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In the context of group field theory condensate cosmology, we clarify the extraction of cosmologi-
cal variables from the microscopic quantum gravity degrees of freedom. We show that an important
implication of the second quantized formalism is the dependence of cosmological variables and equa-
tions on the quantum gravitational atomic number N (number of spin network vertices/elementary
simplices). We clarify the relation of the effective cosmological equations with loop quantum cosmol-
ogy, understood as an effective (hydrodynamic-like) approximation of a more fundamental quantum
gravity theory. By doing so, we provide a fundamental basis to the idea of lattice refinement, show-
ing the dependence of the effective cosmological connection on N, and hence indirectly on the scale
factor. Our results open a new arena for exploring effective cosmological dynamics, as this depends
crucially on the new observable N, which is entirely of quantum gravitational origin.
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One of the major challenges for background-
independent approaches to quantum gravity has been the
description of macroscopic, (approximately) continuous
and almost spatially homogeneous universes like our own,
and the derivation of manageable effective equations de-
scribing the dynamics of such universes within a given
fundamental theory. The successful completion of these
steps is crucial for deriving predictions of such theories,
to be compared with cosmological observations such as
those of Planck and BICEP2 [1]. The challenge is a major
one because background independence implies that the
most natural notion of ‘vacuum state’ is a state describ-
ing no geometry at all, and a macroscopic non-degenerate
(metric) geometry is unlikely to be found as a perturba-
tive excitation over this vacuum. One also generically has
to turn discrete structures into approximately continuous
ones within the same background-independent context.

Recently [2], a major step towards addressing this chal-
lenge was completed within the group field theory (GFT)
approach to quantum gravity [3], itself a second quan-
tized formulation of the kinematics and dynamics of loop
quantum gravity (LQG) [4, 15], with spin network ver-
tices or elementary simplices playing the role of ‘quanta’
of the GFT field, the ‘atoms of quantum space’. It was
shown that many-atom condensate states in GFT, akin
to coherent or squeezed states used in Bose-Einstein con-
densates, have an interpretation as macroscopic homoge-
neous spatial universes. Furthermore, the effective equa-
tions describing the dynamics of these states, extracted
directly from the fundamental GFT quantum dynamics,
can be interpreted in terms of (a non-linear extension of)
quantum cosmology equations on minisuperspace. This
result was shown to be structural and very general. In
Ref. |2] an example was given in which a certain choice
of condensate state, with some assumptions on the GFT
action, gives a linear effective equation whose semiclassi-
cal (WKB) limit is, in the isotropic case, the Friedmann

equation for homogeneous isotropic universes in general
relativity. This result was obtained both for Riemannian
and Lorentzian signature of the metric, and both in vac-
uum and with a massless free scalar field, which naturally
appears with the correct coupling to gravity.

The purpose of this paper is to clarify further, in this
context of GFT condensate cosmology, the extraction of
cosmological variables from the microscopic degrees of
freedom, which is the crucial step in interpreting the ef-
fective quantum cosmological equations. In Ref. [2], an
interpretation for macroscopic observables of the conden-
sate, in the isotropic case, as functions of the scale factor
a and the Hubble parameter ¢ (for lapse equal to one)
was proposed. This interpretation did not take into ac-
count the second quantization picture of LQG offered by
GFT, namely the treatment of LQG spin network vertices
as (bosonic) indistinguishable ‘quantum gravity atoms’.
Here we show that an important implication of a second
quantized formalism is the dependence of cosmological
variables and equations on the atomic number N. Using
this observation, we explain the limitations of the WKB
approximation previously used. We can then derive the
precise relation of our effective cosmological equations
to the dynamics of loop quantum cosmology (LQC) [6]:
the dependence of the cosmological spin connection on
N, and hence indirectly also on observables such as the
scale factor, gives a fundamental basis to the idea of lat-
tice refinement 7] and ‘improved dynamics’ [8] in LQC.
Our results open a new arena for exploring effective cos-
mological dynamics, as the new observable N is entirely
of quantum gravitational origin. We show that it can
explain and affect several elements of the effective cos-
mological dynamics, being thus an important ingredient
of model building and analysis in (quantum) cosmology,
understood as an effective (hydrodynamic-like) approxi-
mation of a more fundamental quantum gravity theory.
A further result is that cosmological effective equations
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can be obtained from the fundamental quantum grav-
ity dynamics through expectation values of cosmological
variables, not relying on any semiclassical approximation.

The necessity of defining observables as second quan-
tized operators on the GFT Fock space implies that con-
tinuum cosmological quantities can be associated either
to total or to averaged observables of many-atom states.
We argue that out of the canonically conjugate variables
corresponding to a flux and a connection, the first must
be ‘total’” while the second is ‘averaged’. It follows that
the relation between a macroscopic gravitational connec-
tion and the group variables used in GFT (representing
parallel transports of a connection) must involve the aver-
age atomic number (N) in a nontrivial way. We find that
the variable appearing in the effective cosmological equa-
tions can be identified with sin(uw) where pu oc (N)~1/3,
A change of the atomic number under time evolution then
realizes a dynamical mechanism of lattice refinement by
which the emergence of new quantum geometric degrees
of freedom affects the effective cosmological dynamics.

The precise dynamical interpretation of this lattice re-
finement in GFT condensate cosmology depends on how
the quantum gravitational atomic number N, which has
no analog in the classical continuum theory, is related
to cosmological quantities such as the scale factor. This
relation is encoded in the cosmological ‘wavefunction’ (a
hydrodynamic variable from the point of view of quan-
tum gravity), and it is itself dynamical. We look at two
cases. In the first, the atomic number is (approximately)
fixed and appears as an additional parameter, so that u
is a constant. This scenario was implicitly assumed in
Ref. [2], and reproduces the constructions of ‘old” LQC
[9]. In the second case, we assume that the average vol-
ume of the individual building blocks of geometry re-
mains constant under time evolution, meaning that more
‘atoms’ must be created as the total volume grows. In
this case, the average atomic number scales with the to-
tal volume; we have p é and the holonomy-corrected
term in the Hamiltonian replacing the connection w is
sin(22 w). This reproduces precisely the functional form
of holonomy corrections in the ‘improved dynamics’ pre-
scription in LQC [8]. The two scenarios should be con-
sidered as special cases of more general functional rela-
tions N(a). The main point is that, in GFT condensate
cosmology, this relation is a computable result of the fun-
damental dynamics of the theory, and in turn affects di-
rectly the effective cosmological dynamics.

Cosmological observables for GFT condensates. — For
a quantum non-relativistic particle, the canonically con-
jugate observables are position £; and momentum p;,

[%i,p;] =R 1, (1)

where 1 is the identity operator. In many-particle
physics, these single-particle operators extend to opera-

tors on the Fock space, namely a ‘total position’ operator
X, = / &x 2 T () d(T), (2)

and a total momentum operator P;. These satisfy
[Xi, P = ihéy; N, (3)

where N is the number operator. The second quantized
operators X; and I:’j are thus no longer canonically con-
jugate and one of them, the ‘total position’, has a rather
unclear physical meaning, in contrast to the total mo-
mentum. The two issues are related: out of two canoni-
cally conjugate quantities, one is typically extensive and
one is intensive in the particle number. One-body opera-
tors in second quantization, instead, are always extensive.

At fixed particle number N, one could define a center-

of-mass position operator z{ ™ := %Xi. However, a

Fock space operator N~1 is not naturally defined, as N
contains zero in its spectrum. One can instead define the
intensive quantity ‘average center-of-mass position’ as an
expectation value for any given state,
o = (X)) /(N) . (4)
The same discussion goes through for quantum gravity
in the GFT context (see also the canonical and kinemat-
ical analysis in Ref. [10]). In Ashtekar variables [11] the
natural choice of canonically conjugate continuum vari-
ables are the gravitational SU(2) connection A¢ and the
‘inverse triad’” Ej. In the construction of LQG [3], these
continuum fields are discretized by integration over links
and surfaces. One obtains the holonomy-flux algebra

{9,B"} = —(8mQ)r'g, {B', B’} = —(877G) ¢}, B
()
for the phase space variables associated to a fundamen-
tal link, g (the parallel transport of A along the link)
and B® (the flux of E through a dual elementary sur-
face). Here 7¢ are a basis of the SU(2) Lie algebra, e.g.
T = %ai, G is Newton’s constant and ~ the Barbero—
Immirzi parameter. In the Fock space picture of 4d GF'T,
four copies of ¢ and B’ become the basic phase space
variables parametrizing single-atom states (of individual
building blocks of quantum space); for each copy, the
corresponding single-atom operators satisfy

g, B = —ikt'g, [B',BI] = —i e’ ,BF,  (6)

where k := 87yhG has dimensions of area.

The GFT Fock space is constructed from a vacuum
state |@) which corresponds to a completely degenerate
geometry, analogous to the standard LQG vacuum [3].
While ¢(gr)|@) = 0, the conjugate field operator ¢f(gr)
creates an ‘atom of space’ labeled by group elements gy,
lgr) == ¢T(gr)|0) (where I = 1,...,4 labels the four
canonical pairs (g, B)). With bosonic statistics for ¢,



many-atom states can be constructed by repeated ac-
tions of ¢T(gs) on |@). Such states correspond to spin
networks, with the basic quanta being their vertices, and
can equivalently be interpreted as triangulations labeled
by the same algebraic data. The interpretation of such
states in terms of a continuum metric may require an
embedding into a given manifold. See Refs. E, 3, B] for
details of the GFT states and their geometric interpreta-
tion, the relation to LQG, and the GFT dynamics.

On the GFT Fock space, the single-atom operators
(g, B") extend to a ‘total group element’ G, defined in
terms of an appropriate coordinate system on SU(2), and

a total flux b*. We choose coordinates 7 on SU(2) by
g=v1-7gP1-ig-7g), |[gll<1. (7)
The ‘total group coordinate’ operators

filgs] = / (dg)* 7lg1] &' (9)3(0) (8)

and total flux operators, represented as right-invariant
vector fields on SU(2)

by =i [(o)! ¢ 56 (e () ) | O

are then well-defined on the Fock space. This total flux
is non-commutative (¢f. Eq. [@)), as is the corresponding
microscopic variable. We interpret its commutative limit

i =in [(9)! ¢ (rloal) pré

)
t=0

(nlgs])  (10)

to be the macroscopic flux variable of direct cosmological
interpretation.

As in the previous example, the flux defines a natu-
rally extensive quantity, while the ‘total group element’
carries no obvious interpretation. We can however define
‘average group coordinates’ through matrix elements,

g™ = (Mgs])/(N) . (11)

These ‘averaged group coordinates’ satisfy |fIaV'| < 1.
The total fluxes b; and the averaged group coordinates
ﬁ*}"' = <—Jb>ﬁ1 are analogous to total momentum and
center-of-mass position, and characterize the condensate.
In particular, the averaged holonomies are the only quan-
tities that can be interpreted consistently as macroscopic
holonomies. Now we investigate their dependence on the
atomic number N in more detail. Noting that the par-
allel transport over a path of coordinate length y in j-
direction, with approximately constant connection, is

Pexp [~ cos(uluy) 1+ L sinfulesl) (12

|wj]

with w; € su(2), the averaged group coordinates can thus
be interpreted as the parallel transport of a connection

L) |(TD)|
W, pW:i= = N

13
(1D )

arcsin

which depends on both the atomic number and the ‘total
group coordinates’. Eq. (I3) can be seen as a change of
variables from (I, N) to (@, N).

Fixing p amounts to defining a coordinate system in
which w is given. In Ref. @], i was taken to be the co-
ordinate length of a ‘fundamental link’ associated to an
elementary quantum of geometry, and taken as constant.
However, as N appears explicitly in Eq. (I3)), it appears
unnatural to assume that p should be independent of N.
A more natural coordinate system is one in which the
condensate as a whole is extended over a region of fixed
coordinate length. Each quantum of geometry then occu-
pies an average coordinate volume proportional to 1/N,
and the coordinate length associated to these quanta is
poc N=1/3. Adopting such a coordinate system (in itself
of no physical content) is convenient for linking the ef-
fective cosmological equations arising from GFT conden-
sates and the formalism of loop quantum cosmology. The
so defined collective variables correspond to the macro-
scopic, cosmological variables for the GFT condensate.

Interpretation of effective cosmological equations. —
In Ref. ﬂ] it was shown that the dynamics of condensate
states in GF'T can be reduced, within certain approxima-
tions, to effective quantum cosmology equations. These
arise from Schwinger—Dyson equations of the GF'T, which
take the general form

5016 ¢ _sSlpal\
<6so<gf> ~ Ol o) >‘0 14

for any functional O of the GFT field ¢ and its com-
plex conjugate, with fundamental dynamics defined by
an action S. Eq. (I4) holds in the vacuum state, for all
O. Requiring Eq. ([[4) for certain choices of O encodes
the requirement for a GFT condensate state to give a
good approximation to a non-perturbative vacuum (see
Ref. ﬂﬁ] for further analysis of the nature of this approx-
imation). The key result of Ref. [2], at the dynamical
level, was that Eq. (Id), for simple choices of O and for
an approximate vacuum state given by a GFT conden-
sate state such as

o) xexp (@)[0), &= [(@g)olang (o), (15)

gives a quantum cosmology-like equation for the cos-
mological ‘wavefunction’ o (similar to those obtained in
Ref. [13]). Here we want to interpret Eq. (I4) directly
in terms of expectation values of second quantized oper-
ators corresponding to the kinetic and interaction terms
of the fundamental GFT action, computed again for con-
densate states that have a cosmological interpretation.
For O = ¢(g1), Eq. (I4) becomes, integrating over gy,

(ot o S5

Passing to the operator formalism and choosing normal




ordering, the delta distribution §¢/d@ disappears and

10,0512, 1]
dg)* ¢'(g1) 1~ ) =0. 17
</< )80 o (7)
Splitting the action in kinetic and interaction terms as
S = K +V for a second quantized kinetic operator

K[p. 41 = / (dg)'(dg")* &' (9K (gr, d)e(g}) . (18)

Eq. (I7) can be written as

(K)+ < [ ¢*<91>M> =0. (19

6@t (gr)

Eq. ([9) is one necessary condition to be satisfied by any
state that defines a vacuum of the theory. We are now
interested in the situation in which only the first con-
tribution to Eq. ([9) is non-vanishing. As discussed in
Ref. E], this can be an exact result for certain states or,
more generally, one could consider a weak-coupling limit
in which interactions may be neglected. We then require
the condition that K has zero expectation value to be
satisfied for our GFT condensate states, e.g. Eq. (I3).

To make the corresponding cosmological dynamics ex-
plicit, we need to make a choice for K. As in Ref. [J] (and
as motivated by GFT renormalization M]), we choose
K =3";A,, +m? where A, is the Laplace-Beltrami op-
erator on SU(2) and m? is a coupling constant. A, can
be expressed as a combination of right-invariant vector
fields and hence of non-commutative fluxes as in Eq. ().
For easier comparison with continuum classical gravity,
we instead express A, in terms of partial derivatives, i.e.
of the commutative total fluxes of Eq. [I0). We have

N ;0

I
—alah— — 3zl — .
v )87Ti1 871']1» * orl

Ag, = (i (20)

The equation (K) = 0 can be rewritten as

S (o fr = (0 1) = iR (1L £1)) = m?R2(N) =0

I

where, e.g.,

R o 0
£ i = [(dg)" M ala) sy 5r
J

(m[g1]) -
(22)
As we are in a condensate (e.g. given by Eq. (I))),
with all quantum gravitational atoms in the same config-

uration, we can approximate

Ui o)~ le@ ).

so that Eq. ([ZI) can be approximately written as

% =3in(Ilr)-(f1) = m*k*(N)?.

Sy

etc. (23)

S (-
' (24)

We can now identify expectation values in the con-
densate with the degrees of freedom of homogeneous,
isotropic GR. The quantity (f;) can be identified, for an
isotropic universe, with T; a®> where a is the scale factor
and T7 € su(2) with T - Tr = O(1). We also have

(1) .
— = Vsin(uw) (25)
(N)
for Vi € su(2) again with Vy - V; = O(1). We obtain the
effective “Friedmann equation”

k — sin?(pw 3ik .
72() - FaN sin(uw) —

m2k2N?
“Bat ~0, (26)

with N = <N ), and k,«, B are shorthands for combina-
tions of contractions such as 77 - T or T - V. Viewed as
a cosmological Friedmann equation, Eq. (26]) consists of
the usual gravitational term, including the same holon-
omy corrections as in LQC, and two terms depending on
N whose interpretation will depend on the exact relation
between the new degree of freedom N and the cosmolog-
ical observables. We emphasize that this dependence of
the effective cosmological dynamics on N is a new gen-
uine quantum gravity effect, and that all the corrections
to the Friedmann equation above are derived from the
chosen fundamental GFT dynamics.

Indeed, the main observation made in this paper is
that effective cosmological equations for quantum grav-
ity condensates depend on the atomic number N, once
intensive and extensive observables are distinguished. In
the previous work of Ref. E], an equation consisting only
of the first term of Eq. (28] arose from a WKB approxi-
mation for the wavefunction 0. The WKB expansion in
derivatives appears to be an expansion in x/a?, which is
indeed tiny for any macroscopic a. The physical viabil-
ity of the WKB approximation could be questioned as it
stems from the assumption that the individual atoms of
quantum space are already semiclassical. One can look at
explicit solutions and study their deviations from WKB
behavior ] The WKB limit also neglected any depen-
dence on N and simply identified the total (extensive)
operators with cosmological observables. Its failure can
then be understood from a different angle here. Once the
scaling with N is taken into account, Eq. (28] appears to
be an expansion in powers of the ratio xN/a?, which is
the inverse average area in (Planck) units set by x. This
need not be small at all even in the semiclassical case.

Eq. (26]) arises from taking an expectation value in the
condensate state. While not relying on a semiclassical ap-
proximation, using Eq. (26]) to describe the cosmological
dynamics of the condensate assumes that relative fluctua-
tions remain small, so that one can focus on expectation
values. To study this property for specific states is a
subtle issue, even in the context of LQC ﬂﬁ], but it is an
additional condition to be imposed on GFT condensates.

In order to connect effective equations like Eq. (28] to
classical general relativity or to LQC, we need to relate

a



the new QG observable N to geometric observables, such
as the scale factor. This relation is encoded in the con-
densate wavefunction, and can be computed for any given
solution of the effective dynamics. Here, we consider two
interesting possible regimes. The first is when the con-
densate has an approximately constant atomic number
N, that can thus be treated as an additional parameter.
One could fix N to be exactly constant by working in the
canonical ensemble. We recover the variables of the ‘old’
version of LQC ﬂQ] the holonomy-corrected expression
replacing w is simply sin(uow) for constant pg. Then the
two terms in Eq. (26) describe a “radiation” term that
also depends on the connection, and a stiff matter term.

A second regime is that the expansion of the Universe
proceeds by an increase in the number of QG atoms,
with constant average volume per atom. One can restrict
to this regime as well by an appropriate choice of GF'T
ensemble of states. Then one has N o a® and p = o
for some ag, so that the combination of @ and w in the
effective Friedmann equation is now sin(%w). This is
precisely as in the ‘improved dynamics’ prescription of
LQC ﬂa, ], which is here derived from the fundamental
dynamics of condensates in a second quantized version of
LQG, given by GFT. For N = (a/ag)?, Eq. (28] becomes

m2k?

T 5.6
ﬁao

or for small values of the argument “¢w < 1, where cur-
vature is low and holonomy corrections can be ignored,

RS S () o

2
a a Qg

E o w? 3ika m2k? a?
2 2 ad Y G (28)
CLO a CLO CLO CLO

In this regime, the k-dependent term appears as an
effective cosmological constant, of Planckian size if ag ~
Iplanck- There is a term linear in the connection and an
infrared modification growing as a2, both of which do not
have a clear physical interpretation.

To obtain both forms of effective cosmological dynam-
ics, we have made a choice for the kinetic operator K, but
the general argument extends to any IC that has second
derivatives in the group variables. The precise form of
Eq. (28) would be however different for a different choice
of K, leading to a different cosmological interpretation of
the corrections to the Friedmann equation. More correc-
tions would come from the GFT interactions as part of
the GFT action S, which we have neglected here.

Beside the specific form obtained, the main point,
as we have stressed and as these examples show, is
that the identification of the effective dynamics depends
rather crucially on the behavior of the atomic number
N. This behavior depends on the choice of ensemble and
on the dynamical properties of the underlying field the-
ory; moreover, the scaling of N with other observables
may change under a phase transition ﬂﬂ], and differ-
ent phases of a quantum gravity condensate may be de-
scribed by completely different effective dynamics. The

consequences of these possibilities for cosmology need to
be investigated further. Still, the very presence of the
quantity N in the effective dynamics is a totally general
and new feature, independent of the details of the model.

In particular, the dependence of holonomy corrections
on N results from a kinematical identification of the fun-
damental observables of the condensate, and not from
any specific choice of GFT dynamics. The other main
point is in fact that all aspects of the dynamics of LQC,
including the precise form of holonomy corrections, can
now be derived from a microscopic quantum gravity set-
ting (see also work aimed at similar goals in the canonical
LQG setting [1§] and in the spin foam setting [19]), due to
the appearance of the new quantum gravity observable N
in effective cosmological equations. The mechanism itself
gives a microscopic dynamical origin of lattice refinement
ﬂ] in LQC, as it suggests a dynamical change in the num-
ber of degrees of freedom of quantum geometry with the
evolution of the Universe. Further results strengthening
the link between GFT condensate cosmology and LQC in
the lattice refined setting have been obtained in Ref. @]

This gives further weight to the program of Ref. @] for
deriving quantum cosmology equations from the dynam-
ics of GFT condensate states, thus from a many-body
quantum system of fundamental QG degrees of freedom.
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