results

207 if (myrank == 0) {

208 // starting with bin_i = 1 will leave out the value for q=0,

otherwise start with bin_i=0

209 for (int bin_i = 1; bin_i < num_bins; bin_i ++) {

210 real c = (count_bin[bin_i]) ? 1 / (real) count_bin[bin_i]

: 0;

211 sq_bin[bin_i] = n_reci * sq_bin[bin_i] * c;

212 q_bin[bin_i] = q_bin[bin_i] * c;

214 python ::tuple q_Sq_pair;

215 q_Sq_pair = python :: make_tuple(q_bin[bin_i], sq_bin[bin_i

]);

216 pyli.append(q_Sq_pair);

217 }

218 }

219 return pyli;

220 }

222 // this routine is for ordered configurations , e.g. particle 0 to 9

223 // belong to chain 1, particle 10 to 19 to chain 2 etc.

225 python ::list StaticStructF :: computeArraySingleChain(int nqx , int nqy ,

int nqz ,

226 real bin_factor , int chainlength) {

227 //fist the system coords are saved at each CPU

228 System& system = getSystemRef ();

229 esutil ::Error err(system.comm);

230 Real3D Li = system.bc->getBoxL (); //Box size (Lx, Ly, Lz)

232 int nprocs = system.comm ->size(); // number of CPUs

233 int myrank = system.comm ->rank(); // current CPU’s number

235 int num_part = 0;

236 ConfigurationPtr config = make_shared <Configuration > ();

61

A. Appendix

237 // loop over all CPU -numbers - to give all CPUs all particle

coords

238 for (int rank_i = 0; rank_i < nprocs; rank_i ++) {

239 map < size_t , Real3D > conf;

240 if (rank_i == myrank) {

241 CellList realCells = system.storage ->getRealCells ();

242 for (CellListIterator cit(realCells); !cit.isDone (); ++cit

) {

243 int id = cit ->id();

244 conf[id] = cit ->position ();

245 }

246 }

247 boost::mpi:: broadcast (* system.comm , conf , rank_i);

249 // for simplicity we will number the particles from 0

250 for (map <size_t , Real3D >:: iterator itr = conf.begin(); itr !=

conf.end(); ++itr) {

251 size_t id = itr ->first;

252 Real3D p = itr ->second;

253 config ->set(id, p[0], p[1], p[2]);

254 //config ->set(num_part , p[0], p[1], p[2]);

255 num_part ++;

256 }

257 }

258 cout << "particles are given to each CPU!\n";

259 // now all CPUs have all particle coords and num_part is the total

number

260 // of particles

262 // use all CPUs

263 // TODO it could be a problem if n_nodes > num_part

265 // here starts calculation of the static structure factor

267 //step size for qx, qy, qz

268 real dqs [3];

269 dqs[0] = 2. * M_PIl / Li[0];

270 dqs[1] = 2. * M_PIl / Li[1];

271 dqs[2] = 2. * M_PIl / Li[2];

273 Real3D q;

275 // calculations for binning

276 real bin_size = bin_factor * min(dqs[0], (dqs[1], dqs [2]));

277 real q_sqr_max = nqx * nqx * dqs[0] * dqs[0]

278 + nqy * nqy * dqs[1] * dqs[1]

279 + nqz * nqz * dqs[2] * dqs [2];

280 real q_max = sqrt(q_sqr_max);

281 int num_bins = (int) ceil(q_max / bin_size);

282 vector <real > sq_bin;

283 vector <real > q_bin;

284 vector <int > count_bin;

285 sq_bin.resize(num_bins);

286 q_bin.resize(num_bins);

287 count_bin.resize(num_bins);

289 if (myrank == 0) {

290 cout << nprocs << " CPUs\n\n"

291 << "bin size \t" << bin_size << "\n"

292 << "q_max \t" << q_max << "\n";

293 }

62

A.1. Complete source codes

295 real n_reci = 1. / num_part;

296 real chainlength_reci = 1. / chainlength;

297 real scos_local = 0; //will store cos -sum on each CPU

298 real ssin_local = 0; //will store sin -sum on each CPU

299 //will store the summation of the the single chain structure

factor

300 real singleChain_localSum = 0;

301 Real3D coordP;

302 python ::list pyli;

304 // calculations for parallelizing (over chains)

305 int num_chains;

306 if (num_part % chainlength == 0)

307 num_chains = num_part / chainlength;

308 else {

309 cout << "ERROR: chainlenght does not match total number of "

310 << "particles. num_part % chainlenght is unequal 0. \n

"

311 << "Calculation of SingleChain_StaticStructF aborted\n

";

312 return pyli;

313 }

314 int cpp = (int) ceil((double) num_chains / nprocs); // chains per

proc

315 cout << "chains per proc\t" << cpp << "\n";

318 //loop over different q values

319 // starting from zero because combinations with negative components

320 //will give the same result in S(q). so S(q) is the same for

321 //the 8 vectors q=(x,y,z),(-x,y,z), (x,-y,z),(x,y,-z),(-x,-y,z)

,...

322 for (int hx = -nqx; hx <= nqx; hx++) {

323 for (int hy = -nqy; hy <= nqy; hy++) {

324 for (int hz = 0; hz <= nqz; hz++) {

326 // values of q-vector

327 q[0] = hx * dqs [0];

328 q[1] = hy * dqs [1];

329 q[2] = hz * dqs [2];

330 real q_abs = q.abs();

332 // determining the bin number

333 int bin_i = (int) floor(q_abs / bin_size);

334 q_bin[bin_i] += q_abs;

335 count_bin[bin_i] += 1;

337 // resetting the variable that stores the sum for each

q-vector

338 singleChain_localSum = 0;

340 //loop over chains (cid is chain_id)

341 for (int cid = myrank * cpp; cid < (1 + myrank) * cpp

342 && cid < num_chains; cid++) {

343 scos_local = 0; // resetting the cos sum for the

each chain

344 ssin_local = 0; // resetting the sin sum for the

each chain

345 //loop over particles

63

A. Appendix

346 for (int k = cid * chainlength; k < (1 + cid) *

chainlength && k < num_part;

347 k++) {

348 coordP = config ->getCoordinates(k);

349 scos_local += cos(q * coordP);

350 ssin_local += sin(q * coordP);

351 }

352 //the (summation part of the) single chain

structure

353 // factors are summed up for the averaging at the

354 // end (over the chains)

355 singleChain_localSum += scos_local * scos_local

356 + ssin_local * ssin_local;

357 }

360 if (myrank != 0) {

361 boost::mpi:: reduce (* system.comm ,

singleChain_localSum , plus <real > (), 0);

362 }

364 if (myrank == 0) {

365 real singleChainSum = 0;

366 boost::mpi:: reduce (* system.comm ,

singleChain_localSum , singleChainSum , plus <

real > (), 0);

367 sq_bin[bin_i] += singleChainSum;

368 }

369 }

370 }

371 }

372 // creates the python list with the results

373 if (myrank == 0) {

374 // starting with bin_i = 1 will leave out the value for q=0,

otherwise start with bin_i=0

375 for (int bin_i = 1; bin_i < num_bins; bin_i ++) {

376 real c = (count_bin[bin_i]) ? 1 / (real) count_bin[bin_i]

: 0;

377 sq_bin[bin_i] = n_reci * chainlength_reci * sq_bin[bin_i]

* c;

378 q_bin[bin_i] = q_bin[bin_i] * c;

380 python ::tuple q_Sq_pair;

381 q_Sq_pair = python :: make_tuple(q_bin[bin_i], sq_bin[bin_i

]);

382 pyli.append(q_Sq_pair);

383 }

384 }

385 return pyli;

386 }

388 // TODO: this dummy routine is still needed as we have not yet

ObservableVector

389 // there has to be a function ’compute ’ because of the used template

390 // otherwise a compiling error will occur

392 real StaticStructF :: compute () const {

393 return -1.0;

394 }

396 void StaticStructF :: registerPython () {

64

A.1. Complete source codes

397 using namespace espresso :: python;

398 class_ <StaticStructF , bases < Observable > >

399 ("analysis_StaticStructF", init < shared_ptr < System > >())

400 .def("compute", &StaticStructF :: computeArray)

401 .def("computeSingleChain", &StaticStructF ::

computeArraySingleChain)

402 ;

403 }

404 }

405 }

Static structure factor - header file

1 /*

2 Copyright (C) 2012 ,2013

3 Max Planck Institute for Polymer Research

4 Copyright (C) 2008 ,2009 ,2010 ,2011

5 Max -Planck -Institute for Polymer Research & Fraunhofer SCAI

7 This file is part of ESPResSo ++.

9 ESPResSo ++ is free software: you can redistribute it and/or modify

10 it under the terms of the GNU General Public License as published by

11 the Free Software Foundation , either version 3 of the License , or

12 (at your option) any later version.

14 ESPResSo ++ is distributed in the hope that it will be useful ,

15 but WITHOUT ANY WARRANTY; without even the implied warranty of

16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

17 GNU General Public License for more details.

19 You should have received a copy of the GNU General Public License

20 along with this program. If not , see <http ://www.gnu.org/licenses/>.

21 */

23 // ESPP_CLASS

24 #ifndef _ANALYSIS_STATICSTRUCTF_HPP

25 #define _ANALYSIS_STATICSTRUCTF_HPP

27 #include "types.hpp"

28 #include "Observable.hpp"

29 #include "python.hpp"

31 namespace espresso {

32 namespace analysis {

34 /** Class to compute the static structure function of the system. */

35 class StaticStructF : public Observable {

36 public:

38 StaticStructF(shared_ptr < System > system) : Observable(system) {

39 }

41 ~StaticStructF () {

42 }

43 virtual real compute () const;

44 virtual python ::list computeArray(int nqx , int nqy , int nqz ,

45 real bin_factor) const;

46 virtual python ::list computeArraySingleChain(int nqx , int nqy , int

nqz ,

65

A. Appendix

47 real bin_factor , int chainlength) const;

48 static void registerPython ();

50 };

51 }

52 }

55 #endif

Static structure factor - python file

1 # Copyright (C) 2012 ,2013

2 # Max Planck Institute for Polymer Research

3 # Copyright (C) 2008 ,2009 ,2010 ,2011

4 # Max -Planck -Institute for Polymer Research & Fraunhofer SCAI

5 #

6 # This file is part of ESPResSo ++.

7 #

8 # ESPResSo ++ is free software: you can redistribute it and/or modify

9 # it under the terms of the GNU General Public License as published by

10 # the Free Software Foundation , either version 3 of the License , or

11 # (at your option) any later version.

12 #

13 # ESPResSo ++ is distributed in the hope that it will be useful ,

14 # but WITHOUT ANY WARRANTY; without even the implied warranty of

15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

16 # GNU General Public License for more details.

17 #

18 # You should have received a copy of the GNU General Public License

19 # along with this program. If not , see <http://www.gnu.org/licenses/>.

22 """

23 ***********************************

24 ** espresso.analysis.StaticStructF **

25 ***********************************

27 """

28 from espresso.esutil import cxxinit

29 from espresso import pmi

31 from espresso.analysis.Observable import *

32 from _espresso import analysis_StaticStructF

34 class StaticStructFLocal(ObservableLocal , analysis_StaticStructF):

35 ’The (local) compute the static structure function.’

36 def __init__(self , system):

37 cxxinit(self , analysis_StaticStructF , system)

39 def compute(self , nqx , nqy , nqz , bin_factor , ofile = None):

40 if ofile is None:

41 return self.cxxclass.compute(self , nqx , nqy , nqz , bin_factor)

42 else:

43 #run compute on each CPU

44 result = self.cxxclass.compute(self , nqx , nqy , nqz , bin_factor)

45 #create the outfile only on CPU 0

46 if pmi.isController:

47 myofile = ’qsq_’ + str(ofile) + ’.txt’

48 outfile = open (myofile , ’w’)

66

A.1. Complete source codes

49 for i in range (len(result)):

50 line = str(result[i][0]) + "\t" + str(result[i][1]) + "\n"

51 outfile.write(line)

52 outfile.close()

53 return result

55 def computeSingleChain(self , nqx , nqy , nqz , bin_factor , chainlength , ofile =

None):

56 if ofile is None:

57 return self.cxxclass.computeSingleChain(self , nqx , nqy , nqz , bin_factor ,

chainlength)

58 else:

59 #run computeSingleChain on each CPU

60 result = self.cxxclass.computeSingleChain(self , nqx , nqy , nqz ,

bin_factor , chainlength)

61 print result #this line is in case the outfile causes problems

62 #create the outfile only on CPU 0

63 if pmi.isController:

64 myofile = ’qsq_singleChain ’ + str(ofile) + ’.txt’

65 outfile = open (myofile , ’w’)

66 for i in range (len(result)):

67 line = str(result[i][0]) + "\t" + str(result[i][1]) + "\n"

68 outfile.write(line)

69 outfile.close()

70 return result

72 if pmi.isController:

73 class StaticStructF(Observable):

74 __metaclass__ = pmi.Proxy

75 pmiproxydefs = dict(

76 pmicall = ["compute", "computeSingleChain"],

77 cls = ’espresso.analysis.StaticStructFLocal ’

78)

A.1.2. Particle decomposition

The member functions gather() and gatherFromFile(), which are necessary to col-
lect the information from different snapshots or at different simulation times, are im-
plemented in the source file. The constructor is directly implemented in the header
file.

Particle decomposition - source file

1 /*

2 Copyright (C) 2012 ,2013

3 Max Planck Institute for Polymer Research

4 Copyright (C) 2008 ,2009 ,2010 ,2011

5 Max -Planck -Institute for Polymer Research & Fraunhofer SCAI

7 This file is part of ESPResSo ++.

9 ESPResSo ++ is free software: you can redistribute it and/or modify

10 it under the terms of the GNU General Public License as published by

11 the Free Software Foundation , either version 3 of the License , or

12 (at your option) any later version.

67

A. Appendix

14 ESPResSo ++ is distributed in the hope that it will be useful ,

15 but WITHOUT ANY WARRANTY; without even the implied warranty of

16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

17 GNU General Public License for more details.

19 You should have received a copy of the GNU General Public License

20 along with this program. If not , see <http ://www.gnu.org/licenses/>.

21 */

23 #include <iostream >

24 #include <fstream >

25 #include <sstream >

26 #include <string >

27 #include <vector >

29 #include "ConfigsParticleDecomp.hpp"

30 #include "bc/BC.hpp"

31 #include <boost/serialization/map.hpp >

33 using namespace std;

34 using namespace espresso;

36 namespace espresso {

37 namespace analysis {

39 using namespace iterator;

41 int ConfigsParticleDecomp :: getListSize () const{

42 return configurations.size();

43 }

45 ConfigurationList ConfigsParticleDecomp ::all() const{

46 return configurations;

47 }

49 ConfigurationPtr ConfigsParticleDecomp :: getConf(int position) const{

50 int nconfigs = configurations.size();

51 if (0 <= position and position < nconfigs) {

52 return configurations[position];

53 }

54 else{

55 System& system = getSystemRef ();

56 esutil ::Error err(system.comm);

57 stringstream msg;

58 msg << "Error. Velocities ::get <out -of-range >" << endl;

59 err.setException(msg.str());

60 return shared_ptr <Configuration >();

61 }

62 }

64 void ConfigsParticleDecomp :: pushConfig(ConfigurationPtr config){

65 configurations.push_back(config);

66 }

68 void ConfigsParticleDecomp :: gather () {

69 System& system = getSystemRef ();

70 esutil ::Error err(system.comm);

72 int nprocs = system.comm ->size();

73 int myrank = system.comm ->rank();

68

A.1. Complete source codes

75 int localN = system.storage ->getNRealParticles ();

77 int curNumP = 0;

78 boost::mpi:: all_reduce (* system.comm , localN , curNumP , std::plus <int >());

79 if(myrank ==0){

80 // check whether the number of particles is the same during the

gathering

81 if(curNumP != num_of_part){

82 stringstream msg;

83 msg <<" ConfigsParticleDecomp gathers the configurations of the

same system\n"

84 " with the same number of particles. If you need to store the

systems\n"

85 " with different number of particles you should use something

else."

86 " E.g ‘Configurations ‘";

87 err.setException(msg.str());

88 }

89 }

91 ConfigurationPtr config = make_shared <Configuration > ();

92 for (int rank_i =0; rank_i <nprocs; rank_i ++) {

93 map < size_t , Real3D > conf;

94 if (rank_i == myrank) {

95 CellList realCells = system.storage ->getRealCells ();

96 for(CellListIterator cit(realCells); !cit.isDone (); ++cit) {

97 int id = cit ->id();

98 Real3D property = Real3D (0,0,0);

99 if(key=="position")

100 property = cit ->position ();

101 else if(key=="velocity")

102 property = cit ->velocity ();

103 else if(key=="unfolded"){

104 Real3D& pos = cit ->position ();

105 Int3D& img = cit ->image();

106 Real3D Li = system.bc->getBoxL ();

107 for (int i = 0; i < 3; ++i) property[i] = pos[i] + img[i] * Li[i

];

108 }

109 else{

110 stringstream msg;

111 msg <<"Error. Key "<<key <<" is unknown. Use position , unfolded or

"

112 " velocity.";

113 err.setException(msg.str());

114 }

116 conf[id] = property;

117 }

118 }

120 boost::mpi:: broadcast (* system.comm , conf , rank_i);

122 for (map <size_t ,Real3D >:: iterator itr=conf.begin(); itr != conf.end();

++itr) {

123 size_t id = itr ->first;

124 Real3D p = itr ->second;

125 if(idToCpu[id]== myrank) config ->set(id, p[0], p[1], p[2]);

126 }

127 }

69

A. Appendix

129 pushConfig(config);

130 }

132 void ConfigsParticleDecomp :: gatherFromFile(string filename) {

133 System& system = getSystemRef ();

134 esutil ::Error err(system.comm);

136 int nprocs = system.comm ->size();

137 int myrank = system.comm ->rank();

139 int localN = system.storage ->getNRealParticles ();

141 ConfigurationPtr config = make_shared <Configuration > ();

142 map < size_t , Real3D > conf;

144 if (myrank ==0) {

145 int id, type;

146 real xpos , ypos , zpos;

147 string line;

148 ifstream file(filename.c_str());

149 if (file.is_open ()) {

150 // skip first 2 lines

151 getline(file , line);

152 getline(file , line);

153 int count = 0;

154 while (getline(file , line)) {

155 stringstream sl(line);

156 sl >> id;

157 sl >> type;

158 sl >> xpos;

159 sl >> ypos;

160 sl >> zpos;

161 // cout << id << ":" << x << "," << y << "," << z << endl;

162 conf[id] = Real3D(xpos , ypos , zpos);

163 count ++;

164 }

165 file.close();

166 cout << "read " << count << " particles from file " << filename <<

endl;

167 if (count != num_of_part) {

168 stringstream msg;

169 msg << "Number of read particles does not match the number of

particles of the system (which is " << num_of_part << ")";

170 err.setException(msg.str());

171 }

172 } else {

173 stringstream msg;

174 msg << "Unable to open file " << filename;

175 err.setException(msg.str());

176 }

177 }

179 boost::mpi:: broadcast (* system.comm , conf , 0);

181 for (map <size_t ,Real3D >:: iterator itr=conf.begin(); itr != conf.end();

++itr) {

182 size_t id = itr ->first;

183 Real3D p = itr ->second;

184 if(idToCpu[id]== myrank) config ->set(id, p[0], p[1], p[2]);

185 }

186 pushConfig(config);

70

A.1. Complete source codes

187 }

189 // Python wrapping

190 void ConfigsParticleDecomp :: registerPython () {

191 using namespace espresso :: python;

193 class_ <ConfigsParticleDecomp , boost:: noncopyable >(

194 "analysis_ConfigsParticleDecomp", no_init

195 //init < shared_ptr < System > >()

196)

197 .def_readonly("size", &ConfigsParticleDecomp :: getListSize)

199 .def("gather", &ConfigsParticleDecomp :: gather)

200 .def("gatherFromFile", &ConfigsParticleDecomp :: gatherFromFile)

201 .def("__getitem__", &ConfigsParticleDecomp :: getConf)

202 .def("all", &ConfigsParticleDecomp ::all)

203 .def("clear", &ConfigsParticleDecomp ::clear)

204 .def("compute", &ConfigsParticleDecomp :: compute)

205 ;

206 }

207 }

208 }

Particle decomposition - header file

Here the constructors are implemented, which contain the filling of the map idToCpu

using particle or chain decomposition.

1 /*

2 Copyright (C) 2012 ,2013

3 Max Planck Institute for Polymer Research

4 Copyright (C) 2008 ,2009 ,2010 ,2011

5 Max -Planck -Institute for Polymer Research & Fraunhofer SCAI

7 This file is part of ESPResSo ++.

9 ESPResSo ++ is free software: you can redistribute it and/or modify

10 it under the terms of the GNU General Public License as published by

11 the Free Software Foundation , either version 3 of the License , or

12 (at your option) any later version.

14 ESPResSo ++ is distributed in the hope that it will be useful ,

15 but WITHOUT ANY WARRANTY; without even the implied warranty of

16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

17 GNU General Public License for more details.

19 You should have received a copy of the GNU General Public License

20 along with this program. If not , see <http ://www.gnu.org/licenses/>.

21 */

23 // ESPP_CLASS

24 #ifndef _ANALYSIS_CONFIGSPARTICLEDECOMP_HPP

25 #define _ANALYSIS_CONFIGSPARTICLEDECOMP_HPP

27 #include "python.hpp"

28 #include "mpi.h"

29 #include "types.hpp"

30 #include "SystemAccess.hpp"

31 #include "Configuration.hpp"

71

A. Appendix

33 #include "storage/Storage.hpp"

34 #include "iterator/CellListIterator.hpp"

35 #include "esutil/Error.hpp"

37 #include <string >

39 using namespace std;

41 namespace espresso {

42 namespace analysis {

44 using namespace iterator;

45 /*

46 * Class that stores particle !! properties (velocities at the moment)!!

for later

47 * analysis. It uses object Configuration to store data.

48 *

49 * Here the concept of particle decomposition is used , i.e. each processor

stores

50 * relevant number of particles. It’s useless to get the data on python

level from

51 * here. Therefore it is abstract class. A derived class should realize

the function

52 * ‘compute ‘.

53 *

54 * Important: Mainly it was created in order to observe the system in time

.

55 * !!At the moment the number of particles should be the same for

different snapshots .!!

56 * Otherwise it will throw a runtime error exception

57 */

59 typedef vector <ConfigurationPtr > ConfigurationList;

61 class ConfigsParticleDecomp : public SystemAccess {

63 public:

64 /*

65 * Constructor , allow for unlimited snapshots. It defines how many

particles

66 * correspond to different cpu.

67 */

68 ConfigsParticleDecomp(shared_ptr <System > system): SystemAccess (system){

69 // by default key = "position", it will store the particle positions

70 // (option: "velocity" or "unfolded ")

71 esutil ::Error err(system ->comm);

73 key = "position";

75 int localN = system -> storage -> getNRealParticles ();

76 boost::mpi:: all_reduce (*system ->comm , localN , num_of_part , std::plus <

int >());

78 int n_nodes = system -> comm -> size();

79 int this_node = system -> comm -> rank();

81 int local_num_of_part = num_of_part / n_nodes + 1;

83 vector <int > tot_idList;

84 for(int rank_i = 0; rank_i <n_nodes;rank_i ++){

72

A.1. Complete source codes

86 int numLocPart = 0;

87 if(rank_i == this_node){

88 numLocPart = system -> storage -> getNRealParticles ();

89 }

90 boost::mpi:: broadcast (*system ->comm , numLocPart , rank_i);

92 int* idList = new int[numLocPart];

94 if(rank_i == this_node){

96 int count = 0;

97 CellList realCells = system -> storage -> getRealCells ();

98 for(CellListIterator cit(realCells); !cit.isDone (); ++cit) {

99 int id = cit ->id();

101 idList[count] = id;

102 count ++;

103 }

104 }

106 boost::mpi:: broadcast (*system ->comm , idList , numLocPart , rank_i);

108 for(int i=0; i<numLocPart;i++){

109 tot_idList.push_back(idList[i]);

110 }

112 delete [] idList;

113 idList = NULL;

114 }

116 int nodeNum = 0;

117 int count = 0;

118 for (vector <int >:: iterator it = tot_idList.begin(); it!= tot_idList.end

(); ++it) {

119 idToCpu [*it] = nodeNum;

120 count ++;

121 if(count >= local_num_of_part){

122 count = 0;

123 nodeNum ++;

124 }

125 }

127 try{

128 if(num_of_part <= n_nodes){

129 stringstream msg;

130 msg <<"Warning. Number of particles less then the number of nodes.\

n";

131 msg <<"It might be a problem. NPart="<<num_of_part <<" NNodes="<<

n_nodes;

132 err.setException(msg.str());

133 err.checkException ();

134 }

135 }

136 catch(std:: exception const& e){

137 if(this_node ==0)

138 cout << "Exception: " << e.what() << "\n";

139 }

140 }

142 /*

73

A. Appendix

143 * Constructor , allow for unlimited snapshots. It defines how many

particles

144 * correspond to different cpu without breaking chains. So the monomers

of

145 * one chain correspond to one CPU only.

146 *

147 * !! currently only works for particles numbered like 0, 1, 2,... !!

148 * !! with each chain consisting particles with subsequent ids !!

149 */

150 ConfigsParticleDecomp(shared_ptr <System > system , int _chainlength):

SystemAccess (system){

151 // by default key = "position", it will store the particle positions

152 // (option: "velocity" or "unfolded ")

153 esutil ::Error err(system ->comm);

155 key = "position";

156 chainlength = _chainlength;

158 int localN = system -> storage -> getNRealParticles ();

159 boost::mpi:: all_reduce (*system ->comm , localN , num_of_part , std::plus <

int >());

161 int n_nodes = system -> comm -> size();

162 int this_node = system -> comm -> rank();

164 //for monodisperse chains

165 int num_chains = num_of_part / chainlength;

166 int local_num_chains = (int) ceil((double)num_chains / n_nodes);

167 int local_num_part = local_num_chains * chainlength;

169 //in case the chainlength does not match the total number of particles

170 if(num_of_part % chainlength != 0){

171 cout << "chainlength does not match total number of particles\n"

172 << "chainlength: " << chainlength

173 << "\n num_of_part " << num_of_part << "\n\n";

174 }

176 //CPU0 will use particles 0, 1, 2, ... local_num_particles -1.

177 //CPU1 will use particles local_num_particles , local_num_particles

+1,...

178 int nodeNum = -1;

179 for(long unsigned int id = 0; id < num_of_part ;id++){

180 if(id % local_num_part == 0) ++ nodeNum;

181 idToCpu[id] = nodeNum;

182 }

183 // output if the assignment failed

184 if (nodeNum >= n_nodes) {

185 if(this_node == 0){

186 cout << "assignment went wrong. Particles were assigned to

proc "

187 << nodeNum << "\n";

188 cout << "highest process number should be " << n_nodes - 1 <<"

\n";

189 cout << "check if total number of particles matches with

chainlength\n";

190 }

191 }

192 // output for testing

193 if(this_node == 0){

194 for(map <size_t , int >:: iterator itr=idToCpu.begin(); itr != idToCpu

.end(); itr++){

74

A.1. Complete source codes

195 size_t key = itr -> first;

196 int mapped = itr -> second;

197 //cout << key << "\t" << mapped << "\n";

198 }

199 }

201 try{

202 if(num_chains < n_nodes){

203 stringstream msg;

204 msg <<"Warning. Number of chains less then the number of nodes.\n";

205 msg <<"It might be a problem. NChains="<<num_chains <<" NNodes="<<

n_nodes;

206 err.setException(msg.str());

207 err.checkException ();

208 }

209 }

210 catch(std:: exception const& e){

211 if(this_node ==0)

212 cout << "Exception: " << e.what() << "\n";

213 }

214 }

215 ~ConfigsParticleDecomp () {}

218 // get number of available snapshots. Returns the size of

Configurationlist

219 int getListSize () const;

221 // Take a snapshot of property (all current particle velocities at the

moment)

222 void gather ();

224 // Read in a snapshot from a xyz -file

225 void gatherFromFile(string filename);

227 // Get a configuration from ConfigurationList

228 ConfigurationPtr getConf(int position) const;

230 // it returns all the configurations

231 ConfigurationList all() const;

233 // it erases all the configurations from ConfigurationList

234 void clear(){

235 configurations.clear();

236 }

238 virtual python ::list compute () const = 0;

240 static void registerPython ();

242 protected:

244 static LOG4ESPP_DECL_LOGGER(logger);

246 // all cpus handle defined number of particles

247 int num_of_part;

248 int chainlength; //for calculations with chains (instead of monomers)

249 map < size_t , int > idToCpu; // binds cpu and particle id

251 string key; // it can be "position", "velocity" or "unfolded"

75

A. Appendix

253 private:

255 void pushConfig(ConfigurationPtr config);

257 // the list of snapshots

258 ConfigurationList configurations;

259 };

260 }

261 }

263 #endif

Particle decomposition - python file

1 # Copyright (C) 2012 ,2013

2 # Max Planck Institute for Polymer Research

3 # Copyright (C) 2008 ,2009 ,2010 ,2011

4 # Max -Planck -Institute for Polymer Research & Fraunhofer SCAI

5 #

6 # This file is part of ESPResSo ++.

7 #

8 # ESPResSo ++ is free software: you can redistribute it and/or modify

9 # it under the terms of the GNU General Public License as published by

10 # the Free Software Foundation , either version 3 of the License , or

11 # (at your option) any later version.

12 #

13 # ESPResSo ++ is distributed in the hope that it will be useful ,

14 # but WITHOUT ANY WARRANTY; without even the implied warranty of

15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

16 # GNU General Public License for more details.

17 #

18 # You should have received a copy of the GNU General Public License

19 # along with this program. If not , see <http://www.gnu.org/licenses/>.

22 """

23 ***

24 ** espresso.analysis.ConfigsParticleDecomp **

25 ***

27 """

28 #from espresso.esutil import cxxinit

29 from espresso import pmi

31 from _espresso import analysis_ConfigsParticleDecomp

33 class ConfigsParticleDecompLocal(analysis_ConfigsParticleDecomp):

34 ’The (local) storage of configurations.’

35 def __init__(self , system):

36 cxxinit(self , analysis_ConfigsParticleDecomp , system)

37 def gather(self):

38 return self.cxxclass.gather(self)

39 def gatherFromFile(self , filename):

40 return self.cxxclass.gatherFromFile(self , filename)

41 def clear(self):

42 return self.cxxclass.clear(self)

43 def __iter__(self):

44 return self.cxxclass.all(self).__iter__ ()

76

A.1. Complete source codes

46 def compute(self):

47 return self.cxxclass.compute(self)

49 if pmi.isController:

50 class ConfigsParticleDecomp(object):

51 """Abstract base class for parallel analysis based on particle

decomposition."""

52 __metaclass__ = pmi.Proxy

53 pmiproxydefs = dict(

54 #cls = ’espresso.analysis.ConfigsParticleDecompLocal ’,

55 pmicall = ["gather", "gatherFromFile", "clear", "compute"],

56 localcall = ["__getitem__", "all"],

57 pmiproperty = ["size"]

58)

A.1.3. Mean squared displacement

Mean squared displacement - source file

1 /*

2 Copyright (C) 2012 ,2013

3 Max Planck Institute for Polymer Research

4 Copyright (C) 2008 ,2009 ,2010 ,2011

5 Max -Planck -Institute for Polymer Research & Fraunhofer SCAI

7 This file is part of ESPResSo ++.

9 ESPResSo ++ is free software: you can redistribute it and/or modify

10 it under the terms of the GNU General Public License as published by

11 the Free Software Foundation , either version 3 of the License , or

12 (at your option) any later version.

14 ESPResSo ++ is distributed in the hope that it will be useful ,

15 but WITHOUT ANY WARRANTY; without even the implied warranty of

16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

17 GNU General Public License for more details.

19 You should have received a copy of the GNU General Public License

20 along with this program. If not , see <http ://www.gnu.org/licenses/>.

21 */

23 #include "MeanSquareDispl.hpp"

24 //#include <algorithm > //for std::sort

25 using namespace std;

26 //using namespace espresso;

28 namespace espresso {

29 namespace analysis {

31 // using namespace iterator;

33 /*

34 * calculates the mean square displacement of the particles/monomers in

the COM of the whole system

35 *

36 * calc <r^2> the output is the average mean sq. displacement over 3

directions.

77

A. Appendix

37 * !! Important !! For D calculation factor 1/6 is already taken into

account.

38 * !! all confs should contain the same number of particles

39 */

41 python ::list MeanSquareDispl :: compute () const{

43 int M = getListSize (); // number of snapshots/configurations

44 real* totZ; //will store the mean squared displacement

45 totZ = new real[M];

46 real* Z;

47 Z = new real[M];

49 python ::list pyli;

51 System& system = getSystemRef ();

53 // creating vector which stores particleIDs for each CPU

54 vector <longint > localIDs;

55 for (map <size_t ,int >:: const_iterator itr=idToCpu.begin(); itr!= idToCpu.

end(); ++itr) {

56 size_t i = itr ->first;

57 int whichCPU = itr ->second;

58 if(system.comm ->rank()== whichCPU){

59 localIDs.push_back(i);

60 }

61 }

63 // COM calculation

64 vector <Real3D > centerOfMassList;

65 for(int m=0; m<M; m++){

66 Real3D posCOM = Real3D (0.0 ,0.0 ,0.0);

67 real mass = 0.0;

68 Real3D posCOM_sum = Real3D (0.0 ,0.0 ,0.0);

69 real mass_sum = 0.0;

71 for (vector <longint >:: iterator itr=localIDs.begin(); itr!= localIDs.end

(); ++itr) {

72 size_t i = *itr;

73 Real3D pos = getConf(m)->getCoordinates(i);

74 posCOM += pos;

75 mass += 1;

76 }

78 boost::mpi:: all_reduce (*mpiWorld , posCOM , posCOM_sum , std::plus <Real3D

>());

79 boost::mpi:: all_reduce (*mpiWorld , mass , mass_sum , std::plus <real >());

81 centerOfMassList.push_back(posCOM_sum / mass_sum);

82 }

84 // MSD calculation

85 int perc=0, perc1 =0;

86 real denom = 100.0 / (real)M;

87 for(int m=0; m<M; m++){

89 totZ[m] = 0.0;

90 Z[m] = 0.0;

91 for(int n=0; n<M-m; n++){

92 for (vector <longint >:: iterator itr=localIDs.begin(); itr!= localIDs.

end(); ++itr) {

78

A.1. Complete source codes

93 size_t i = *itr;

95 Real3D pos1 = getConf(n + m)->getCoordinates(i) - centerOfMassList

[n+m];

96 Real3D pos2 = getConf(n)->getCoordinates(i) - centerOfMassList

[n];

97 Real3D delta = pos2 - pos1;

98 Z[m] += delta.sqr();

99 }

100 }

101 if(print_progress && system.comm ->rank()==0){

102 perc = (int)(m*denom);

103 if(perc %5==0){

104 cout <<"calculation progress (mean square displacement): "<< perc

<< " %\r"<<flush;

105 }

106 }

107 }

108 if(system.comm ->rank()==0)

109 cout <<"calculation progress (mean square displacement): 100%"<<endl;

110 // summation of results from different CPUs

111 boost::mpi:: all_reduce(*system.comm , Z, M, totZ , plus <real >());

113 for(int m=0; m<M; m++){

114 totZ[m] /= (real)(M - m);

115 }

117 real inv_coef = 1.0 / (6.0 * num_of_part);

119 for(int m=0; m<M; m++){

120 totZ[m] *= inv_coef;

121 pyli.append(totZ[m]);

122 }

124 delete [] Z;

125 Z = NULL;

126 delete [] totZ;

127 totZ = NULL;

129 return pyli;

130 }

132 /*

133 * calculates mean square displacement of monomers in COM of their chains

134 *

135 * !! currently only works for particles numbered like 0, 1, 2,... !!

136 * !! with each chain consisting particles with subsequent ids !!

137 *

138 * calc <r^2> the output is the average mean sq. displacement over 3

directions.

139 * !! Important !! For D calculation factor 1/6 is already taken into

account.

140 * !! all confs should contain the same number of particles

141 */

142 python ::list MeanSquareDispl :: computeG2 () const{

143 cout << "0 got here!\n";

144 int M = getListSize (); // number of snapshots/configurations

145 real* totZ; //will store the mean squared displacement

146 totZ = new real[M];

147 real* Z;

148 Z = new real[M];

79

A. Appendix

150 python ::list pyli;

152 System& system = getSystemRef ();

154 // creating vector which stores particleIDs for each CPU

155 vector <longint > localIDs; //for each CPU this will store particle IDs of

particles calculated by CPU

156 for (map <size_t ,int >:: const_iterator itr=idToCpu.begin(); itr!= idToCpu.

end(); ++itr) {

157 size_t i = itr ->first; // particle ID

158 int whichCPU = itr ->second; //CPU number

159 printf("id %u CPU %i \n", i, whichCPU);

160 if(system.comm ->rank()== whichCPU){

161 localIDs.push_back(i);

162 }

163 }

164 sort(localIDs.begin(), localIDs.end()); //sorts entries from low to high

165 // should not be necessary as long as the above iterator

166 // iterates in ascending order according to the keys

168 // COM calculation

169 Real3D posCOM = Real3D (0.0 ,0.0 ,0.0);

170 real mass = 0.0;

171 int count = 0; // counts number of particles of one chain

172 vector < vector <Real3D > > local_chainCOMlist; //will store COM of conf n

and chain cid as chainCOMlist[n][cid]

173 for(int m=0; m<M; m++){

174 vector <Real3D > innerList; //will store the local chains ’ COM of one

conf/snapshot

176 //loop over local particles

177 for(int entry = 0; entry < localIDs.size(); entry ++){

178 longint i = localIDs[entry]; //pid

179 Real3D pos = getConf(m)->getCoordinates(i);

180 posCOM += pos;

181 mass += 1;

182 count += 1;

183 // this is the right if request. remember that particle 0 also has

a mass of 1

184 if (count == chainlength){

185 innerList.push_back(posCOM / mass);

186 posCOM = Real3D (0.0 ,0.0 ,0.0);

187 mass = 0;

188 count = 0;

189 }

190 } //now innerList contains the local chains ’ COMs of snapshot m

191 local_chainCOMlist.push_back(innerList);

192 }

193 //now local_chainCOMlist contains the local chains ’ COMs of each

snapshot

195 // MSD calculation

196 int perc=0, perc1 =0;

197 real denom = 100.0 / (real)M;

198 for(int m=0; m<M; m++){

199 totZ[m] = 0.0;

200 Z[m] = 0.0;

201 for(int n=0; n<M-m; n++){

202 int part_count = 0;

80

A.1. Complete source codes

203 int local_cid = 0; //local chainID. each CPU starts with chain

local_cid = 0, so it is not a global id

204 //loop over local particles

205 for(int entry = 0; entry < localIDs.size(); entry ++){

206 longint i = localIDs[entry]; //pid

207 if(part_count == chainlength){

208 ++ local_cid;

209 part_count = 0;

210 }

211 //cout << "n, m, i, local_cid , part_count "

212 // << n << "\t" << m << "\t"<< i << "\t" << local_cid << "\

t" << part_count << "\n";

213 Real3D pos1 = getConf(n + m)->getCoordinates(i) -

local_chainCOMlist[n+m][local_cid];

214 Real3D pos2 = getConf(n)->getCoordinates(i) -

local_chainCOMlist[n][local_cid];

215 Real3D delta = pos2 - pos1;

216 Z[m] += delta.sqr();

217 part_count ++;

218 }

219 }

220 if(print_progress && system.comm ->rank()==0){

221 perc = (int)(m*denom);

222 if(perc %5==0){

223 cout <<"calculation progress (mean square displacement): "<< perc

<< " %\r"<<flush;

224 }

225 }

226 }

228 if(system.comm ->rank()==0)

229 cout <<"calculation progress (mean square displacement): 100%"<<endl;

230 // summation of results from different CPUs

231 boost::mpi:: all_reduce(*system.comm , Z, M, totZ , plus <real >());

233 for(int m=0; m<M; m++){

234 totZ[m] /= (real)(M - m);

235 }

237 real inv_coef = 1.0 / (6.0 * num_of_part);

239 for(int m=0; m<M; m++){

240 totZ[m] *= inv_coef;

241 pyli.append(totZ[m]);

242 }

244 delete [] Z;

245 Z = NULL;

246 delete [] totZ;

247 totZ = NULL;

249 return pyli;

250 }

254 // Python wrapping

255 void MeanSquareDispl :: registerPython () {

256 using namespace espresso :: python;

258 class_ <MeanSquareDispl , bases <ConfigsParticleDecomp > >

81

A. Appendix

259 ("analysis_MeanSquareDispl", init < shared_ptr < System > >())

260 .def(init < shared_ptr < System >, int >())

261 .def("computeG2", &MeanSquareDispl :: computeG2)

262 .add_property("print_progress", &MeanSquareDispl :: getPrint_progress , &

MeanSquareDispl :: setPrint_progress)

263 ;

264 }

265 }

266 }

Mean squared displacement - header file

1 /*

2 Copyright (C) 2012 ,2013

3 Max Planck Institute for Polymer Research

4 Copyright (C) 2008 ,2009 ,2010 ,2011

5 Max -Planck -Institute for Polymer Research & Fraunhofer SCAI

7 This file is part of ESPResSo ++.

9 ESPResSo ++ is free software: you can redistribute it and/or modify

10 it under the terms of the GNU General Public License as published by

11 the Free Software Foundation , either version 3 of the License , or

12 (at your option) any later version.

14 ESPResSo ++ is distributed in the hope that it will be useful ,

15 but WITHOUT ANY WARRANTY; without even the implied warranty of

16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

17 GNU General Public License for more details.

19 You should have received a copy of the GNU General Public License

20 along with this program. If not , see <http ://www.gnu.org/licenses/>.

21 */

23 // ESPP_CLASS

24 #ifndef _ANALYSIS_MEANSQUAREDISPL_HPP

25 #define _ANALYSIS_MEANSQUAREDISPL_HPP

27 #include "ConfigsParticleDecomp.hpp"

29 namespace espresso {

30 namespace analysis {

32 /*

33 * Class derived from ConfigsParticleDecomp.

34 *

35 * This implementation of mean square displacement calculation does

not take into

36 * account particle masses. It is correct if all the particles have

equal masses only.

37 * Otherwise it should be modified.

38 */

40 class MeanSquareDispl : public ConfigsParticleDecomp {

41 public:

43 MeanSquareDispl(shared_ptr <System > system) : ConfigsParticleDecomp

(system) {

44 // by default

45 setPrint_progress(true);

82

A.1. Complete source codes

46 key = "unfolded";

47 }

49 MeanSquareDispl(shared_ptr <System > system , int chainlength) :

50 ConfigsParticleDecomp(system , chainlength) {

51 // by default

52 setPrint_progress(true);

53 key = "unfolded";

54 }

56 ~MeanSquareDispl () {

57 }

59 virtual python ::list compute () const;

60 python ::list computeG2 () const;

62 void setPrint_progress(bool _print_progress) {

63 print_progress = _print_progress;

64 }

66 bool getPrint_progress () {

67 return print_progress;

68 }

70 static void registerPython ();

71 private:

72 bool print_progress;

73 };

74 }

75 }

77 #endif

Mean squared displacement - python file

1 # Copyright (C) 2012 ,2013

2 # Max Planck Institute for Polymer Research

3 # Copyright (C) 2008 ,2009 ,2010 ,2011

4 # Max -Planck -Institute for Polymer Research & Fraunhofer SCAI

5 #

6 # This file is part of ESPResSo ++.

7 #

8 # ESPResSo ++ is free software: you can redistribute it and/or modify

9 # it under the terms of the GNU General Public License as published by

10 # the Free Software Foundation , either version 3 of the License , or

11 # (at your option) any later version.

12 #

13 # ESPResSo ++ is distributed in the hope that it will be useful ,

14 # but WITHOUT ANY WARRANTY; without even the implied warranty of

15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

16 # GNU General Public License for more details.

17 #

18 # You should have received a copy of the GNU General Public License

19 # along with this program. If not , see <http://www.gnu.org/licenses/>.

22 """

23 *************************************

24 ** espresso.analysis.MeanSquareDispl **

25 *************************************

83

A. Appendix

27 """

28 from espresso.esutil import cxxinit

29 from espresso import pmi

31 from espresso.analysis.ConfigsParticleDecomp import *

32 from _espresso import analysis_MeanSquareDispl

34 class MeanSquareDisplLocal(ConfigsParticleDecompLocal ,

analysis_MeanSquareDispl):

35 ’The (local) compute autocorrelation f.’

36 def __init__(self , system , chainlength = None):

37 if chainlength is None:

38 cxxinit(self , analysis_MeanSquareDispl , system)

39 else:

40 cxxinit(self , analysis_MeanSquareDispl , system , chainlength)

42 def computeG2(self):

43 return self.cxxclass.computeG2(self)

45 def strange(self):

46 print 1

47 return 1

49 if pmi.isController:

50 class MeanSquareDispl(ConfigsParticleDecomp):

51 __metaclass__ = pmi.Proxy

52 pmiproxydefs = dict(

53 cls = ’espresso.analysis.MeanSquareDisplLocal ’,

54 pmiproperty = [’print_progress ’],

55 pmicall = ["computeG2", ’strange ’]

56)

A.2. Alternative codes

A.2.1. Static structure factor

Alternative code for the computation of the static structure factor, which uses less
scattering vectors for higher moduli and which is parallelized over scattering vectors.

0 //this is designed with a cubic symmetry (as far as interger multipliers for

the scattering vectors are concerned)

3 int num_layers = 10; // number of layers. example value (specified by user in

final code)

4 int num_steps = 3; // number of steps per layer. example value (specified by

user in final code)

6 vector <int > posAxisPoints; // positive values that hx, hy and hz the

multipliers for the scattering vector can take

8 int gridpoint = 1; //one value on the axis. initialized with "1" since

positive values are created first

9 while(gridpoint <= num_steps){

10 posAxisPoints.pushback(i);

11 gridpoint ++;

84

A.2. Alternative codes

12 }

15 //now: gridpoint = num_steps;

16 int stepsize = 1;

17 for(int layer = 0; layer < num_layers; layer ++){

18 printf("-%i- \t", stepsize);

19 for(int step =0; step <num_steps; step ++){

20 gridpoint += stepsize;

21 posAxisPoints.pushback(gridpoint);

22 //cout << gridpoint << "\t";

23 printf("%i ",gridpoint);

24 }

25 printf("\n");

26 stepsize *= 2; //grows exponentially with jump to next layer

27 }

28 //check size of posAxisPoints

29 int num_posAxisPoints = num_layers * num_steps + num_steps; // ’+num_steps ’

because of the innermost layer

30 if(posAxisPoints.size() != num_posAxisPoints){

31 printf("ERROR: wrong number of axis points.");

32 printf(" Desired number: %i", num_posAxisPoints);

33 printf(" Currently filled: %i \n", posAxisPoints.size());

34 }

36 vector <int > axisPoints;

37 // filling the axis. first negative side , then 0, then positive side

38 for(int i = posAxisPoints.size() - 1; i >= 0; i--){

39 int negPoint = - posAxisPoints[i];

40 axisPoints.pushback(negPoint);

41 }

42 axisPoints.pushback (0);

43 for(int i = 0; i < posAxisPoints.size(); i++){

44 int posPoint = posAxisPoints[i];

45 axisPoints.pushback(posPoint);

46 }

48 //int layer; //the layer in which a gridpoint is positioned

49 int qcount = -1; // counts the q vectors that are used for the computation. is

also used for parallelization

51 int num_axisPoints = 2* num_posAxisPoints + 1; // ’2*’ because of negative

values. ’+1’ because of zero.

52 for(int ix = 0; ix < num_axisPoints; ix++){

53 int hx = axisPoints[ix];

54 int axisPos_x = abs(ix - num_posAxisPoints); //abs is the absolute value

55 int layer = (int) ceil(axisPos_x / (double) num_steps) - 2; //the layer in

which a gridpoint is positioned

56 // correction for layer 0 in if statement below

57 if(layer < 0) layer = 0;

58 for(int iy = 0; iy < num_axisPoints; iy++){

59 int hy = axisPoints[iy];

60 int axisPos_y = abs(iy - num_posAxisPoints); //abs is the absolute value

61 int layer_y = (int) ceil(axisPos_y / (double) num_steps) - 2; //the layer

in which a gridpoint is positioned

62 // correction for layer 0 in if statement

below

63 if(layer_y < 0) layer_y = 0;

64 layer = max(layer , layer_y);

65 for(int iz = 0; iz < num_posAxisPoints + 1; iz++){

66 int hz = axisPoints[iz];

85

A. Appendix

67 int axisPos_z = abs(iz - num_posAxisPoints); //abs is the absolute value

68 int layer_z = (int) ceil(axisPos_z / (double) num_steps) - 2; //the

layer in which a gridpoint is positioned

69 // correction for layer 0 in if statement

below

70 if(layer_z < 0) layer_z = 0;

71 layer = max(layer , layer_z);

72 int longestQ = num_steps * 2 ^ (layer + 1);

73 if(hx*hx + hy*hy + hz*hz > longestQ*longestQ)

74 break;

75 else{

76 qcount ++;

77 // assign proc to current q-vector and call computeS

78 if(qcount%nprocs == myrank)

79 computeS(hx,hy,hz);

80 }

81 }

82 }

83 }

86

A.3. Additional graphs

A.3. Additional graphs

Figure A.1.: The static structure factor for three configurations of stiffness kθ = 0.75
with original box length. Each marker type corresponds to one configura-
tion.

87

A. Appendix

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 2 4 6 8 10

S
(q
)

q

N = 100
M = 1000
(nq = 20)

Figure A.2.: The static structure factor for three configurations of stiffness kθ = 0.75
with modified box length for the calculation. The box length was divided
by five. Each marker type corresponds to one configuration.

88

Bibliography

[All89] Allen M.P. and Tildesley D.J., Computer Simulation of Liquids, Clarendon
Press, New York, NY, USA (1989).

[Arb96] Arbe A., Richter D., Colmenero J. and Farago B., Merging of the α and β
relaxations in polybutadiene: A neutron spin echo and dielectric study, Phys.
Rev. E, 54, 3853–3869 (1996), doi:10.1103/PhysRevE.54.3853, URL http:

//link.aps.org/doi/10.1103/PhysRevE.54.3853.

[Auh03] Auhl R., Everaers R., Grest G.S., Kremer K. and Plimpton S.J., Equilibration
of long chain polymer melts in computer simulations, The Journal of Chemical
Physics, 119, 12 718–12 728 (2003), doi:10.1063/1.1628670.

[Bas94] Baschnagel J. and Binder K., Structural aspects of a three-dimensional lattice
model for the glass transition of polymer melts: a Monte Carlo simulation,
Physica A: Statistical Mechanics and its Applications, 204(1), 47–75 (1994),
URL http://EconPapers.repec.org/RePEc:eee:phsmap:v:204:y:1994:i:

1:p:47-75.

[Bas00] Baschnagel J., Bennemann C., Paul W. and Binder K., Dynamics of a super-
cooled polymer melt above the mode-coupling critical temperature: cage versus
polymer-specific effects, Journal of Physics: Condensed Matter, 12(29), 6365
(2000), URL http://stacks.iop.org/0953-8984/12/i=29/a=308.

[Bin05] Binder K. and Kob W., Glassy Materials and Disordered Solids, World Scien-
tific Publishing, 5 Toh Tuck Link, Singapore 596224 (2005).

[Bul08] Bulacu M., Molecular Dynamics Studies of Entangled Polymer Chains, disser-
tation, Rijksuniversiteit Groningen (2008), URL http://dissertations.ub.

rug.nl/faculties/science/2008/m.i.bulacu/thesis.pdf.

[Bus31] Busse W.F., The Physical Structure of Elastic Colloids, The Journal of Phys-
ical Chemistry, 36(12), 2862–2879 (1931), doi:10.1021/j150342a002, URL
http://pubs.acs.org/doi/abs/10.1021/j150342a002.

[Cat00] Cates M. and Evans R., Soft and Fragile Matter: Nonequilibrium Dynamics,
Metastability and Flow (PBK), Scottish Graduate Series, Taylor & Francis
(2000), URL http://books.google.de/books?id=WX5uxkEpDYAC.

89

http://link.aps.org/doi/10.1103/PhysRevE.54.3853
http://link.aps.org/doi/10.1103/PhysRevE.54.3853
http://EconPapers.repec.org/RePEc:eee:phsmap:v:204:y:1994:i:1:p:47-75
http://EconPapers.repec.org/RePEc:eee:phsmap:v:204:y:1994:i:1:p:47-75
http://stacks.iop.org/0953-8984/12/i=29/a=308
http://dissertations.ub.rug.nl/faculties/science/2008/m.i.bulacu/thesis.pdf
http://dissertations.ub.rug.nl/faculties/science/2008/m.i.bulacu/thesis.pdf
http://pubs.acs.org/doi/abs/10.1021/j150342a002
http://books.google.de/books?id=WX5uxkEpDYAC

BIBLIOGRAPHY

[Far11] Farago J., Meyer H. and Semenov A.N., Anomalous Diffusion of a Poly-
mer Chain in an Unentangled Melt, Phys. Rev. Lett., 107, 178 301 (2011),
doi:10.1103/PhysRevLett.107.178301, URL http://link.aps.org/doi/10.

1103/PhysRevLett.107.178301.

[Fil12] Filipovic L., Topography Simulation of Novel Processing Techniques, disserta-
tion, Technische Universität Wien (2012), URL http://www.iue.tuwien.ac.

at/phd/filipovic/node26.html.

[Hal13] Halverson J.D., Brandes T., Lenz O., Arnold A., Bevc S., Starchenko V.,
Kremer K., Stuehn T. and Reith D., ESPResSo++: A modern multiscale
simulation package for soft matter systems, Computer Physics Communi-
cations, 184(4), 1129 – 1149 (2013), doi:http://dx.doi.org/10.1016/j.cpc.
2012.12.004, URL http://www.sciencedirect.com/science/article/pii/

S0010465512004006.

[Han86] Hansen J.P. and McDonald I.R., Polymers and Neutron Scattering, Academic
Press Inc., Orlando, Florida 32887, second edition Auflage (1986).

[Hig94] Higgins J.S. and Benôıt H.C., Polymers and Neutron Scattering, Oxford Uni-
versity Press Inc., Walton Street, Oxford OX2 6DP (1994).

[Hor99] Horbach J. and Kob W., Static and Dynamic Properties of a Viscous Sil-
ica Melt Molecular Dynamics Computer Simulations (1999), doi:10.1103/
PhysRevB.60.3169.

[Kre83] Kremer K., Statics and dynamics of polymeric melts: a numerical analysis,
Macromolecules, 16(10), 1632–1638 (1983), doi:10.1021/ma00244a015, URL
http://pubs.acs.org/doi/abs/10.1021/ma00244a015.

[Mor14] Moreira L.A., Müller F., Stühn T. and Kremer K., Direct Equilibration and
Characterization of Polymer Melts (2014), in preparation.

[OCAa] OCA, notepad, https://openclipart.org/image/2400px/svg_to_png/

169875/Rmx_Notes.png, accessed: 2014-04-13.

[OCAb] OCA, terminal, https://openclipart.org/image/2400px/svg_to_png/

171762/1345126450.png, accessed: 2014-04-13.

[OCAc] OCA u.d., Simple icon representing a user, https://openclipart.org/

image/800px/svg_to_png/167201/1326861328.png, accessed: 2014-04-13.

[Pri87] Price D. and Carpenter J., Scattering function of vitreous silica, Jour-
nal of Non-Crystalline Solids, 92(1), 153 – 174 (1987), doi:http://dx.doi.
org/10.1016/S0022-3093(87)80366-6, URL http://www.sciencedirect.com/

science/article/pii/S0022309387803666.

[Rub03] Rubinstein M. and Colby R.H., Polymer Physics, Oxford University Press Inc.,
Great Claredon Street, Oxford OX2 6DP (2003).

90

http://link.aps.org/doi/10.1103/PhysRevLett.107.178301
http://link.aps.org/doi/10.1103/PhysRevLett.107.178301
http://www.iue.tuwien.ac.at/phd/filipovic/node26.html
http://www.iue.tuwien.ac.at/phd/filipovic/node26.html
http://www.sciencedirect.com/science/article/pii/S0010465512004006
http://www.sciencedirect.com/science/article/pii/S0010465512004006
http://pubs.acs.org/doi/abs/10.1021/ma00244a015
https://openclipart.org/image/2400px/svg_to_png/169875/Rmx_Notes.png
https://openclipart.org/image/2400px/svg_to_png/169875/Rmx_Notes.png
https://openclipart.org/image/2400px/svg_to_png/171762/1345126450.png
https://openclipart.org/image/2400px/svg_to_png/171762/1345126450.png
https://openclipart.org/image/800px/svg_to_png/167201/1326861328.png
https://openclipart.org/image/800px/svg_to_png/167201/1326861328.png
http://www.sciencedirect.com/science/article/pii/S0022309387803666
http://www.sciencedirect.com/science/article/pii/S0022309387803666

BIBLIOGRAPHY

[Stü] Stühn T.

[Tre40] Treloar L.R.G., Elastic recovery and plastic flow in raw rubber, Trans. Faraday
Soc., 35, 538–549 (1940), doi:10.1039/TF9403500538, URL http://dx.doi.

org/10.1039/TF9403500538.

[Wee71] Weeks J.D., Chandler D. and Andersen H.C., Role of Repulsive Forces in De-
termining the Equilibrium Structure of Simple Liquids, The Journal of Chem-
ical Physics, 54(12) (1971).

91

http://dx.doi.org/10.1039/TF9403500538
http://dx.doi.org/10.1039/TF9403500538

	Introduction
	Theory
	Static structure factor
	Collective structure factor
	Single-chain and intramolecular structure factor
	Relation to other quantities
	Restrictive choice of scattering vectors q

	Mean-square displacement
	Displacements g1, g2 and g3
	Monomer displacement in entangled linear melts

	Creation of new analysis tools
	Simulation software ESPResSo++
	Static structure factor
	Mean-square displacement
	Particle and chain decomposition
	Statistics for different time intervals

	Systems
	Model and chain generation
	Equilibration
	Configurations from simulation

	Results
	Implementation results
	Static structure factor
	Mean square displacement

	Computation results
	Single chain structure factor
	Collective structure factor

	Further improvements
	Conclusion
	Acknowledgement
	Appendix
	Complete source codes
	Static structure factor
	Particle decomposition
	Mean squared displacement

	Alternative codes
	Static structure factor

	Additional graphs

	Bibliography

