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We consider higher derivative corrections to the graviton three-point coupling within

a weakly coupled theory of gravity. Lorentz invariance allows further structures beyond

the one present in the Einstein theory. We argue that these are constrained by causality.

We devise a thought experiment involving a high energy scattering process which leads

to causality violation if the graviton three-point vertex contains the additional structures.

This violation cannot be fixed by adding conventional particles with spins J ≤ 2. But,

it can be fixed by adding an infinite tower of extra massive particles with higher spins,

J > 2. In AdS theories this implies a constraint on the conformal anomaly coefficients
∣∣a−c

c

∣∣ . 1
∆2

gap
in terms of ∆gap, the dimension of the lightest single particle operator with

spin J > 2. For inflation, or de Sitter-like solutions, it indicates the existence of massive

higher spin particles if the gravity wave non-gaussianity deviates significantly from the one

computed in the Einstein theory.
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1. Introduction/Motivation

In this paper we consider weakly coupled gravity theories in the tree-level approxima-

tion. It is well-known that at long distances such theories should reduce to the Einstein

gravity theory. However, at intermediate energies we can have higher derivative correc-

tions. By intermediate energies we mean those that are low enough that the theory is still

weakly coupled but high enough that we are sensitive to possible higher derivative correc-

tions. An example of such a theory is weakly coupled string theory where the corrections

appear at a length scale
√
α′, which is much larger than the Planck length. The theory at

energies comparable to 1/
√
α′ is still weakly coupled. In this case, the higher derivative

corrections are accompanied by extra massive higher spin particles which appear at the

same scale. For higher energies the description is via a string theory which departs signif-

icantly from ordinary local quantum field theory. It is reasonable to expect that this is a

generic feature. Namely, that higher derivative corrections only arise due to the presence of

extra states with masses comparable to the scales where the higher derivative corrections

become important.

The objective of this paper is to sharpen this link for the simplest possible correction,

that of the graviton three-point coupling. Due to the fact that the graviton has spin, the

flat space on-shell three-point function is not uniquely specified. In general, it has three

different possible structures. The most familiar is the one we get in the Einstein theory.

The others can be viewed as arising from higher derivative terms in the gravitational

action. The first new structure has two more derivatives. Relative to the size of the

Einstein-Hilbert term, it scales like αp2, where α is a new quantity with dimensions of

length squared which characterizes the relative importance of the new term. Here p is the

typical scale of the momenta, it is not a Mandelstam invariant, since they all vanish for

on-shell three-point functions. We work in a regime where both of the three-point vertices

are small, so that gravity is weakly coupled.

We find that new three-point vertices lead to a potential causality violation unless

we get contributions from extra particles. This causality violation is occurring when the

theory is still weakly coupled. It occurs in a high-energy, fixed impact parameter, scattering

process at a center of mass (energy)2, s, which is large compared to 1/α but still small

enough for the coupling to be weak. In general relativity this scattering process leads to the

well-known Shapiro time delay [1], which is one of the classical tests of general relativity [2].

See also [3]. When the graviton three-point vertex is corrected, the new terms can lead to
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a time advance, depending on the spin of the scattered graviton. At short enough impact

parameter this time advance can overwhelm Shapiro’s time delay and lead to a causality

problem. This troublesome feature arises at an impact parameter of order b2 ∼ α. At

tree-level, this problem can only be fixed by introducing an infinite number of new massive

particles with spin1 J > 2 and m2 comparable to α−1. In other words, it cannot be fixed

by adding particles with spins J ≤ 2, or by considering the existence of extra dimensions.

These causality constraints are similar in spirit to those considered in [4,5] but they

differ in two ways. First of all, here the problem will be shown to arise for small t/s, but

large s. Second, the fact that the graviton has spin is crucial. On the other hand, in both

cases we have locally Lorentz-invariant Lagrangians that nevertheless can lead to causality

violations in non-trivial backgrounds.

An example of a theory that is constrained by these considerations is given by the

action

S = l2−D
p

∫
dDx

√
g
[
R + α

(
R2

µνρσ − 4R2
µν +R2

)]
, (1.1)

where the second term is the Lanczos-Gauss-Bonnet term.2 The constant α has dimensions

of length squared. For α ≫ l2p, we will show that the theory is not causal. Furthermore,

there is no way to make it causal by adding local higher curvature terms. In fact, our

discussion refers to on-shell data, namely the three-point function, which reflects the real

physical information and does not depend on the particular way that we write the La-

grangian. In other words, the discussion is invariant under field redefinitions.

Note that if we view gravity as a low-energy effective theory with a UV cutoff of order

Mpl and we add higher derivative terms with dimensionless coefficients which are of order

one, then we have nothing to say. The remarks in this paper only apply for theories where

the coefficients of the higher derivative terms are much larger. The “natural” value for the

coefficient α if we view (1.1) as an effective gravity theory is α ∼ l2p. We will only constrain

larger values of α. Of course, we are discussing this problem because it is indeed possible

to have theories with α≫ l2p, for example a weakly coupled string theory.

1 In D > 4 dimensions by spin J > 2 particles we mean particles in the representations of

little group SO(D − 1) with both of the following two properties (see also appendix H): a) their

maximal spin projection J+− ≥ 2; b) their representations are labeled by Young tableaux with

three or more boxes.
2 It is the dimensional continuation of the four-dimensional Euler density. In four dimensions

it is a topological term, while in higher dimensions it is not topological, in fact it contributes to

the three-point coupling of the graviton.
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Another example where this discussion is relevant is the following. Imagine that

we consider a large N gauge theory. Such a gauge theory is expected to have a weakly

coupled string dual. This theory will have a weakly coupled graviton corresponding to

the stress tensor operator [6,7,8]. However, we are not guaranteed that the dual will be

an ordinary Einstein gravity theory. It might even be a Vasiliev-like gravity theory [9,10].

The field theory three-point functions of the stress tensor [11,12] determine the three-

point functions of the gravity theory [13,14]. One can imagine a theory where the only

light single trace operator is the stress tensor. It is natural to expect that this theory will

have an Einstein gravity dual. It would be nice to prove that. For scalar interactions, [15]

argued that the solutions of the crossing equation have solutions that correspond to local

vertices in the bulk, see also [16]. However, one can worry that the size of the vertices

with higher derivatives might be comparable to the one in the Einstein theory. As a case

in point, we can think about the graviton three-point coupling. This is constrained to

be a linear combination of three structures, only one of which is the Einstein one. These

extra structures necessarily lead to a causality problem unless we introduce new higher

spin particles at the scale that appears in these new three-point functions. Thus we link

the three-point function of the stress tensor to the operator spectrum of the theory. These

three-point functions were constrained by causality in [14]. Here we get stronger constraints

because we are making further assumptions about the operator spectrum of the theory.

As another application we consider the possibility that gravity waves during inflation

were generated by a theory that indeed had these higher derivative corrections with a

size comparable to the Hubble scale. This is a possibility which is allowed by conformal

invariance and would be realized if the dual description to inflation (in the spirit of dS/CFT

[17,18,19]) was a weakly coupled theory or if inflation occurs in a string theory where the

string scale is close to the Hubble scale. The theory is still weakly coupled, so that scalar

and tensor fluctuations are small. In this case the gravity wave non-gaussianities would

be different from the ones in the Einstein theory [20,21]. The observation of such gravity

wave signals, combined with the arguments in this paper, would imply the existence of

extra particles with spin J > 2 during inflation.

Finally, as a further motivation we should mention the grand dream of deriving the

most general weakly coupled consistent theory of gravity. It is quite likely that the only

such theory is a string-like theory, broadly defined. We are certainly very far away from this

dream, but hopefully our simple observation about three-point functions could be useful.

In particular, this observation highlights the importance of spin. Spin is likely to grow in
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importance as we consider constraints on the four-point function, given what we got for

the much simpler three-point function. In [22,23,24] various interesting constraints were

derived by using crossing symmetry and the correct factorization on the pole singularities.

The constraints discussed in this paper are additional constraints, not covered by their

analysis.

This paper is organized as follows. In section two we discuss the notion of asymp-

totic causality, both for asymptotically flat and asymptotically AdS spacetimes. We also

discuss the propagation of particles and fields through a shock wave. The purpose of this

discussion is to set the stage for the more general argument in the following section so that

it becomes intuitively clearer. In section three, we present the main thought experiment

which involves only on-shell amplitudes and does not refer explicitly to shock waves. In

section four we discuss the effects of adding extra massive particles. We show that parti-

cles with spins two or less cannot solve the problem. We also discuss the appearance of

these massive particles among the final states of the scattering process. In order to argue

that the problem persists we present an alternative presentation of the problem where we

consider the analyticity properties of the S matrix in impact parameter representation.

In section five we discuss various aspects of the AdS version of the thought experiment

and its implications for properties of the dual theory. In section 6 we briefly mention the

implications of a possible time advance in the context of wormholes. In section 7 we dis-

cuss a cosmological application, where we link the possible existence of new structures for

the gravity wave non-gaussianity to the presence of higher spin massive particles during

inflation.

2. Flat Space Causality and Shock Waves

In this section we consider the problem in asymptotically flat space. We start by

discussing the causal structure in asymptotically flat space. As a motivation for our later

discussion we analyze the scattering of a probe graviton from the shock wave. We then

present the argument for causality violation in purely on-shell terms.
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2.1. Statement of Flat Space Causality

When we consider a gravity theory in asymptotically flat space we expect to be able

to define scattering amplitudes. In particular, this presupposes that one can fix the asymp-

totic structure of the spacetime so that we can compare times between the past and the

future asymptotic regions. In dimensions D > 4 we expect to be able to do this. Let us

give a simple argument. Imagine we have a series of observers that sit at a large distance

L from each other, and also from the center. For simplicity imagine them at the vertices

of a large spatial hypercube and moving along the time direction. We would like to argue

that they can synchronize their clocks. If they were in flat space, they can just send signals

to each other. On the other hand if there is an object of mass m in the interior, then the

metric components decay as 1/rD−3. This gives rise to a redshift of order Gm
LD−3 at the

position of the detectors. More importantly, as a signal travels from one detector to the

other, staying at a distance of order L from the center, it will get delayed by an amount

δt = δL ∼ Gm
LD−4 (see appendix A). In D ≥ 5, we can make this as small as we want by

moving out to large enough L. For D = 4 this delay does not go to zero and we have a

problem. This problem has been discussed in [25], and it seems closely related to the soft

graviton issues that arise in perturbative attempts to define the gravitational S-matrix.

This issue is not present in AdS4. In order to deal with the D = 4 case, Gao and Wald [26]

have introduced another notion of causality saying that we cannot send signals faster than

what is allowed by the asymptotic causal structure of the spacetime. In general relativity,

with the null energy condition, they argued that this notion of causality is respected, see

[26] for a precise statement of the theorem. This holds in any number of dimensions. For

D > 4 this becomes the more naive notion of causality introduced above. Note that this

is an asymptotic notion and we are not relying on the locally defined lightcone as in [27].

We expect that this notion of causality is actually a requirement for any theory of

quantum gravity. For asymptotically AdS theories we expect that we should not be able

to send signals through the bulk faster than through the boundary. For theories of gravity

that are dual to a quantum field theory in the boundary, this is implied by causality in

the boundary theory. Also, since we expect that quantum gravity in asymptotically flat

space is Lorentz invariant, then these time delays can lead to acausality or closed time-like

curves (see appendix G).

Another reason to require this notion is to ensure that Lorentzian wormholes, such as

the one obtained form the eternal Schwarzschild black hole and discussed in [28], do not
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lead to causality violations in the ambient spacetime. This is required by the ER=EPR

interpretation of such geometries [29,30,31].

In the rest of the paper we will assume this notion of causality and derive constraints

on some higher derivative corrections.

2.2. Scattering Through a Plane Wave in General Relativity

A well-known general relativistic effect is that light going near a massive body (e.g.

the Sun) would suffer a time delay relative to the same propagation in flat space. This is

known as the Shapiro time delay [1] and constitutes one of the classical tests of general

relativity (see appendix A).

We will recall here the derivation of this time delay in the shock wave approximation,

which will be all we need for our purposes. First we review the basic properties of shock

wave solutions in gravitational theories [32]. This solution describes the gravitational field

of an ultrarelativistic particle in a generic theory of gravity [33,34] and is directly relevant

for the high-energy scattering.

u
v

∆ v

P

p

u

v

Fig. 1: A particle creates a shock wave localized at u = 0. A second probe

particle propagates on the geometry and experiences a time delay, ∆v. The two

particles are separated along the transverse directions, which are suppressed in this

diagram.
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A generic shock wave solution in flat space can be written in the following form

ds2 = −dudv + h(u, xi) du
2 +

D−2∑

i=1

(dxi)
2. (2.1)

This geometry admits a covariantly constant null Killing vector lµ∂µ = ∂v. See fig. 1.

We will be interested in the case when this geometry is sourced by a particle that

moves very fast in the v direction. Classically, we can model such particle via the stress

tensor [33]

Tuu = −Puδ(u)δ
D−2(~x) (2.2)

where r =
√∑D−2

i=1 x2i and Pu < 0 is the momentum of a particle. The Einstein equations

then take the form

∂2⊥h(u, xi) = −16πG|Pu|δ(u)δD−2(~x). (2.3)

The solution is

h(u, xi) =
4Γ(D−4

2 )

π
D−4

2

δ(u)
G|Pu|
rD−4

. (2.4)

Now we consider a probe particle that moves in the other light cone direction with

momentum pv and is such that it crosses the shock with impact parameter b. In other

words, the displacement in the transverse dimensions is r = b. The metric (2.1) is a bit

peculiar because of the delta function δ(u) in h(u, xi). We can remove this delta function

at the transverse position b by defining a new coordinate

v = vnew +
4Γ(D−4

2
)

π
D−4

2

G|Pu|
bD−4

θ(u) (2.5)

This then cancels the δ(u) term in the metric at r = b. Thus, the geodesic that goes

through this point is continuous in the vnew coordinates. This means that in the original

coordinates it suffers a shift

∆v = vAfter crossing − vBefore crossing =
4Γ(D−4

2 )

π
D−4

2

G|Pu|
bD−4

> 0 (2.6)

This represents the Shapiro time delay, see fig. 1.
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Fig. 2: Left: we consider a particle propagating through the superposition of two

left moving shock waves localized at u = 0. The particle trajectory is given by the

arrows. Right: in the transverse plane we separate shock waves by distance 2b and

send the particle between them so that the net deflection angle is zero. The time

delay is the sum of the time delays due to each shock wave.

In addition to this time delay, the trajectory is also subject to a deflection angle. We

might worry that the deflection angle would hamper our ability to see a possible time delay

or time advance from far away. In fact, we could consider two shocks in succession, but

separated in the transverse direction. Considering the probe particle coming at r = 0, we

set the shocks at r = b opposite to each other as shown in fig. 2. In this case, the probe

particle does not get a net deflection, but the time delays add.

It is instructive to reproduce this formula for the time delay when we treat the probe

as a quantum mechanical particle. The wave equation for a scalar field takes the form

∇2φ = 0 −→ ∂u∂vφ+ h∂2vφ− 1

4
∂2i φ = 0, (2.7)

Let us now consider the change in the value of φ from u = 0− to u = 0+. Since the

variation of the h term is much faster than the variation in the other variables, we neglect

the ∂i derivatives and write

φ(u = 0+, v, xi) = e
−
∫

0+

0−
duh∂vφ(u = 0−, v, xi)

= e−∆v ∂vφ(u = 0−, v, xi) = e−i∆v pvφ(u = 0−, v, xi)
(2.8)

where ∆v is given in (2.6). Thus we see that we reproduce the answer we got through the

geodesic analysis. Note that pv = −i∂v is the generator of translations in v.

In quantum field theory we would end the discussion here. Any time advance in v,

relative to the background Minkowski metric would be a problem. In gravity, the situation
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is more subtle, in principle, we need to make observations from asymptotically far away.

However, in that case, the pu energy also has a pv dependence3 and it contributes positively

to the time delay. Since pu = ~q2/4pv, this is a small effect for large pv. However, if we

multiply by the total u−time elapsed, it can add to a very big time delay. Here we will

assume that we can sit far enough from the shock to be able to neglect the dynamics of

spacetime, but close enough that we can neglect the v−time delay produced by the pu

energy. This seems possible for small G.

2.3. Connection with the Scattering Amplitude Computation

Let us reproduce the computation above using scattering amplitudes [3]. It is well-

known that the shock wave computation can be reproduced using the so-called eikonal

approximation [35]. Consider the scattering amplitude for gravitating scalar particles. It

is given by

Atree(s, t) = −8πG
s2

t
. (2.9)

The eikonal approximation resums a particular set of diagrams (horizontal ladders) in the

deflectionless limit when t
s
→ 0. Under favorable circumstances,4 the amplitude exponen-

tiates in the impact parameter space (see e.g. [36,37] )

iAeik = 2s

∫
dD−2~b e−i~q.~b

[
eiδ(b,s) − 1

]
(2.10)

where the phase is given by

δ(b, s) =
1

2s

∫
dD−2~q

(2π)D−2
ei~q.

~bAtree(s,−~q 2) =
Γ(D−4

2 )

π
D−4

2

Gs

bD−4
. (2.11)

This result matches the shock wave computation

δ(b, s) = −pv∆v|r=b, (2.12)

where we used s = 4Pupv. As we will see below this picture can be naturally generalized

to the scattering of particles with spin.

3 See section 3 for the relevant kinematic configuration.
4 This particular point will be discussed later in more detail.
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2.4. The Effect of Higher Derivative Interactions on Particles with Spin

If we had a photon propagating through the plane wave, it will have the same time

delay we computed in (2.6). However, if the Lagrangian contains certain higher order

interactions, such as

S =

∫
dDx

√−g 1
4

[
FµνF

µν + α̂2R
µν
σδFµνF

σδ
]

(2.13)

then the second term gives rise to a time delay that depends on the polarization of the

electromagnetic wave. The equations of motion take the form

∇µFµν − α̂2R
µαβ

ν ∇µFαβ = 0 (2.14)

In the shock wave background we have Ruiju = 1
2∂i∂jh. For large pv (2.14) is reduced to

∂uFvi + (δijh+ α̂2∂i∂jh) ∂vFvj = 0. (2.15)

where we made use of the Bianchi identity in that limit, ∂uFvi = ∂vFvi; and the total time

delay then has the form

∆v =

[
1 + α̂2

ǫiǫj∂bi∂bj

ǫiǫi

]
4Γ(D−4

2
)

π
D−4

2

G|Pu|
bD−4

=
4Γ(D−4

2 )

π
D−4

2

G|Pu|
bD−4

[
1 +

α̂2(D − 4)(D − 2)

b2

(
(ǫ.n)2

ǫ.ǫ
− 1

D − 2

)] (2.16)

where ǫ is the (real) transverse linear polarization direction of the electromagnetic wave.

We also introduced ~n ≡ ~b
b
. The derivatives in (2.16) come from the derivatives present

in the Riemann tensor. The second term in (2.13) can be viewed as a spin dependent

gravitational force.

We see that as b becomes small, b2 < α̂2, the second term in (2.16) can overwhelm

the first and, depending on the sign of α̂2 and the polarization, may lead to time advance

instead of time delay. If the polarization is along ~b, it has one sign, while if the polarization

vector is orthogonal to ~b, ~ǫ.~n = 0, then it has the other sign. If the polarization is a linear

combination of these two, we first decompose the wave in linear polarizations along and

perpendicular to ~b and then exponentiate (2.16) for each of these two cases separately, and

then add the two results. In other words, the expression for the time delay is now a matrix

that can be diagonalized by choosing the polarizations to be along ~b or perpendicular to
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~b. In conclusion, for either choice of the sign of α̂2, there is a choice of polarization that

can lead to time advance.

Thus, if we require the theory to be causal, we see that α̂2 should be set to zero. More

precisely, it should be small enough so that the computation we did above breaks down

for some reason. An example of a theory where the coupling in (2.13) arises at tree level is

bosonic string theory [38,39]. We will see later that in string theory the potential causality

problem is fixed by the presence of extra massive states.

As another example, let us consider the Gauss-Bonnet theory. This consists of the

usual gravity action plus a specific R2 interaction of the form

S =
1

16πG

∫
dDx

√−g
(
R + λGB

[
RµνρσR

µνρσ − 4RµνR
µν +R2

])
. (2.17)

The term in brackets is a topological invariant in D = 4, but it is not topological for

D > 4. This theory has been extensively studied because it has the nice feature that the

equations for small fluctuations around any background are second order [40].

As explained in [34] the shock wave solution (2.1) is also an exact solution in the

Gauss-Bonnet theory as well. We can consider propagation of a gravitational perturbation

through the shock wave background. Before and after the shock the graviton moves as in

flat space. All we need to know is what happens when it crosses the shock.

We consider a high-energy graviton δhij that propagates in the v direction with mo-

mentum pv and traceless polarization in the transverse plane. Near the shock we approx-

imate the equations as

∂u∂vδhij + (δik + 4λGB∂i∂kh) ∂
2
vδhkj = 0 (2.18)

Using (2.18) we can find the time delay which takes the following form

∆v = [1 + 4λGB
ǫikǫjk∂bi∂bj

ǫ.ǫ
]
4Γ(D−4

2 )

π
D−4

2

G|Pu|
bD−4

=
4Γ(D−4

2
)

π
D−4

2

G|Pu|
bD−4

[
1 +

4λGB(D − 4)(D − 2)

b2

(
(ǫ.n)2

ǫ.ǫ
− 1

D − 2

)] (2.19)

Again, by choosing different polarizations we can get time advance for b2 ∼ |λGB| for
any sign of λGB . Notice that the formula for the time delay is very similar to the ones

discussed in the context of energy correlators in AdS/CFT with the parameters depending

on the impact parameter of scattering b (see e.g. [41]). We will see below that in the case
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of AdS the causality constraint interpolates between the usual energy correlator bounds

and the flat space bounds obtained above.

So we see that imposing positivity in all channels exclude λGB completely unless new

physics kicks in. In other words, the purely Gauss-Bonnet theory (2.17) is acausal. As an

aside, the Gauss-Bonnet theory was found in [42] to violate the second law of black hole

thermodynamics in certain processes.5

We could also consider fermions coupled to gravity. At the level of the on-shell scat-

tering amplitudes there is an additional spin-flipping structure that leads to time advance.

This additional structure does not come from any known local Lagrangian and is known

to be ruled out by considering consistency conditions imposed on the four-point amplitude

[24], at least, in four dimensions. If the same is true in all dimensions then the effects

that we are discussing could not be observed for fermions. We leave exploration of this

point for the future. Note that having an explicit local Lagrangian which leads to second

order equations of motions guarantees that all consistency conditions for the four-point

amplitude imposed in [24] are obeyed. Thus, none of the problems discussed in [24] arise

in the case of photons or gravitons with the modified three-point functions that we are

discussing.

3. General Constrains on the On-Shell Three-Point Functions

The examples we have discussed so far have shown that there are causality issues with

specific theories. In this section we will isolate the crucial elements that produce the prob-

lem. It turns out that these causality problems are produced purely and exclusively by the

form of the on-shell three-point functions of the theory. Therefore they are insensitive to

5 More precisely, [42] considered the compactification of the Gauss-Bonnet theory to four

dimensions on a circle. Then the Gauss-Bonnet term becomes topological. This leads to a

constant contribution to the black hole entropy. The sign of this constant contribution depends on

the coefficient λ. When this contribution is negative, a small enough black hole can have negative

entropy. When the constant is positive, a merger of two black holes can violate the second law.

The constraints arise when the Schwarzschild radius r2s ∼ λGB. In this sense they are similar to

the ones we have. In both cases one needs λGB ≪ lPlanck in order to have a meaningful statement.

[42] has the nice feature of also constraining purely topological terms in four dimensions. On the

other hand, they might be modified by higher derivative corrections to the action, which could

also modify black hole thermodynamics.
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higher order contact terms. First we will explain why the three-point functions determine

the time delay. Then we will recall some of the properties of three-point functions. Finally,

we will present a thought experiment that makes the causality violation more manifest.

3.1. The Phase Shift in Impact Parameter Representation From Three-Point Functions

Let us consider the tree-level four-point amplitude A4. It depends on the kinematic

invariants that we can produce with the four on-shell conserved momenta and polarization

tensors of the external particles. Since it is a tree-level amplitude its only singularities are

poles in the s, t and u Mandelstam variables. We can now consider external momenta such

that s ≫ t, but s small enough that the theory is still weakly coupled. We can take the

first incoming particle to have very large momentum along pu and the second with large

momentum pv.

Fig. 3: Kinematics of the two-to-two scattering that we are interested in. Particle

1 has a very large momentum pu and particle two has a very large momentum pv.

One can show that, in impact parameter space the amplitude is given by (for review

see appendix C)

δ(~b, s) =
1

2s

∫
dD−2~q

(2π)D−2
ei~q.

~bA4(~q). (3.1)

where A4(~q) is really a short-hand for the four-point amplitude evaluated in the following

momentum configuration

p1µ =

(
pu,

q2

16pu
,
~q

2

)
, p2µ =

(
q2

16pv
, pv,−

~q

2

)
,

p3µ =−
(
pu,

q2

16pu
,−~q

2

)
, p4µ = −

(
q2

16pv
, pv,

~q

2

)
,

s ≃4pupv , t ≃ −(~q)2

(3.2)
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where in all cases we indicated only the leading order term in the t/s expansion, assuming

t/s≪ 1.

If we had scalar particles, the amplitude would depend only on the Mandelstam in-

variants and we can write A4(~q) = A4(s, t = −~q 2). However, in the case of particles with

spin, the amplitude depends also on the polarization vectors contracted with the various

momenta.

Let us assume that ~b in (3.1) is chosen along ~b = (b, 0, 0, · · ·), b = |~b|. Then let us

consider the integral over the first component of ~q, call it q1. Due to the exponential

factor in (3.1) this integrand is suppressed if we give q1 a positive imaginary part. Here

we assumed that the amplitude does not grow exponentially. This is true if we consider

particles with polynomial interactions.

Setting q1 = iκ+real, we see that the exponential in (3.1) is suppressed in this region

as e−κb, κ > 0. Thus we would get a vanishing result (in the large κ limit) unless we cross

poles under this contour shift. In fact, we do cross poles. For example the pole at t = m2

coming from the exchange of a particle of mass m in the t-channel leads to a pole at

κ2∗ = m2 + (~qrest)
2 (3.3)

where ~qrest are the rest of the components of ~q except the first one. These are still real. The

residue of the pole is given by a product of on-shell three-point functions. These three-point

functions are non-vanishing because the intermediate momentum has one imaginary and

one real component. Thus, we can think of the whole on-shell three-point function as being

in two time directions. Note that this is a particular computation where the on-shell three-

point function is relevant in ordinary signature. Notice that somewhat abstract notion of

complex factorization in mixed signature [43,23] spacetimes has a direct physical meaning

in the context of computing scattering amplitudes in the impact parameter representation.

The pole (3.3) gives a contribution to the amplitude of the form e−κ∗b. For a massive

particle this gives something going like e−mb for large mb, a Yukawa-like potential.6 For

a massless particle, the integral over the rest of the components of ~q produces an inverse

power of b, 1/bD−4. In addition, factors of ~q which are contracted with the polarization

tensors give derivatives with respect to ~b. In a theory which only contains a massless

graviton we just get the massless graviton pole.

6 More precisely, after we integrate over the rest of the components of ~q we get the following

expression (2π)
2−D

2

(
m
b

)D−4
2 KD−4

2
(mb).
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It should be noted that in impact parameter representation, for non-zero b, we only

get a contribution from the diagram that contains an on-shell particle in the t-channel. In

particular, s-channel exchanges do not contribute. The reason is that the two incoming

particles have to actually overlap in order to give rise to the intermediate particle in the

s-channel. Similarly, a four point contact interaction does not contribute for the same

reasons. In both of these remarks we used that we are looking at the tree level diagrams

to leading order in the weak coupling expansion. At higher orders there can be other

contributions. However, since we are at weak coupling, we can ignore them. In these

paragraph, we have used that the interactions are local. Any non-local effect has to come

from the propagation of a physical particle in the t-channel.7

1

3

2

4

J
A

I

I2413I
A

p
u

p
v

Fig. 4: At fixed impact parameter we find a contribution to the amplitude given

by the on-shell propagator in the intermediate channel, labeled by the letter I. The

contribution involves a product of two on-shell intermediate amplitudes, A13I and

AI24, which are circled in the figure. Particles 1 and 3 carry a large momentum

pu and 2 and 4 have a large pv. We get a factor of sJ from contracting pu on

the left side with pv on the right side through the sum over polarizations of the

intermediate particle.

We are interested in the part of the amplitude that increases fastest with the Man-

delstam variable s. Since there are no kinematic invariants in the on-shell three-point

7 If our theory contains extended objects, such as strings, we can actually create particles in

the s-channel by going to small enough (but non-zero) impact parameter. We discuss this below.
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amplitudes, a factor of s can only come from factors of pu or pv that are in each of the

three-point function contracted, via the sum of the polarizations of the intermediate par-

ticle, see figure fig. 4. With a particle of spin J , the maximum power we can get in the

amplitude is A4 ∼ sJ . This leads to a factor of sJ−1 in the phase shift (3.1). In fact, this

sum over polarizations over the intermediate state receives a large contribution only from

one specific polarization, when the intermediate state has all u indices. In other words,

the polarization tensor in the intermediate state appearing in the left three-point function

has the form ǫI u···u and the one in the right three-point function is ǫI v···v. These are

contracted with the corresponding factors of the large momentum to give (pupv)
J ∼ sJ .

The polarization tensors of the external particles can be written as products of vectors

ǫµν = ǫµǫν where for particles one and three we can write

ǫ1µ = (−~q.~e1
2pu

, 0, ~e1) , ǫ3µ = (
~q.~e3
2pu

, 0, ~e3) (3.4)

where ~e1,3 are vectors in the purely transverse directions. The on-shell three-point functions

will contain factors of the form

ǫ1.ǫ3 = ~e1.~e3 , ǫ1.p3 = ~q.~e1 , ǫ3.p1 = ~q.~e3 (3.5)

The conclusion is that we can think of the polarizations of the external particles as con-

tained effectively in the transverse space. In addition, when we contract them with the

external states we get factors of ~q. These translate into derivatives with respect to ∂~b.

The final result from a massless pole is

δ(~b, s) =
A13I

3 (−i∂~b)AI24
3 (−i∂~b)

2s

∫
dD−2~q

(2π)D−2

ei~q.
~b

~q2

=
Γ(D−4

2
)

4π
D−2

2

A13I
3 (−i∂~b)AI24

3 (−i∂~b)
2s

1

|~b|D−4
.

(3.6)

where the three-point functions are evaluated on three momenta (3.2). As explained above,

in each three-point function there is only one relevant polarization for the intermediate

state that produces the factor of sJ . The polarizations of the external particles can be

viewed as living purely in the transverse space, after we use (3.4) and (3.5).

In this way we can compute δ(~b, s) using on-shell methods. For more details see ap-

pendix B. This gives the phase shift to leading order in perturbation theory. The answers

agree with with the infinitesimal form of the phase shift computed using the shock wave

computation. In fact, the shock wave itself can be viewed as the on-shell graviton interme-

diate state we discussed above. The fact that the metric contains only the huu component

is related to the fact that only one polarization of the intermediate state produces the most

factors of s.

17



3.2. The Possible Forms of Three-Point Functions in Various Theories

Given that the answer for the time delay depends on the on-shell three-point functions,

it is useful to recall their possible structures. In four dimensions we can use the usual

helicity basis. The Einstein-Hilbert gravity action gives rise to the + + − and − − +

three-point functions. We can also have + + + and − − − structures which could come

from (Riemann)3 terms. There are two combinations, one of them being parity violating.

In higher dimensions, D > 4, we have three possible structures for the graviton three-

point functions, all parity preserving. They have the schematic structure, writing ǫµν =

ǫµǫν ,

AR =(ǫ1.ǫ2ǫ3.p1 + ǫ1.ǫ3ǫ2.p3 + ǫ2.ǫ3ǫ1.p2)
2

AR2 =(ǫ1.ǫ2ǫ3.p1 + ǫ1.ǫ3ǫ2.p3 + ǫ2.ǫ3ǫ1.p2)ǫ1.p2ǫ2.p3ǫ3.p1

AR3 =(ǫ1.p2ǫ2.p3ǫ3.p1)
2.

(3.7)

The first is the usual one coming from Einstein gravity, while the second can arise from

the Lanczos-Gauss-Bonnet term (2.17). The third one can arise from a (Riemann)3 term.8

They can be viewed as products of the two possible structures that we can have for on-shell

spin one particles. In a given theory, the total three-point function is given by a linear

combination of these three answers

Aggg =
√
32πG [AR + α2 AR2 + α4AR3 ] (3.8)

where α2 and α4 are two parameters with dimension of (length)2 and (length)4 respectively.

Notice that we have an overall coupling, given by G, which we take to be parametrically

smaller than the other two parameters.

In the high energy limit the three-point functions appearing in (3.6) simplify further

and become
A13I

R =2p2u(~e1.~e3)
2

A13I
R2 =2p2u(~e1.~e3)(~q.~e1)(~q.~e3)

A13I
R3 =2p2u(~q.~e1)

2(~q.~e3)
2

(3.9)

8 (Riemann)3 = RµνσδR
σδργR µν

ργ . In four dimensions we can replace one of the curvatures by

Rµνσδ → R̃µνσδ = ǫµνργR
ργ

σδ to obtain the parity violating term. This parity violating term gives

rise to the three-point vertex ǫµνδσp
δ
1p

σ
2 ǫ1,µµ′ǫ2,νν′pµ

′

2 pν
′

1 ǫ3,γρp
ρ
1p

γ
2 , which, despite appearances, is

properly symmetric under exchange of any of the three particles. When this term is present the

coefficient of the + + + amplitude is complex and the coefficient of the − − − amplitude is the

complex conjugate.
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for the three terms in (3.7). We used (3.4). The amplitude AI24 has a similar expression

with pu → pv and 1, 3 → 2, 4. The reader can express these in terms of transverse traceless

two index tensors by using the replacement rule eiej → eij in (3.9), where i, j are indices

in the D − 2 transverse directions.

Note that the third structure in (3.7) or (3.9) is not allowed in a supersymmetric

theory. This can be seen as follows. In D = 4 this structure gives rise to + + + and

− −− amplitudes. However, by the methods described in [44] it is possible to show that

supersymmetry implies that this structure should be set to zero. This is actually true

in all dimensions. The reason is that we can start with a theory in D dimensions and

consider external graviton three-point functions with four-dimensional kinematics. If we

had a non-zero contribution from the third structure inD dimensions, then it would lead to

a contribution to the +++ or −−− amplitudes in four-dimensional kinematics. Since the

arguments in [44] are purely kinematical, based on the symmetries of the theory, then they

also force the amplitudes to vanish. In conclusion, supersymmetry implies that α4 = 0.

In the heterotic string we have a non-zero α2. And this is also true for compactifications

of the string to D dimensions. Thus α2 is compatible with half maximal supersymmetry.

With maximal supersymmetry, e.g. N = 8 in D = 4, we should also have α2 = 0. This

can be understood from the fact that the four point amplitude for the full supergravity

multiplet is determined up to a unique function. Thus, there is no freedom to introduce

the polarization dependent terms that would arise if we had the freedom to switch on α2.

Of course, in standard maximal supergravity α2 is not present, therefore the only value

consistent with maximal supersymmetry is α2 = 0. As an aside, notice that this is also

related to the fact that in four-dimensional N = 4 superconformal theories, the three-

point functions of the stress tensor are completely fixed by supersymmetry in terms of the

two-point functions.

Between a graviton and two photons the number of possible three-point functions is

two
A13I

F 2 = ǫIµν [p
µ
1p

ν
3(ǫ1.ǫ3)− ǫµ1p

ν
3(ǫ3.p1)− ǫµ3p

ν
1(ǫ1.p3)] ,

A13I
RFF = ǫIµνp

µ
1p

ν
3(ǫ1.p3)(ǫ3.p1),

(3.10)

so that Agγγ =
√
32πG [AF 2 + α̂2 ARFF ]. One arising from the usual electrodynamics and

the other from the second term in (2.13). Again this second structure is forbidden in a

supersymmetric theory. As we did in (3.9), in the high energy limit we can write them as

A13I
F 2 =2p2u(~e1.~e3),

A13I
RFF =2p2u(~q.~e1)(~q.~e3).

(3.11)
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We emphasize that we work here with the on-shell three-point functions, independently

of the precise way we write the Lagrangian. This discussion depends only on on-shell three-

point functions and not on other contact terms. Any contact four point interaction does

not give rise (at tree level) to the long range force at a non-zero value of the impact

parameter.

3.3. Problems with Higher Derivative Corrections to the Three-Point Functions

We discussed above how the three-point functions give rise to the leading order ex-

pression for the phase shift δ(~b, s) = sF (~b). If this result were exponentiated, as eiδ , then

we could get a time advance problem similar to what we found for the shock waves. Here

we would like to explain how to get a time advance problem without using the particular

non-linear structure of shock waves. The goal is to present the problem in a way that

depends only on very general principles.

Fig. 5: We imagine a particle going through a set of successive scattering events.

The intrinsic quantum uncertainty in v is ∆qv. We have drawn a situation where

there is a final time advance after going through all the shocks that is larger than the

quantum uncertainty. In this figure we have neglected the delay of the u-localized

particles.

First note that in order for time delay to be a problem we would like to find that the

time delay ∆v = ∂p2,v
δ is larger than the quantum mechanical uncertainty that is implicit
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in the definition of the wave packet for a particle of momentum p2,v. This uncertainty is

of the order of ∆qv ∼ 1/p2,v. Thus the figure of merit is

∆v

∆qv
= p2,v∂p2,v

δ = δ (3.12)

here we used that δ is linear in s, and therefore linear in p2,v (s ∝ p1,up2,v). Thus in order

to see a problem, we expect that δ should be greater than one. On the other hand, the

validity of perturbation theory suggests that δ should be much less than one.

In order to amplify the effect, we imagine that particle number two undergoes N

successive instances of particle number one, see fig. 5. Through each instance it gets a

small phase shift which leads to a factor in the out state of the form (1+ iδ) with small δ.

If we repeat this N times we get

(1 + iδ)N ∼ eiNδ δ ≪ 1 , N ≫ 1. (3.13)

This is the total phase shift, and as explained in (3.12), we want Nδ to be of order

one. This can be achieved by taking N ∼ 1/δ. In addition, we would like to make sure

that the approximations that we used remain valid. In particular, we have said that

particle 2 remains localized at some distance b through the whole process. We can choose

light-cone coordinates for the evolution of particle two so that u is time, then we have a

non-relativistic problem with mass m ∼ pv. The spreading of the wavefunction during the

time U that the whole process takes is ∆b ∼
√
U/pv. The time U that the process takes

is determined as follows. We want to separate the N instances of the scattering process

from each other so that we can view them as independent and we can use (3.13). The

best we can localize each of the N particles of type 1 is by an amount ∆qu ∼ 1/pu. Thus

U = N/pu and then ∆b ∼
√

N
s . We want ∆b≪ b. This translates into the condition

N ≪ sb2 −→ 1

sb2
≪ δ (3.14)

where we used that N ∼ 1/δ in order to have a problem. We see that the simultaneous

validity of (3.14) and (3.13) can be achieved if sb2 ≫ 1 and if s can also be increased so

as to achieve
1

sb2
≪ δ ≪ 1 (3.15)

which can be done if δ grows with s. An additional issue is that we wanted to neglect the

deflection angle. Then we can replace each of the 1 particles by a pair of particles localized
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in the transverse dimension at a distance b with respect to particle number 2 on opposite

sides of its trajectory, as shown in fig. 2.

For spin zero particles, notice that if we had a gφ3 vertex, then the scalar exchange

leads to δ ∼ 1
s

g2

bD−4 . In this case we cannot obey the conditions (3.15) to obtain a possible

causality problem. In fact, (3.14) implies that g2/bD−6 > 1, which means that we are at

strong coupling. Thus we see that a crucial feature that we used is that the phase shift

increases as a function of s. In the case that we exchange a spin one field, δ is independent

of s and there is also no causality issue. The reason is simple, the spin two field is effectively

changing the metric and causal structure while the spin zero or one fields are not.

The conclusion is that we have justified the exponentiation (3.13) and thus the deriva-

tion of the time delay problem in a way that does not depend on the details of the shock

wave solution. Let us emphasize that the preceding shock wave discussion was motiva-

tional, but the thought experiment that we have set up in this section does not require us

to rely on the non-linear structure of the shock wave. It was all derived from the on-shell

three-point functions plus certain assumptions about the locality of the theory that allowed

us to view each shock as an independent event.

In fact, there are some cases where the shock wave computation does not give the

right answer. For example, consider the pure gravity case, where δ = Gs/bD−4. If the

energy is large enough to form a black hole, then the time delay computed from the shock

wave is not the correct description for the physics. We expect to form a black hole when

the center-of-mass energy is such that the associated Schwarzschild radius rD−3
s =

√
sG

is larger than b [45,46,47]. It is easy to check that this never happens if (3.15) is obeyed.

It is not obeyed even if we consider the energy of the N particles that we used for the

argument (with N ∼ 1/δ).

There is still one more complication that we need to deal with in order to make the

argument clearer. In the shock wave discussion of section two, the spin of the particle

creating the shock did not matter. However, with the modified three-point functions, the

spins of the scattered particles can change. The full interaction is a spin dependent force

which acts of both spins. It acts on both the spin of the left and the right moving particles

(particle one and two, see fig. 3). I will be necessary for us to be able to fix the polarizations

of particles one and three, see fig. 3. This can be achieved by replacing particle one, by a

coherent state of particles. In this case, due to the usual Bose enhancement factor, particle

three will have a larger probability of remaining with the same polarization. In this set up

we can set the spins, or polarization vectors, of particles one and three to be the same. Or,
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more precisely, ǫ3 = ǫ∗1. Since we are at weak coupling we can consider a coherent state

with a mean occupation number which is large enough for us to be able to neglect the spin

flips but small enough that the total scattering amplitude is still small. In other words,

the use of coherent states allows us to effectively select the final state for particle 3. More

explicitly, say that we form a coherent state for the oscillator mode created by a†, eλa
† |0〉.

We could then have terms in the interaction Hamiltonian that leave this oscillator the same

H1,int = h1a
†a or that mix it with a second oscillator H2,int = h2b

†a+ h.c.. Here h1 and

h2 can act on other degrees of freedom. Then, for a coherent state, the matrix elements

where there is no change are enhanced, due to the usual Bose enhancement factors, relative

to the ones where there is a change

〈0|eλ̄aH1,int e
λa† |0〉 ∝ |λ|2〈h1〉

〈0|eλ̄abH2,int e
λa† |0〉 ∝ λ〈h2〉

(3.16)

We see that for large λ the first term is enhanced. We have not indicated explicitly the

initial and final states on which h1 and h2 act, since they involve other oscillators. Since we

are at weak coupling, we can choose λ large enough so that the first term dominates relative

to the second term, while still the whole process is in the weakly coupled approximation,

or the total effect of the interaction Hamiltonian is small. Of course an alternative way to

say this is that we are creating a classical background with the particles of type 1 in fig. 3

the terms that have a non-zero expectation value in this classical background dominate

over the others. We want a classical background with small enough amplitude that we can

still trust the leading order perturbative expansion of the interaction Hamiltonian.

The use of coherent states also allows us to select final states for particle 3 in fig. 3

with a a small momentum pv. Namely, we form a coherent state out of a superposition

of particles with large momenta p1,µ. We need a superposition since we need to localize

this particles within the transverse plane to a location smaller than b. Thus we have some

dispersion in the transverse momenta ~q. With a large pu component of the momentum,

we then get a small momentum along the pv = ~q 2

4pu
direction. Since we have a coherent

state, the particle 3 is also taken out of this superposition and has the same range of

values for the momentum. Therefore the total momentum transfer in the t-channel along

the vdirection is very small. Then the kinematics chosen in (3.2) is representative for the

process in question. This still allows a possibly large amount of momentum transfer along

the u direction. We will discuss this in subsection 4.3 .
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Another minor point, is that the phase shift δ represents a time delay for both particles,

it affects both particle 1 and particle 2. So far we have been focusing only on the effects on

particle 2. These coherent states also allow us to effectively select a final state for particles

3, so that we can focus more clearly on the time delay with which particle four emerges,

see fig. 3.

3.4. Scattering of Gravitons in D > 4 Dimensions

It is also easy to argue that α2 and α4 structures lead to causality problem in D > 4.

To show this we consider the probe graviton that scatters off the coherent state. The phase

shift takes in this case the following form (see appendix B for details)

δ ∼ Gs(eij1 e
ij
3 + α2e

ij
1 e

ik
3 ∂bj∂bk + α4e

ij
1 e

kl
3 ∂bi∂bj∂bk∂bl)×

(eij2 e
ij
4 + α2e

ij
2 e

ik
4 ∂bj∂bk + α4e

ij
2 e

kl
4 ∂bi∂bj∂bk∂bl)

1

|~b|D−4
.

(3.17)

In order to find problems we will be choosing various polarizations for the particles.

For example, let us firt consider particle 1 with polarization e1xx = −e1yy and the other

components equal to zero. Here x, y represent to two directions in the transverse plane. We

call this the ⊕ polarization. We also choose e3 = e1. We enforce this by sending a coherent

state with this polarization. Now for particle 2 we can choose the same polarization or the

crossed polarization, called ⊗, given by e2xy = e2yx = 1/
√
2 and all other components equal

to zero. Then we find the following. If ~b is along the x̂ direction, then these two different

polarizations for particle two do not mix as they go through the shock. They diagonalize

the phase shift matrix. For small enough b the α2
4 terms dominate since they are the most

singular in the small b expansion. These terms have the form

δ⊕⊕ ∼Gsα2
4O⊕O⊕

1

bD−4
=
Gsα2

4

bD+4
(positive)

δ⊕⊗ ∼Gsα2
4O⊕O⊗

1

bD−4
=
Gsα2

4

bD+4
(negative)

O⊕ =(∂2bx − ∂2by )
2 , O⊗ = 4∂2bx∂

2
by

(3.18)

where we take the derivatives first and then set ~b = (bx, 0, · · · , 0). Where the terms in

parenthesis are polynomials in D which are positive or negative definite.9 Notice that the

9 For D > 4, (positive)= (D− 4)(D2 − 4)D(336+128D+20D2 +4D3 +D4) and (negative)=

−4(D− 4)(D2 − 4)D(D+3)(20 + 6D+D2). For D = 4 the derivatives act on − log b and we get

(positive) = -(negative) =80640.

24



positivity of the first case is due to the following argument. If the polarizations of particle

2 and 4 are the same as those of 1 and 3, then the configuration is constrained by unitarity

along the t-channel.10 Therefore in this case we should get a strictly positive answer for

the time delay for the contribution of any particle with a non-zero coupling. Since we

obtained a negative time delay for the second case in (3.18), we conclude that α4 should

be set to zero unless new particles are present.

Once α4 has been set to zero, we can discuss α2. In that case we can still choose the

⊗xy polarization for particles 1 and 3 and the ⊗yz polarizations for particles 2 and four.

We then focus on the terms proportional to α2
2 since they are the dominant terms at small

b (once we have set α4 = 0). We then get

δ⊗xy ,⊗yz
∼Gsα2

2ÔxyÔyz
1

bD−4
= −Gsα

2
2

bD
2(D − 4)(D − 3)(D − 2)

Ôxy =− ∂2bx − ∂2by , Ôyz = −∂2by − ∂2bz

(3.19)

Then we conclude that α2 should also be set to zero unless new massive particles

appear.

3.5. Scattering of Gravitons in Four Dimensions

Let us now discuss in more detail the four-dimensional case, D = 4, which is a bit

special. First, need to take into account that the Einstein term produces a log(L/b) time

delay, where L is an IR cutoff. Second we need to take into account the parity violating

structure. The logarithm can be taken into account by modifying the causality criterion

in the form suggested by Gao and Wald, who define it by comparing to the behavior of

the same metric far away. In this way the logL term is eliminated and it is easy for a

power law behavior produced by α4, which goes as 1/b4 to overwhelm the logarithm. Also

we will later repeat the computations for AdS4 space and we will see that L→ RAdS4
. In

conclusion, this is not a real issue.

Note that in four dimensions the α2 structure is identically zero. This is related to

the fact that the Gauss-Bonnet term becomes topological in four dimensions. Thus, we

have only the Einstein term structure and the α4 one. With four-dimensional kinematics,

we can consider the situation with coherent states of particles of type 1. Let us choose

10 t-channel unitarity is the following statement. When the polarizations of 2 and 4 are related

by conjugation and reflection along the ~b axis to the polarizations of 1 and 3 respectively, then

the residue of the t-channel pole is positive.
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the spin of these particles to be plus. Due to the coherent state considerations, the spin

of particle 3 also needs to be plus (in the outgoing notation, or minus in the incoming

notation). In other words the amplitude does not have a spin flip. In fact, without a spin

flip the α4 structure does not contribute in four dimensions. Thus in the vertex involving

particles one, three, and the intermediate one, the only structure that contributes is the

Einstein one. This contribution is effectively the same as the spin zero one. Then we can

run an argument similar to the one above.

Let us now discuss the parity violating structure, together with the parity preserving

one. By considering the coherent state for particle one (see fig. 3), with definite helicity

(positive or negative) we get that only the Einstein structure contributes to the A13I three-

point amplitude (see fig. 4). The we get the following matrix form for the phase shift for

particle two
δ =2Gs

(
1 + γ∂4β|−〉〈+| + γ∗∂4β∗ |+〉〈−|

)
(− log |β|)

=2Gs

(
−1 log |β| +

3γ

β4
|−〉〈+| +

3γ∗

β∗4 |+〉〈−|
)
,

(3.20)

where we introduced a complex variable β = b1 + ib2 in the two dimensional transverse

space. We also used ∂β = 1
2 (∂b1 − i∂b2) and e± ∝ ex ∓ iey. Here γ is the coefficient of

the +++ amplitude and γ∗ the coefficient of the −−− one. Notice that these physically

imply that the particle two undergoes a spin flip. We see that δ is a two by two matrix in

the space of helicities. In (3.20), 1 represents the identity matrix in this two dimensional

space. The matrix in (3.20) can be diagonalized by choosing the polarization directions

p1,2 ∝ |+〉 ±
√
γ β∗4

γ∗ β4
|−〉 (3.21)

Then we find that

δ1,2 = 2Gs

(
− log |β| ± 3

|γ|
|β|4

)
. (3.22)

Thus we see that we have a causality problem for small enough b = |β|.

4. Fixing the Causality Problem by Adding Massive Particles

Let us discuss how to evade the causality problem that we found above. This problem

can be evaded by adding new particles at the scale α2 or α4. We will discuss the case of

a weakly coupled theory where the problem should be fixed at tree level. This is indeed

what happens in string theory, see appendix E. For a case involving loops see appendix C.
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Let us first consider the corrections to the time delay due to new particles being exchanged

in the t-channel. The new particles have to lead to a phase shift growing like s, or a higher

power of s. Thus, we should add massive particles with spin J ≥ 2.

We will now argue that massive spin two particles do not help and that we need parti-

cles of higher spin. In particular, this will then rule out a solution involving Kaluza-Klein

gravity, which would be a special example of the addition of massive spin two particles.

For this reason we will analyze it in detail.

4.1. Massive Spin Two Particles Do Not Fix the Problem in D = 4

Let us first discuss the four-dimensional case. Since the external states are massless

spin two particles, the on-shell three-point vertices involve two massless particles and a

massive spin two particle.

z z

+

_

+

+

+++−

J =+4z J =0z

Fig. 6: Consider the coupling of a massive spin two particle to two massless

gravitons. Let us choose the kinematic configuration so that the massive particle

decays into two massless gravitons along the ẑ axis. The +− helicity configuration

is impossible since the angular momentum along the z axis would be +4. The ++

configuration is allowed.

In four dimensions, we can label the massless particles by their helicities. An important

result is that, in all incoming notation, the only non-zero amplitudes involve ++ or −−
helicities for the massless particles. In particular the +− combinations are zero. The

argument is essentially the same as in the Weinberg Witten theorem [48], or the statement

that gravity does not have a local stress tensor operator.11 Imagine that we have the

11 The matrix elements of the stress tensor operator between two on-shell graviton states is

like the coupling to a massive spin two particle, where the square of the momentum of the stress

tensor, q2 corresponds to the mass of the massive spin two particle.
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massive spin two particle in its rest frame. We let it decay into two massless spin two

particles. Let us suppose that the two decay products move in opposite directions along

the ẑ axis, see fig. 6. In the +− configuration the total sum of the spins of the decay

products along the ẑ axis is +4 or −4. However, the initial massive particle had spin at

most ±2. Therefore a +− configuration is impossible. With a ++ or −− configuration

there is not problem because the sum of the spins is zero. One can also write down

explicitly the corresponding three-point amplitude

α̃4ǫ
I
µνp

ν
1p

µ
3 [(ǫ1.p3)(ǫ3.p1)− (ǫ1.ǫ3)(p1.p3)]

2

→ 2α̃4p
2
u

[
(~e1.~q)(~e3.~q) +

m2
I

2
(~e1.~e3)

]2 (4.1)

where ǫ1µν = ǫ1µǫ
1
ν , and we used that the component of ǫIµν that contributes the largest

factor of s in the sum over intermediate states is ǫIuu = 2. We have denoted the coupling

by α̃4 since it reduces to the α4 structure in the massless limit. Here 1 and 3 are the

massless particles. Of course, p1.p3 is given by the mass of the massive particle. We see

that this result is invariant under ǫ1 → ǫ1 + p1, and so on. In the second line of (4.1)

we have written the three-point amplitude including the leading terms in the high energy

limit. This is written in terms of the purely transverse polarization vectors (or tensors)

introduced in (3.4). In D = 4 there is also a parity violating structure which we will not

need to write explicitly.

If we now consider particles 1 and 3 in fig. 3 to be associated to a coherent state

with definite spin, then we have no spin flip allowed and this coherent state does not

couple to the massive spin two particles. Therefore in four dimensions the massive spin

two particles cannot solve the problem, they simply do not couple to the type of source

that we are considering. Note that it is important that the massless intermediate gravitons

are still coupling to the 1-3 coherent state through the Einstein three-point function, and

as discussed in section 3.5, it leads to a causality problem for particle two in fig. 3.

We can further show that the massive spin two particle with a coupling (4.1) by itself

also leads to a causality problem and should therefore not be present. In fact, it will

be useful for our later argument to understand this in more detail. For simplicity let us

set to zero the parity violating massive structure. For the coherent state that involves

particles one and three in fig. 3 we choose the ⊕ polarization with e1xx = −e1yy and the

other components equal to zero, and the same for e3. Here x, y represent the two directions

in the transverse plane. Now for particle 2 we can choose the same polarization or the
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crossed polarization, called ⊗, given by e2xy = e2yx = 1/
√
2 and all other components equal

to zero. Then we find the following. If ~b is along the x̂ direction, then these two different

polarizations for particle two do not mix as they go through the shock. They diagonalize

the phase shift matrix. If the polarizations of particle 2 and 4 are the conjugate to those of

1 and 3, and reflected along ~b, then the configuration is constrained by unitarity along the

t-channel to give a strictly positive answer for the contribution to the time delay of any

particle with a non-zero coupling. On the other hand, if we average over all polarizations

for particle 2, it is possible to see that the terms involving α4 or α̃4 (the massive particle

contributions) all vanish. Thus, the contribution from the crossed polarization has to have

the opposite sign. In other words, unitarity fixes a plus sign for the time delay for one

polarization and this implies a negative sign for the other. Indeed, it is possible to see this

explicitly by computing the massive particle contribution to both answers, which are

δ⊕,⊕ =4Gs(
∑

m

α̃2
4OmOm)K0(mb)

δ⊕,⊗ =− 4Gs(
∑

m

α̃2
4OmOm)K0(mb)

Om ≡∂2bx∂2by − m4

8

(4.2)

where the first subindex of δ is the polarization of particles 1 and 3 and the second that of

particles 2 and 4 in fig. 3. By acting with this operator explicitly one can see that it gives

a negative answer in the second case. This is independent of the sign of α̃4. In fact, it is

also negative for the contribution of the massless case when we have the α4 structure on

both sides. The full phase shift also has the general relativity contribution. Once we have

a single massive particle, it is possible to go to a small enough b so that we overwhelm the

positive contributions from the General Relativity vertices.

This shows that in a theory with up to spin two particles we cannot solve the causality

problem that arises when α4 is nonzero. In addition, we see any massive spin two particles,

even if present, they should have α̃4 = 0 in order not to cause further causality problems.

4.2. Massive Spin Two Particles Do Not Fix the Problem in D > 4

Now we now move on to a higher dimensional gravity theory, D > 4. The three-

point amplitudes for two gravitons and a massive spin two particle now have two possible
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structures, first the one in (4.1), which can be multiplied by a coefficient which we will

still call α̃4. And a second one of the form

α̃2ǫ
I
µν [ǫ

µ
1p

ν
3(ǫ3.p1) + ǫµ3p

ν
1(ǫ1.p3)− pµ1p

ν
3(ǫ1.ǫ3)− ǫµ1 ǫ

ν
3(p1.p3)]×

[(ǫ1.p3)(ǫ3.p1)− (ǫ1.ǫ3)(p1.p3)]

→ 2α̃2p
2
u

[
e1kiq

ie3kjq
j +

m2

2
e1ije

3
ij

] (4.3)

where again ǫIµν is the intermediate state polarization vector and we used that we only care

about its ǫIuu = 2 component. We have introduced a new coefficient α̃2. In the second

line we have indicated the form that it takes in the high energy limit. In the last line

the polarization tensors are purely in the transverse directions and q is the momentum

transfer.

We can first consider a setup with four-dimensional kinematics. Namely, we can

consider particles 1 and 3 to be associated to a coherent state which is uniformly dis-

tributed along D − 4 of the original dimensions. In this case the problem is essentially

four-dimensional and the three-point amplitudes involving α2 and α̃2 (both massless and

massive) do not contribute. If we want to avoid causality problems, and without spin > 2

particles, we conclude that both α4 and α̃4 should be zero. The argument is the same as

the one we presented in the four-dimensional discussion. Note that since we are getting to

four dimensions by effectively dimensionally reducing the higher dimensional theory, then

the parity violating four-dimensional structure does not arise.

We would now like to rule out the possibility of having contributions with non-zero

α2. For this we will assume that α4 and α̃4 are zero, as shown by the previous argument.

Let us first consider the case D = 5. Now we have three transverse directions, let

us call them x, y, z. We choose the polarizations of 1 and 3 to be of the ⊕xy type.

Inserting this into (4.3) we see that this produces a factor of Oxy = m2 − ∂2bx − ∂2by acting

on the massive propagator, which is simply 1
b e

−mb. For the particles 2 and 4 we choose

the polarization ⊗yz , which also produces a similar operator Oyz. The final result has the

form

δ⊕xy ,⊗yz
∼ Gs

(
∑

m

(α̃2)
2OxyOyz

1

b
e−mb

)

= −Gs
∑

m

(α̃2)
2 (b

3m3 + 5b2m2 + 12bm+ 12)

b5
e−mb

(4.4)
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where we have set ~b = (b, 0, 0) after taking the derivatives. We see that for any sign of α̃2

this produces a negative result. Furthermore, in the massless case, m = 0, this also gives

the part of the graviton contribution proportional to α2
2. The graviton also contains other

contributions involving the ordinary Einstein piece on both three-point functions, as well as

a mixed term. These contributions behave like 1/b and α2/b
3 respectively. Thus, for small

b, the graviton contribution involving α2
2 dominates, since it goes as α2

2b
−5. Therefore, we

conclude that if α2 is non-zero, then by going to small enough b we get a causality problem.

Furthermore, this problem cannot be fixed by adding massive spin two particles.

For D > 5 one can run a similar argument. But of course, we could also set up the

problem with five-dimensional kinematics. In other words, we choose a coherent state

spread over D − 5 of the dimensions and we get the same as what we discussed above.

The final conclusion is that if we have extra structures in the graviton three-point

function (if α2 or α4 are nonzero), they lead to a causality problem which cannot be fixed

by adding massive particles with spins J ≤ 2.

With a risk of being repetitive, let us summarize the argument that rules out massive

spin two particles. First we go to four-dimensional kinematics where the massless or

massive couplings proportional to α2 or α̃2 do not contribute and we rule out both α4 and

the similar coupling α̃4 to massive intermediate gravitons. Then we go to five (or higher)

dimensional kinematics and we rule out both α2 and α̃2. In particular, notice that, even

in the case of ordinary Einstein gravity, with α2 = α4 = 0, we have ruled out tree level

couplings to massive gravitons (or massive spin two particles).

4.3. Exciting the Graviton Into New Particles

g

g g1

3

2

4
x

Fig. 7: When the particles scatter, the graviton can become another massive

particle, here labeled by X.
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In the above discussion we ignored the possibility of exciting a graviton when it passes

through the shock and transforming it into a new state.12 In this section we discuss this

possibility and conclude that it cannot fix the problem.

Since the available energy is large, compared to 1/b, it is possible to turn the incoming

graviton into an outgoing massive particle, let us call it X . If we use coherent states for

particles 1 and 3 in fig. 3, then we suppress the processes where particle 3 becomes a new

massive particle and we only have to worry about the possibility of particle 2 turning into

this new massive particle. This can happen even if the mass of the new particle, call it X ,

is much larger than b−1, but smaller than
√
s. The reason is that there can be some pu

energy transfer from particles 1 and 3 to particle 4 in fig. 3.

Let us view the process of the graviton 2 passing through the shock as a signal trans-

mission problem. Focusing on the v dependence of the signal we can say that the out-

signal, given an in-signal must be causal. Namely, if the in-signal vanishes for v < 0,

then the out-signal must vanish for v < 0. In Fourier space these signals are related by

fout(ω) = S(ω)fin(ω), with ω = −pv. Here we are using that particles 1 and 3 carry a

negligible amount of pv, since we are using v−translation invariance. Of course, if we have

physical particles, we cannot localize them sharply in v because they only have positive

frequencies. In order to obtain a sharp causality bound we need to invoke the vanishing of

the field commutators, [φout(v), ∂vφin(v
′)] = 0 for v < v′ (we put the derivative to remove

possible zero mode issues).13 As reviewed in appendix D , causality implies that S(ω) is

analytic in the upper half plane. In addition, the fact that we can produce other particles

can only make the strength of the graviton signal in the future smaller. This, in turn,

implies that the S matrix element for graviton going into graviton, call it Sgg(ω) should

be be smaller than one in the upper half plane,

|Sgg(ω)| ≤ 1 , for Im(ω) > 0 (4.5)

See appendix D for further discussion.

12 In string theory these are called tidal excitations of the string.
13 In a theory of gravity we do not have local field operators. However, we can imagine defining

such operators in the asymptotic past and future. More precisely, in order to run into the causality

problems we need to put them far enough to the past and future that we can neglect the change

in the spacetime metric but close enough so that the quantum mechanically dictated momentum

pu of the signal particles does not wash out the possible time advance. Here we will assume that

it is possible to do this.
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In situations where we have some time advance for the graviton, we are getting an

infinitesimal matrix element of the form

Sgg = 1− i∆vpv = 1 + i∆vω (4.6)

with ∆v < 0. Then if we set ω → iγ, with γ > 0 we get Sgg = 1 − γ∆v which is bigger

than one in the upper half plane. Note that we do not need to go to very large values

of γ to obtain a violation, we only need pv or γ, to be large enough so that this impact

parameter description is good enough.

In this presentation of the argument, it is clear that adding extra particles as possible

extra final states does not help. We need to modify Sgg. In other words, the transformation

of the graviton toX is irrelevant for this argument because we are considering the graviton-

graviton S matrix element. The transformation to X and then back to the graviton can

contribute to this matrix element at higher orders in G. But, this cannot fix the problem

we run into (4.6), which is of first order in G.

4.4. Massive Higher Spin Particles Can Solve the Problem

Now we consider the exchange of a massive spin J > 2 particle in the t-channel. Its

contribution to the phase shift will rise with energy like GsJ−1 and at high energies it will

dominate over the graviton contribution. This can happen even in the regime that the

theory is weakly coupled. If we have a single contribution of this type, we also run into a

problem. The problem is the following. We can think of the propagation of the particle

number 2 as signal transmission problem where time is v. In other words, we start with

a signal fin(v) which vanishes for v < 0, then the out-signal fout(v) should be zero for

v < 0. In addition we want that the total norm of the out wave should not grow. From

these two conditions we can deduce that the S(ω) matrix as a function of the “energy”,

ω = −pv, should be analytic in the upper half complex ω-plane and, in addition, it should

be bounded |S(ω)| ≤ 1 in the upper half plane. See appendix D for a review of these

properties. However, a particle of spin J > 2 leads to a contribution S ∝ 1+ iGsJ−1 + · · ·
which becomes bigger than one in some regions of the upper half complex s plane. Notice

that the problem arises already at weak coupling, for a small value for GsJ−1.

Thus, a finite number of higher spin particles does not fix the problem. In fact,

it generates problems of its own. On the other hand, an infinite number of particles

with higher spin can solve the problem. An example is string theory. This problem
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has been discussed extensively in the classic papers by Amati, Ciafaloni and Veneziano

[49,50,51,52,53] (see also [54]). In fact, the amplitude Reggeizes

δ ∝ Gs

t
s

α′

2 te−iπ α′

4 t (4.7)

for large s small t (sα′ ≫ 1, tα′ ≪ 1). This expression has a cut in the s-channel, due to the

creation of physical states along the s-channel. These are simply the massive closed string

that are present along the s-channel. For spacelike t, t < 0, we see that this effectively

leads to a phase shift that decreases faster than s at large s. Taking (4.7) and transforming

to the impact parameter representation we find that for b2 ≪ α′ log s we get a behavior

[51]

δ ∼ Pol
Gs

(log(α′s/4))
D−4

2

(
1

D − 4
− b2

2(D − 2)α′ log(α′s/4)
+ · · ·+ i

π

4 log(α′s/4)
+ · · ·

)

(4.8)

where Pol = 1 + α2ǫ.∂bǫ.∂b + · · · is the part coming from the polarization tensors, which

includes the new structures in the three-point functions.14 This is indeed compatible

with causality. We also get a large imaginary part that is reflecting the fact that we are

creating strings along the s-channel. Notice that we had argued before that in a local

theory we expect that by going to impact parameter space we can suppress tree level

s-channel processes. This is not true in string theory, which contains extended objects.

Furthermore, since their size increases with mass logarithmically, we see that at high

energies their effects appear at b2 ∼ α′ log(sα′) rather than the more naive expectation of

b2 ∼ α′. This justifies the small t expansion used in (4.7). Further aspects of the string

case are discussed in appendix E.

The conclusion is that an infinite number of higher spin particles can solve the problem.

We need a tower of particles with increasing spins and intricate relations between them

so that the expansion can be resummed into an amplitude that does not have a problem.

Besides string theory, we do not know if there are other ways of doing this.

4.5. Compositeness and the Extra Structures for Graviton Scattering

In this subsection, with the string theory case as an inspiration, we make some remarks

about the extra structures for the graviton scattering.

14 For type II superstrings Pol= 1.
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Imagine that the graviton has a composite structure.15 Let us imagine that the

graviton is given by a pair of particles which are in a bound state given by a wavefunction

ψ(r) where r is the relative distance. We further assume that these particles scatter

through the shock via the usual general relativity three-point functions. However, since

the two particles feel slightly different forces we find that the total scattering amplitude

will have the form

δ0(b0) + ∂i∂jδ0(b)〈ψǫ|rirj|ψǫ〉+ · · · (4.9)

where δ0 is the general relativistic expression (2.11), and the subindex ǫ indicates the

spin of the graviton. Notice that since the Laplacian ∇2
bδ0 = 0, the only terms that can

contribute to the second part are those which are not rotationally invariant in the relative

coordinates. These are possible because the graviton spin or polarization ǫ. Notice that

this is a simple argument for the presence of extra structures in the graviton three-point

function. Even though we motivated this with a graviton composed with two particles, the

same final formula works if the graviton is made out of many more elementary constituents

as it happens in string theory, when it is a string. In any case, the size of the new structure,

α2, due to compositeness, is of order α2 ∼ r2s where rs is the typical size of the graviton.

Given that the bound state has this typical size, then we also expect that it can be excited

to other states with masses m2 ∼ 1/r2s . Indeed, by imposing the causality constraint, we

found that there should be new particles with masses of this order of magnitude.

5. Anti-de Sitter Discussion

The case of asymptotically AdS space is very similar to the asymptotically flat space

one. The causal structure is defined by the causal structure of the boundary. We then

require that signals that go through the bulk cannot go faster than signals that remain

on the boundary. As argued in [55,26], general relativity with the null energy condition

implies that this is obeyed.

In terms of the dual CFT, this is just the statement that CFT observers cannot

exchange information faster than light. Equivalently boundary CFT operators commute

outside the boundary light-cone.

15 Note that we cannot make the graviton as a zero energy bound state in a local relativistic

quantum field theory that contains a stress tensor operator [48].
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5.1. Motivation: The Emergence of Bulk Locality Should Happen in the Classical Theory

In this subsection we discuss in more detail the AdS considerations that motivated

the present paper.

We expect that the dual of a large N gauge theory should be a weakly coupled string

theory with coupling gs ∼ 1/N . This should be true both at weak and strong ’t Hooft

coupling. As we increase the ’t Hooft coupling we are supposed to interpolate between a

Vasiliev-like theory and an ordinary Einstein-like theory at strong ’t Hooft coupling. This

whole interpolation happens within the classical string theory in the bulk. Of course, in

the ordinary Einstein description we see a local theory in the bulk. Thus the emergence

of bulk locality is something that should be contained within classical string theory. It is

for this reason that it is interesting to understand the constraints of tree level interactions

of gravitons and the link between the masses of the higher spin particles and the size

of the corrections to Einstein gravity. Here we attempted to link them via the causality

considerations for the simplest gravitational interactions. Given the interest of the AdS

case, we will discuss in more detail some of its features.

5.2. Statement of AdS Causality

In asymptotically AdS gravitational theories the causal structure given by the

Minkowski light-cone on the boundary of AdS. This allows us to formulate the causal-

ity criterion in a very simple manner. None of the subtleties that existed in flat space

regarding the definition of causality appear for gravitational theories in AdS. The basic

condition we would like to impose is that

〈Ψ|[Tµν(y), Tρσ(0)]|Ψ〉 = 0, y2 > 0, (5.1)

where Ψ is some nontrivial state in the theory. We will be interested in the commutator

computed on the shock wave background [56,57,58,59,60]. The Aichelburg-Sexl shockwave

in AdS can be created by inserting a pair of operators creating a coherent state bulk

wavefunctions that localize the bulk stress tensor on the light ray [56,61,62].

As before, instead of computing the commutator, we study propagation of an energetic

graviton through the bulk and impose positivity of the time delay. The whole discussion

is similar to the flat space one. The only difference is that the t-channel propagator is now

in AdS. Instead to computing it directly, we consider plane wave solutions which encode
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intermediate state gravitons with the properties we need. Plane wave solutions in AdSD

have the form

ds2 =
−dudv + h(u, yi, z) du

2 +
∑D−3

i=1 dy2i + dz2

z2
(5.2)

Here the function h is only constrained by the Laplace equation in the transverse hyperbolic

space

zD−2∂z(z
−(D−2)∂zh) + ∂2yi

h = 0 (5.3)

which can be equivalently written as

∇2
D−2f − (D − 2)f = 0 (5.4)

where f = h
z . In appendix F we give an argument that this is a solution, to all orders in

the derivative expansion.

We can also a plane wave with a delta function source so that instead of (5.3) we write

zD−2∂z(z
−(D−2)∂zh) + ∂2yi

h = −16πG|Pu|δ(u)zD−2
0 δD−3(~y − ~y0)δ(z − z0). (5.5)

where the RHS corresponds to an insertion of a delta-function source in the hyperbolic

space in (5.4). The Green’s function in the hyperbolic space is well-known, so that we get

h =
z̟(ρ)

1− ρ2
δ(u)

= 16πG|Pu|δ(u)
z(4π)

2−D
2 Γ(D

2
)

(D − 1)(D − 2)

(
ρ2

1− ρ2

)2−D

2F1

(
D − 2,

D

2
, D;−1− ρ2

ρ2

)
,

(5.6)

where ~y0 and z0 are the coordinates of the source in the bulk, and

ρ =

√
(z − z0)2 + |~y − ~y0|2
(z + z0)2 + |~y − ~y0|2

. (5.7)

It can be checked that Pu is also the total momentum from the boundary point of view by

integrating the boundary stress tensor (read off from the small z expansion of this metric)

on the boundary. For example, in AdS4 and AdS5 (5.6) takes the following form

̟4(ρ)/(G|Pu|) = −8
(
1− ρ2 + (1 + ρ2) log ρ

)
,

̟5(ρ)/(G|Pu|) = 2
(1− ρ)4

ρ
.

(5.8)
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More generally, we have

lim
ρ→0

̟(ρ) ∼ 1

ρD−4
,

lim
ρ→1

̟(ρ) ∼ (1− ρ)D−1.
(5.9)

Let us understand better the symmetries of the problem. The shock wave is localized

around u = 0 and is probed by a particle which is localized in v. The role of the transverse

plane in flat space is played here by the transverse HD−2. It is convenient to think of the

probe crossing this hyperbolic space at the center.16

The shock centered at (~y0, z0) has a number of Killing vectors that depend on f(u).

For arbitrary f(u) the background has an obvious SO(D−3) symmetry that rotates ~y and

a translation in v. For f(u) = δ(u) the geometry has extra Killing vectors which enhance

the rotational symmetry to SO(D−2), as we had in flat space. In the original coordinates

(5.2), some of the extra symmetries involve special conformal generators. Since we are

working in the high energy limit, we effectively have a delta function in u, so that we also

expect to have this extra SO(D − 2) symmetry. See [59] for a coordinate system that

makes this manifest.

General properties of the AdS shock wave and its different limits are considered in

appendix F. In particular, when the center of the shock goes to the boundary z0 → 0 the

problem becomes very similar to the one arising in the computation of energy correlators

[14], whereas in the limit z0 → ∞ it reduces to the setup used in [60] to study causality.

Our formulas will reduce to the ones considered before in those limits.

5.3. The Effect of Higher Derivative Interactions on Particles with Spin

Now we would like to consider different type of probes and compute the time delay

for them. We start with a simple example of a scalar probe and then move to the case of

particles of spin one and two.

If we consider a minimally coupled scalar in the shock wave background its equation

of motion takes the form

∇2φ = 0. (5.10)

16 From the CFT point of view we can create such a probe by acting with the operator of

given energy and zero momentum in the AdS Poincare coordinates for which u = 0 is the future

null infinity as explained in [14]. In [14] terms we are working here in the y-coordinates, while

the operator with given momentum is inserted in the x-coordinates. In pure AdS case isometries

of HD−2 at fixed u = 0 correspond to the usual Lorentz symmetry group in the x-coordinates of

[14].
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In our setup we are interested in corrections to this equation which are second order in

derivatives.17 Considering terms yielding two derivative equations of motion for φ we have

to consider terms like

Hµν∇µ∇νφ (5.11)

where the tensor H is made from the background metric, Riemann and covariant deriva-

tives. However one can check that there is no two index symmetric tensor that is not

vanishing on-shell [59]. Of course, this statement is equivalent to the uniqueness of the

scalar-scalar-graviton three-point vertex. In the high energy limit we get similar to flat

space

∂u∂vφ+ f(u)h(z, ~y)∂2vφ = 0 (5.12)

which produces the time delay

∆v =
̟(ρ)

1− ρ2
(5.13)

reproducing the flat space computation for small ρ. We assumed that the perturbation

crosses the shock at z = 1 and ~y = 0.

For the gauge boson we imagine at the level of two derivative the following equation

∇µFµν +H µαβ
ν ∇µFαβ (5.14)

where H is built out of the Riemann tensor and its covariant derivatives. Using the

properties of the background discussed above (we defer the details to appendix F) one can

check that the only term that we can have is a correction analogous to that appearing in

the case of flat space

∇µFµν − α̂2 Ř
µαβ

ν ∇µFαβ = 0. (5.15)

where Ř reduces to the Weyl tensor on-shell (see appendix F for details).

If we compute the time delay using the same action (5.15), considering that each mode

corresponds to a different constant polarization, ǫi, we get

∆v =
̟(ρ)

1− ρ2

(
1− α̂2

(
1− ρ2

)2 ̟′(ρ)− ρ̟′′(ρ)

4ρ̟(ρ)

(
ǫ.n2

ǫ.ǫ
− 1

D − 2

))
. (5.16)

The final result is very similar to the one obtained in flat space. The only different is

that the polarization dependent delay is slightly more complicated. The flat space result

17 Since we need derivatives to bring down large factors of momentum.
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(2.16) is reproduced by considering ρ→ 0 limit, whereas the energy correlator constrained

is recovered in the limit ρ→ 1.

Similarly, in the case of gravity we are interested in the most general form of the second

order equations. We choose to parameterize the equations of motions for perturbations as

follows

δRµν + α2 Ř
ραβ

(µ δRν)ραβ +
α4

2
[∇(µ∇ν)Ř

αβρσ]δRαβρσ = 0 (5.17)

where the parameters αi are in units of the AdS radius RAdS that we set to one. In

this case, even though there are several possible ways to contract the indices in each of

the above terms, we may concentrate on the contributions to the transverse equations of

motion that are the ones yielding the time delay. For that purpose (5.17) is the most

general parametrization.18

The time delay for these equations of motion is then given by

∆v =
̟(ρ)

1− ρ2

(
1 + t2(ρ)

(
(ǫ.n)2

ǫ.ǫ
− 1

D − 2

)
+ t4(ρ)

(
(ǫ.n)4

(ǫ.ǫ)2
− 2

D(D − 2)

))
,

t2(ρ) =
(
1− ρ2

)2 ̟′ − ρ̟′′

4ρ̟(ρ)

(
−α2 + α4

D(1 + ρ2)2 − 2ρ2

ρ2

)
,

t4(ρ) = −Dα4

(
1− ρ2

)2 ̟′ − ρ̟′′

4ρ̟(ρ)

D(1 + ρ2)2 + 2(1 + ρ4)

4ρ2
.

(5.18)

where ~n is a vector pointing from the center of the shock to the probe particle, and ǫ is

the polarization of the probe particle. These time delays can become negative for small

enough ρ if α2 or α4 are non-zero.

These results can be also reproduced using slightly different method of evaluating

the on-shell action in an explicit gravitational theories in the shock wave background like

Lovelock or quasi-topological theories (see e.g. [63,64]).

In the limit ρ → 0 these constraints reproduce the flat space analysis of section B.1

with ρ = b
2 . In the ρ → 1 limit the above result reproduces constraints discussed in the

past. If we take the limit ρ → 1 by taking the shock center to the boundary z0 → 0 we

recover energy correlator computation [14]. If we on the other hand consider ρ ∼ 1 by

taking the shock center to the horizon z0 → ∞ we recover the shock wave discussed by

Hofman [60].

18 There is also the possibility of considering more than two derivatives acting on the pertur-

bation as ∇nδR. These contributions in general change the number of degrees of freedom of the

theory and will not be considered here.
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5.4. Implications for a, c in Theories with Large Operator Dimensions

Imagine an abstract CFT4 with large N ≫ 1 and large gap ∆gap ≫ 1, where ∆gap is

the dimension of the lightest higher spin single trace operator. This theory is described by a

gravitational theory in the bulk with potentially some higher derivative corrections. String

theory inspired intuition suggests that higher derivative corrections should be suppressed

by the 1
∆gap

factor. Our argument shows that this is indeed the case for the simplest

corrections, which are the ones affecting the three-point function of stress tensor. Indeed, as

we showed in (5.18), we run into a potential problems with causality at impact parameters

ρc ∼ (α2)
1/2, (α4)

1/4. Since this can only be fixed by higher spin particles, we conclude

that ∆gap has to be small enough so that it can start correcting the amplitude before we

run into this problem.

For ∆gap ≫ 1 then the relevant impact parameters are such that we can approximate

the formulas by the flat space limit. Thus, we get the bound of the type

(α2)
1/2 .

1

∆gap
, (α4)

1/4 .
1

∆gap
, (5.19)

where . stands for some numerical coefficient that we cannot fix using our simple analysis.

In the case of N = 1 superconformal theories, α4 = 0 by supersymmetry and α2 ∝
a−c
c

. Then we get ∣∣∣∣
a− c

c

∣∣∣∣ .
1

∆2
gap

. (5.20)

In the case of N = 4 SYM (5.19) is satisfied trivially since ∆gap ∼ λ1/4 and a = c.

It will be very interesting to find an independent field theoretic argument that leads to

the bounds of the type (5.19) or (5.20). It would also be nice to find the precise numerical

coefficients in (5.19) and (5.20). In the supersymmetric case, a − c was argued to control

asymptotic density of BPS operators in [65]. It would be very interesting to understand if

there is any relationship between their work and our analysis.

5.5. Implications for Dimensions of Double Trace Operators

This computation of the time delay can be viewed as a special four-point correlation

function with particular wave functions for external operators. We can use the OPE to

expand the four-point function computation in terms of the time evolution eigenstates

(or, equivalently, local operators). One can ask then the following question: what is the

relation between the time delay and the OPE data?
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ρ

Fig. 8: We consider two energetic particles in AdS that oscillate back and forth

with energy E and angular momentum J . This models the high twist, high spin

double trace operator in the dual CFT.

This question was addressed in a nice series of papers [56,61,62] where the time delay

was shown to be equal to anomalous dimension of double trace operators of the type

O(∂2)n∂µ1
...∂µj

O for large n and large j

δ(s, ρ) = −πγ(n, j),

ρ =
j

j + 2n
,

s = 4n(j + n).

(5.21)

where the relations between parameters on both sides of the equation are reviewed below.

Intuitively, (5.21) follows from the fact that the phase shift of the correlator eiδ is given by

e−i(∆∗−2∆O)∆τ where ∆∗ is the dimension of the operator that dominates the OPE, and ∆τ

is the global AdS time that passed from the beginning to the end of the process. The time

delay that we computed corresponds to particles starting at the boundary, getting close to

each other at the center and then reaching the boundary again, see fig. 8. It takes ∆τ = π

for this process to occur. From this fact (5.21) follows. Even though (5.21) was derived in

general relativity in the limit when δ ≪ 1 it follows simply from the AdS graviton diagram

exchanged. In the impact parameter representation, only the on-shell t-channel exchange

diagram constributes. This diagram is fixed in terms of three-point function 〈OOTµν〉 in
a generic gravitational theory with generic three-point couplings similar to our flat space

analysis.
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Let us briefly review the results in [56,61,62]. The basic idea is the following: the

state created by O(∂2)n∂µ1
...∂µj

O for large n and large j can be thought of as two highly

energetic particles that follow null geodesics in AdS, see fig. 8.

For two geodesics that are characterized by total energy E and spin J the minimal

separation is achieved in global coordinates at

ρ =
J

E
≃ j

j + 2n
. (5.22)

where we matched energy and spin of the pair of particles to the ones of the double trace

operator J = j, E = 2∆+ 2n+ j and used that n, s≫ 1, with ∆ also of order one.

Thus, we see that probing distances much smaller than AdS radius (ρ ≪ 1) corre-

sponds to considering operators with n ≫ j. On the other hand n ≪ j corresponds to

scattering at very large impact parameters. The Mandelstam variable s is given by

s = E2 − J2 ≃ 4n(j + n) (5.23)

and the relation to the anomalous dimensions is that

πγ(n, j) = pv∆v = −Gs ̟(ρ)

1− ρ2
. (5.24)

Let us consider different limits of this formula. First, consider very large impact parameters

ρ ∼ 1 or j ≫ n. In this limit we get

γ(n, j) ∼ −Gn
D−1

jD−3
(5.25)

which is in agreement with the general results derived using the crossing equation [66,67,68].

In the opposite limitof small impact parameters scattering, n ≫ j and j
n > 1

∆gap
, we

have

γ(n, j) ∼ −Gn2

(
n

j

)D−4

. (5.26)

We have several comments to add to this story. First, these results should be universal

and applicable to generic CFTs with large N and large gap. To write the answer in an

abstract form we have to use the relation of G to the two-point function of stress tensors

which is well-known and is roughly G ∼ 1
cT

. It means that it should be possible to derive

them using crossing equation which still be dominated by the stress tensor exchange.

Probably the relevant limit is z → 0, z̄ → 1 with z
1−z̄

being fixed. It would be nice to

reproduce the formulas above using crossing equations.
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Second, we see that causality, or positivity of the time delay, implies the constraint

γ(n, s) < 0, which generalizes the ones that were previously known [69,67,68] for asymp-

totically large s≫ n. Again it would be very interesting to understand how to prove these

constraints purely from the field theory point of view.

Third, we see that considering double trace operators of the type Tµν(∂
2)n∂µ1

...∂µj
Tρσ

we get new structures due to the dependence on polarization which potentially lead to

causality violations and bounds (5.19), (5.20). Of course, the same is true about the

double trace operators that involve the conserved current Jµ. It will be very interesting to

understand them from the purely CFT viewpoint. Note that in the scattering process the

polarizations of particles 3 and 4 in fig. 3 can change relative to those of particles 2 and 4,

so that the phase shift is an operator that acts on this space of polarization tensors. Both

t-channel unitarity, as well as our considerations, constrain only some matrix elements of

this general matrix. While we leave the general case for the future, we note that, in some

cases, we can ensure that the polarizations of 3 and 4 do not change by using conservation

of angular momentum along the directions orthogonal to the impact parameter direction.

In these cases our considerations apply and we can say that the anomalous dimensions

of the corresponding double trace operators should be negative. The positivity statement

applies to the part of the phase shift that grows with the Mandelstam invariant s, which

translate into the growth with n via (5.23).

However, in our case, this positivity requirement is not obvious from the CFT point

of view. It would be nice to see whether this is a general requirement or is one that is

present only in theories with a local bulk dual.

6. Wormholes and Time Advances

General relativity has Lorentzian wormhole solutions that join far away points by

short Einstein-Rosen bridges. The simplest configuration is the maximally extended

Schwarzschild solution interpreted as an approximation to the metric of two distant black

holes which share a single interior. As discussed in [28], these solutions do not lead to a

violation of causality in the ambient space because it is not possible to send signals through

the wormhole [70].
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(a) (b)

delay advance

Fig. 9: We consider a Lorentzian wormhole configuration that is described, near

each wormhole, by the maximally extended Schwarzschild solution. We send a

(green) particle from the left very close to the past horizon. We then send a (purple)

particle from the right. (a) If this particle gets a time delay, it will fall into the

singularity. (b) If the particle gets a time advance, then it can make it out of the

other black hole and we would have a way of sending signals through the wormhole.

Here the blue lines represent the average position of the horizon of the black hole,

defined by null lines that are very far away from the two particles we send in. We

assume that the impact parameter is much smaller than the Schwarzschild radius.

The inability to send signals through the wormhole depends crucially on the fact that

we have a Shapiro time delay as opposed to a time advance. For example, if one sends a

fast moving particle from the left side, then a particle send from the right will suffer a time

delay that will make it go into the singularity, see e.g. [33,71] . However, if that particle

were to suffer a time advance, as opposed to a time delay, then it would be able to go

through the wormhole and we would have a violation of causality, see fig. 9. Note that we

can make the wormhole big enough that we can neglect the higher derivative corrections

in the description of the background metric. It can also be big enough that we can neglect

the backreaction of the two particles. So we are considering a situation where the impact

parameter b≪(Schwarzschild radius). In the D = 4 case, the Schwarzschild radius acts at

the IR cutoff of the logarithm.

This impossibility of sending signals is crucial for interpreting the wormhole as an

EPR state of two disconnected systems [29,30,31].

7. Cosmological Applications

The gravity wave non-gaussianities produced by inflation are a direct measure of the

graviton three-point vertex during inflation [17,20]. To leading order in the slow roll
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approximation we can do the computation in de Sitter space. The symmetries of de Sitter

imply that only two different parity preserving structures are possible. These correspond

to the two parity preserving structures that we have in four-dimensional flat space. One

is the one produced by the Einstein action and the other can be produced by a term in

the action of the form M2
plα4R

3, where R is a Riemann tensor (not the Ricci tensor). The

relative size between the two types of gravity wave non-gaussianity is proportional to

〈hhh〉R3

〈hhh〉Einstein
∝ α4H

4 (7.1)

where H is the Hubble scale during inflation. Of course, both are small compared to the

two point function, 〈3point〉
〈2point〉3/2 ∼ H

Mpl
. See [20] for the explicit expressions.

Thus, if the gravity wave three-point function was measured and it was found that

this exotic new structure is present at a level comparable to the Einstein one, then one

concludes that α4 is of the order of the Hubble scale. The considerations in this paper

imply that there should also be new particles with spins J > 2 with masses comparable

to the Hubble scale during inflation. Thus, this would be an indirect evidence for string

theory during inflation.

Note that α4H
4 ∼ 1 implies that supersymmetry had to be broken at the Planck

scale and not at a lower scale, since the + + + and − − − structures are forbidden by

supersymmetry.19 Let us be a bit more explicit about this point. If the short distance

theory is supersymmetric, then the field theory Lagrangian does not contain the couplings

giving rise to α4. Now, since supersymmetry is broken, this three-point function could

arise from integrating out massive particles. These are expected to contribute to α4 as

α4 ∼ 1

M2
pl

(
1

m2
B

− 1

m2
F

)
, −→ α4H

4 ∼ H2

M2
pl

≪ 1 (7.2)

which is very small. Where, to maximize the effect, we assumed that the masses of the

bosons and fermions, as well as their differences, are of order H. We then see from (7.1)

and (7.2) that in this supersymmetric scenario the contributions are very small. Thus,

in order for the right hand side of (7.1) to be of order unity (or say a few percent) the

supersymmetry should be broken at the Planck scale (during inflation) so that the three-

point vertex is present in the original classical theory. Notice that most of the string

inflation models do not predict a large α4 since they are based on compactifications of the

19 We thank Nima Arkani-Hamed for emphasizing this to us.
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ten dimensional superstring. It should be a model where the string length is comparable

to the Hubble radius and with a very weak coupling to account for the small experimental

upper bound for H/Mpl [72].

Note that if one imagines that inflation is given a dual description in the spirit of

dS/CFT and the dual field theory is weakly coupled, then one expects that α4H
4 ∼ 1.

This is what happens in the Vasiliev theory [73]. Of course, this theory also contains

massless higher spin particles. It is also not suitable for building an inflationary model

because the scalar does not appear to obey the slow roll conditions.

If the gravity waves produced by inflation are as large as to explain the signal seen by

BICEP2 [74], then probing the gravity wave three-point functions might be possible (with

a lot of optimism!).20

8. Conclusions

In this paper, we studied causality constraints on higher derivative corrections to the

graviton three-point function. We considered a weakly coupled theory and studied higher

derivative corrections which are important before the theory becomes strongly coupled.

These are higher derivative corrections that arise in the classical regime of the theory.

The constraints arise from a thought experiment where we scatter two gravitons at

relatively high energy and fixed impact parameter. The energy is high compared to the

inverse of the impact parameter but low compared to the scale where the theory becomes

strongly coupled. More explicitly, we have the very small overall coupling G and we

consider corrections to the three-point functions which scale as powers of αp2 relative to

the Einstein one. The three-point amplitudes are very small because G is very small. But

α is a fixed quantity and we look at impact parameters of the order of b2 ∼ α. We found

that when the impact parameter b2 ∼ α, then we see a causality violation. In this impact

parameter representation, and in the field theory regime (without higher spin particles),

the time delay comes from the singularities in the t-channel, which is simply a pole at

t = 0 for the massless theory. More precisely it comes from the part that is quadratic in

s of its residue. In other words, terms going like s2/t at t = 0. It is important that while

t = 0, the momentum transfer itself is non-zero.21 The overall sign of the time delay, then

20 At this time, there are alternative explanations for this signal [75,76], so we might have to

wait till the dust settles.
21 It is a null, non-zero momentum.
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depends on the contractions of the polarization tensors of the external particles with the

momentum transfer in the t-channel.

We have argued that this type of tree level causality violation can only be fixed, at

tree level, by higher spin particles at a mass scale m2 ∼ 1/α. In string theory, this issue is

fixed because the amplitude Reggeizes. Namely, it has a behavior s2+
α′t
2 for large s and

fixed t. This is due to extended strings being exchanged in the s-channel. If the amplitude

Reggeizes, then corrections appear at a scale b2 ∼ α′ log(sα′). Due to the presence of the

logarithm we did not find a sharp bound between the corrections to the graviton three

point amplitude, α, and the Regge slope α′.

We should stress that in this discussion we have assumed that we have a weakly

coupled gravitational theory. We have also assumed the notion of asymptotic causality

which says that the causal structured determined by the far away regions of spacetime

cannot be violated by its interior regions.

The analysis in this paper was also motivated by trying to understand better the

AdS/CFT correspondence. In particular, if we consider large N gauge theories we know

that we have a weakly coupled theory in the bulk. However, we do not know under what

conditions that weakly coupled theory is a local in the bulk. It is clear that the absence

of light massive higher spin states is a requirement. Here we have tried to address the

question of whether it is sufficient. We have only studied the simplest possible correction

to gravity, its three-point function. We have argued that, as long as higher spin particles

are very massive, there cannot be higher derivative corrections to the three-point functions.

Previous discussions argued against such corrections by saying that they would make the

theory strongly coupled at energies that are lower than the Planck scale [15,16], but still

parametrically larger than the scale of the corrections.22 Here we have strengthened the

bound by linking the scale of corrections to the appearance of new particles at the same

scale.

As a more concrete statement, we are linking the values of the constants appearing

in the stress tensor three-point functions to the dimensions of the lightest particles with

higher spins, J > 2. In other words, a−c
c . 1

∆2
gap

. Unfortunately, we could not determine

the precise numerical constant in this inequality.

22 In [15,16], or in talks referring to those papers, they impose the bound α . 1
G(∆gap)4

(with

G ∼ 1/N2). This bound comes from demanding that the theory remains perturbatively unitary

at the scale ∆gap where new particles appear. Here we argued for the stronger bound α . 1
∆2

gap
.
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Using the results in [56,61,62], we can link the time delay for a high energy scattering

process in the bulk to the anomalous dimensions of certain double trace operators. These

double trace operators have the rough form T∂j+(∂
2)nT . They have both relative spin and

relative radial excitations. The anomalous dimensions are γ(n, j) ∼ −δ(s, b)/π, where the

values of b and s are given in terms of j, n in (5.22)(5.23). The requirement that the time

delay is positive leads to the statement that the anomalous dimensions for some of these

operators should be negative.

For the de Sitter case, this analysis has potentially interesting phenomenological ap-

plications. If the gravity wave three-point functions were measured, we expect to see the

structure predicted by Einstein theory. However a new structure is also possible. This new

structure is the only one allowed by the approximate scale and conformal invariance of the

inflationary phase. If such new structure was found with a strength comparable to the

Einstein one, then it would be a direct signal of dramatically new physics at the Hubble

scale: a tower of higher spin particles. Which is a rather drastic departure from ordinary

field theory at the inflationary scales. It is not clear how likely this inflationary scenario

is in the space of possible inflationary theories.

8.1. Open Problems

It would be nice to derive these constraints in a more direct way. If one understood

directly the constraints of unitarity and causality at the level of the four point function,

then one would not need to resort to the exponentiation argument we discussed in section

3.3. Furthermore, it might lead to sharper bounds that include numerical factors.

Our discussion of massive intermediate particles in mixed representations was not

complete.23 These are representations that have maximal spin two in the uv-plane, but

have additional indices in the other directions (see appendix H). We suspect that a finite

number of these cannot solve the causality problem, but we did not prove it.

In the AdS case, it would be nice to derive the constraints from the conformal boot-

strap point of view. This is in the spirit of [15], but it would involve the stress tensor as

an external state. One of the main messages from this paper is the importance of spin in

23 These are not present in D = 4, so that the existence of an infinite tower of higher spin states

is clear in D = 4, or if α4 6= 0 in higher dimensions. In higher dimensional theories with only

α4 = 0 but non-zero α2, in order to establish that the tower is really infinite we need to rule out

the possibility that the causality problem is fixed with a finite number of mixed representations.

We leave this to the future.
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order to derive constraints. The structure constants (or three-point functions) of operators

with spin are very numerous but, as we have shown, there can be powerful constraints on

them. These constraints are not so easily seen when we scatter external operators with no

spin. Notice that, even the simplest bounds for a and c discussed in [14], which should be

valid for arbitrary CFTs, have not been derived from the conformal bootstrap approach.

It would be nice to further constrain the interactions of all the higher spin particles

and derive the general structure of the tree level theory. This is the program that was

pursued in the sixties and that led to string theory. However, we would like to know how

unique string theory is. Methods developed to tackle this problem might also be useful for

analyzing large N gauge theories such as large N QCD.

It would also be nice to see whether in the de Sitter context there is a sharp bound for

the gravity wave three-point correlators analogous to the one in [14] for AdS correlators.

Our de Sitter discussion assumed the local gravity description and a locally flat space

discussion in the bulk, so it applies most clearly when α4H
4 is somewhat smaller than one,

but still of order one compared with H/Mpl.
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Appendix A. Shapiro Time Delay

The physical effect discussed in the paper is known in general relativity as the Shapiro

time delay [1]. The usual setup to discuss the Shapiro time delay is to consider propagation

of light near a massive body (a star or a planet). Here we would like to consider a slight

variation of it by considering propagation of light between two massive bodies. We consider
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the masses to be equal and consider the geodesic that is equally separated from each of

them, such that the deflection is absent (each of the masses bends the trajectory in the

opposite direction such that the net deflection is zero). The time delay on the other hand

accumulates. Recall that the Schwarzschild metric takes the form

ds2 = −
(
1− rD−3

s

rD−3

)
dt2f +

dr2

1− rD−3
s

rD−3

+ r2dΩ2 (A.1)

2b

b

Fig. 10: We consider the metric produced by two massive sources at distance

2b. We then send a particle between them and measure the time delay. There is

no deflection angle, but there is a non-zero time delay. We do the computation to

leading order in the rS/b expansion, by simply consider a linear superposition of

the two metrics.

We are interested in the metric produced by the superposition of two equal masses.

In the Schwarzschild coordinates to first order in the mass, or rS, we get

ds2 = ds2Mink +
∑

i

rD−3
s

rD−3
i

(dt2 + dr2i ) (A.2)

with ri = |~x−~xi|. Let us now consider two masses separated along the direction x1, one at

x1 = −b and one at x1 = b. Then we consider a probe particle moving along the direction

xD−1 = z. By symmetry, it will stay at x1 = ... = xD−2 = 0 if it starts there with velocity

along the z direction. We have that r =
√
b2 + z2 for both masses. We also find that

dr = dzz/r. We get

dt2(1− 2
rD−3
s

rD−3
) = dz2(1 +

rD−3
s

rD−3
z2/r2) (A.3)

Then the time delay is

∆t =

∫ ∞

−∞
dzrD−3

s

1

(b2 + z2)
D−3

2

(1 +
z2

z2 + b2
) =

rD−3
s

bD−4

(D − 2)
√
πΓ(d

2
− 2)

2Γ(D−1
2

)
(A.4)
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We now do the same for a particle moving at a velocity v. We find

dt2(1− 2
rD−3
s

rD3
) = dz2

(
1 +

rD−3
s

rD3

z2

z2 + b2

)
+ dτ2

dt

dτ
(1− 2

rD−3
s

rD3
) = γ , γ−2 = 1− v2

dt =
dz

v

(
1 + (2 +

z2

z2 + b2
− 1

v2
)
rD−3
s

rD3

)
(A.5)

The result of doing the integral over z is the same as in (A.4) multiplied by a factor of

∆t =
1

v

(2 + 1
D−3 − 1

v2 )

(1 + 1
D−3

)
∆trelativistic (A.6)

We see that for slow velocities, we indeed find a negative time delay (time advance)

proportional to 1/v3. This is time advance relative to the particle moving with the same

velocity v in flat space (not relative to a particle moving at the speed of light!).

We could have repeated the computation in different coordinate system. For example,

we can consider the computation in the so-called isotropic coordinates given by

ds2 = −
(
1− rD−3

s

4rD−3

1 + rD−3
s

4rD−3

)2

dt2 +

(
1 +

rD−3
s

4rD−3

) 4
D−3 D−1∑

i=1

dx2i ,

r2 =
D−1∑

i=1

x2i .

(A.7)

One can easily check that the time delay for the geodesic in this coordinates coincides

with the one computed in Schwarzschild coordinates to leading order in rS.

Appendix B. Three-Point Amplitudes and Their Sums

In this appendix we recollect different three-point amplitudes that involve a graviton

and two other particles and present different polarization sums that appear in the time

delay. In particular cases we reproduce the shock wave computations but the results

obtained using on-shell amplitudes are much more general and are valid in any theory

with given on-shell three-point amplitudes.
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Let us be more explicit on the kinematics we are interested in. As defined in the bulk

of the paper we consider the following kinematics

p1µ =

(
pu,

q2

16pu
,
~q

2

)
, p2µ =

(
q2

16pv
, pv,−

~q

2

)
,

p3µ =−
(
pu,

q2

16pu
,−~q

2

)
, p4µ = −

(
q2

16pv
, pv,

~q

2

)
,

s ≃4pupv , t ≃ −(~q)2

(B.1)

We define the polarization tensors as follows

ǫ1µ = (−~q.~e1
2pu

, 0, ~e1) , ǫ3µ = (
~q.~e3
2pu

, 0, ~e3),

ǫ2µ = (0,
~q.~e2
2pv

, ~e2) , ǫ4µ = (0,−~q.~e4
2pv

, ~e4).

(B.2)

An important point is that all ǫi.pj are of order 1 and, thus, are sub-leading in the

high energy limit compared to powers of s. Thus, in all our computations we can think of

polarization tensors as being purely transverse, see (3.5).

We focus on the massless scalar, vector and graviton three-point amplitudes which

are parameterized as follows

Ahhg =
√
32πGǫµνp

µ
1p

ν
3

Aγγg =
√
32πGǫµν ([p

µ
1p

ν
3(ǫ1.ǫ3)− ǫµ1p

ν
3(ǫ3.p1)− ǫµ3p

ν
1(ǫ1.p3)] + α̂2p

µ
1p

ν
3(ǫ1.p3)(ǫ3.p1)) ,

Aggg =
√
32πG

[
(ǫ1.ǫ2ǫ3.p1 + ǫ1.ǫ3ǫ2.p3 + ǫ2.ǫ3ǫ1.p2)

2

+α2(ǫ1.ǫ2ǫ3.p1 + ǫ1.ǫ3ǫ2.p3 + ǫ2.ǫ3ǫ1.p2)ǫ1.p2ǫ2.p3ǫ3.p1

+α4(ǫ1.p2ǫ2.p3ǫ3.p1)
2
]
.

(B.3)

where we used the ǫµν → ǫµǫν form of the polarization tensor for the graviton . Using

these three-point amplitudes we can compute the time delay using (3.1) in the high energy

limit. In the high energy limit the relevant part of the sum over graviton polarization

tensors takes a very simple form

∑

i

ǫiµν(q)(ǫ
i
ρσ(q))

∗ ∼ 1

2
(ηµρηνσ + ηµσηνρ) (B.4)

so that it leads to factors of s2 when we contract with the p1 or p3 momenta from the left

side and with p2 or p4 momenta on the right side, see fig. 4. Note that the large components
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of the external momenta are transverse to the momentum ~q of the intermediate particle,

p1 + p3 = (0, 0, ~q), see (B.1).

The results are the following

∑
Ahhg(−i∂~b)Ahhg(−i∂~b) = 8πGs2,

∑
Ahhg(−i∂~b)Aγγg(−i∂~b) = 8πGs2 (e2.e4 + α̂2e2.∂be4.∂b) ,

∑
Ahhg(−i∂~b)Aggg(−i∂~b) = 8πGs2

(
eij2 e

ij
4 + α2e

ij
2 e

ik
4 ∂bj∂bk + α4e

ij
2 e

kl
4 ∂bi∂bj∂bk∂bl

)
,

∑
Aγγg(−i∂~b)Aγγg(−i∂~b) = 8πGs2 (e1.e3 + α̂2e1.∂be3.∂b) (ǫ2.e4 + d2e2.∂bǫ4.∂b) ,

∑
Aγγg(−i∂~b)Aggg(−i∂~b) = 8πGs2 (e1.e3 + α̂2e1.∂be3.∂b)

(eij2 e
ij
4 + α2e

ij
2 e

ik
4 ∂bj∂bk + α4e

ij
2 e

kl
4 ∂bi∂bj∂bk∂bl),∑

Aggg(−i∂~b)Aggg(−i∂~b) = 8πGs2(eij1 e
ij
3 + α2e

ij
1 e

ik
3 ∂bj∂bk + α4e

ij
1 e

kl
3 ∂bi∂bj∂bk∂bl)

(eij2 e
ij
4 + α2e

ij
2 e

ik
4 ∂bj∂bk + α4e

ij
2 e

kl
4 ∂bi∂bj∂bk∂bl).

(B.5)

where all of the operators are acting on the propagator 1/bD−4. To reproduce the usual

shock wave computations only the first three formulas are relevant. In the case of electro-

dynamics matching with (2.16) is manifest. In the case of Gauss-Bonnet theory we have

from (2.19) α2 = λGB

4
, α4 = 0.

Consider now the coupling of the graviton to a massive spin two particle which is a

relevant amplitude for the discussion in the bulk of the paper. We get

A
ggg̃

= α̃2ǫµν [ǫ
µ
1p

ν
3(ǫ3.p1) + ǫµ3p

ν
1(ǫ1.p3)− pµ1p

ν
3(ǫ1.ǫ3)− ǫµ1 ǫ

ν
3(p1.p3)]

[(ǫ1.ǫ3)(p1.p3)− (ǫ3.p1)(ǫ1.p3)]]

+ α̃4ǫµνp
µ
1p

ν
3 [(ǫ1.p3)(ǫ3.p1)− (ǫ1.ǫ3)(p1.p3)]

2
.

(B.6)

Notice that instead of three structures that are present in the massless amplitude we have

only two.

For the coupling to spin four particle or higher we can have three structures [77]. They

take the same form as above with extra indices of particle of spin J being contracted with

momenta. An additional structure takes the form

c̃extraǫµνρσ.p1...p1 [ǫ
µ
1p

ν
3(ǫ3.p1) + ǫµ3p

ν
1(ǫ1.p3)− pµ1p

ν
3(ǫ1.ǫ3)− ǫµ1 ǫ

ν
3(p1.p3)]

[ǫρ1p
σ
3 (ǫ3.p1) + ǫρ3p

σ
1 (ǫ1.p3)− pρ1p

σ
3 (ǫ1.ǫ3)− ǫρ1ǫ

σ
3 (p1.p3)] .

(B.7)

We are interested in the contribution of new particles to the time delay. The compu-

tation is almost identical to the one we did for the graviton exchange. The first difference
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is that we have to compute the Fourier transform of the massive propagator in D − 2

dimensions. The result is given by (m
b
)

D−4
2 KD−4

2
(mb) which decays exponentially fast for

mb ≫ 1. The second difference comes from slightly different structure of the three-point

functions.

Similarly, we can write down the contribution to the time delay of some higher spin

particle the difference being that the sum of three-point amplitudes give sJ and we have an

extra structure in the three-point amplitude for external gravitons which is an analogous

to the Einstein one.

The formulas above are valid in D > 4, whereas in D = 4 α2 and α̃2 structures above

are absent24 but instead we have a parity odd structure. In D ≥ 5 parity odd structures

are absent in the class of amplitudes considered above.

B.1. Scattering of a Scalar and a Graviton

As an example let us reproduce the computation for the graviton that we did using

the shock wave. It corresponds to scattering from the energetic scalar particle (we could

have considered graviton-graviton scattering as well if we average of all polarizations of

gravitions 1 and 3).25

As an example let us reproduce the computation for the graviton that we did using

the shock wave. It corresponds to scattering from the energetic scalar particle (we could

have considered graviton-graviton scattering as well).

∑

states

Ahhg(−i∂~b)Aggg(−i∂~b) ∝ Gs2(eij2 e
ij
4 + α2e

ij
2 e

ik
4 ∂bj∂bk + α4e

ij
2 e

kl
4 ∂bi∂bj∂bk∂bl)

1

bD−4

(B.8)

Setting α4 = 0, α2 = −λGB

4 we reproduces the computation from the previous section

(2.19).

Let us now study the constraints that follow from the positivity of the time delay.

Introducing new variables

t2 =
(D − 2)(D − 4)α2

b2
− 4(D − 4)(D − 2)Dα4

b4

t4 =
(D − 4)(D − 2)D(D + 2)α4

b4

(B.9)

24 They are identically zero.
25 More precisely we set polarizations one and three to be equal and then we sum over all

of them. Physically we are considering a sequence of coherent state with the various alternative

polarizations. This makes the α2 and α4 contributions vanish in the A13I part of the amplitude.
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we can write the phase shift in the form familiar from the study of the energy correlators

δ(s,~b) ∼ 1 + t2

(
(e.n)2

e.e
− 1

D − 2

)
+ t4

(
(e.n)4

(e.e)2
− 2

D(D − 2)

)
(B.10)

which coincides with the formula (3.6) in [78,41].26 Here ~n =
~b

|~b| and ~e is the graviton

polarization of particles two and four. Thus, positivity constraints from causality are

identical to the ones obtained in their analysis with identification of parameters as above

(B.9), namely

1− t2
D − 2

− 2t4
D(D − 2)

≥ 0

(
1− t2

D − 2
− 2t4
D(D − 2)

)
+
t2
2

≥ 0

(
1− t2

D − 2
− 2t4
D(D − 2)

)
+
D − 3

D − 2
(t2 + t4) ≥ 0

(B.11)

So we get the bounds on α2 and α4 depending for how small a b we can trust the com-

putation. If the computation is trustworthy for arbitrarily small b we are forced to set α2

and α4 to zero.

Appendix C. The QED case

Note that the action (2.13) also arises in QED (quantum electrodynamics) after we

integrate out the massive electron [79]. In that case α̂2 ∝ e2

m2 . This is a one loop effect,

suppressed by the coupling e2. In this paper we have taken the coupling to be very small,

so that we would have treated this α̂ as being essentially zero. The discussion of this paper

concentrated on the case that the higher curvature corrections were present at tree level,

so that the causality problem had to be solved by tree level physics. In this appendix, we

consider this loop generated term in QED and we will show that the potential causality

problem is solved by one loop effects.

In QED, when we get to an impact parameter of order m−1 we cannot be satisfied

with the low energy action (2.13). Fortunately the necessary diagrams were computed in

[80]. Using their results it is possible to go to the impact parameter representation (doing

the Fourier transform) and check that for b > 1/m we get a result that agrees with the

the simple Lagrangian (2.13), but for b < 1/m we get a different result which displays no

causality problem. In other words, the potential causality problems arising from (2.13)

appear at b ∼ 1/
√
|α| ∼ e/m, but at a larger distance, b ∼ 1/m, the computation should

be already modified and we obtain results consistent with causality.27 We can view this

26 In [41] d = D − 1 .
27 See [81] and references therein for a related discussion of this problem.
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modification as arising from the propagation of electron positron pairs along the t-channel.

Notice, that, in addition, when the photon goes through the shock we can have electron

positron pair creation. We can view this an another example of tidal excitations. Indeed

in QED, the photon has a non-zero probability of becoming an electron positron pair.

Appendix D. Causality and Unitarity for a Signal Model

In this appendix we review the constraints from causality and unitarity in the context

of a simple signal model. We imagine a signal propagating along one dimension. We have

an initial signal which is a function of time fin(t) and an out-signal fout(t) which, in Fourier

space is given by fout(ω) = S(ω)fin(ω) or

fout(t) =

∫
dt′
∫
dωS(ω)e−iω(t−t′)fin(t

′) (D.1)

Causality implies that if fin(t
′) = 0 for t′ < 0, then fout(t) = 0 for t < 0. By unitarity

we mean that the L2 norm of the out-signal should be smaller than that of the in-signal
∫
dt|fout(t)|2 ≤

∫
dt|fin(t)|2. Now it is well known that the Fourier transform of a function

which vanishes for t < 0 is analytic in the upper half ω plane. This follows directly from

the explicit integral expression for the Fourier transform. Then if fin = 0 for t < 0 we find

that both fin(ω) and fout(ω) are analytic in the upper half plane. This also implies that

S(ω), which is given their ratio, is also analytic. One might worry that S(ω) could have

poles at zeros of fin(ω). However, we can change the location of the zeros of fin(ω) by

choosing different functions. Therefore S(ω) is analytic in the upper half plane.

We will now prove that unitarity implies that |S(ω)| ≤ 1 in the upper half plane.

With some foresight, we pick a particular fin(t) of the form

fin(t) = e−γte−iω0tθ(t)
√
2γ (D.2)

with γ > 0 and ω0 real. Note that ||fin||2 =
∫
dt|fin(t)|2 = 1. For Im(ω) > 0 we can now

write

|fout(ω)|2 ≤
∣∣∣∣
∫ ∞

0

dteiωtfout(t)

∣∣∣∣ ≤
∫ ∞

0

dt|eiωt|2
∫ ∞

0

dt|fout(t)|2 =
1

2Im(ω)
||fout||2

|fout(ω)|2 ≤ 1

2Im(ω)

|S(ω)|2 =
|fout(ω)|2
|fin(ω)|2

≤ 1

2Im(ω)

1

|fin(ω)|2

(D.3)
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Here we used the Cauchy-Schwartz inequality. Note that |eiωt|2 = e−2Im(ω)t. We also used

that ||fout||2 ≤ ||fin||2 = 1. We can now set ω = ω0+iγ and find that fin(ω0+iγ) = 1/
√
2γ

for the specific function (D.2). Inserting this into (D.3) we then find that |S(ω0+ iγ)| ≤ 1,

which is what we wanted to prove, since ω0 and γ are arbitrary.

In conclusion, we find that S(ω) should be analytic and bounded |S(ω)| ≤ 1 in the

upper half plane. These are necessary and sufficient conditions.28

u
v

u

uin

out

Fig. 11: We consider a v independent perturbation that is localized in the u

direction, given here by the shaded region. We then consider signal propagating

along the u direction, which are v dependent and demand causality. We can con-

sider an S matrix that connects the region before the perturbation to the region

after the perturbation.

Let us now briefly mention how this is connected to the field theory situation. We

consider light cone coordinates u and v. We consider a perturbation that is translation

invariant in v but is localized in the u coordinate. We call this “the shock”. We expand

the fields in the v coordinate at some uin and then we expand them again at some uout

after the shock. To make contact with the above discussion we call t = v and pv = −ω.
We can expand the field as

φ(t) =

∫ ∞

0

dω√
ω
(aωe

−iωt + a†ωe
iωt) (D.4)

28 Note that some functions which are analytic in the upper half plane, such as S(ω) = eiω
3

are

actually not causal.
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We can do this for φin and φout in terms of ain and aout. These oscillators then are related

by

aω,out = S(ω)aω,in , a†ω,out = S(ω)∗a†ω,in (D.5)

This defines S(ω) for positive ω. For negative ω we can define S(−ω) = S(ω)∗. Alterna-

tively, we can define

S(ω) = −
∫ ∞

−∞
dteiωt[φout(t), i∂tφin(0)] = −

∫ ∞

0

dteiωt[φout(t), i∂tφin(0)] (D.6)

The commutation relations for the in and out oscillators require that |S(ω)|2 = 1.

In a case where there is particle mixing, but no particle creation, then the fields

have indices φiin and φjout. Now S is a matrix which obeys Sij(−ω) = Sij(ω)
∗ and

Sij(ω)Skj(ω)
∗ = δik due to the commutation relations of the oscillators before and af-

ter the shock. In the preceding discussion we have neglected the transverse dimensions.

We can now remedy that by including the momentum in the transverse dimensions as part

of the indices we are discussing here.

If we consider a signal that is made out of physical particles, one might correctly worry

that the fact that ω > 0 will preclude us from localizing the signal in time. In order to

avoid this issue we can consider a coherent state of the form

|Ψ〉 = ei
∫

dtfin(t)φin(t)|0〉 (D.7)

with a real function fin. This is a state that could be produced by adding a hermitian

term to the Hamiltonian at some early time uin. On this state we have the expectation

values

〈Ψ|∂tφin(t)|Ψ〉 = fin(t) , 〈Ψ|∂tφout(t)|Ψ〉 = fout(t) (D.8)

where the functions are related as in the signal model.29 Here we assumed a linear relation

between the in- and out-signals. Furthermore, we can also consider the expectation values

of the normal ordered product Tvv = Ttt =: ∂tφ(t)∂tφ(t) :. When this is evaluated on the

state (D.7), and integrated over t we find that the answer is given by

−P in,out
v =

∫
dvTvv =

∫
dt(fin,out(t))

2 = ||fin,out||2 (D.9)

29 fout is real if fin is real when S(−ω) = S(ω)∗.
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Thus, the condition that the total light-cone momentum Pv should not increase implies

the norm condition ||fout||2 ≤ ||fin||2.
More precisely, we can consider the signal fin exciting a mode involving a graviton

with a given polarization. The signal fout is the same mode of the graviton. In addition,

the initial graviton could go into other massive particles. Then the condition that the

total Pv in the out-graviton mode should be no bigger than the initial Pv, which was all

contained in the graviton mode, leads to the norm condition (or unitarity condition) for

the signal model. In conclusion, the graviton-graviton matrix element Sgg(ω) obeys all the

assumptions of the signal model. Therefore, it should be analytic and |Sgg(ω)| ≤ 1 in the

upper half plane.

Note that we have assumed here a perfect v-translation symmetry for the perturbation

that creates the shock. In our scattering problem, see fig. 3, particles 1 and 3 have small

pv momentum. Thus, in this discussion, we have neglected this small momentum. This is

reasonable for sb2 ≫ 1.

Appendix E. Scattering in String Theory

String theory in flat space is the simplest example of a theory that follows into the

category of weakly coupled gravitational theories with higher derivative corrections that

are subject of our analysis. As explained in the introduction, a motivation for this work

was actually to argue that string theory is inevitable, at least, under certain assumptions.

It is well known that effective gravitational actions in string theory contain higher

derivative corrections at the string scale [82,83]. In particular graviton three-point am-

plitudes can contain the higher derivative terms that we constrained in this paper using

causality. The potential problem is fixed by extra particles with string scale masses. Here

we would like to understand how this is happening in detail.

Let us first recall the form of the three-point gravity amplitudes in bosonic, heterotic

and type II string theories [84]

Aggg =
√
32πGǫ

µ1µ
′
1

1 ǫ
µ2µ

′
2

2 ǫ
µ3µ

′
3

3 Nµ1µ2µ3
N̄µ′

1µ
′
2µ

′
3

Nµ1µ2µ3 = kµ1

2 ηµ2µ3 + kµ2

3 ηµ1µ3 + kµ3

1 ηµ1µ2 +
α′

2
ǫkµ1

2 kµ2

3 kµ3

1

(E.1)
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and we have ǫbos = ǭbos = ǫhet = 1 and ǫII = ǭII = ǭhet = 0 . Translating it to our

notations we get
αbos
2 = 2αhet

2 = α′, αII
2 = 0,

αbos
4 =

(α′)2

4
, αhet

4 = αII
4 = 0.

(E.2)

The vanishing of some of these corrections can be understood from supersymmetry, as

explained in section 3.2. For the purposes of this paper, the type II case is not interesting

since there are not corrections at all for the graviton three-point function.

The high energy scattering problem in string theory was studied in a nice series of

papers by Amati, Ciafaloni and Veneziano [49,50,51,52,53], see also e.g. [34,85]. Let us

first review their picture. The scattering can be described in terms of a phase shift defined

as
δ(~b, s) = [POL]δACV (~b, s),

δACV (~b, s) =

∫
dD−2~q

(2π)D−2
ei~q.

~bC(s, t, u),

C(s, t, u) =
Γ(−α′s

4 )Γ(−α′t
4 )Γ(−α′u

4 )

Γ(1 + α′s
4 )Γ(1 + α′t

4 )Γ(1 + α′u
4 )

,

(E.3)

where [POL] represents a factor that depends on the polarizations and is polynomial in the

momenta. We will only need its form in a specific limit. In the high energy limit C(s, t, u)

has the celebrated Regge behavior

C(s, t, u) ∼ Γ(−α′t
4
)

Γ(1 + α′t
4 )

(
−isα

′

4

)−2+ tα′

2

. (E.4)

This Regge form is reflecting the creation of particles in the s-channel. The infinite

sequence of s-channel poles is becoming a cut, the cut arising when s→ se2πi. The creation

of the massive s-channel states is also related to the fact that we get an imaginary part

from the (−i) tα′

2 factor in (E.4) is saying that the most likely process is to create a massive

closed string, rather than scattering the gravitons.

For large s, only small q will contribute and we can approximate the prefactor in (E.4)

by 1/t. Then the integral becomes

δ[ACV ] ∝
∫

dD−2~q

2(2π)D−2

ei~q.
~b
(
−i sα′

4

)− ~q 2α′

2

~q 2
=

1

(α
′Y
2 )

D−4
2

∫ 1

0

dρρ
D−6

2 e−
b2

2α′Y
ρ (E.5)

where Y = log(−isα′/4). We have two characteristic behaviors, depending on whether b2

is larger or smaller than α′ log(sα′). For large b we get the usual 1/bD−4 behavior. For
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small b we get the result in brackets in (4.8). Note that since the transition region occurs

for a b2 which is larger than α′ by a log s factor, we can, a posteriori, justify the fact that

we have approximated the prefactor in (E.4) by 1/t.

In our field theory discussion we had represented the phase shift as a sum over poles.

We can wonder how this applies to the string theory discussion. Notice that from (E.4)

we get a Gaussian integrand factor of the form

ei~q.
~be−(~q)2 α′

2 log(−isα′/4) (E.6)

Let us assume that ~b = (b, 0, · · · , 0), so that it points along the first coordinates. When we

do the integral over the first component of ~q, call it q1, we get a saddle point for (E.6) at

qs = i
b

α′ log(−isα′/4)
(E.7)

x

x

x

x
x

q
1

Fig. 12: We display the complex q1 plane. We have displayed the poles in the

t-channel by black crosses. The saddle point (E.7) of the Gaussian integral has

been denoted by a red cross. We have shifted the original integration contour for

q1, which was along the real axis, to the complex plane so that it passes through

the saddle point (E.7). In the process we have picked up some of the poles in the

t-channel.

It is thus convenient to shift the contour to this location, (E.7), where this saddle

point contribution gives something of the order of

e
− b2

2α′ log(−isα′/4) (E.8)

This is not the whole answer, since by shifting the contour to this location, we can pick

up some poles from the prefactor (E.4), see fig. 12. We always pick up the pole at t = 030,

30 The location of this pole in the q1 plane depends on ~qrest which we take to be real.
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which was the center of our gravity discussion, but we can also pick up the poles at t = 4
α′n

for n < −q2s , where qs is given in (E.7). Notice that at these saddles the t dependent part

of the exponent gives us factors of s2n as we expect for the corresponding spins31, once

we take into account that [POL] contains a factor of s4. When b is large b2 ≫ α′ log(sα′),

we pick up many poles, but when b is small we only pick up the t = 0 pole, but, even

then, the integral is more accurately computed using (E.5). Note that the factor [POL] in

string theory phase simplifies at t = 0 and becomes the product of three-point amplitudes

we discussed in the body of the paper and that we added as Pol in (4.8). In other words

[POL]→Pol as t→ 0.

In particular, note that the residues of poles associated to the massive states go as
1

(n!)2 e
−b
√

4n
α′ s2n. As a function of n, these contributions decrease and then start increasing

again with a transition at a value of n corresponding to the saddle point (E.7)32.

We can ask: Why don’t we include all poles in the t-channel?. If we were to include

all poles in the t-channel, we would obtain the wrong answer. The reason it is wrong is

that in string theory the argument that we can shift the contour is not correct because of

contributions for large values of q. Such large values of q were never meant to be included

in the integral, since the kinematics of the process we consider restricts the real values

of ~q 2 to be much smaller than s. In deriving the physical picture, we certainly assumed

that ~q 2 ≪ s.33 Indeed, if we look at (E.4) we get a very small contribution from large

real values of ~q 2. On the other hand, if we were to keep s fixed and we formally look

at large real values of ~q 2 in the original expression, (E.3), then we would encounter the

u channel poles. The conclusion is that shifting the contour for the q1 integral, while it

can be done formally, it does not represent the real physical computation we want to do.

Approximating the integrand using (E.4), and then integrating gives the physically correct

answer.

One can qualitatively say that, for large b2/(α′ log sα′), we get a contribution of some

of the t-channel poles, as in fig. 12, and then the rest of the poles are completely resummed

via the saddle point integral in fig. 12. Their contribution should be better thought of as

coming from the creation of extended objects in the s-channel.

31 For a closed string with NL = NR = n, the maximum spin is J = 2 + 2n.
32 Here we are assuming that both b2 and log sα′ are large with a ratio larger than one but fixed,

so that we can neglect the 1/(n!)2 in this discussion. This last factor makes the sum converge for

large n, but this convergent answer, as discussed below, is not the correct one.
33 Momentum conservation and on-shell conditions impose q2 < s

4
.
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Another remark we want to make is the following. It was shown in [34] that the plane

wave solution is a solution to all orders in the α′ expansion. This gravitational plane wave

encodes the contribution from the t = 0 pole. However, we have seen that sometimes

we get a subleading contribution from the other poles, due to massive states along the

t-channel. These mean that the physical scattering process contains extra contributions

not captured by the plane wave34.

In string theory we can also take into account the tidal excitations. In this case the

phase shift can be viewed as an operator that maps the two initial gravitons to two final

generic string states. [49,50,51,52,53] have shown that this operator has the remarkably

simple expression δ̂ ∝
∫
dσdσ′δgrav(X̂L(σ)− X̂R(σ

′)) where XL and XR are the transverse

space positions of the string on the worldsheet and δgrav(b) is the ordinary gravity phase

shift. This is valid for distances b2 ≫ α′ log(sα′). The effects of these tidal excitations do

not help in resolving the causality issues discussed here and are unrelated to the appear-

ance of closed strings in the s-channel discussed above. See [49,50,51,52,53] for further

discussion.

Appendix F. Properties of the AdS Shock Wave

Let us first examine the problem of higher derivative corrections for the AdS shock

wave. As in the case of flat space the shock wave at hand continue to be an exact solution

when arbitrary higher derivative corrections are included.

The argument for this is identical to the one in section 5 of [59]. The vector lµ =

∂µu = {1, 0, 0, 0..} in coordinates u, v, yi, z. We can now compute the vector Vµ that the

argument talks about. We find Vµ = {0, · · · , 0,−2/z}. In other words Vz = −2/z and the

rest of the components are zero. This obeys that Vµl
µ = 0 are required in their argument.

In addition, one can also compute the substracted Riemann tensor

Řµναβ = Rµναβ + 2gµ[αgβ]ν

It is indeed of the form stated in [59] with the symmetric tensor K given by

Kyi,yj =
1

2
(δij∂zh/z

3 − ∂i∂jh/z
2) ,

Kz,yi = Kyi,z = −∂yi∂zh

z2
,

Kzz =
1

2
(∂zh/z

3 − ∂2zh/z
2) ,

(F.1)

34 This is not in contradiction with [34], since these extra terms can be viewed as a non-

perturbative contribution in α′.

64



with the rest of the components equal to zero. This K obeys that Kµν l
ν = 0 as required

by [59]. Notice that this form of K also leads to the equation of the form (5.3), when

the Riemann tensor is used in Einstein’s equations, namely Kµ
µ = 0. Once the former

equation is imposed Ř reduces to the Weyl tensor.

Using this shock wave we can once again compute the time delay for different theories.

It is convenient to evaluate Riemann tensor in the coordinates that make rotation symmetry

manifest. The result is

R̂uiju|~y=0;z=1 = Kij = −f(u)
(
1− ρ2

) ̟′(ρ)− ρ̟′′(ρ)

8ρ

(
ninj − 1

D − 2
δij
)

(F.2)

where i = 1, .., D − 2 so that we span ~y and z components. In the bulk of the paper we

consider propagation of different perturbations in the shock wave background described

above. We first write the most general form of the second order equations of motion and

then compute the time delay in the high energy limit.

Let us consider several limits of the shock wave to make contact with previous inves-

tigations of similar type. First, we expect to recover the flat space shock wave for probes

that come close enough to the center of the shock or, equivalently, for ρ→ 0. Indeed, it is

easy to check that this asymptotic is correctly recovered (5.9).

Let us consider couple of other limits. We can fix ~y0 and send z0 → 0 in which case

we have a source at the boundary and the shock wave takes the form

h ∼ zD−3

(z2 + |~y − ~y0|2)D−2
, (F.3)

which is exactly the shock wave considered in the energy correlator problem [14]. In

the opposite limit z0 → ∞ we get

h ∼ zD−3, (F.4)

and the time delay in this background was computed, for example, in [60].

Appendix G. Time Advances and Time Machines

In this appendix we would like to argue that a negative time delay enables us to build

a time machine which leads to closed time-like curves. This is a standard argument [86]

and the only thing we check is that the long range gravitational forces do not prevent us

from setting it up. The setup we would like to consider is the following. We have two

shock waves that correspond to energetic particles with momenta q1,u =
√
s
2 and q2,v =

√
s
2
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separated by distance r in the transverse plane. The first shock is localized around u = 0

and the second one around v = 0. We would like the separation to be such that r ≫ rS,

namely we are in the regime where the black hole formation does not occur

rD−3 ≫ rD−3
S = G

√
s. (G.1)

Next we would like to consider a test particle that propagates through both shocks in

such a way that it ends up at the same position where it started, thus, forming a closed

time-like curve.

Fig. 13: a) We imagine a background that consists of two shock waves located at

u = 0 and v = 0 widely separated in the transverse directions which is not presented

on the figure.The arrows show the motion of the probe massless particle projected

on to the u, v plane. b) Same motion but projected on the transverse plane. The

two background shocks are separated by r and the probe passes at a short distance

b from each of them. The vertical region of the path in (a) corresponds to the

horizontal motion in (b). We can build a closed time-like curve as depicted on

the picture by crossing this pair of shocks if time advances are allowed. We need

mirrors to reverse the motion in the transverse plane as we pass through the shocks.

The situation is depicted on fig. 13. When the test particle crosses each of the shocks

it gets shifted by ∆v = ∆u ∼ G
√
s

bD−4 . Between the shock the particle travels the distance of

order r. Thus, we want the time shift to be G
√
s

bD−4 =
(
rS
b

)D−3
b ∼ r ≫ rS which becomes

(rS
b

)D−4

≫ 1. (G.2)
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We also want b ≫ r̃S where r̃S is the Schwarzschild radius for the shock wave-test

particle pair, r̃D−3
S ∼ G

√
p
√
s, where p is the energy of the probe particle. Together

with (G.2) it implies
√
s ≫ p where p is the energy of the probe particle. We also need

that pb ≫ 1. The conclusion is that in D > 4 we can construct closed time-like curve

using negative time delays by choosing b,r and s appropriately. For example, if we have

a causality problem that appears at a scale b2 ∼ α2, then we take this value for b. Since

we are at weak coupling, we know that the Planck length lp ≪ b. We can then pick
√
slp ∼ X1+a , plp ∼ X1−a′

, with X = (b/lp)
D−3 and we can choose a > 0, a − a′ < 0,

1 − a′ + 1/(D − 3) > 0 to ensure that rS ≫ b, r̃S ≪ b and pb ≫ 1. We can achieve this

with a′ = 1/2 and a = 1/4, for example.

Appendix H. Representations That Couple to Two Gravitons

Here we would like to understand better what are the representations of little group

SO(D − 1) of massive particles that can couple to two gravitons. We are interested only

in bosonic fields since a single fermion does not couple to two gravitons.

Let us consider the decay of a massive particle in its rest frame so that p2 = (M,~0).

Gravitons produced have ~p1 = −~p3 = ~p. We characterize the original particle by some

polarization tensor ei1...ik which has only spatial components and is traceless with respect

to any pair of indices. We do not specify the symmetry properties of this tensor yet.

We characterize gravitons by polarization tensors e1 and e3 such that ~e1.~p = ~e3.~p = 0.

We have three type of contractions (see also [77])

A1 = ei1...ikp
i1 ...pik(e1.e3)

2,

A2 = ei1...ike
i1
1 e

i2
3 p

i3 ...pik(e1.e3),

A3 = ei1...ike
i1
1 e

i2
1 e

i3
3 e

i4
3 p

i5 ...pik .

(H.1)

The first amplitude A1 exists only for particles in the symmetric traceless represen-

tations (Young tableau that consists of single horizontal row with k boxes). Actually all

three amplitudes are are allowed for symmetric representation and we discussed them in

the bulk of the paper in detail.

For the second and third amplitude we can add more rows to the Young diagram.

Properties of these, so-called, mixed-symmetry tensors are nicely reviewed, for example,

in appendix E of [87]. By thinking about the representation in terms of tensors which

are manifestly anti-symmetric with respect to indices in a given column we can read off
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possible representations. In particular the fact that we have only three different vectors

means that we can have at most three rows.

Let us write all the amplitudes in a covariant manner. The general prescription is the

following

ei1e
j
3 → Eµν

13 ≡ ǫµ1p
ν
3(ǫ3.p1) + ǫµ3p

ν
1(ǫ1.p3)− pµ1p

ν
3(ǫ1.ǫ3)− ǫµ1 ǫ

ν
3(p1.p3). (H.2)

We then have for the amplitudes

A1 = ǫµ1...µk
pµ1

1 ...pµk

1 [(ǫ1.ǫ3)(p1.p3)− (ǫ1.p3)(ǫ3.p1)]
2
,

A2 = ǫµ1...µk
Eµ1µ2

13 pµ3

1 ...pµk

1 [(ǫ1.ǫ3)(p1.p3)− (ǫ1.p3)(ǫ3.p1)] ,

A3 = ǫµ1...µk
Eµ1µ3

13 Eµ2µ4

13 pµ5

1 ...pµk

1 .

(H.3)

To compute the time delay we need to use the completeness relation

∑

i

ǫ∗ν1...νk
ǫµ1...µk

= Πν1...νk|µ1...µk
(H.4)

and contract both sides of the amplitude, where Π is a projector on to the space orthogonal

to the intermediate momentum.

As the next step we would like to focus on those diagrams that produce sa with a ≥ 2

for the amplitude. Everything that is less is irrelevant for causality violation. In the

language of Young tableaux it corresponds to having a ≥ 2 boxes in the first row. It will

be curious to understand if mixed symmetry fields with a = 2 can resolve the causality

problem we observed in the bulk of the paper. As an example of such field would be (2, 2)

(a square with four boxes) or (2, 2, 2) fields (a vertical rectangle of 2× 3 boxes). There is

a short list of representations of this kind.

One could wonder whether these particles alone (without the infinite tower of higher

spin particles) could solve the causality problem. We think that the answer is no. We

leave a full exploration of this question for the future.
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