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1. Introduction

Pure spinors are known to facilitate the superspace description of ten-dimensional super-

Yang–Mills (SYM) [1,2] which descends from the pure spinor superstring [3]. As will be

explained below, ten-dimensional pure spinor superspace allows to take advantage of BRST

symmetry to provide valuable guidance for the construction of scattering amplitudes in

both string- and field-theory.

1.1. Amplitudes as expressions in pure spinor superspace

The prescription to compute multiloop superstring amplitudes in the pure spinor formal-

ism [3,4,5] is considerably simpler than in the Ramond–Neveu–Schwarz (RNS) [6] and

Green–Schwarz (GS) [7] formulations of superstring theory. Unlike in the RNS, spacetime

supersymmetry is manifest and there is no need to sum over spin structures since there

are no worldsheet spinors. And in contrast to the GS, the amplitudes are computed in

a manifestly super-Poincaré covariant manner. These two features combined allow to by-

pass the technical challenges associated with amplitude computations in the RNS and GS.

However, there is another feature in the pure spinor setup which is not as prominently

stressed but is of equal importance: The result of amplitude computations belongs to the

BRST cohomology of pure spinor superspace expressions at ghost number three.

Pure spinor superspace1 is defined in terms of the standard ten-dimensional superspace

variables (xm, θα) and the pure spinor λα (of ghost number one) satisfying λαγm
αβλ

β = 0 [8].

As will be explained below, it turns out that the kinematic factors2 of multiloop amplitudes

can be written as pure spinor superspace expressions of the form

K = λαλβλγfαβγ(x, θ) , (1.1)

where fαβγ(x, θ) represents a function of ten-dimensional superspace and includes the

dependence on polarizations and momenta. This novel type of superspace was shown in

[3] to encode the results of tree-level string amplitudes and proven to be supersymmet-

ric and gauge invariant when K is in the cohomology of the pure spinor BRST charge.

1 The superspace defined here is the minimal pure spinor superspace associated with the origi-

nal formulation in [3]. The non-minimal superspace appropriate in the context of the non-minimal

formalism of [5] also contains λα variables and is not the subject of the present paper.
2 Kinematic factors are understood as the polarization-dependent parts of amplitudes accom-

panying a basis of worldsheet integrals.
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Furthermore, in order to extract the precise contractions of polarizations and momenta

from a superspace expression K, one computes its pure spinor bracket 〈K〉 defined by

〈(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)〉 = 1 [3]. Since component expansions are straightforward

to evaluate and can be automated [9,10], the real challenge in computing string scattering

amplitudes consists of obtaining their corresponding superspace expressions in the BRST

cohomology, which motivates the studies presented in this paper.

1.2. Multiloop amplitude prescription and pure spinor superspace

The prescription to compute multiloop amplitudes in the pure spinor formalism was pre-

sented in [4,5] and integrates out all eleven pure spinor components λα and all sixteen θα

variables. Performing those integrations leads to awkward expressions which are hard to

manipulate. As observed at one-loop [11] and emphasized in the two-loop computations

of [12], one can equivalently rewrite those complicated-looking expressions by reinstating

three pure spinors λα in such a way as to obtain the same type of tree-level pure spinor

superspace expressions (1.1) discussed above. To illustrate the above point, the two-loop

kinematic factor of [13] after performing the path integral over all variables is written as

(T−1)αβγρ1...ρ11
ǫρ1...ρ16

∂

∂θρ12
. . .

∂

∂θρ16
(γmnpqr)αβγ

s
γδF

1
mn(θ)F

2
pq(θ)F

3
rs(θ)W

4δ(θ) . (1.2)

The superfields Fmn(θ) and W δ(θ) represent the gauge multiplet of ten-dimensional SYM,

and the tensor (T−1)αβγρ1...ρ11
is proportional to a complicated combination of gamma matri-

ces, ǫρ1...ρ16
(γm)κρ12(γn)σρ13(γp)τρ14(γmnp)

ρ15ρ16(δ
(α
κ δβσδ

γ)
τ − 1

40γ
(αβ
q δ

γ)
κ γq

στ ). However, the

kinematic factor (1.2) can be equivalently written as the tree-level pure spinor superspace

expression 〈K〉 after reinstating three pure spinors, where

K = (λγmnpqrλ)(λγsW 4)F 1
mnF

2
pqF

3
rs . (1.3)

In writing the kinematic factor (1.2) as (1.3), its BRST invariance becomes easier to prove;

using standard manipulations of gamma matrices, the pure spinor constraint and SYM

equations of motion for DαW
δ and DαF

mn, it follows that

Q
[
(λγmnpqrλ)(λγsW 4)F 1

mnF
2
pqF

3
rs

]
= 0 . (1.4)

Furthermore, one can also show that the kinematic factor (1.3) is in the cohomology of the

BRST charge3. The compact nature of pure spinor superspace expressions as exemplified

by (1.3) compared to (1.2) and the observation (1.4) constitute the central pillars in the

study of multiloop string scattering amplitudes as objects in the BRST cohomology of

tree-level pure spinor superspace.

3 A superspace proof that (1.3) is not BRST exact requires a combination of the identities in

[14] and section 9 of this paper.
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1.3. BRST cohomology considerations as a method to simplify computations

Following observations based on the BRST structure of explicit lower-point results it was

suggested in [15] that the field-theory amplitudes at tree-level could be uniquely obtained

as pure spinor superspace expressions in the BRST cohomology. Indeed, the color-ordered

N -point tree amplitude of SYM can be compactly written as [16]

A(1, 2, . . . , N) = 〈V1E23...N 〉, (1.5)

where E23...N is a superfield in the BRST cohomology. The pursuit of the general expres-

sion of the SYM tree amplitude as the solution of a cohomology problem in pure spinor

superspace led to the discovery of interesting mathematical objects such as the BRST

blocks and supersymmetric Berends–Giele currents reviewed in section 2. These BRST-

covariant objects also played an essential role in the derivation of the general N -point

open superstring tree-level amplitude in [17]. And as a byproduct of the BRST-covariant

organization of the string tree-level amplitudes, the worldsheet integrals conspire to a par-

ticularly symmetric form which was later exploited to find interesting patterns in their α′

expansion [18–23].

1.3.1. Challenges at one-loop

Studying the one-loop open superstring amplitudes as a BRST cohomology problem was

firstly put forward in [24]. Using the multiloop prescription of [4] as a guide to obtain the

patterns of zero-mode saturation, the kinematic factors could be expressed in pure spinor

superspace. Furthermore, integration by parts identities among the worldsheet integrals

built up BRST-closed linear combinations of those kinematic factors, denoted Ci|A,B,C

and reviewed in section 2.4.

This cohomology setup led to a general and manifestly BRST-invariant expression

for the N -point amplitude. For example, the six-point amplitude of open superstrings was

found to be a worldsheet integral over4

X23X34〈C1|234,5,6〉+X23X45〈C1|23,45,6〉+ permutations . (1.6)

However, there is one subtlety in the one-loop BRST cohomology program outlined above,

the bare one-loop amplitudes are in general anomalous and therefore not BRST invariant.

4 The objects Xij are related to the one-loop worldsheet Green function G(z), and the Koba–

Nielsen factor
∏

i<j
eα

′(ki·kj)G(zi−zj) is suppressed [24].

6



The cancelation of the anomaly as described in [25] involves a sum over amplitudes with

different worldsheet topologies, but the composing amplitudes are still anomalous when the

number of external particles is six or higher. The BRST-invariant expression (1.6) could

not be the whole story since it is non-anomalous5.

It is clear that in order to study the missing pieces of the one-loop amplitudes associ-

ated to the anomaly in a BRST cohomology setup one needs to relax the condition of BRST

invariance. So in this work, among other things, we introduce the notion of a pseudo BRST

cohomology which meets this criterium. The essential idea behind the pseudo BRST coho-

mology goes back to the pure spinor analysis of the gauge anomaly in [26]. It was shown

that the gauge variation of the six-point amplitude w.r.t particle one is proportional to the

pure spinor superspace expression,

〈(λγmW 2)(λγnW 3)(λγpW 4)(W 5γmnpW
6)〉, (1.7)

whose component expansion correctly reproduces the known form of the anomaly, ǫ10F
5.

As discussed in section 3, one can recursively construct objects whose BRST variation

is proportional to the anomalous superfield (1.7). It will be shown in a subsequent work

that these pseudo BRST invariants correctly capture the anomalous parts of the one-loop

amplitudes which were not considered in [24].

So as the main focus of this work, we will study the (pseudo-)cohomology properties of

various superfields expected to appear in one-loop amplitudes of open- and closed-strings.

We introduce a grid of superspace kinematic factors which naturally describe the BRST

cohomology properties of one-loop amplitudes. The axes of this grid are set by the number

of free vector indicesm,n, p, . . . and the number of multiparticle slots A,B, . . . , G which are

interpreted as representing external tree-level subdiagrams. This leads to the arrangement

in fig. 1, and we will derive recursion relations whose flow is indicated by the diagonal

arrows. The tensorial superfields therein play an important role in two different contexts:

5 We thank Michael Green for insisting on a clarification of this point.
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Fig. 1 Overview of (pseudo-)invariants. The arrows indicate whenever superfields of

different type enter the recursion for the pseudoinvariants on their right.

(i) Closed string amplitudes involving five and more external legs allow for vector con-

tractions between left- and right-moving degrees of freedom, see e.g. [27,28]. They

originate from the zero modes of the worldsheet fields ∂xm and ∂xm. In a manifestly

BRST-invariant representation of the five- and six-point torus amplitude, the left-right

contractions enter in the form Cm
1|2,3,4,5C̃

m
1|2,3,4,5 and Cmn

1|2,3,4,5,6C̃
mn
1|2,3,4,5,6, details will

be elaborated in [29]. Accordingly, scattering of N closed strings requires tensors of

rank r ≤ N − 4.

(ii) The field theory limit of open and closed string amplitudes reproduces n-gon Feyn-

man integrals [30] where the loop momentum ℓm may contract kinematic factors. In

a manifestly BRST invariant form of the five-point amplitude, this loop momentum

dependence enters in the form ℓmCm
1|2,3,4,5. At six-points, the significance of the ten-

sor hexagon ℓmℓnC
mn
1|2,3,4,5,6 for the gauge anomaly of SYM will be clarified in [29].

More generally, the systematic association of tensorial Feynman integrals with the

superfields in fig. 1 is discussed in [31].

The present work is devoted to the cohomology foundations of one-loop amplitudes in

string- and field-theory. The key definitions and results are formulated in generality to

describe any number of external legs. Applications to six-point string amplitudes and to

field-theory amplitudes at multiplicity ≤ 7 are given in upcoming work [29,31], and the

generalization to arbitrary multiplicity is left for the future.
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1.4. The anatomy of one-loop amplitudes

One can embed the pseudoinvariants listed in fig. 1 into a broader context. BRST coho-

mology methods are of crucial importance to decompose the computation of scattering

amplitudes into smaller and more manageable problems. As we will see in various places of

this work, pseudo-invariance of the superfields Cm...
1|... , P

m...
1|... in fig. 1 requires BRST-covariant

substructures, which in turn furnish systematic arrangements of smaller constituents. The

different hierarchy levels of this decomposition are made more specific in fig.2. The figure

applies universally to one-loop scattering amplitudes involving SYM or supergravity states

in maximally supersymmetric string- and field-theory.

Fig. 2.The seven hierarchy levels de-
scribing the anatomy of one-loop am-
plitudes in a BRST cohomology setup.
For each step, details can be found in
the references alongside the arrows.

These classes of one-loop amplitudes are claimed

to have a beautiful representation in terms of pseu-

doinvariants Cm...
1|... and Pm...

1|... (or their holomorphic

squares in case of supergravity and closed-string

amplitudes). Their composition rules in terms of

integrals over a loop momentum or over worldsheet

moduli are the subject of upcoming work [29,31]. As

detailed in the first six sections, pseudoinvariants

are built from Berends–Giele currents MB (whose

trilinears exhaust tree amplitudes of SYM [16] and

the open superstring [17]) and ghost-number-two

superfields J which are specific to the one-loop or-

der. These J superfields in turn encompass var-

ious numbers of further Berends-Giele superfields

KB with kinematic poles in external momenta [32].

Both MB and KB represent external tree subam-

plitudes which can be expanded in terms of (prod-

ucts of) external propagators. Their numerators are

multiparticle superfields of SYM KB ∈ {AB
α , A

m
B ,Wα

B , F
mn
B } which have been recursively

constructed in [32]. They encompass the degrees of freedom of several standard super-

fields Ai
α, A

m
i , Wα

i , F
mn
i describing a single particle i. Finally, the components of the

supersymmetry multiplet – a gluon with polarization vector ei and a gaugino with spinor

9



wavefunction χi – furnish the lowest hierarchy level. They are incorporated into the expan-

sion of the superfields in terms of the Grassmann coordinate θ of pure spinor superspace

[33], e.g.

Aα(x, θ) =
(1
2
em(γmθ)α −

1

3
(χγmθ)(γmθ)α −

1

16
kmen(γpθ)α(θγ

mnpθ) + · · ·
)
eik·x . (1.8)

As the number of external legs increases, every intermediate structure in fig. 2 reduces

the complexity of amplitudes by more and more orders of magnitude. And it should be

stressed that the four lower hierarchy levels in fig. 2 – from Berends–Giele superfields

MB,KB to the components ei, χi – are expected to play a universal role at any loop order.

1.5. Outline

The main body of this work begins with a review of multiparticle SYM superfields [32]

in section 2. This sets the stage to define the notion of anomalous superfields and BRST

pseudo-cohomology in section 3. The introductory examples are then generalized to ar-

bitrary tensor rank in section 4. The resulting tensor traces are shown to involve several

constituents (indicated by P in fig. 1) which are separately BRST pseudoinvariant, see sec-

tions 5 and 6. This completes the construction of the pseudo cohomology at ghost number

three which is visualized in fig. 1.

In section 7, we point out a close parallel between the superfields in anomalous BRST

variations and the previously-constructed pseudoinvariants. The more abstract viewpoint

on this connection is opened up in section 8 and rewarded by manifold relations between

superfields at different rank, see sections 9 and 10. The same approach leads to the proof

in section 11 that – up to anomaly subtleties – the span of the pseudoinvariants in fig. 1 is

independent on the choice of reference leg 1 which descends from the choice of unintegrated

vertex operator V1 in the one-loop string amplitude prescription [4].

Some appendices supplement the discussion by examples or serve to outsource tech-

nical aspects from the main body. For example, appendix A displays the expansions of

superfields in fig. 1 at higher multiplicity, and appendix B provides the prerequisites to

extract anomalous gauge variations of pseudoinvariants from their BRST transformations

given in section 7.
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2. Review and conventions

This section provides a brief review of multiparticle SYM superfields introduced in [32] as

well as their simplest applications to one-loop kinematic factors. It also introduces notation

and conventions used in the rest of this work.

2.1. Diagrammatic introduction of BRST blocks

Linearized super-Yang–Mills (SYM) theory in ten dimensions can be described using the

superfields6 Ai
α(x, θ), A

i
m(x, θ), Wα

i (x, θ) and F i
mn(x, θ) encoding the on-shell degrees of

freedom of one external particle i.

They satisfy equations of motion [34,35]

2D(αA
i
β) = γm

αβA
i
m

DαF
i
mn = 2ki[m(γn]Wi)α

DαA
i
m = (γmWi)α + kmAi

α

DαW
β
i =

1

4
(γmn) β

α F i
mn

(2.1)

with light-like momentum ki and gauge transformations δiA
i
α = Dαωi as well as δiA

i
m =

kimωi for some scalar superfield ωi. The fermionic operator

Dα ≡
∂

∂θα
+

1

2
km(γmθ)α (2.2)

denotes the standard superspace covariant derivative. Note that if a superfield K(x, θ)

depends only on the zero-modes of θ, the action of the pure spinor BRST charge Q is

given by a covariant derivative:

Q ≡

∮
λαdα =⇒ QK = λαDαK . (2.3)

This fact allows one to use the equations of motion (2.1) in combination with BRST

cohomology manipulations to simplify expressions considerably.

In previous work [32], these superfields were promoted to multiparticle versions

Ki ∈ {Ai
α, A

i
m,Wα

i , F
i
mn} → KB ∈ {AB

α , A
B
m,Wα

B , F
B
mn} , (2.4)

where the multiparticle label B = b1b2. . .bp describes |B| ≡ p external particles attached

to a tree subdiagram as shown in fig. 3. The off-shell leg indicated by the . . . in the figure

reflects that the overall momentum kmB ≡
∑p

i=1 k
m
bi

is no longer lightlike in general, k2B 6= 0.

6 It is customary to use a calligraphic letter for the superfield field-strength. However in this

paper calligraphic letters will denote the Berends–Giele currents associated to the superfields, see

section 4.
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Fig. 3 Four superfield realizations KB ∈ {AB
α , A

B
m,Wα

B , FB
mn} of cubic tree graphs

B = b1b2 . . . bp.

As detailed in [32], the diagrammatic interpretation is supported by the Lie symmetries

of KB matching with the color representative of the diagram in fig. 3,

K1234...p ↔ f12a2 fa23a3 fa34a4 . . . fap−1pap , (2.5)

subject to antisymmetry fabc = f [abc] and Jacobi identities fe[abf c]de = 0. For example,

0 = K12 +K21 , 0 = K123 +K231 +K312 (2.6)

0 = K1234 −K1243 +K3412 −K3421 (2.7)

furnish the kinematic analogue of f12a = −f21a and Jacobi identities among permutations

of f12afa3b and f12afa3bf b4c.

2.2. Recursive construction of BRST blocks

A recursive procedure was described in [32] to construct BRST blocks at arbitrary multi-

plicity from the elementary SYM superfields. The definition of the multiparticle fields (2.4)

is inspired by the OPE among integrated massless vertex operators in the pure spinor for-

malism [3]. For two particles, this directly leads to

A12
α = −

1

2

[
A1

α(k
1 ·A2) + A1

m(γmW 2)α − (1 ↔ 2)
]

(2.8)

A12
m =

1

2

[
A1

pF
2
pm −A1

m(k1 ·A2) + (W 1γmW 2)− (1 ↔ 2)
]

Wα
12 =

1

4
(γmnW 2)αF 1

mn +Wα
2 (k2 ·A1)− (1 ↔ 2)

F 12
mn = k12mA12

n − k12n A12
m − (k1 · k2)(A1

mA2
n −A1

nA
2
m) ,

compatible with antisymmetry K12 = −K21. Remarkably, the equations of motion for

these two-particle superfields take the same form as their single-particle equations (2.1)
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with the addition of contact terms,

2D(αA
12
β) = γm

αβA
12
m + (k1 · k2)(A1

αA
2
β + A1

βA
2
α) (2.9)

DαA
12
m = (γmW 12)α + k12mA12

α + (k1 · k2)(A1
αA

2
m − A2

αA
1
m)

DαW
β
12 =

1

4
(γmn)α

βF 12
mn + (k1 · k2)(A1

αW
β
2 − A2

αW
β
1 )

DαF
12
mn = k12m (γnW

12)α − k12n (γmW 12)α + (k1 · k2)(A1
αF

2
mn − A2

αF
1
mn)

+ (k1 · k2)(A1
n(γmW 2)α −A2

n(γmW 1)α −A1
m(γnW

2)α + A2
m(γnW

1)α) .

Starting from multiplicity three, application of the recursion (2.8) yields superfields

Â123
α = −

1

2

[
A12

α (k12 ·A3) + A12
m (γmW 3)α − (12 ↔ 3)

]
(2.10)

Â123
m =

1

2

[
A

p
12F

3
pm −A12

m (k12 ·A3) + (W 12γmW 3)− (12 ↔ 3)
]

which require redefinitions

A123
m = Â123

m − k123m H123 , A123
α = Â123

α −DαH
123 (2.11)

H123 =
1

6

[
(A1 ·A23)− (k2p − k3p)A

p
1(A

2 ·A3) + cyclic(123)
]

(2.12)

by some scalar superfield Hijk [32] before they satisfy the Lie symmetries in (2.6) and qual-

ify as BRST blocks. The three-particle set of BRST blocksK123 ∈ {A123
α , A123

m ,Wα
123, F

123
mn }

is completed by field strengths

Wα
123 =

[1
4
(γrsW 3)αF 12

rs +Wα
3 (k3 ·A12)− (12 ↔ 3)

]
+

1

2
(k1 · k2)

[
Wα

2 (A1 ·A3)− (1 ↔ 2)
]

F 123
mn = k123m A123

n − k123n A123
m − (k1 · k2)

[
2A1

[mA23
n] − (1 ↔ 2)

]
− (k12 · k3)2A12

[mA3
n] . (2.13)

As shown in [32], the equations of motion for the K123 reproduce the universal structure

of (2.1) and (2.9) and incorporate a richer set of contact terms ∼ (k1 · k2) and (k12 · k3):

2D(αA
123
β) = γm

αβA
123
m + (k12 · k3)

[
A12

α A3
β − (12 ↔ 3)

]
(2.14)

+ (k1 · k2)
[
A1

αA
23
β + A13

α A2
β − (1 ↔ 2)

]

DαA
123
m = (γmW 123)α + k123m A123

α + (k12 · k3)(A12
α A3

m −A3
αA

12
m )

+ (k1 · k2)
[
A1

αA
23
m + A13

α A2
m −A23

α A1
m − A2

αA
13
m

]

DαW
β
123 =

1

4
(γmn)α

βF 123
mn + (k12 · k3)

[
A12

α W
β
3 − (12 ↔ 3)

]

+ (k1 · k2)
[
A1

αW
β
23 +A13

α W
β
2 − (1 ↔ 2)

]

DαF
123
mn = 2k123[m (γn]W

123)α + (k12 · k3)
[
A12

α F 3
mn − (12 ↔ 3)

]

+ (k12 · k3)
[
2A12

[n (γm]W
3)α − (12 ↔ 3)

]

+ (k1 · k2)
[
A1

αF
23
mn + A13

α F 2
mn − (1 ↔ 2)

]

+ (k1 · k2)
[
2A1

[n(γm]W
23)α + 2A13

[n (γm]W
2)α − (1 ↔ 2)

]
.
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Fig. 4 From cubic diagrams KA to Berends–Giele currents KA.

The starting point towards BRST blocks at higher multiplicity p is the recursion

Â12...p
α = −

1

2

[
A12...p−1

α (k12...p−1 ·Ap) + A12...p−1
m (γmW p)α − (12 . . . p− 1 ↔ p)

]
(2.15)

with manifest Lie symmetries (2.5) in the first p−1 labels. Then, an algorithmic redefinition

along the lines of (2.11) enforces the remaining symmetry (2.5) involving the last label p,

see [32] for details.

The equations of motion at any multiplicity combine the single-particle structure from

(2.1) with a growing tail of contact terms ∼ (k12...j−1 · kj) generalizing the three-particle

example (2.14). Their explicit forms can be found in [32].

2.3. Berends–Giele currents

BRST blocks KB of multiplicity |B| are diagrammatically interpreted as off-shell cubic

graphs shown in fig. 3. This suggests to assemble diagrams to a color-ordered SYM (|B|+1)-

point tree amplitude where one of the legs is off-shell, as schematically depicted in fig. 4.

The precise form of this diagrammatic construction was explained in the appendix A of

[32], and the result is the promotion of BRST blocks KB to Berends–Giele currents KB,

KB ∈ {AB
α , A

m
B ,Wα

B , F
mn
B } → KB ∈ {AB

α ,A
m
B ,Wα

B,F
mn
B } , (2.16)

The name goes back to Berends and Giele who recursively constructed gluonic currents

which were then used to compute tree-level amplitudes [36]. From now on the ordered

subsets B = b1b2 . . . b|B| of external particle labels which appear along with Berends–Giele

currents KB will be denoted “words”.

The first examples of Berends–Giele currents KB are given by,

K12 =
K12

s12
, K123 =

K123

s12s123
+

K321

s23s123
(2.17)

K1234 =
1

s1234

( K1234

s12s123
+

K3214

s23s123
+

K3421

s34s234
+

K3241

s23s234
+

2K12[34]

s12s34

)
, (2.18)
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where the conventions for the generalized Mandelstam invariants is

s12...p =

p∑

1≤i<j

(ki · kj) =
1

2
k212...p . (2.19)

It turns out that they enjoy simplified BRST variations compared to their corresponding

BRST blocks KB . In particular, the Berends–Giele version of the unintegrated7 multipar-

ticle vertex VB ≡ λαAB
α ,

MB ≡ λαAB
α , (2.20)

satisfies

QMB =
∑

XY =B

MXMY =

|B|−1∑

j=1

Mb1b2...bjMbj+1...bp . (2.21)

This has been exploited in [16,17] to construct tree amplitudes of ten-dimensional SYM

and of the open superstring. Throughout this paper the notation XY = B (as in (2.21))

denotes a sum over all deconcatenations of the word B into smaller (non-empty) words

X = b1b2 . . . bj and Y = bj+1 . . . bp with j = 1, 2, . . . , |B| − 1.

As partially used in [24] and generalized in [32], the equations of motion for the

remaining KB representatives are given by,

QAm
B = (λγmWB) + kmBMB +

∑

XY =B

(MXAm
Y −MY A

m
X)

QWα
B =

1

4
(λγmn)

αFmn
B +

∑

XY =B

(MXWα
Y −MY W

α
X) (2.22)

QFmn
B = 2k

[m
B (λγn]WB) +

∑

XY =B

(MXFmn
Y −MY F

mn
X )

+
∑

XY=B

2
[
A

[n
X(λγm]WY )−A

[n
Y (λγm]WX)

]
,

where the contact terms present in QKB are traded by deconcatenations as the result of

the Berends–Giele map (2.16). At general multiplicity, the transformation matrix between

BRST blocks and their Berends–Giele currents was identified in [21] to be the momentum

kernel [37,38], see [32] for further details.

7 According to the calligraphic-letter convention of (2.16) the Berends–Giele current associated

to VB would be denoted VB. However, the definition (2.20) is used for historic reasons.
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According to their definition as off-shell SYM amplitudes, the Lie symmetries of the

BRST-blocks KB translate into Kleiss–Kuijf relations [39] among their Berends–Giele

counterparts KB [16,17]. Up to multiplicity four, these are

0 = K12 +K21 , 0 = K123 −K321 = K123 +K231 +K312 (2.23)

0 = K1234 +K4321 = K1234 +K2134 +K2314 +K2341 ,

and higher multiplicity generalizations are most compactly written as8

KB1A = (−1)|B|K1(A�BT ) . (2.24)

The superscript along with BT denotes the reversal of the word B in external particles bj

such as (b1b2 . . . b|B|)
T = (b|B| . . . b2b1), and � denotes the shuffle product.

2.4. One–loop building blocks

The saturation of fermionic zero modes in the pure spinor formalism [3] imposes tight

constraints on contributions to loop amplitudes, see e.g. [4,40]. As argued in [24], the one-

loop prescription in the minimal version of the formalism requires zero modes dαdβN
mn

from the external vertices, leaving behind (λγ[m)α(λγ
n])β . This effective rule leads to

the BRST-closed expression (λγmW i)(λγnW j)F k
mn in the four-point amplitude [4] and

motivates the following higher-point generalization [24,32]

TA,B,C ≡
1

3
(λγmWA)(λγnWB)F

mn
C + (C ↔ A,B) , (2.25)

as well as its associated Berends–Giele current

MA,B,C ≡
1

3
(λγmWA)(λγnWB)F

mn
C + (C ↔ A,B) . (2.26)

From now on, the Berends–Giele versions of various superfield combinations will be empha-

sized since explicit results for BRST (pseudo-)invariants and amplitudes simplify in this

basis. Furthermore, their BRST-block counterparts such as TA,B,C can always be trivially

recovered by using the superfields AB ,WB, FB instead of AB,WB,FB.

8 We follow the convention K...A�B... ≡
∑

C∈A�B
K...C....
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The universal form (2.22) of QWα
B and QFmn

B gives rise to the BRST-covariant9

transformation [24,32]

QMA,B,C =
∑

XY=A

(
MXMY,B,C −MY MX,B,C

)
+ (A ↔ B,C) , (2.27)

governed by deconcatenations of the multiparticle labels. Note that QM1,2,3 = 0 and that

MA,B,C is totally symmetric in A, B and C.

In closed-string amplitudes of multiplicity higher than four, additional zero-mode con-

tributions can arise from the Πm fields in the external vertices. In the simplest case at five

points [28], this leads to a single vector index contraction among left- and right-movers.

The aforementioned dαdβN
mn → (λγ[m)α(λγ

n])β prescription identifies contributions of

the form Am
AMB,C,D to the left/right-contracting part of the closed-string amplitude.

However, as pointed out in [28] and generalized in [32], a separate b-ghost contribution

proportional to Πmdαdβ leads to an additional kinematic factor

Wm
A,B,C,D ≡

1

12
(λγnWA)(λγpWB)(WCγ

mnpWD) + (A,B|A,B,C,D) (2.28)

QWm
A,B,C,D =

∑

XY =A

(
MXWm

Y,B,C,D −MY W
m
X,B,C,D

)

− (λγmWA)MB,C,D + (A ↔ B,C,D) . (2.29)

The notation (A1, . . ., Ap |A1, . . ., An) will also be used in later sections and instructs to

sum over all possible ways to choose p elements A1, A2, . . . , Ap out of the set {A1, . . ., An},

for a total of
(
n
p

)
terms. This yields the following vector building block,

Mm
A,B,C,D ≡

[
Am

AMB,C,D + (A ↔ B,C,D)
]
+Wm

A,B,C,D (2.30)

QMm
A,B,C,D =

∑

XY =A

(MXMm
Y,B,C,D −MY M

m
X,B,C,D)

+ kmAMAMB,C,D + (A ↔ B,C,D) , (2.31)

which is totally symmetric in A,B,C,D. Apart from the last line, the BRST covariant

transformation (2.31) stems from deconcatenation terms in QKB. This goes back to can-

cellations between (2.29) and the first term of QAm
B = (λγmWB) + . . ., see (2.22).

9 Due to the tensor (λγ[m)α(λγ
n])β in (2.26), the pure spinor constraint projects out all terms

in (2.22) with an explicit appearance of λα, regardless of the words A,B and C.
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2.5. Scalar and vector one–loop cohomology

The simplest kinematic expressions compatible with the one-loop amplitude prescription [4]

are MAMB,C,D and MAM
m
B,C,D,E where the Berends–Giele current MA stems from OPE

contractions of the unintegrated vertex Vi with its integrated counterparts. Their covariant

BRST transformations motivate to combine them to BRST-closed expressions. Following

the experience with scalars [24], BRST invariants are classified in [32] by a “leading term”

where a reference leg i is represented through a single-particle unintegrated vertex Mi = Vi

Ci|A,B,C ≡ MiMA,B,C +
∑

E 6=∅

MiE . . . (2.32)

Cm
i|A,B,C,D ≡ MiM

m
A,B,C,D +

∑

E 6=∅

MiE . . . . (2.33)

Apart from the explicit leading term, the singled-out label i always enters in a multiparticle

Berends–Giele current. This is formally represented by a sum over (non-empty) words E

of external particles which join the reference leg i in MiE . The . . . in Ci|A,B,C (Cm
i|A,B,C,D

)

represent linear combinations of MA,B,C (Mm
A,B,C,D and MA,B,Ck

m
D ) such that

QCi|A,B,C = QCm
i|A,B,C,D = 0 . (2.34)

In later sections, we will encounter plenty of further examples where a leading term Mi . . .

is combined with a BRST completion made of multiparticle currents MiE (with E 6= ∅)

and ghost-number-two objects. Note that Ci|A,B,C and Cm
i|A,B,C,D are totally symmetric

in A,B,C and A,B,C,D which follows a general convention used throughout this work:

Whenever multiparticle slots A,B in a subscript are separated by a comma rather than by

a vertical bar as in . . . , A|B, . . ., then the parental object is understood to be symmetric

in A ↔ B.

In [32], the following two observations were exploited to set up a recursive construction

of BRST invariants in (2.32) and (2.33):

(i) Nilpotency Q2 = 0 implies that also QMA,B,C and QMm
A,B,C,D as given by (2.27)

and (2.31) are BRST closed. By promoting each MiMA,B,C and MiM
m
A,B,C,D therein
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to the corresponding invariant Ci|A,B,C and Cm
i|A,B,C,D, one arrives at an alternative

form of the BRST transformations10,

QMA,B,C = Ca1|a2...a|A|,B,C − Ca|A||a1...a|A|−1,B,C + (A ↔ B,C) (2.35)

QMm
A,B,C,D = Cm

a1|a2...a|A|,B,C,D − Cm
a|A||a1...a|A|−1,B,C,D

+ δ|A|,1k
m
a1
Ca1|B,C,D + (A ↔ B,C,D) . (2.36)

Note that δ|A|,1 is equal to one when the word A represents a single particle (i.e.

|A| = 1) and zero otherwise.

(ii) We define a linear concatenation operator

MB ⊗a1
Ma1a2...a|A|

≡ MBa1a2...a|A|
, (2.37)

acting on MA which does not interfere with ghost-number-two superfields such as

MA,B,C or Mm
A,B,C,D. The deconcatenation formula (2.21) for QMA and (2.34) imply

Q(Mi ⊗j Cj|A,B,C) = MiCj|A,B,C (2.38)

Q(Mi ⊗j C
m
j|A,B,C,D) = MiC

m
j|A,B,C,D , (2.39)

see subsection 3.3 for a more detailed and general derivation.

On these grounds, one can show that the following recursions generate BRST invariants

for arbitrary multiplicity:

Ci|A,B,C = MiMA,B,C +Mi ⊗
[
Ca1|a2...a|A|,B,C − Ca|A||a1...a|A|−1,B,C + (A ↔ B,C)

]

Cm
i|A,B,C,D = MiM

m
A,B,C,D +Mi ⊗

[
Cm

a1|a2...a|A|,B,C,D − Cm
a|A||a1...a|A|−1,B,C,D

+ δ|A|,1k
m
a1
Ca1|B,C,D + (A ↔ B,C,D)

]
. (2.40)

Once the leading terms Q(MiMA,B,C) and Q(MiM
m
A,B,C,D) are evaluated via (i), they are

easily seen to cancel the BRST variations (ii) of the concatenated terms.

In (2.40) as well as later equations in this paper, the subscript j of the concatenation

⊗j in (2.37) is suppressed and understood to match the reference leg j of subsequent

kinematic factor such as Cj|... or Cm
j|.... In principle, ⊗ without further specification does

10 At this point, uniqueness of the BRST completions in (2.32) and (2.33) is assumed. We don’t

have a rigorous argument to prove this in full generality but rely on “experimental” evidence at

finite multiplicities.
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not preserve the Kleiss–Kuijf symmetries (2.24) of the Berends–Giele currents11. However,

this slight ambiguity does not matter in the recursive formulas (2.40) as long as the objects

generated by the recursion are directly used in the next steps without any prior symmetry

manipulations.

The simplest instances of scalar and vector invariants following from the recursions in

(2.40) are

C1|2,3,4 ≡ M1M2,3,4 (2.41)

C1|23,4,5 ≡ M1M23,4,5 +M1 ⊗
[
C2|3,4,5 − C3|2,4,5

]

= M1M23,4,5 +M12M3,4,5 −M13M2,4,5

Cm
1|2,3,4,5 ≡ M1M

m
2,3,4,5 +M1 ⊗

[
km2 C2|3,4,5 + (2 ↔ 3, 4, 5)

]

= M1M
m
2,3,4,5 +

[
km2 M12M3,4,5 + (2 ↔ 3, 4, 5)

]
.

The corresponding six-point examples are expanded in appendix A, see (A.1). Seven- and

eight-point examples of Ci|A,B,C can be found in [24].

The families of scalar and vector invariants Ci|A,B,C , C
m
i|A,B,C,D as well as their re-

cursive construction in (2.40) furnish the first two cells from the left in fig. 1.

3. Towards a BRST pseudo-cohomology

In this section, we investigate the applicability of the BRST program in sections 2.4 and

2.5 to tensorial building blocks. The one-loop prescription of the pure spinor formalism

[4] suggests a natural two-tensor generalization Mmn
... of the MA,B,C and Mm

A,B,C,D above,

but its BRST variation turns out to involve new classes of superfields. This obstruction

is closely related to the pure spinor superspace description of the hexagon anomaly [26].

It leads us to define a pseudo-cohomology as an extension of the standard cohomology in

order to systematically study the multiparticle superfields which play a role in the gauge

anomaly of open superstring amplitudes and its cancellation [25].

11 For example, M132 6= −M123 implies that M1⊗M32 6= −M1⊗M23 even though M32 = −M23.
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3.1. Tensorial building blocks Mmn

Higher-point loop amplitudes in the closed-string allow for an arbitrary number of Πm zero

mode contractions between left- and right-movers. This motivates the study of higher-rank

tensors generalizing (2.30) such as

Mmn
A,B,C,D,E ≡ 2

[
A

(m
A A

n)
B MC,D,E + (A,B|A,B,C,D,E)

]

+ 2
[
A

(m
A W

n)
B,C,D,E + (A ↔ B,C,D,E)

]

= Am
AWn

B,C,D,E +An
AM

m
B,C,D,E + (A ↔ B,C,D,E), (3.1)

firstly relevant for the six-point amplitude. Its first term ∼ A
(m
A A

n)
B stems from the

ΠmΠndαdβNpq zero-mode coefficient and its second term ∼ A
(m
A W

n)
B,C,D,E originates from

the b-ghost sector linear in Πm. The BRST variations (2.22), (2.29) and (2.31) for its

constituents imply that

QMmn
A,B,C,D,E = δmnYA,B,C,D,E +

[ ∑

XY=A

(MXMmn
Y,B,C,D,E −MY M

mn
X,B,C,D,E)

+ 2k
(m
A MAM

n)
B,C,D,E + (A ↔ B,C,D,E)

]
, (3.2)

where the first term is a shorthand for

YA,B,C,D,E ≡
1

2
(λγmWA)(λγ

nWB)(λγ
pWC)(WDγmnpWE) . (3.3)

The superfield YA,B,C,D,E has ghost-number three and is totally symmetric in A,B,C,D,E

due to the pure spinor constraint. It stems from the term (λγ(mWA)W
n)
B,C,D,E in

Q(A
(m
A W

n)
B,C,D,E) where a group-theoretic analysis12 has been used to replace

(λγp)[α1
(λγq)α2

(λγ(m)α3
γ
n)pq
α4α5]

=
1

10
δmn(λγp)[α1

(λγq)α2
(λγr)α3

γ
pqr

α4α5]
. (3.4)

Apart from the extra term YA,B,C,D,E, the BRST variation (3.2) of Mmn
A,B,C,D,E is a direct

rank-two generalization of QMm
A,B,C,D given in (2.31).

12 The spinors indices in (λγp)[α1
(λγq)α2

(λγ(m)α3
γ
n)pq

α4α5]
fall into the tensor product of

[0, 0, 0, 0, 3] ∋ λ3 and [0, 0, 0, 0, 1]∧5 = [0, 0, 0, 3, 0] ⊕ [1, 1, 0, 1, 0] ∋ W 5. The LiE program

[41] identifies one scalar [0, 0, 0, 0, 0] but no symmetric and traceless [2, 0, 0, 0, 0] component in

[0, 0, 0, 0, 3]⊗ [0,0, 0, 0, 1]∧5. Hence, only the trace with respect to vector indices m,n contributes.

We are using standard Dynkin label notation [a1, a2, a3, a4, a5] for SO(10) irreducibles and denote

an antisymmetrized kth tensor power by [a1, a2, a3, a4, a5]
∧k.
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3.2. Pseudo BRST cohomology

The pure spinor analysis of the hexagon gauge anomaly [25] showed that the gauge variation

of the open superstring six-point amplitude (w.r.t. leg one) is proportional to [26],

Y2,3,4,5,6 =
1

2
(λγmW2)(λγ

nW3)(λγ
pW4)(W5γmnpW6) . (3.5)

Since gauge invariance is related to BRST invariance of the kinematic factors in the ampli-

tudes (see appendix B), terms of the form (3.3) are expected to describe the BRST anomaly

of the amplitudes. They represent obstructions in finding elements in the cohomology.

Therefore it will be convenient to define a pseudo BRST cohomology in which the vari-

ation of pseudo BRST-closed elements vanish up to anomalous superfields such as (3.3).

These objects give rise to gauge transformations with bosonic components proportional

to the ǫ10 tensor, see appendix B.5, so they are suitable to describe the parity odd gauge

anomaly of the open superstring. Indeed, it will be shown in [29] that the scalar pseudo

BRST cohomology for six particles discussed in the next section correctly describes the

anomaly terms of the six-point one-loop amplitude which were not included in the discus-

sion of [24].

Definition 1. A superfield Y of ghost-number three or four is called anomalous if it

contains a factor of YA,B,C,D,E as in (3.3) with some multiparticle labels A,B . . . , E.

Definition 2. Superfields of ghost-number two and three are called pseudo-invariant if

their BRST variation is entirely anomalous. The space of pseudo-invariants is referred to

as the pseudo-cohomology.

3.3. Tools for constructing BRST pseudo-invariants

The subsequent sections are concerned with a systematic construction of BRST pseudo-

invariants. As a driving force for this endeavor, we generalize the recursions of section 2.5

to situations with anomalous BRST variations.

Lemma 1. Let J denote any superfield unaffected by the operation ⊗ defined in (2.37).

Then, concatenations of MAJ satisfy

Q(Mi ⊗MAJ ) = MiMAJ +Mi ⊗Q(MAJ ) . (3.6)

Proof. By the deconcatenation formula (2.21) for QMA, one can identify

Q(MAJ ) =
∑

XY =A

MXMY J −MAQJ
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in the third line of

Q(Mi ⊗MAJ ) = Q(MiAJ )

=
{
MiMA +

∑

XY =A

MiXMY

}
J −MiAQJ

= MiMAJ +Mi ⊗
{ ∑

XY=A

MXMY J −MAQJ
}

= MiMAJ +Mi ⊗Q(MAJ ) .

Corollary 1. Let C denote a BRST-invariant superspace expression

C =
∑

k

MAk
Jk , QC = 0 (3.7)

where ⊗ acts trivially on the Jk, then

Q(Mi ⊗ C) = MiC . (3.8)

Proof. Upon applying Lemma 1 to MAk
Jk, the second term Mi⊗Q(MAk

Jk) in (3.6) builds

up Mi ⊗QC by linearity of ⊗ which vanishes by the assumption (3.7).

Note that (2.38) and (2.39) are special cases of (3.8) with C → Cj|A,B,C and C →

Cm
j|A,B,C,D, respectively.

Corollary 2. Let P denote a BRST-pseudoinvariant superspace expression

P =
∑

k

MAk
Jk , QP =

∑

l

MBl
Yl (3.9)

where the Yl are anomalous and ⊗ does not act on Jk or Yl, then the right-hand side of

Q(Mi ⊗ P) = MiP +Mi ⊗QP (3.10)

is anomalous up to the first term MiP.

Proof. Again, apply Lemma 1 to MAk
Jk, and the second term Mi ⊗ Q(MAk

Jk) in (3.6)

builds up the expression Mi⊗QP. The latter is anomalous by (3.9) since Mi⊗ action does

not alter the anomaly nature of the MBl
Yl in QP.
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3.4. Rank-two example of pseudo-cohomology

As a first example of BRST pseudo-invariants, we derive a rank-two analogue of the re-

cursions in (2.40) for scalar and vectorial BRST invariants. According to the anomalous

transformation (3.2) of the tensorial building block Mmn
... in (3.1), the resulting tensors

Cmn
i|A,B,C,D,E can at best be pseudo-invariant in the sense of Definition 2.

BRST pseudo-completions of rank-two tensors originate from an ansatz

Cmn
i|A,B,C,D,E ≡ MiM

mn
A,B,C,D,E +

∑

F 6=∅

MiF · · · (3.11)

similar to (2.32) and (2.33). Apart from the leading term MiM
mn
A,B,C,D,E, particle i always

appears in a multiparticle word iF , and the ellipsis represents tensor superfields of the

form Mmn
A,B,C,D,E, k

(m
A M

n)
B,C,D,E or k

(m
A k

n)
B MC,D,E.

Similar to the expressions (2.35) and (2.36) for QMA,B,C and QMm
A,B,C,D, one can

express QMmn
A,B,C,D,E given in (3.2) in terms of pseudoinvariants: Each term containing a

factor of Mi in (3.2) signals the leading term of a (pseudo-)invariant, hence:

QMmn
A,B,C,D,E = δmnYA,B,C,D,E +

[
Cmn

a1|a2...a|A|,B,C,D,E − Cmn
a|A||a1...a|A|−1,B,C,D,E

+ δ|A|,1(k
m
a1
Cn

a1|B,C,D,E + kna1
Cm

a1|B,C,D,E) + (A ↔ B,C,D,E)
]
. (3.12)

This motivates the following recursion for pseudo-invariants Cmn
i|A,B,C,D,E ,

Cmn
i|A,B,C,D,E = MiM

mn
A,B,C,D,E +Mi ⊗

[
Cmn

a1|a2...a|A|,B,C,D,E − Cmn
a|A||a1...a|A|−1,B,C,D,E

+ δ|A|,1(k
m
a1
Cn

a1|B,C,D,E + kna1
Cm

a1|B,C,D,E) + (A ↔ B,C,D,E)
]
. (3.13)

Their BRST variation is purely anomalous by (3.12) and (3.10) at P → Cmn
... . The simplest

example occurs at six points and uses the expression (2.41) for Cm
2|3,4,5,6,

Cmn
1|2,3,4,5,6 = M1M

mn
2,3,4,5,6 +

[
M1 ⊗ (km2 Cn

2|3,4,5,6 + kn2C
m
2|3,4,5,6) + (2 ↔ 3, 4, 5, 6)

]

= M1M
mn
2,3,4,5,6 +

[
km2 M12M

n
3,4,5,6 + kn2M12M

m
3,4,5,6 + (3 ↔ 4, 5, 6)

]
(3.14)

+
[
(km2 kn3 + kn2 k

m
3 )(M123 +M132)M4,5,6 + (2, 3|2, 3, 4, 5, 6)

]
.

The seven-point analogue Cmn
1|23,4,5,6,7 is displayed in appendix A, see (A.2).

One can explicitly check their BRST pseudo-invariant nature at low orders,

QCmn
1|2,3,4,5,6 = − δmnM1Y2,3,4,5,6 (3.15)

QCmn
1|23,4,5,6,7 = − δmn(M1Y23,4,5,6,7 +M12Y3,4,5,6,7 −M13Y2,4,5,6,7) . (3.16)
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The general structure of QCmn
i|A,B,C,D,E = − δmn(. . .) will be discussed in section 7.2. Note

that traceless components are BRST-closed,

Q
(
Cmn

i|A,B,C,D,E −
1

10
δmnC

pp

i|A,B,C,D,E

)
= 0. (3.17)

The family of two-tensor pseudo-invariants constructed via (3.13) furnishes the third cell

in the leading diagonal of the overview grid in fig. 1. As we will see in the next section,

the tools of this section enable to address an infinite tower of higher-rank generalizations

to complete this diagonal.

4. Tensor pseudo-cohomology

This section introduces a recursive method to construct higher-rank generalizations of the

scalar, vector and two-tensor BRST (pseudo-)invariants discussed in the previous sections.

As shown below, Cm1...mr

i|A1,...,Ar+3
for r ≥ 2 is a pseudo-invariant according to Definition 2.

4.1. Higher-rank building blocks and anomaly blocks

Following the logic behind the two-tensor in (3.1), we define a building block of arbitrary

rank r by extracting zero modes of Πm1 . . .ΠmrdαdβNpq from r+3 integrated vertex opera-

tors in their multiparticle Berends–Giele version. Similarly, the b-ghost sector proportional

to the zero-mode of Πm gives rise to a second sort of superfield with a factor of Wm
A,B,C,D:

Mm1...mr

B1,B2,...,Br+3
≡ r!

[
MB1,B2,B3

A
(m1

B4
Am2

B5
. . .A

mr)
Br+3

+ (B1, B2, B3|B1, B2, . . . , Br+3)
]

+ r!
[
W

(m1

B1,B2,B3,B4
Am2

B5
. . .A

mr)
Br+3

+ (B1, . . . , B4|B1, B2, . . . , Br+3)
]
(4.1)

In order to get a recursive handle on the combinatorics in (4.1), it is convenient to define

higher-rank versions of Wm
A,B,C,D in (2.28),

W
m1...mr−1|mr

B1,B2,...,Br+3
≡ Am1

B1
W

m2...mr−1|mr

B2,...,Br+3
+ (B1 ↔ B2, . . . , Br+3). (4.2)

Then, the rank-r building block Mm1...mr

B1,B2,...,Br+3
in (4.1) can be written recursively as

Mm1...mr

B1,...,Br+3
= Am1

B1
Mm2...mr

B2,...,Br+3
+Amr

B1
W

mr−1...m2|m1

B2,...,Br+3
+ (B1 ↔ B2, B3, . . . , Br+3)

=
[
Am1

1 Mm2...mr

B2,...,Br+3
+ (B1 ↔ B2, B3, . . . , Br+3)

]
+W

mrmr−1...m2|m1

B1,B2,...,Br+3
,

(4.3)
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for example (3.1) at rank two and

M
mnp
B1,...,B6

= Am
B1

M
np
B2,...,B6

+Ap
B1

W
n|m
B2,...,B6

+ (B1 ↔ B2, . . . , B6) (4.4)

M
mnpq
B1,...,B7

= Am
B1

M
npq
B2,...,B7

+Aq
B1

W
pn|m
B2,...,B7

+ (B1 ↔ B2, . . . , B7)

at r = 3, 4. Note that W
m1...mr−1|mr

B1,B2,...,Br+3
defined in (4.2) is symmetric in all its slots Bi but

only in its first r − 1 vector indices mi. That explains the notation . . .mr−1|mr in (4.2).

Also the scalar anomaly building block YA,B,C,D,E defined in (3.3) has a natural

higher-rank generalization. It can be defined explicitly in analogy to (4.1),

Ym1...mr

B1,B2,...,Br+5
≡ r!YB1,...,B5

A
(m1

B6
Am2

B7
. . .A

mr)
Br+5

+ (B1, . . . , B5|B1, . . . , Br+5) , (4.5)

or recursively like (4.3),

Ym1...mr

B1,B2,...,Br+5
≡ Am1

B1
Ym2...mr

B2,B3,...,Br+5
+ (B1 ↔ B2, B3, . . . , Br+5) . (4.6)

Even though the recursion (4.6) for anomaly blocks resembles (4.2) for W
m1...mr−1|mr

B1,B2,...,Br+3
, the

vector indices of the latter are not entirely carried by Am
B superfields. That is why only

Ym1...mr

B1,B2,...,Br+5
is totally symmetric in both Bi and mi.

4.2. Anomalous BRST variations at higher rank

Both expressions (4.1) and (4.3) for higher-rank building blocks serve as a starting point

to determine their BRST variation

QMm1...mr

B1,B2,...,Br+3
=

(
r

2

)
δ(m1m2Y

m3...mr)
B1,B2,...,Br+3

+
[
rMB1

k
(m1

B1
M

m2...mr)
B2,B3,...,Br+3

(4.7)

+
∑

XY =B1

(MXMm1...mr

Y,B2,B3,...,Br+3
−MY M

m1...mr

X,B2,B3,...,Br+3
) + (B1 ↔ B2, . . . , Br+3)

]
.

The δmn tensors in the anomalous part are due to the group-theory identity (3.4). The

rank-two example has been given in (3.2), and ranks three and four give rise to

QM
mnp
B1,B2,...,B6

= 3 δ(mnY
p)
B1,B2,...,B6

+
[
3MB1

k
(m
B1

M
np)
B2,B3,...,B6

(4.8)

+
∑

XY =B1

(MXM
mnp
Y,B2,B3,...,B6

−MY M
mnp
X,B2,B3,...,B6

) + (B1 ↔ B2, . . . , B6)
]

QM
mnpq
B1,B2,...,B7

= 6 δ(mnY
pq)
B1,B2,...,B7

+
[
4MB1

k
(m
B1

M
npq)
B2,B3,...,B7

(4.9)

+
∑

XY =B1

(MXM
mnpq
Y,B2,B3,...,B7

−MY M
mnpq
X,B2,B3,...,B7

) + (B1 ↔ B2, . . . , B7)
]
.
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The recursive approach makes use of the BRST variation

QW
m1...mr−1|mr

B1,B2,...,Br+3
= (r − 1)δmr(m1Y

m2...mr−1)
B1,B2,...,Br+3

(4.10)

+
[
(r − 1)MB1

k
(m1

B1
W

m2...mr−1)|mr

B2,B3,...,Br+3
− (λγmrWB1

)M
m1...mr−1

B2,B3,...,Br+3

+
∑

XY =B1

(MXW
m1...mr−1|mr

Y,B2,...,Br+3
−MY W

m1...mr−1|mr

X,B2,...,Br+3
) + (B1 ↔ B2, . . . , Br+3)

]
,

which generalizes the rank-one variation (2.29) and specializes as follows at rank r ≤ 3,

QW
m|n
B1,B2,...,B5

= δmnYB1,B2,...,B5
+
[
kmB1

MB1
Wn

B2,B3,B4,B5
− (λγnWB1

)Mm
B2,B3,B4,B5

+
∑

XY =B1

(MXW
m|n
Y,B2,...,B5

−MY W
m|n
X,B2,...,B5

) + (B1 ↔ B2, B3, B4, B5)
]

(4.11)

QW
mn|p
B1,B2,...,B6

= 2δp(mY
n)
B1,B2,...,B6

+
[
2k

(m
B1

MB1
W

n)|p
B2,...,B6

− (λγpWB1
)Mmn

B2,B3,B4,B5,B6

+
∑

XY =B1

(MXW
mn|p
Y,B2,...,B6

−MY W
mn|p
X,B2,...,B6

) + (B1 ↔ B2, . . . , B6)
]
. (4.12)

4.3. Recursion for higher rank pseudoinvariants

The construction of general BRST pseudo-invariants

Cm1...mr

i|A1,A2,...,Ar+3
≡ MiM

m1...mr

A1,A2,...,Ar+3
+

∑

B 6=∅

MiB · · · (4.13)

generalizes the scalars (2.32), vectors (2.33) and two-tensors (3.11) to arbitrary rank. As

before, the leading term MiM
m1...mr

A1,A2,...,Ar+3
is the only instance where the reference leg i

enters through a single-particle vertex operator Mi. The ellipsis along with multiparticle

MiB takes the form k
(m1

A1
. . . k

mj

Aj
M

mj+1...mr)
Aj+1,...,Ar+3

with j = 0, 1, . . . , r. The role of Mi as

defining the pseudoinvariant (4.13) leads to the following alternative form of (4.7):

QMm1...mr

A1,A2,...,Ar+3
=

(
r

2

)
δ(m1m2Y

m3...mr)
A1,A2,...,Ar+3

+
{
rδ|A1|,1k

(m1

a1
C

m2...mr)
a1|A2,...,Ar+3

(4.14)

+ Cm1...mr

a1|a2...a|A1|,A2,...,Ar+3
− Cm1...mr

a|A1||a1...a|A1|−1,A2,...,Ar+3
+ (A1 ↔ A2, . . . , Ar+3)

}
.

This in turn gives rise to a recursion for the pseudo-invariants Cm1...mr

i|A1,A2,...,Ar+3
in terms of

lower-multiplicity representatives of rank r and r − 1,

Cm1...mr

i|A1,A2,...,Ar+3
= MiM

m1...mr

A1,A2,...,Ar+3
+Mi ⊗

{
rδ|A1|,1k

(m1

a1
C

m2...mr)
a1|A2,...,Ar+3

(4.15)

+ Cm1...mr

a1|a2...a|A1|,A2,...,Ar+3
− Cm1...mr

a|A1||a1...a|A1|−1,A2,...,Ar+3
+ (A1 ↔ A2, . . . , Ar+3)

}
,
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which reduces to (2.40) and (3.13) for r ≤ 2. BRST pseudoinvariance follows from (3.10)

at P → Cm1m2...mr
... . The anomalous BRST variations entirely reside in trace components

∼ δmimj and will be systematically discussed in section 7.2. Similar as before, the traceless

components are BRST invariant, e.g.

Q
(
C

mnp

i|A,B,C,D,E,F
−

1

4
δ(mnC

p)qq
i|A,B,C,D,E,F

)
= 0 . (4.16)

The simplest pseudoinvariant of rank greater than two is C
mnp

1|2,3,4,5,6,7, its expansion is

displayed in appendix A, see (A.3).

The recursion (4.15) for pseudo-invariants of arbitrary rank completes the leading

diagonal of the overview grid in fig. 1. In the next sections we explore the building blocks

and recursions governing the subleading diagonals.

5. Towards a refined pseudo-cohomology

The discussion of BRST invariance of the closed-string five-point amplitude in [28] natu-

rally led to consider the following combination of superfields13

km1 V1T
m
2,3,4,5 +

[
V12T3,4,5 + (2 ↔ 3, 4, 5)

]
+ Y1,2,3,4,5 (5.1)

which was shown to be BRST exact in the appendix B of [28]. Given the appearance of

the anomalous superfield Y1,2,3,4,5, it will not be surprising to discover that this particular

combination (5.1) signals a much deeper family of pseudo cohomology elements which

will play an important role in the discussion of anomalous terms in the one-loop open

superstring amplitudes [29].

13 In various places of this section, we will encounter the local representatives VA, TA,B,C ,

Wm
A,B,C,D, Tm

A,B,C,D and YA,B,C,D,E of the more frequently-used Berends–Giele superfields MA,

MA,B,C , W
m
A,B,C,D, Mm

A,B,C,D and YA,B,C,D,E as defined by (2.20), (2.26), (2.28), (2.30) and (3.3).

They follow by trading any KB ∈ {AB
α ,A

m
B ,Wα

B,F
mn
B } in these definitions for the standard BRST

blocks KB ∈ {AB
α , A

m
B ,Wα

B , Fmn
B }, see section 2.3. Some of their BRST variations are displayed

in appendix C.
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5.1. Refined currents

It turns out that to extend and generalize the discussion of (5.1) it is convenient to define

the following superfield

ĴA|B,C,D,E ≡
1

2
(Am

ATm
B,C,D,E + Am

AWm
B,C,D,E) , (5.2)

symmetric in B,C,D,E. In view of the special role of the first slot A, we refer to such

objects as refined currents. Accordingly, any slot A| . . . on the left of the vertical bar of

the subscript will be referred to as refined. It is not hard to check that the simplest case

Ĵ1|2,3,4,5 gives rise to (5.1) under Q variation and that higher-multiplicity currents satisfy

QĴ1|2,3,4,5 = km1 V1T
m
2,3,4,5 +

[
V12T3,4,5 + (2 ↔ 3, 4, 5)

]
+ Y1,2,3,4,5 (5.3)

QĴ12|3,4,5,6 = km12V12T
m
3,4,5,6 +

[
V̂123T4,5,6 + (3 ↔ 4, 5, 6)

]
+ Y12,3,4,5,6

+ s12(V1Ĵ2|3,4,5,6 − V2Ĵ1|3,4,5,6) (5.4)

QĴ1|23,4,5,6 = km1 V1T
m
23,4,5,6 − V̂231T4,5,6 +

[
V14T23,5,6 + (4 ↔ 5, 6)

]

+ Y1,23,4,5,6 + s23(V2Ĵ1|3,4,5,6 − V3Ĵ1|2,4,5,6) . (5.5)

Both V12 in (5.3) and the hatted superfields V̂A in (5.4) and (5.5) build up through the

recursions (2.8) and (2.10) for Aα
12 and Âα

123. More generally, the recursion (2.15) relates the

multiparticle spinor superpotential AB
α to BRST blocks KC at lower multiplicity |C| < |B|

which are generated by QĴA|B,C,D,E. However, the direct output ÂB
α of the recursion

requires redefinitions by BRST trivial components H12...p ≡ H[12...p−1,p] in order to yield

the BRST block AB
α subject to Lie symmetries, see (2.11) and [32]. The appearance of

V̂B = λαÂB
α in (5.4) and (5.5) suggests to redefine Ĵ by the tensors Hijk ≡ H[ij,k] in (2.12)

such that their Q variation can be expressed in terms of the BRST block VB = λαAB
α , e.g.

J1|2,3,4,5 ≡ Ĵ1|2,3,4,5

J12|3,4,5,6 ≡ Ĵ12|3,4,5,6 −
[
H[12,3]T4,5,6 + (3 ↔ 4, 5, 6)

]
, (5.6)

J1|23,4,5,6 ≡ Ĵ1|23,4,5,6 +H[23,1]T4,5,6 .

Generalizations H[A,B] of the redefining superfields are explained in appendix D. They give

rise to

JA|B,C,D,E ≡ ĴA|B,C,D,E −
[
H[A,B]TC,D,E + (A ↔ B,C,D,E)

]
, (5.7)
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with the understanding that H[A,B] = 0 for |A| = |B| = 1 [32]. After the redefinition (5.7),

the BRST transformation of JA|B,C,D,E contains BRST blocks VX rather than V̂X ,

QJA|B,C,D,E = kmA VAT
m
B,C,D,E + V[A,B]TC,D,E + V[A,C]TB,D,E

+ V[A,D]TB,C,E + V[A,E]TB,C,D + YA,B,C,D,E +O(ki · kj) . (5.8)

Appendix C displays the four inequivalent seven-point examples of (5.8), including the con-

tact terms O(ki · kj), see (C.4). The latter represent the generalization of s12(V1Ĵ2|3,4,5,6−

V2Ĵ1|3,4,5,6) in (5.4) and s23(V2Ĵ1|3,4,5,6 − V3Ĵ1|2,4,5,6) in (5.5) which simplifies once the

JA|B,C,D,E in (5.7) are converted to Berends–Giele currents JA|B,C,D,E.

The bracket notation V[A,B] has been explained in the appendix A of [32] and can be

diagrammatically understood from figure fig. 5. A few explicit examples are as follows14,

V[1,2] = V12, V[12,3] = V123, V[12...p−1,p] = V12...p (5.9)

V[1,23] = V123 − V132 = −V231, V[12,34] = V1234 − V1243 = −V3412 + V3421 .

5.2. Berends–Giele version of refined currents

The Berends–Giele version JA|B,C,D,E of refined currents JA|B,C,D,E in (5.7) can be ob-

tained by applying the Berends–Giele map discussed in section 2.3 to each of its five slots.

The resulting definition15

JA|B,C,D,E ≡
1

2
(Am

AMm
B,C,D,E +Am

AWm
B,C,D,E)−

[
H[A,B]MC,D,E + (A ↔ B,C,D,E)

]

(5.10)

incorporates the Berends–Giele versionH[A,B] of the above superfields H[A,B], see appendix

D and in particular (D.11) for examples. The contact terms in QJA|B,C,D,E translate into

deconcatenations inQJA|B,C,D,E in the same way as contact terms inQVB are mapped into

the deconcatenation formula (2.21) for QMB. Moreover, kmA VAT
m
B,C,D,E and YA,B,C,D,E

on the right-hand side of (5.8) can be straightforwardly replaced by kmAMAM
m
B,C,D,E and

YA,B,C,D,E, respectively. Only the four permutations of V[A,B]TC,D,E require closer in-

spection since their expansion in terms of MXMC,D,E will introduce explicit Mandelstam

variables.

14 As explained in [32], the multiparticle label B = b1b2 . . . b|B| in a BRST block KB satisfies Lie

symmetries. They can be elegantly incorporated by writing B = [. . . [[[b1, b2], b3], b4], . . . , b|B|] and

using Jacobi identities for iterated brackets. In particular B = 23 translates into B = [2, 3]. Fur-

thermore, the translation from bracketed to non-bracketed labels is given by K[...[[[1,2],3],4],...,|B|] =

K123...|B|, for example K[[1,2],3] = K123.
15 As will become clear in later sections, JA|B,C,D,E should really be denoted MA|B,C,D,E since

many formulas would acquire a more natural interpretation. However, we use the notation of

(5.10) for hysterical reasons.
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5.2.1. The S[A,B] map

At the superfield level, the recursive definition of BRST blocks in [32] has the structure

of a commutator; V[A,B] → [VA, VB]. At the level of diagrams, V[A,B] can be interpreted

as connecting the off-shell legs in the subdiagrams represented by VA and VB through a

cubic vertex, see [32] and fig. 5. Expanding any VC in terms of Berends–Giele currents

MC gives rise to a similar diagrammatic interpretation shown in fig. 5, i.e. if two Berends–

Giele currents MA and MB are attached to a cubic vertex, the resulting diagram is a linear

combination of currents MC at overall multiplicity |C| = |A|+ |B|. We denote this linear

combination by MS[A,B], where the letter S reminds of a factor of sij which enters on

dimensional grounds. In other words, the S[A,B] map captures the difference of applying

the Berends–Giele map as described in section 2.3 to the multiparticle label C as a whole as

compared to applying it simultaneously and individually to A and B, where |C| = |A|+|B|,

V[A,B] = [VA, VB] =⇒ MS[A,B] = [MA,MB] . (5.11)

For example, converting both sides of V12 = [V1, V2] to Berends–Giele currents leads to

s12M12 = [M1,M2] and therefore MS[1,2] = s12M12. Similarly, converting both sides of

V123 = [V12, V3] to Berends–Giele currents gives

s12(s23M123 − s13M213) = [s12M12,M3] =⇒ MS[12,3] = s23M123 − s13M213 . (5.12)

To find S[1, 23] one repeats the analysis with [V1, V23] = −[V23, V1] and uses the antisym-

metry MS[A,B] = −MS[B,A] due to (5.11). Following this procedure one obtains,

MS[1,2] = s12M12 (5.13)

MS[1,23] = s12M123 − s13M132

MS[1,234] = s12M1234 − s13(M1324 +M1342) + s14M1432

MS[12,34] = −s13M2134 + s14M2143 + s23M1234 − s24M1243 .
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Fig. 5 Diagrammatic interpretation of MS[A,B].

It turns out that the general formula for MS[A,B] reads,

MS[A,B] ≡

|A|∑

i=1

|B|∑

j=1

(−1)i−j+|A|−1saibjM(a1a2...ai−1�a|A|a|A|−1...ai+1)aibj(bj−1...b2b1�bj+1...b|B|) .

(5.14)

The S[A,B] map has been investigated in appendix B of [32] in a different context – it

facilitates the expansion of Ci|A,B,C in terms of SYM tree subamplitudes.

5.2.2. The BRST variation of refined currents

Let us compare theMS[A,B] in (5.13) with the BRST transformations of various JA|B,C,D,E,

starting with the trivial five point case,

QJ1|2,3,4,5 = km1 M1M
m
2,3,4,5 +

[
s12M12M3,4,5 + (2 ↔ 3, 4, 5)

]
+ Y1,2,3,4,5 . (5.15)

At six points there are two inequivalent partitions of legs in J satisfying

QJ12|3,4,5,6 = km12M12M
m
3,4,5,6 +

[
(s23M123 − s13M213)M4,5,6 + (3 ↔ 4, 5, 6)

]

+ Y12,3,4,5,6 +M1J2|3,4,5,6 −M2J1|3,4,5,6 (5.16)

QJ1|23,4,5,6 = km1 M1M
m
23,4,5,6 + (s12M123 − s13M132)M4,5,6 +

[
s14M14M23,5,6 + (4 ↔ 5, 6)

]

+ Y1,23,4,5,6 +M2J1|3,4,5,6 −M3J1|2,4,5,6 . (5.17)
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The four inequivalent seven-point examples are displayed in appendix C, see (C.5).

Using the S[A,B] map in (5.14), we can write down a general formula for the BRST

variation of refined currents,

QJA|B,C,D,E = YA,B,C,D,E + kmAMAM
m
B,C,D,E +

∑

XY =A

(MXJY |B,C,D,E −MY JX|B,C,D,E)

+
[
MS[A,B]MC,D,E +

∑

XY =B

(MXJA|Y,C,D,E −MY JA|X,C,D,E) + (B ↔ C,D,E)
]
.(5.18)

It is amusing that the anomaly building block YA,B,C,D,E is completely symmetric in

A,B,C,D,E whereas JA|B,C,D,E has a reduced symmetry in B,C,D,E due to the re-

fined slot A. Note that the non-anomalous part of the right-hand side contains the same

kind of terms as they appear in QMA,B,C and QMm
A,B,C,D, see (2.27) and (2.31). This al-

lows to assemble superfields JA|B,C,D,E, kmF MAM
m
B,C,D,E and sijMAMB,C,D into BRST-

pseudoinvariants, the details are worked out in following section.

5.3. Scalar pseudo cohomology

Scalar BRST pseudoinvariants involving refined currents JA|B,C,D,E are defined along the

lines of the pseudoinvariants Cm1...mr

i|A1,...,Ar+3
in (4.13)16,

Pi|A|B,C,D,E ≡ MiJA|B,C,D,E +
∑

F 6=∅

MiF . . . . (5.19)

The leading term MiJA|B,C,D,E furnishes the only instance of a single-particle vertex

Mi and therefore defines the reference leg i as well as the multiparticle labels of the

pseudoinvariant Pi|A|B,C,D,E. The suppressed terms in the . . . along with a multiparticle

MiF follow from demanding QPi|A|B,C,D,E to be purely anomalous. We determine them by

writing (5.18) in terms of vector invariants from section 2.5 and pseudoinvariants (5.19),

QJA|B,C,D,E = YA,B,C,D,E + δ|A|,1k
m
a1
Cm

a1|B,C,D,E (5.20)

+ Pa1|a2...a|A||B,C,D,E − Pa|A||a1...a|A|−1|B,C,D,E

+
[
Pb1|A|b2...b|B|,C,D,E − Pb|B||A|b1...b|B|−1,C,D,E + (B ↔ C,D,E)

]
.

16 As will become clear in later sections, Pi|A|B,C,D,E should really be denoted Ci|A|B,C,D,E

since many formulas would acquire a more natural interpretation. However, we use the notation

of (5.19) for hysterical reasons.
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As usual, any Mi in (5.18) has been identified as a leading term of some Cm
i|A,B,C,D or

Pi|A|B,C,D,E, see (2.33) and (5.19). Furthermore, equation (5.20) can be verified once the

explicit form of the pseudo-invariants Pi|A|B,C,D,E to be determined below is plugged in

and the result compared to (5.18). By (3.10), the non-anomalous terms in (5.20) drop out

from the BRST variation of the following recursion:

Pi|A|B,C,D,E = MiJA|B,C,D,E +Mi ⊗
{
δ|A|,1k

m
a1
Cm

a1|B,C,D,E

+ Pa1|a2...a|A||B,C,D,E − Pa|A||a1...a|A|−1|B,C,D,E (5.21)

+
[
Pb1|A|b2...b|B|,C,D,E − Pb|B||A|b1...b|B|−1,C,D,E + (B ↔ C,D,E)

]
} .

When applied to the simplest six-point example, the recursion yields

P1|2|3,4,5,6 = M1J2|3,4,5,6 + km2 M1 ⊗ Cm
2|3,4,5,6 (5.22)

= M1J2|3,4,5,6 +M12k
m
2 Mm

3,4,5,6 +
[
s23M123M4,5,6 + (3 ↔ 4, 5, 6)

]
,

and the two inequivalent seven-point analogues are displayed in appendix A, see (A.4) and

(A.5). For these simple cases, pseudoinvariance is still easy to check explicitly,

QP1|2|3,4,5,6 = −M1Y2,3,4,5,6 (5.23)

QP1|23|4,5,6,7 = −M1Y23,4,5,6,7 −M12Y3,4,5,6,7 +M13Y2,4,5,6,7

QP1|2|34,5,6,7 = −M1Y2,34,5,6,7 −M13Y2,4,5,6,7 +M14Y2,3,5,6,7 .

A general discussion of QPi|A|B,C,D,E is given in the later section 7.4. Note that the

Pi|A|B,C,D,E furnish the first cell of the subleading diagonal in the overview grid in fig. 1.

5.4. Scalar pseudoinvariants versus tensor traces

The definition (5.10) of the refined current JA|B,C,D,E exhibits a strong similarity to the

trace of the two tensor Mmn
A,B,C,D,E in (3.1). Only the redefinitions by H[A,B] = −H[B,A]

terms might pose an obstruction, but their antisymmetry implies that the difference be-

tween ĴA|B,C,D,E and JA|B,C,D,E in (5.7) drops out upon symmetrization in A,B,C,D,E,

ĴA|B,C,D,E − JA|B,C,D,E + (A ↔ B,C,D,E) = 0 . (5.24)

Similarly, the H[A,B] corrections in (5.10) cancel out when symmetrizing their correspond-

ing Berends–Giele currents and one gets

δmnM
mn
A,B,C,D,E = 2JA|B,C,D,E + (A ↔ B,C,D,E) . (5.25)
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After multiplication with Mi, (5.25) can be viewed as relating the leading terms of

δmnC
mn
i|A,B,C,D,E and permutations of (5.19), leading to

δmnC
mn
i|A,B,C,D,E = 2Pi|A|B,C,D,E + (A ↔ B,C,D,E). (5.26)

In other words, scalar pseudoinvariants Pi|A|B,C,D,E describe the tensor trace of Cmn
i|A,B,C,D,E

in terms of more fundamental objects. Similarly, it will be shown in the next section

that traces of higher-rank pseudo-invariants δm1m2
Cm1...mr

i|A1,...,Ar+3
decompose into tensorial

generalizations of Pi|A|B,C,D,E. Starting from rank two, the latter give rise to traces by

themselves (corresponding to double traces of Cm1...mr

i|A1,...,Ar+3
), and one can anticipate an

infinite number of all-rank families of pseudoinvariants. These are the different diagonals

in the overview grid in fig. 1 where contractions with δmn move any tensorial object down-

wards to the next diagonal. Since an individual Pi|A|B,C,D,E contains more information

than the trace δmnC
mn
i|A,B,C,D,E, we refer to the former as belonging to the refined pseudo-

cohomology.

6. Generalizing the refined pseudo-cohomology

In this section, we generalize the refined currents (5.10) in two directions: firstly by defining

tensorial counterparts and secondly by increasing the number of refined slots such as the

distinguished word A in JA|B,C,D,E. Each of these currents gives rise to a pseudoinvariant

which can be recursively constructed along the lines of sections 4.3 and 5.3.

6.1. Higher-rank refined currents and their anomaly

We define the higher-rank version of the scalar refined current (5.10) by

Jm1...mr

A|B1,...,Br+4
≡

1

2
Ap

A

[
M

pm1...mr

B1,...,Br+4
+W

m1...mr|p
B1,...,Br+4

]

−
[
H[A,B1]M

m1...mr

B2,...,Br+4
+ (B1 ↔ B2, B3, . . . , Br+4)

]
(6.1)

in terms of higher-rank building blocks M
pm1...mr

B1,...,Br+4
and W

m1...mr|p
B1,...,Br+4

defined in (4.3) and

(4.2). The redefinition by superfields H[A,Bi] as in appendix D is necessary to trade the V̂A

in its BRST variation for BRST blocks VA. As before, it vanishes whenever both slots are

of single-particle type, i.e. |A| = |Bi| = 1.
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At rank r ≥ 2, the BRST variation of Jm1...mr

A|B1,...,Br+4
turns out to involve anomalous

traces in the same way asQMm1...mr

B1,...,Br+3
given by (4.7). They are accompanied by anomalous

counterparts of the refined current (6.1),

Ym1...mr

A|B1,...,Br+6
≡

1

2
Ap

AY
pm1...mr

B1,...,Br+6
−

[
H[A,B1]Y

m1...mr

B2,...,Br+6
+ (B1 ↔ B2, . . . , Br+6)

]
, (6.2)

whose corrections ∼ H[A,Bi] are analogous to (6.1) and ensure a BRST variation in terms

of VA rather than V̂A, see section 5.1.

Equipped with the definitions above, we can write down the general BRST variation

of higher-rank refined currents,

QJm1...mr

A|B1,...,Br+4
=

(
r

2

)
δ(m1m2Y

m3...mr)
A|B1,...,Br+4

+ Ym1...mr

A,B1,...,Br+4
+ k

p
AMAM

pm1...mr

B1,...,Br+4

+
[
MS[A,B1]M

m1...mr

B2,...,Br+4
+ rk

(m1

B1
MB1

J
m2...mr)
A|B2,...,Br+4

+
∑

XY =B1

(MXJm1...mr

A|Y,B2,...,Br+4
−MY J

m1...mr

A|X,B2,...,Br+4
) + (B1 ↔ B2, . . . , Br+4)

]

+
∑

XY=A

(MXJm1...mr

Y |B1,...,Br+4
−MY J

m1...mr

X|B1,...,Br+4
) , (6.3)

see (5.14) for the map S[A,Bi]. For example, in the case of vectors and two-tensors the

general formula (6.3) yields

QJm
A|B1,B2,B3,B4,B5

= Ym
A,B1,B2,B3,B4,B5

+ k
p
AMAM

pm
B1,B2,B3,B4,B5

+
[
MS[A,B1]M

m
B2,B3,B4,B5

+ kmB1
MB1

JA|B2,...,B5
+

∑

XY =B1

(MXJm
A|Y,B2,...,B5

−MY J
m
A|X,B2,...,B5

) + (B1 ↔ B2, . . . , B5)
]

+
∑

XY =A

(MXJm
Y |B1,...,B5

−MY J
m
X|B1,...,B5

) (6.4)

QJmn
A|B1,B2,B3,B4,B5,B6

= δmnYA|B1,...,B6
+ Ymn

A,B1,...,B6
+ k

p
AMAM

pmn
B1,...,B6

+
[
MS[A,B1]M

mn
B2,...,B6

+ 2k
(m
B1

MB1
J

n)
A|B2,...,B6

+
∑

XY=B1

(MXJmn
A|Y,B2,...,B6

−MY J
mn
A|X,B2,...,B6

) + (B1 ↔ B2, . . . , B6)
]

+
∑

XY =A

(MXJmn
Y |B1,...,B6

−MY J
mn
X|B1,...,B6

) . (6.5)

6.2. Recursion for refined higher-rank pseudoinvariants

Each of the tensorial refined currents in (6.1) can be regarded as the leading term of a

tensorial refined pseudoinvariant,

Pm1...mr

i|A|B1,...,Br+4
≡ MiJ

m1...mr

A|B1,...,Br+4
+

∑

C 6=∅

MiC . . . . (6.6)
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The BRST pseudo-completion through multiparticle MiC along with momenta and ghost

number two objects J
m1...mp

A|B1,...,Bp+4
, M

m1...mp

B1,...,Bp+3
follows the same logic as explained below

(4.13) and (5.19). The recursive construction of the Pm1...mr

i|A|B1,...,Br+4
relies on an alternative

form of the BRST variation (6.3),

QJm1...mr

A|B1,...,Br+4
=

(
r

2

)
δ(m1m2Y

m3...mr)
A|B1,...,Br+4

+ Ym1...mr

A,B1,...,Br+4
+ δ|A|,1k

p
a1
C

pm1...mr

a1|B1,...,Br+4

+ Pm1...mr

a1|a2...a|A||B1,...,Br+4
− Pm1...mr

a|A||a1...a|A|−1|B1,...,Br+4
+
[
rδ|B1|,1k

(m1

b1
P

m2...mr)
b1|A|B2,...,Br+4

+ Pm1...mr

b1|A|b2...b|B1|,B2,...,Br+4
− Pm1...mr

b|B1||A|b1...b|B1|−1,B2,...,Br+4
+ (B1 ↔ B2, . . . , Br+4)

]
.(6.7)

As usual, this follows from isolating the single-particle Mi in (6.3) and promoting them

to a (pseudo-)invariant Cm1...mr

i|A1,...,Ar+3
or Pm1...mr

i|A|B1,...,Br+4
. By (3.10) and (6.7), the following

recursion eliminates any non-anomalous contribution from QPm1...mr

i|A|B1,...,Br+4
,

Pm1...mr

i|A|B1,...,Br+4
= MiJ

m1...mr

A|B1,...,Br+4
+Mi ⊗

{
δ|A|,1k

p
a1
C

m1...mrp

a1|B1,...,Br+4
+ Pm1...mr

a1|a2...a|A||B1,...,Br+4

− Pm1...mr

a|A||a1...a|A|−1|B1,...,Br+4
+
[
rδ|B1|,1k

(m1

b1
P

m2...mr)
b1|A|B2,...,Br+4

+ Pm1...mr

b1|A|b2...b|B1|,B2,...,Br+4

− Pm1...mr

b|B1||A|b1...b|B1|−1,B2,...,Br+4
+ (B1 ↔ B2, . . . , Br+4)

]}
. (6.8)

This completes the subleading diagonal in the overview grid in fig. 1. The anomalous BRST

variations of (6.8) are discussed in section 7.4.

At rank one, the general recursion (6.7) reduces to

Pm
i|A|B,C,D,E,F = MiJ

m
A|B,C,D,E,F +Mi ⊗

{
δ|A|,1k

p
a1
C

pm

a1|B,C,D,E,F
+ Pm

a1|a2...a|A||B,C,D,E,F

− Pm
a|A||a1...a|A|−1|B,C,D,E,F +

[
δ|B|,1k

m
b1
Pb1|A|C,D,E,F + Pm

b1|A|b2...b|B|,C,D,E,F

− Pm
b|B||A|b1...b|B|−1,C,D,E,F + (B ↔ C,D,E, F )

]}
, (6.9)

and the simplest vectorial pseudoinvariant Pm
1|2|3,4,5,6,7 is displayed in appendix A.

6.3. Higher-refinement building blocks

The definition (6.1) of refined building blocks can be endowed with a recursive structure

which allows to successively increase the number d of refined slots. In order to do that, first

define the generalization of the tensor W
m1...mr|p
B1,...,Br+4

in (4.2) for any number of specialized

legs,

W
m1...mr−1|mr

A1,...,Ad|B1,...,Bd+r+3
≡

1

2
Ap

A1
W

pm1...mr−1|mr

A2,...,Ad|B1,...,Bd+r+3
(6.10)

−
[
H[A1,B1]W

m1...mr−1|mr

A2,...,Ad|B2,...,Bd+r+3
+ (B1 ↔ B2, . . . , Bd+r+3)

]
.
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Then the recursion for refined currents Jm1...mr

A1,...,Ad|B1,...,Bd+r+3
of arbitrary refinement can

be immediately written down17,

Jm1...mr

B1,...,Br+3
≡ Mm1...mr

B1,...,Br+3
(6.11)

Jm1...mr

A1,...,Ad|B1,...,Bd+r+3
≡

1

2
Ap

A1

[
J pm1...mr

A2,...,Ad|B1,...,Bd+r+3
+W

m1...mr|p
A2,...,Ad|B1,...,Bd+r+3

]

−
[
H[A1,B1]J

m1...mr

A2,...,Ad|B2,...,Bd+r+3
+ (B1 ↔ B2, . . . , Bd+r+3)

]
.

Even though it is not manifest from their definitions (6.10) and (6.11), the objects

W
m1...mr−1|mr

A1,...,Ad|B1,...,Bd+r+3
and Jm1...mr

A1,...,Ad|B1,...,Bd+r+3
are totally symmetric under exchange of

refined slots Ai ↔ Aj . Moreover, symmetry in Bi ↔ Bj is obviously inherited from

M
pm1...mr

B1,...,Br+4
and W

m1...mr|p
B1,...,Br+4

in the first step (6.1) of the recursion.

The BRST variation of (6.11) involves anomaly building blocks of higher refinement

which are defined in analogy to (6.10),

Ym1...mr

A1,...,Ad|B1,...,Bd+r+5
≡

1

2
Ap

A1
Ypm1...mr

A2,...,Ad|B1,...,Bd+r+5
(6.12)

−
[
H[A1,B1]Y

m1...mr

A2,...,Ad|B2,...,Bd+r+5
+ (B1 ↔ B2, . . . , Bd+r+5)

]
.

These definitions give rise to the following formula for the most general case,

QJm1...mr

A1,...,Ad|B1,...,Bd+r+3
=

(
r

2

)
δ(m1m2Y

m3...mr)
A1,...,Ad|B1,...,Bd+r+3

+
[
Ym1...mr

A2,...,Ad|A1,B1,...,Bd+r+3
+ k

p
A1

MA1
J pm1...mr

A2,...,Ad|B1,...,Bd+r+3
+ (A1 ↔ A2, . . . , Ad)

]

+
[
rk

(m1

B1
MB1

J
m2...mr)
A1,...,Ad|B2,...,Bd+r+3

+ (B1 ↔ B2, . . . , Bd+r+3)
]

+
[
MS[A1,B1]J

m1...mr

A2,...,Ad|B2,...,Bd+r+3
+

(
A1 ↔ A2, A3, . . . , Ad

B1 ↔ B2, . . . , Bd+r+3

)]
(6.13)

+
[ ∑

XY =A1

(MXJm1...mr

Y,A2,...,Ad|B1,...,Bd+r+3
−MY J

m1...mr

X,A2,...,Ad|B1,...,Bd+r+3
) + (A1 ↔ A2, . . . , Ad)

]

+
[ ∑

XY =B1

(MXJm1...mr

A1,...,Ad|Y,B2,...,Bd+r+3
−MY J

m1...mr

A1,...,Ad|X,B2,...,Bd+r+3
)

+ (B1 ↔ B2, . . . , Bd+r+3)
]
.

Any term of QJm1...mr

A|B1,...,Br+4
as given by (6.3) has a counterpart in (6.13) at higher degree

d of refinement. Moreover, the three classes of terms Ym1...mr

A,B1,...,Br+4
, kpAMAM

pm1...mr

B1,...,Br+4
and

17 We keep both notations for M
m1...mr

B1,...,Br+3
= Jm1...mr

B1,...,Br+3
and C

m1...mr

i|B1,...,Br+3
= P

m1...mr

i|B1,...,Br+3
to

make the source of anomalous BRST transformations more transparent in the scattering ampli-

tudes presented in [29,31].
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MS[A,B1]M
m1...mr

B2,...,Br+4
in (6.3) which release A from the refined slot of Jm1...mr

A|B1,...,Br+4
have

multiple images in QJm1...mr

A1,...,Ad|B1,...,Bd+r+3
according to A1 ↔ A2, . . . , Ad.

For scalars of refinement d = 2, for instance,

QJA,B|C,D,E,F,G = YA|B,C,D,E,F,G + YB|A,C,D,E,F,G +MAk
m
AJm

B|C,D,E,F,G

+MBk
m
BJm

A|C,D,E,F,G +
[
MS[A,C]JB|D,E,F,G +MS[B,C]JA|D,E,F,G

+
∑

XY =C

(MXJA,B|Y,D,E,F,G −MY JA,B|X,D,E,F,G) + (C ↔ D,E, F,G)
]

+
∑

XY=A

(MXJY,B|C,D,E,F,G −MY JX,B|C,D,E,F,G)

+
∑

XY=B

(MXJA,Y |C,D,E,F,G −MY JA,X|C,D,E,F,G) . (6.14)

6.4. The general recursion for pseudoinvariants

The refined current (6.11) of arbitrary rank r and refinement d can be promoted to a

pseudoinvariant via

Pm1...mr

i|A1,...,Ad|B1,...,Bd+r+3
≡ MiJ

m1...mr

A1,...,Ad|B1,...,Bd+r+3
+

∑

C 6=∅

MiC . . . , (6.15)

which generalizes (6.6) to d > 1 and by convention reduces to Pm1...mr

i|B1,...,Br+3
≡ Cm1...mr

i|B1,...,Br+3

at d = 0. The suppressed companions of the multiparticle MiC are further instances of mo-

menta and J
m1...mp

A1,...,Aq|B1,...,Bp+q+3
which have to be chosen such thatQPm1...mr

i|A1,...,Ad|B1,...,Bd+r+3

is purely anomalous. These contributions are determined by the following rewriting of

(6.13):

QJm1...mr

A1,...,Ad|B1,...,Bd+r+3
=

(
r

2

)
δ(m1m2Y

m3...mr)
A1,...,Ad|B1,...,Bd+r+3

+
[
Ym1...mr

A2,...,Ad|A1,B1,...,Bd+r+3

+ δ|A1|,1k
p
a1
P

pm1...mr

a1|A2,...,Ad|B1,...,Bd+r+3
+ Pm1...mr

a1|a2...a|A1|,A2,...,Ad|B1,...,Bd+r+3

− Pm1...mr

a|A1||a1...a|A1|−1,A2,...,Ad|B1,...,Bd+r+3
+ (A1 ↔ A2, . . . , Ad)

]

+
[
rδ|B1|,1k

(m1

b1
P

m2...mr)
b1|A1,...,Ad|B2,...,Bd+r+3

+ Pm1...mr

b1|A1,...,Ad|b2...b|B1|,B2,...,Bd+r+3

− Pm1...mr

b|B1||A1,...,Ad|b1...b|B1|−1,B2,...,Bd+r+3
+ (B1 ↔ B2, . . . , Bd+r+3)

]
. (6.16)

As usual, (3.10) allows to derive a recursion from (6.16):

Pm1...mr

i|A1,...,Ad|B1,...,Bd+r+3
= MiJ

m1...mr

A1,...,Ad|B1,...,Bd+r+3

+Mi ⊗
{[

δ|A1|,1k
p
a1
P

pm1...mr

a1|A2,...,Ad|B1,...,Bd+r+3
+ Pm1...mr

a1|a2...a|A1|,A2,...,Ad|B1,...,Bd+r+3

− Pm1...mr

a|A1||a1...a|A1|−1,A2,...,Ad|B1,...,Bd+r+3
+ (A1 ↔ A2, . . . , Ad)

]

+
[
rδ|B1|,1k

(m1

b1
P

m2...mr)
b1|A1,...,Ad|B2,...,Bd+r+3

+ Pm1...mr

b1|A1,...,Ad|b2...b|B1|,B2,...,Bd+r+3

− Pm1...mr

b|B1||A1,...,Ad|b1...b|B1|−1,B2,...,Bd+r+3
+ (B1 ↔ B2, . . . , Bd+r+3)

]}
. (6.17)
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This is the most general pseudoinvariant presented in this work, it completes the overview

grid in fig. 1. Its anomalous BRST variation will be discussed in section 7.4.

In the d = 2 example of JA,B|C,D,E,F,G, the variation in (6.14) can be rewritten as

QJA,B|C,D,E,F,G = YA|B,C,...,G + YB|A,C,...,G + δ|A|,1k
m
a Pm

a|B|C,...,G + δ|B|,1k
m
b Pm

b|A|C,...,G

+
[
Pa1|a2...a|A|,B|C,...,G − Pa|A||a1...a|A|−1,B|C,...,G + (A ↔ B)

]
(6.18)

+
[
Pc1|A,B|c2...c|C|,D,...,G − Pc|C||A,B|c1...c|C|−1,D,...,G + (C ↔ D, . . . , G)

]

and converted to the recursion

Pi|A,B|C,D,E,F,G = MiJA,B|C,D,E,F,G +Mi ⊗
{
δ|A|,1k

m
a Pm

a|B|C,...,G + δ|B|,1k
m
b Pm

b|A|C,...,G

+
[
Pa1|a2...a|A|,B|C,...,G − Pa|A||a1...a|A|−1,B|C,...,G + (A ↔ B)

]
(6.19)

+
[
Pc1|A,B|c2...c|C|,D,...,G − Pc|C||A,B|c1...c|C|−1,D,...,G + (C ↔ D, . . . , G)

]}
.

The simplest example P1|2,3|4,5,6,7,8 is displayed in appendix A, see (A.7).

6.5. Trace relations among pseudoinvariants

In section 5.4, we have discussed the relation between tensor traces δmnM
mn
A,B,C,D,E,

δmnC
mn
i|A,B,C,D,E and the refined objects, JA|B,C,D,E, Pi|A|B,C,D,E. The trace relations

(5.25) and (5.26) are now generalized to higher rank r and refinement d.

Lemma 2. The following is true,

δnpW
npm1...mr−1|mr

A1,...,Ad|B1,...,Bd+r+5
= 2W

m1...mr−1|mr

A1,...,Ad,B1|B2,...,Bd+r+5
+ (B1 ↔ B2, . . . , Bd+r+5) , (6.20)

δnpJ
npm1...mr

A1,...,Ad|B1,...,Bd+r+5
= 2Jm1...mr

A1,...,Ad,B1|B2,...,Bd+r+5
+ (B1 ↔ B2, . . . , Bd+r+5) . (6.21)

Proof. To prove this inductively, first assume that (6.20) is true for d− 1,

δnpW
npm1...mr−1|mr

A1,...,Ad−1|B1,...,Bd+r+4
= 2W

m1...mr−1|mr

A1,...,Ad−1,B1|B2,...,Bd+r+4
+ (B1 ↔ B2, . . . , Bd+r+4) .

(6.22)

From the definition (6.10) it follows that,

δnpW
npm1...mr−1|mr

A1,...,Ad|B1,...,Bd+r+5
=

1

2
At

Ad
W

tppm1...mr−1|mr

A1,...,Ad−1|B1,...,Bd+r+5

−
[
H[Ad,B1]W

ppm1...mr−1|mr

A1,...,Ad−1|B2,...,Bd+r+5
+ (B1 ↔ B2, . . . , Bd+r+5)

]
,
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and therefore (6.22) leads to,

δnpW
npm1...mr−1|mr

A1,...,Ad|B1,...,Bd+r+5
=

1

2
At

Ad
2W

tm1...mr−1|mr

A1,...,Ad−1,B1|B2,...,Bd+r+5

− 2
[
H[Ad,B1]

(
W

m1...mr−1|mr

A1,...,Ad−1,B2|B3,...,Bd+r+5
+ (B2 ↔ B3, . . . , Bd+r+5)

)

+ (B1 ↔ B2, . . . , Bd+r+5)
]

= 2W
m1...mr−1|mr

A1,...,Ad,B1|B2,...,Bd+r+5
+ (B1 ↔ B2, . . . , Bd+r+5) ,

where in the last line one uses that,

H[Ad,B1]

[
W

m1...mr−1|mr

A1,...,Ad−1,B2|B3,...,Bd+r+5
+ (B2 ↔ B3, . . . , Bd+r+5)

]
+ (B1 ↔ B2, . . . , Bd+r+5)

=
[
H[Ad,B2]W

m1...mr−1|mr

A1,...,Ad−1,B1|B3,...,Bd+r+5
+ (B2 ↔ B3, . . . , Bd+r+5)

]
+ (B1 ↔ B2, . . . , Bd+r+5) .

(6.23)

Furthermore, it is easy to show that when d = 0,

δnpW
npm1...mr−1|mr

B1,B2...,Br+5
= 2W

m1...mr−1|mr

B1|B2,...,Br+5
+ (B1 ↔ B2, . . . , Br+5) , (6.24)

finishing the proof of (6.20).

To show (6.21) one proceeds similarly by first assuming that it holds for d− 1,

δnpJ
npm1...mr

A1,...,Ad−1|B1,...,Bd+r+4
= 2Jm1...mr

A1,...,Ad−1,B1|B2,...,Bd+r+4
+ (B1 ↔ B2, . . . , Bd+r+4) .

(6.25)

A direct application of the definition (6.11) leads to

J ppm1...mr

A1,...,Ad|B1,B2,...,Bd+r+5
=

1

2
Aq

Ad

[
J ppm1...mrq

A1,...,Ad−1|B1,B2,...,Bd+r+5
+W

ppm1...mr|q
A1,...,Ad−1|B1,B2,...,Bd+r+5

]

−
[
H[Ad,B1]J

ppm1...mr

A1,...,Ad−1|B2,...,Bd+r+5
+ (B1 ↔ B2, . . . , Bd+r+5)

]
. (6.26)

Now one rewrites (6.26) using (6.20) together with the assumption (6.25),

J ppm1...mr

A1,...,Ad|B1,B2,...,Bd+r+5
=

1

2
Aq

Ad

[
2Jm1...mrq

A1,...,Ad−1,B1|B2,...,Bd+r+5
+ 2W

m1...mr|q
A1,...,Ad−1,B1|B2,...,Bd+r+5

]

− 2
[
H[Ad,B1]J

m1...mr

A1,...,Ad−1,B2|B3,...,Bd+r+5
+ (B2 ↔ B3, . . . , Bd+r+5)

]

+ (B1 ↔ B2, . . . , Bd+r+5) , (6.27)

to finally obtain

J ppm1...mr

A1,...,Ad|B1,B2,...,Bd+r+5
= 2Jm1...mr

A1,...,Ad,B1|B2,B3,...,Bd+r+5
+ (B1 ↔ B2, B3, . . . , Bd+r+5) ,

(6.28)
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where a relation analogous to (6.23) has been used to arrive at (6.28). When d = 0 (6.21)

can be easily verified using the definitions (6.11) and (4.3) since the commutator drops out

due to the sum over permutations,

J ppm1...mr

B1,B2,...,Br+5
= M

pm1...mrp
B1,B2,...,Br+5

(6.29)

= Ap
B1

M
m1...mrp
B2,B3,...,Br+5

+Ap
B1

W
m1...mr|p
B2,B3,...,Br+5

+ (B1 ↔ B2, B3, . . . , Br+5)

= 2Jm1...mr

B1|B2,B3,...,Br+5
+ (B1 ↔ B2, B3, . . . , Br+5) .

The above manipulations make use of the symmetry properties Mppm1...mr = Mpm1...mrp

and Wmrmr−1...m1|p = Wm1...mr|p.

After multiplication by Mi, (6.29) and (6.21) relate the leading terms of pseudoinvari-

ants, so we can directly promote them to their BRST pseudo-completion:

δnpC
npm1...mr

i|B1,...,Br+5
= 2Pm1...mr

i|B1|B2,...,Br+5
+ (B1 ↔ B2, . . . , Br+5) (6.30)

δnpP
npm1...mr

i|A1,...,Ad|B1,...,Bd+r+5
= 2Pm1...mr

i|A1,...,Ad,B1|B2,...,Bd+r+5
+ (B1 ↔ B2, . . . , Bd+r+5) .

This demonstrates that the family of pseudoinvariants defined in (6.15) and recursively

constructed in (6.17) is closed under the trace operation. This is particularly relevant for

their contractions with loop momenta in one-loop amplitudes, see [31].

7. Anomalous BRST invariants

This section is devoted to BRST variations of anomaly blocks such as YA,B,C,D,E given by

(3.3) as well as its generalization to higher rank and refinement, see (4.6) and (6.12). We

are led to BRST-invariant ghost-number-four objects built from MCY
m1...mr

A1,...,Ad|B1,...,Bd+r+5

and momenta. They turn out to share the grid structure of pseudoinvariants in fig. 1, see

fig. 6 for an overview and the subsequent sections for the notation therein.

These anomaly invariants capture the systematics of anomalous BRST variations

of pseudoinvariants. Moreover, we point out close analogies between the Q action on

Jm1...mr

A1,...,Ad|B1,...,Bd+r+3
and Ym1...mr

A1,...,Ad|B1,...,Bd+r+5
. This firstly allows to recycle a lot of results

from previous sections and secondly motivates a more abstract viewpoint on the recursion

for pseudoinvariants which will prove essential for the subsequent sections.
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Fig. 6 Overview of anomaly invariants. The arrows indicate whenever superfields of

different type enter the recursion for the invariants on their right.

7.1. BRST variation of unrefined anomaly blocks

Let us firstly analyze the BRST variations of unrefined anomaly building blocks Ym1...mr

A1,...,Ar+5
.

In the scalar case (3.3),

QYA,B,C,D,E =
∑

XY =A

(MXYY,B,C,D,E −MY YX,B,C,D,E) + (A ↔ B,C,D,E) (7.1)

has the same structure as QMA,B,C in (2.27), and in particular Y1,2,3,4,5 is BRST closed.

The pure spinor constraint guarantees that the first term in QWB given by (2.22) does

not contribute. Starting from the vector building block as in (4.6), we additionally need

the group-theoretic identity18 [4],

(λγm)[α1
(λγp)α2

(λγq)α3
(λγr)α4

γ
pqr

α5α6]
= 0 (7.2)

to prove that

QYm
A,B,C,D,E,F =

∑

XY =A

(MXYm
Y,B,C,D,E,F −MY Y

m
X,B,C,D,E,F )

+ kmAMAYB,C,D,E,F + (A ↔ B,C,D,E, F ) , (7.3)

i.e. the first term of QAm
B = (λγmWB) + . . . drops out from QYm

A,B,C,D,E,F . Note the

direct correspondence of (7.3) with QMm
A,B,C,D given by (2.31). Accordingly, higher-tensor

18 This is a consequence of having no vector representation [1, 0, 0, 0, 0] in the decomposition

[0, 0, 0, 0, 4]⊗ [0, 0, 0, 0, 1]∧6.
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generalizations of QYm
A,B,C,D,E,F can be almost literally borrowed from QMm1...mr

B1,...,Br+3
given

by (4.7) except for one simplification: There is no anomaly analogue of the W
m1...mr−1|mr

B1,...,Br+3

tensor in (4.6) which prevents trace contributions in the following expression,

QYm1...mr

B1,B2,...,Br+5
=

∑

XY =B1

(MXYm1...mr

Y,B2,B3,...,Br+5
−MY Y

m1...mr

X,B2,B3,...,Br+5
)

+ rMB1
k
(m1

B1
Y

m2...mr)
B2,B3,...,Br+5

+ (B1 ↔ B2, . . . , Br+5) . (7.4)

7.2. Unrefined anomaly invariants

We repeat the steps of section 4.3 to recursively construct tensorial BRST invariants Γm1...
i|...

at ghost-number four from anomaly blocks. They are defined by a leading term ∼ Mi,

Γm1...mr

i|A1,A2,...,Ar+5
≡ MiY

m1...mr

A1,A2,...,Ar+5
+

∑

B 6=∅

MiB . . . . (7.5)

The suppressed terms . . . along with multiparticle MiB are also anomalous and can be

found from a recursion relation. To see this, firstly rewrite (7.4) as follows

QYm1...mr

A1,A2,...,Ar+5
= rδ|A1|,1k

(m1

a1
Γ
m2...mr)
a1|A2,...,Ar+5

(7.6)

+Γm1...mr

a1|a2...a|A1|,A2,...,Ar+5
− Γm1...mr

a|A1||a1...a|A1|−1,A2,...,Ar+5
+ (A1 ↔ A2, . . . , Ar+5) ,

which resembles (4.14) for QMm1...mr

A1,...,Ar+3
. Together with (3.8), this implies BRST invariance

of the recursively-generated objects

Γm1...mr

i|A1,A2,...,Ar+5
= MiY

m1...mr

A1,A2,...,Ar+5
+Mi ⊗

[
rδ|A1|,1k

(m1

a1
Γ
m2...mr)
a1|A2,...,Ar+5

(7.7)

+ Γm1...mr

a1|a2...a|A1|,A2,...,Ar+5
− Γm1...mr

a|A1||a1...a|A1|−1,A2,...,Ar+5
+ (A1 ↔ A2, . . . , Ar+5)

]
,

see (4.15) for the non-anomalous counterpart. For example,

Γ1|2,3,4,5,6 = M1Y2,3,4,5,6 (7.8)

Γ1|23,4,5,6,7 = M1Y23,4,5,6,7 +M1 ⊗
[
Γ2|3,4,5,6,7 − Γ3|2,4,5,6,7

]

= M1Y23,4,5,6,7 +M12Y3,4,5,6,7 −M13Y2,4,5,6,7

Γm
1|2,3,4,5,6,7 = M1Y

m
2,3,4,5,6,7 +M1 ⊗

[
km2 Γ2|3,4,5,6,7 + (2 ↔ 3, 4, 5, 6, 7)

]

= M1Y
m
2,3,4,5,6,7 +

[
km2 M12Y3,4,5,6,7 + (2 ↔ 3, 4, 5, 6, 7)

]

furnish the anomaly counterparts of C1|2,3,4, C1|23,4,5 and Cm
1|2,3,4,5 given in (2.41).
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The anomaly invariants in (7.7) allow to concisely describe the anomalous BRST

variations of pseudoinvariants at ghost-number three:

QCm1...mr

i|A1,...,Ar+3
= −

(
r

2

)
δ(m1m2Γ

m3...mr)
i|A1,...,Ar+3

. (7.9)

The anomaly counterpart of this statement is simply

QΓm1...mr

i|A1,...,Ar+5
= 0 , (7.10)

which follows from Q2 = 0. To justify (7.9), it is sufficient to study the anomalous BRST

variation of the leading term MiM
m1...mr

A1,...,Ar+3
in Cm1...mr

i|A1,...,Ar+3
and to promote the resulting

MiY
m1...mp

A1,...,Ap+5
to their BRST invariant completion in (7.5).

7.3. BRST variation of general anomaly blocks

The close parallels between BRST manipulations of building blocks Mm1...mr

A1,...,Ar+3
and

their anomaly counterparts Ym1...mr

A1,...,Ar+5
propagate to their refined versions. This can

be seen by comparing the recursions (6.11) and (6.12) for Jm1...mr

A1,...,Ad|B1,...,Bd+r+3
and

Ym1...mr

A1,...,Ad|B1,...,Bd+r+5
, respectively. The absence of the W

m1...mr−1|mr

A1,...,Ad|B1,...,Bd+r+3
tensor in the

anomalous case implies that there is no higher anomaly image of the Y contribution to

QJ . In particular, the expression (6.3) for QJm1...mr

A|B1,...,Br+4
implies that

QYm1...mr

A|B1,...,Br+6
= k

p
AMAY

pm1...mr

B1,...,Br+6
+

[
MS[A,B1]Y

m1...mr

B2,...,Br+6
+ rk

(m1

B1
MB1

Y
m2...mr)
A|B2,...,Br+6

+
∑

XY=B1

(MXYm1...mr

A|Y,B2,...,Br+6
−MY Y

m1...mr

A|X,B2,...,Br+6
) + (B1 ↔ B2, . . . , Br+6)

]

+
∑

XY =A

(MXYm1...mr

Y |B1,...,Br+6
−MY Y

m1...mr

X|B1,...,Br+6
) . (7.11)

More generally, (6.13) for QJm1...mr

A1,...,Ad|B1,...,Bd+r+3
leads to

QYm1...mr

A1,...,Ad|B1,...,Bd+r+5
=

[
k
p
A1

MA1
Ypm1...mr

A2,...,Ad|B1,...,Bd+r+5
+ (A1 ↔ A2, . . . , Ad)

]

+
[
rk

(m1

B1
MB1

Y
m2...mr)
A1,...,Ad|B2,...,Bd+r+5

+ (B1 ↔ B2, . . . , Bd+r+5)
]

(7.12)

+
[
MS[A1,B1]Y

m1...mr

A2,...,Ad|B2,...,Bd+r+5
+

(
A1 ↔ A2, A3, . . . , Ad

B1 ↔ B2, . . . , Bd+r+5

)]

+
[ ∑

XY =A1

(MXYm1...mr

Y,A2,...,Ad|B1,...,Bd+r+5
−MY Y

m1...mr

X,A2,...,Ad|B1,...,Bd+r+5
) + (A1 ↔ A2, . . . , Ad)

]

+
[ ∑

XY =B1

(MXYm1...mr

A1,...,Ad|Y,B2,...,Bd+r+5
−MY Y

m1...mr

A1,...,Ad|X,B2,...,Bd+r+5
)+(B1 ↔ B2, . . . , Bd+r+5)

]
.

Recall that the S[A,B] map entering MS[A,Bi] is explained in section 5.2 and defined in

(5.14). The H[Ai,Bj ] corrections in the recursion (6.12) for Ym1...mr

A1,...,Ad|B1,...,Bd+r+5
ensure

that any MS[A,Bi] in (7.11) and (7.12) is built from BRST blocks VC rather than V̂C .
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7.4. Refined anomaly invariants

Similar to (7.5), we introduce refined anomaly invariants with a more general leading term,

Γm1...mr

i|A1,...,Ad|B1,...,Bd+r+5
≡ MiY

m1...mr

A1,...,Ad|B1,...,Bd+r+5
+

∑

C 6=∅

MiC . . . . (7.13)

The BRST completion . . . along with multiparticle MiC is built from Y
m1...mp

A1,...,Aq|B1,...,Bp+q+5

and momenta to ensure that QΓm1...mr

i|A1,...,Ad|B1,...,Bd+r+5
= 0. This is the anomaly counterpart

of the pseudoinvariant Pm1...mr

i|A1,...,Ad|B1,...,Bd+r+3
given by (6.15). The definition (7.13) leads

to the following rewriting of (7.12),

QYm1...mr

A1,...,Ad|B1,...,Bd+r+5
=

[
δ|A1|,1k

p
a1
Γpm1...mr

a1|A2,...,Ad|B1,...,Bd+r+5

+Γm1...mr

a1|a2...a|A1|
,A2,...,Ad|B1,...,Bd+r+5

−Γm1...mr

a|A1|
|a1...a|A1|−1,A2,...,Ad|B1,...,Bd+r+5

+(A1 ↔ A2, . . . , Ad)
]

+
[
rδ|B1|,1k

(m1

b1
Γ
m2...mr)
b1|A1,...,Ad|B2,...,Bd+r+5

+ Γm1...mr

b1|A1,...,Ad|b2...b|B1|
,B2,...,Bd+r+5

−Γm1...mr

b|B1|
|A1,...,Ad|b1...b|B1|−1,B2,...,Bd+r+5

+ (B1 ↔ B2, . . . , Bd+r+5)
]
. (7.14)

This in turn suggests a recursion for the most general anomaly invariant in (7.13),

Γm1...mr

i|A1,...,Ad|B1,...,Bd+r+5
= MiY

m1...mr

A1,...,Ad|B1,...,Bd+r+5
(7.15)

+Mi ⊗
{[

δ|A1|,1k
p
a1
Γpm1...mr

a1|A2,...,Ad|B1,...,Bd+r+5
+ Γm1...mr

a1|a2...a|A1|
,A2,...,Ad|B1,...,Bd+r+5

− Γm1...mr

a|A1|
|a1...a|A1|−1,A2,...,Ad|B1,...,Bd+r+5

+ (A1 ↔ A2, . . . , Ad)
]

+
[
rδ|B1|,1k

(m1

b1
Γ
m2...mr)
b1|A1,...,Ad|B2,...,Bd+r+5

+ Γm1...mr

b1|A1,...,Ad|b2...b|B1|,B2,...,Bd+r+5

− Γm1...mr

b|B1|
|A1,...,Ad|b1...b|B1|−1,B2,...,Bd+r+5

+ (B1 ↔ B2, . . . , Bd+r+5)
]}

.

For example

Γ1|2|3,4,5,6,7,8 = M1Y2|3,4,5,6,7,8 + km2 M1 ⊗ Γm
2|3,4,5,6,7,8 (7.16)

= M1Y2|3,4,5,6,7,8 +M12k
m
2 Ym

3,4,5,6,7,8 +
[
s23M123Y4,5,6,7,8 + (3 ↔ 4, . . . , 8)

]
.

Note that (7.14) and (7.15) resemble the derivation of pseudoinvariants Pm1...mr

i|A1,...,Ad|B1,...,Bd+r+3

via (6.16) and (6.17), and the example (7.16) is the anomaly counterpart of P1|2|3,4,5,6 given

in (5.22).

The ghost-number-four invariants (7.15) describe the anomalous BRST transformation

QPm1...mr

i|A1,...,Ad|B1,...,Bd+r+3
= −

(
r

2

)
δ(m1m2Γ

m3...mr)
i|A1,...,Ad|B1,...,Bd+r+3

(7.17)

−
[
Γm1...mr

i|A2,...,Ad|A1,B1,...,Bd+r+3
+ (A1 ↔ A2, . . . , Ad)

]
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with anomaly counterpart

QΓm1...mr

i|A1,...,Ad|B1,...,Bd+r+5
= 0 . (7.18)

The former can be see from the BRST variation of the leading termMiJ
m1...mr

A1,...,Ad|B1,...,Bd+r+3

in Pm1...mr

i|A1,...,Ad|B1,...,Bd+r+3
where any MiY

m1...mp

A1,...,Aq |B1,...,Bp+q+5
is identified as a leading term

in (7.13) and promoted to its completion Γ
m1...mp

i|A1,...,Aq|B1,...,Bp+q+5
.

7.5. Anomaly trace relations

The analysis of trace relations in section 6.5 straightforwardly carries over to anoma-

lous building blocks. As before, the H[A,B] corrections in the definition (6.12) of

Ym1...mr

A1,...,Ad|B1,...,Bd+r+5
drop out in the combinations on the right-hand side of

δnpY
npm1...mr

A1,...,Ad|B1,...,Bd+r+7
= 2Ym1...mr

A1,...,Ad,B1|B2,...,Bd+r+7
+ (B1 ↔ B2, . . . , Bd+r+7) . (7.19)

The inductive proof for the non-anomalous counterpart (6.21) fits to the present setting

after trivial adjustments – adding two extra slots and suppressing the Wm1...
... contribution.

Similar to (6.30), one can uplift Mi times (7.19) to the BRST completions,

δnpΓ
npm1...mr

i|A1,...,Ad|B1,...,Bd+r+7
= 2Γm1...mr

i|A1,...,Ad,B1|B2,...,Bd+r+7
+ (B1 ↔ B2, . . . , Bd+r+7) , (7.20)

consistent with the BRST variations in (7.17).

8. Generalizing the recursion scheme

In sections 4 to 6, we have built up a grid of BRST pseudo-invariant objects of ghost

number three whose structure is summarized in fig. 1. As we have seen in section 7 and

in particular fig. 6, the grid of pseudoinvariants has a straightforward extension to the

anomaly sector at ghost-number four with two further slots. Given the almost identical re-

cursion relations (6.17) and (7.15) for the BRST (pseudo-)invariants Pm1...mr

i|A1,...,Ad|B1,...,Bd+r+3

and Γm1...mr

i|A1,...,Ad|B1,...,Bd+r+5
, it is natural to embed these two cases into a unified framework.

We will do so in section 8.1 by promoting (6.17) and (7.15) to a “master recursion”.

The latter points towards further special cases besides Pm1...
i|... and Γm1

i|.... In sections 8.2

and 8.3, we are led to two families of ghost-number-two objects, and their anomalous

counterparts at ghost-number three are discussed in subsection 8.4 and 8.5. Each of these

four cases exhibits a grid structure almost identical to fig. 1 and fig. 6. The superficial
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disparity in the number of unrefined slots Bi is taken care of as an integer parameter of

the master recursion.

As a major benefit of the ghost-number-two families described in sections 8.2 and

8.3, their BRST variation generates a rich network of relations among pseudoinvariants,

beyond the trace identities in section 6.5,

Q(ghost-number-two object) = ghost-number-three relation . (8.1)

These BRST-exact relations turn out to connect momentum contractions kpBi
P

pm1...

i|... with

pseudoinvariants of lower rank. For example, the five-point combinations

km1 Cm
1|2,3,4,5 , km2 Cm

1|2,3,4,5 + s23C1|23,4,5 + s24C1|24,3,5 + s25C1|25,3,4 (8.2)

will be identified as BRST-exact if momentum conservation km12345 = 0 holds. As will be

detailed in sections 9 and 10, the master recursion in section 8.1 systematically constructs

the required ghost-number-two superfields which generate meaningful relations via (8.1).

8.1. The master recursion

The purpose of this section is to unify the almost identical recursions (6.17) and

(7.15) for the BRST (pseudo-)invariants Pm1...mr

i|A1,...,Ad|B1,...,Bd+r+3
and anomaly invariants

Γm1...mr

i|A1,...,Ad|B1,...,Bd+r+5
. The superficial difference set by the number three and five of unre-

fined slots in the simplest constituents MA,B,C and YA,B,C,D,E is described by an integer

parameter. This amounts to replacing the superfields by an abstract symbol UA1,A2,...,AN

with a variable number N of slots.

In the same way as MA,B,C and YA,B,C,D,E have been generalized to arbitrary rank r

and refinement d, we introduce formal symbols at all values of d and r,

Jm1...mr

A1,...,Ad|B1,...,Bd+r+3
, Ym1...mr

A1,...,Ad|B1,...,Bd+r+5
→ Um1...mr

A1,...,Ad|B1,...,Bd+r+N
. (8.3)

They are defined to be symmetric in mi, Ai, Bi but not under exchange of Ai ↔ Bj, so

they may be identified with Jm1...mr

A1,...,Ad|B1,...,Bd+r+3
and Ym1...mr

A1,...,Ad|B1,...,Bd+r+5
if N = 3 and

N = 5, respectively. In terms of the standard Berends–Giele currents MA and the symbol

in (8.3), we recursively define abstract tensors

R
(N), m1...mr

i|A1,...,Ad|B1,...,Bd+r+N
≡ MiU

m1...mr

A1,...,Ad|B1,...,Bd+r+N

+Mi ⊗
{[

δ|A1|,1k
p
a1
R

(N), pm1...mr

a1|A2,...,Ad|B1,...,Bd+r+N
+R

(N), m1...mr

a1|a2...a|A1|
,A2,...,Ad|B1,...,Bd+r+N

−R
(N), m1...mr

a|A1|
|a1...a|A1|−1,A2,...,Ad|B1,...,Bd+r+N

+ (A1 ↔ A2, . . . , Ad)
]

+
[
rδ|B1|,1k

(m1

b1
R

(N), m2...mr)
b1|A1,...,Ad|B2,...,Bd+r+N

+R
(N),m1...mr

b1|A1,...,Ad|b2...b|B1|,B2,...,Bd+r+N

−R
(N), m1...mr

b|B1|
|A1,...,Ad|b1...b|B1|−1,B2,...,Bd+r+N

+ (B1 ↔ B2, . . . , Bd+r+N )
]}

. (8.4)
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The following two specializations reproduce the known recursions (6.17) and (7.15):

Pm1...mr

i|A1,...,Ad|B1,...,Bd+r+3
= R

(N=3), m1...mr

i|A1,...,Ad|B1,...,Bd+r+3
[U ...

... → J ...
... ] (8.5)

Γm1...mr

i|A1,...,Ad|B1,...,Bd+r+5
= R

(N=5), m1...mr

i|A1,...,Ad|B1,...,Bd+r+5
[U ...

... → Y ...
... ] . (8.6)

The simplest examples for the generalized R
(N),...
i|... are

R
(N)
1|2,3,...,N+1 = M1U2,3,...,N+1 (8.7)

R
(N)
1|23,4,...,N+2 = M1U23,4,...,N+2 +M12U3,4,...,N+2 −M13U2,4,...,N+2 (8.8)

R
(N), m
1|2,3,...,N+2 = M1U

m
2,3,...,N+2 +

[
km2 M12U3,4,...,N+2 + (2 ↔ 3, 4, . . . , N + 2)

]
(8.9)

R
(N)
1|2|3,...,N+3 = M1U2|3,4,...,N+3 +M12k

m
2 Um

3,4,...,N+3

+
[
s23M123U4,...,N+3 + (3 ↔ 4, 5, . . . , N + 3)

]
. (8.10)

The right-hand sides obviously specialize to familiar expressions such as

• (2.41) and (5.22) for C1|2,3,4, C1|23,4,5, C
m
1|2,3,4,5 and P1|2|3,4,5,6 under (8.5)

• (7.8) and (7.16) for Γ1|2,3,4,5,6,Γ1|23,4,5,6,7,Γ
m
1|2,3,4,5,6,7 and Γ1|2|3,4,5,6,7,8 under (8.6).

In the following sections, we consider the abstract tensors R
(N),...
i|... in (8.4) at values N =

2, 4, 6. In order to accommodate this with the number of slots of U ∈ {J ,Y}, we have

to eliminate the Berends–Giele currents MA and adjoin the word A to the slots of the

accompanying symbol. In the non-anomalous case U = J , this gives rise to ghost-number-

two objects, and the anomalous choice U = Y yields ghost number three. Moreover, the

word A from the eliminated MA can become either a refined or a non-refined slot of the

symbol, leading to UA,...|... or U...|A,.... These two independent choices yield a total of four

new families of superfields whose notation and schematic form is summarized by

D...
i|... ≡ R

(N=2), ...
i|... [MAU

...
{Bj}|{Cj}

→ J ...
{Bj}|A,{Cj}

] (8.11)

L...
i|... ≡ R

(N=4), ...
i|... [MAU

...
{Bj}|{Cj}

→ J ...
A,{Bj}|{Cj}

] (8.12)

∆...
i|... ≡ R

(N=4), ...
i|... [MAU

...
{Bj}|{Cj}

→ Y ...
{Bj}|A,{Cj}

] (8.13)

Λ...
i|... ≡ R

(N=6), ...
i|... [MAU

...
{Bj}|{Cj}

→ Y ...
A,{Bj}|{Cj}

] . (8.14)

The precise definitions and simplest examples are given in the following subsections.
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8.2. The D-superfields at ghost-number two

As a first avenue towards BRST generators at ghost number two, we consider the tensors

R
(N),...
i|... in (8.4) at N = 2 and convert the word A associated with MA to a non-refined slot

of the associated symbol U → J . As sketched in (8.11), this gives rise to the definition

Dm1...mr

i|B1,...,Bd|C1,...,Cd+r+2
≡ R

(N=2),m1...mr

i|B1,...,Bd|C1,...,Cd+r+2
[MAU

...
{Fj}|{Gj}

→ J ...
{Fj}|A,{Gj}

] .(8.15)

The replacement rule in (8.15) converts the formal objects (8.7), (8.8), (8.9) and (8.10) to

D1|2,3 = M1,2,3 , (8.16)

D1|23,4 = M12,3,4 +M1,23,4 +M31,2,4 ,

Dm
1|2,3,4 = Mm

1,2,3,4 + km2 M12,3,4 + km3 M13,2,4 + km4 M14,2,3 ,

D1|2|3,4,5 = J2|1,3,4,5 + km2 Mm
12,3,4,5 +

[
s23M123,4,5 + (3 ↔ 4, 5)

]
.

In the next section 9, these ghost-number-two objects and their generalizations are shown

to serve as powerful BRST generators in the sense of (8.1).

8.3. The L-superfields at ghost-number two

The N = 4 version of the R
(N),...
i|... in (8.4) allows to convert the word A associated with

MA to a refined slot of the associated symbol U → J . The precise form of the definition

sketched in (8.12) is

Lm1...mr

i|B1,...,Bd|C1,...,Cd+r+4
≡ R

(N=4), m1...mr

i|B1,...,Bd|C1,...,Cd+r+4
[MAU

...
{Fj}|{Gj}

→ J ...
A,{Fj}|{Gj}

] . (8.17)

Starting from the examples in (8.7) to (8.10), the prescription (8.17) yields

L1|2,3,4,5 = J1|2,3,4,5 (8.18)

L1|23,4,5,6 = J1|23,4,5,6 + J12|3,4,5,6 −J13|2,4,5,6

Lm
1|2,3,4,5,6 = Jm

1|2,3,4,5,6 +
[
km2 J12|3,4,5,6 + (2 ↔ 3, 4, 5, 6)

]

L1|2|3,4,5,6,7 = J1,2|3,4,5,6,7 + km2 Jm
12|3,4,5,6,7 +

[
s23J123|4,5,6,7 + (3 ↔ 4, 5, 6, 7)

]
.

These superfields of ghost-number two serve as another family of BRST generators, see

section 10.
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8.4. The ∆-superfields at ghost-number three

Another specialization of the R
(N),...
i|... in (8.4) to N = 4 generates anomalous superfields.

In this case, the word A associated with MA is adjoined to the non-refined slots of the

associated symbol U → Y . As sketched in (8.13), this gives rise to the definition

∆m1...mr

i|B1,...,Bd|C1,...,Cd+r+4
≡ R

(N=4),m1...mr

i|B1,...,Bd|C1,...,Cd+r+4
[MAU

...
{Fj}|{Gj}

→ Y ...
{Fj}|A,{Gj}

] ,(8.19)

which can be viewed as the anomaly counterparts of Dm1...mr

i|B1,...,Bd|C1,...,Cd+r+2
in (8.15).

Applying the replacement rule (8.19) to the examples in (8.7) to (8.10), one arrives at

∆1|2,3,4,5 = Y1,2,3,4,5 (8.20)

∆1|23,4,5,6 = Y1,23,4,5,6 + Y12,3,4,5,6 −Y13,2,4,5,6 (8.21)

∆m
1|2,3,4,5,6 = Ym

1,2,3,4,5,6 +
[
km2 Y12,3,4,5,6 + (2 ↔ 3, 4, 5, 6)

]
(8.22)

∆1|2|3,4,5,6,7 = Y2|1,3,4,5,6,7 + km2 Ym
12,3,4,5,6,7 +

[
s23Y123,4,5,6,7 + (3 ↔ 4, 5, 6, 7)

]
,(8.23)

which can be easily recognized as the anomaly analogues of (8.16).

8.5. The Λ-superfields at ghost-number three

Finally, there is a N = 6 version of the R
(N),...
i|... in (8.4) where the word A associated with

MA becomes a refined slot of the symbol U → Y . The resulting anomalous superfields were

sketched in (8.14) and are more cleanly defined as

Λm1...mr

i|B1,...,Bd|C1,...,Cd+r+6
≡ R

(N=6),m1...mr

i|B1,...,Bd|C1,...,Cd+r+6
[MAU

...
{Fj}|{Gj}

→ Y ...
A,{Fj}|{Gj}

] .(8.24)

This is the anomaly counterpart of the objects Lm1...mr

i|B1,...,Bd|C1,...,Cd+r+4
in (8.17).

Under the prescription in (8.24), the examples in (8.7) to (8.10) are mapped to

Λ1|2,3,4,5,6,7 = Y1|2,3,4,5,6,7 (8.25)

Λ1|23,4,5,6,7,8 = Y1|23,4,5,6,7,8 + Y12|3,4,5,6,7,8 − Y13|2,4,5,6,7,8 (8.26)

Λm
1|2,3,4,5,6,7,8 = Ym

1|2,3,4,5,6,7,8 +
[
km2 Y12|3,4,5,6,7,8 + (2 ↔ 3, . . . , 8)

]
(8.27)

Λ1|2|3,4,5,6,7,8,9 = Y1,2|3,4,5,6,7,8,9 + km2 Ym
12|3,4,5,6,7,8,9

+
[
s23Y123|4,5,6,7,8,9 + (3 ↔ 4, . . . , 9)

]
. (8.28)

They can be quickly seen to furnish the anomaly counterparts of (8.18).
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9. Pseudoinvariant relations for kB momentum contractions

The main concern in this paper is to systematically study the properties of and relations

among the pseudoinvariants Pm1...
i|... which carry the polarization dependence of one-loop

amplitudes. In the previous section, we have constructed two families of ghost-number-two

superfields whose BRST variations will be demonstrated to generate relations among the

Pm1...
i|... .

Recall that pseudoinvariants Pm1...
i|... single out a reference leg i which always enter

through a Berends–Giele current of type Mi... and which is represented by an unintegrated

vertex Vi in the one-loop amplitude prescription [4]. The ghost-number-two generators

of relations among pseudoinvariants in (8.1) must be carefully chosen in order to avoid

admixtures of pseudoinvariants Pm1...
k 6=i|... with a different reference leg k 6= i.

It turns out that both the D superfields from section 8.2 and the L superfields

from section 8.3 satisfy this criterion, see (8.15) and (8.17) for their precise defini-

tions. BRST variations of type QD are systematically analyzed in the present section,

and section 10 is devoted to QL. We will see how the ghost-number-three expression

for QDm1...mr

i|A1,...,Ad|B1,...,Bd+r+2
relates momentum contractions knBj

Pnm2...mr

i|A1,...,Ad|B1,...,Bd+r+3
to

pseudoinvariants at lower rank. These relations are crucial to translate the SYM one-loop

amplitudes presented in [31] into worldline parametrization and to make contact with their

string theory ancestors.

9.1. BRST-exactness versus momentum phase space

As a starting point, we investigate the Q action on unrefined D superfields Dm1...mr

i|A1,...,Ar+2

such as the simplest examples given in (8.16). For scalars and vectors, we find

QDi|A,B = 0 (9.1)

QDm
i|A,B,C = kmiABCCi|A,B,C (9.2)

with overall momentum kmiABC ≡ kmi + kmA + kmB + kmC . This can be verified case by case

using the BRST variations (2.35) and (2.36) for each MA,B,C and Mm
A,B,C,D occurring in

Di|A,B and Dm
i|A,B,C , respectively. Analogous methods are used in all the subsequent cases

when Q variations are computed.

Contracting (9.2) with any momentum, one can solve for Ci|A,B,C ,

Ci|A,B,C = Q

[
kimDm

i|A,B,C

(ki · kiABC)

]
, (9.3)
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i.e. Ci|A,B,C is BRST exact unless ki ·kiABC = 0. Note, however, that momentum conserva-

tion kmiABC = 0 in an n-point amplitude (with n = 1+ |A|+ |B|+ |C|) implies ki ·kiABC = 0

and renders the right-hand side of (9.3) ill-defined. Hence, momentum phase space con-

straints for n massless particles save Ci|A,B,C from being BRST exact and preserve its

cohomological nature in n point amplitudes.

This is analogous to the superspace representation
∑n−2

j=1 M12...jMj+1...n−1Vn of color

ordered SYM tree amplitudes [17]. This expression can be rewritten as Q(M12...n−1Vn) as

long as the overall propagator M12...n−1 ∼ s−1
12...n−1 does not diverge. Again, n particle

momentum conservation implying s12...n−1 = 0 is essential to avoid BRST exactness of the

tree amplitude.

In both cases, the cohomology nature of BRST-closed kinematic factors crucially de-

pends on vanishing conformal weight h ∼ s12...n. Recall that in a topological conformal

field theory where Qb0 = L0, the cohomology at non-zero conformal weight is empty since

every BRST-closed operator would also be BRST-exact [42],

Qφ = 0 , L0φ = hφ , h 6= 0 ⇒ φ = Q
(b0φ

h

)
. (9.4)

Starting from rank two, the Q transformations of Dm1m2...mr

i|A1,...,Ar+2
additionally give rise to

anomalous superfields ∆
m1...mp

i|A1,...,Ap+4
defined in (8.19), e.g.

QDmn
i|A,B,C,D = δmn∆i|A,B,C,D + 2k

(m
iABCDC

n)
i|A,B,C,D

, (9.5)

and more generally,

QDm1m2...mr

i|A1,...,Ar+2
=

(
r

2

)
δ(m1m2∆

m3m4...mr)
i|A1,...,Ar+2

+ rk
(m1

iA1...Ar+2
C

m2m3...mr)
i|A1,...,Ar+2

. (9.6)

As a consequence, the identification of BRST-exact quantities crucially depends on the

momentum phase space. In case of momentum conservation kmiA1...Ar+2
= 0, (9.6) implies19

Q exactness of the anomalous superfield ∆
m1...mp

i|A1,...,Ap+4
, hence the latter does not contribute

to physical amplitudes at multiplicity 1 +
∑p−4

j=1 |Aj|. However, it is important to stress

that the hexagon gauge anomaly superfield ∆2|3,4,5,6 = Y2,3,4,5,6 in the one-loop six-point

19 At rank r = 2 and r = 3, BRST exactness of ∆i|A,B,C,D and ∆m
i|A,B,C,D,E immediately

follows from single traces of (9.6) at km
iA1...Ar+2

= 0. Higher rank r ≥ 4 requires combinations of

multiple δmimj
contractions in order to identify the BRST generator of ∆

m1...mp

i|A1,...,Ap+4
at any rank.
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amplitude [26] is not BRST exact for the momentum phase space of six particles since

km23456 is not zero.

On the other hand, generic momentum configurations with kmiA1...Ar+2
6= 0 render the

traceless components of pseudoinvariants Cm1m2...mr

i|A1,...,Ar+3
BRST exact. This can be seen from

the traceless projection of (9.6), see (E.2) in appendix E for the explicit form of the BRST

generator for Cm
i|A,B,C,D.

The correspondence between the pseudoinvariants Cm1m2...mr

i|A1,...,Ar+3
and the anomaly in-

variants Γm1m2...mr

i|A1,...,Ar+5
described in section 7 and formalized in section 8.1 allows to imme-

diately write down the anomaly correspondent of (9.6):

Q∆m1m2...mr

i|A1,...,Ar+4
= rk

(m1

iA1...Ar+4
Γ
m2m3...mr)
i|A1,...,Ar+4

. (9.7)

We exploit that ∆m1m2...mr

i|A1,...,Ar+4
is the anomaly counterpart of Dm1m2...mr

i|A1,...,Ar+2
which, loosely

speaking, does not have a higher anomaly image. Of course, (9.7) confirms that momen-

tum conservation kmiA1...Ar+4
= 0 implies BRST closure of ∆m1m2...mr

i|A1,...,Ar+4
, in lines with the

discussion of BRST exactness along with (9.6).

9.2. Momentum contractions of unrefined pseudoinvariants

Refined versions of the D superfields turn out to generate a much richer set of ghost

number three relations than their unrefined counterparts studied in section 9.1. We start

by exploring the case of minimal refinement d = 1 and will find that QDm1...mr

i|A|B1,...,Br+3

relates momentum contractions ∼ kAj
of Cm1...mr

i|A1,...,Ar+3
to pseudoinvariants at lower rank.

As a first example, consider the inequivalent cases at five- and six-points,

QD1|2|3,4,5 = ∆1|2,3,4,5 + km2 Cm
1|2,3,4,5 +

[
s23C1|23,4,5 + (3 ↔ 4, 5)

]
(9.8)

QD1|23|4,5,6 = ∆1|23,4,5,6 + P1|3|2,4,5,6 − P1|2|3,4,5,6 + km23C
m
1|23,4,5,6

+
[
s34C1|234,5,6 − s24C1|324,5,6 + (4 ↔ 5, 6)

]

QD1|4|23,5,6 = ∆1|23,4,5,6 + km4 Cm
1|23,4,5,6 + s24C1|324,5,6 − s34C1|234,5,6

+ s45C1|23,45,6 + s46C1|23,46,5 ,

where (9.8) underpins the second example in (8.2) provided that momentum conservation

km12345 = 0 renders ∆1|2,3,4,5 BRST exact.

The combinations of sijC1|A,B,C can be neatly described using the S[A,B] map in

(5.14), see in particular (5.13) for examples. The seven-point instances of QD1|A|B,C,D
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displayed in (E.3) to (E.6) support this pattern and help to identify the appearance of

P1|A|B,C,D,E as deconcatenations. These observations lead to the following generalization,

QDi|A|B,C,D = ∆i|A,B,C,D + kmACm
i|A,B,C,D +

∑

XY =A

(Pi|Y |X,B,C,D − Pi|X|Y,B,C,D)

+ Ci|S[A,B],C,D + Ci|S[A,C],B,D + Ci|S[A,D],B,C . (9.9)

Note that QDi|A|B,C,D always generates relations for contractions of Cm
i|A,B,C,D with the

entire momentum kmA =
∑|A|

j=1 k
m
aj

in the slot A = a1a2 . . . a|A|. This method does not

provide any information on contractions with partial slot momenta, e.g. kma1
Cm

i|A,B,C,D

with |A| ≥ 2.

It is natural to repeat the BRST manipulations for vectorial D superfields such as

QDm
1|2|3,4,5,6 = ∆m

1|2,3,4,5,6 + k2pC
mp

1|2,3,4,5,6 + (km123456 − km2 )P1|2|3,4,5,6 (9.10)

+ s23C
m
1|23,4,5,6 + s24C

m
1|24,3,5,6 + s25C

m
1|25,3,4,6 + s26C

m
1|26,3,4,5

QDm
1|23|4,5,6,7 = ∆m

1|23,4,5,6,7 + k
p
23C

mp

1|23,4,5,6,7 + (km1234567 − km23)P1|23|4,5,6,7

− Pm
1|2|3,4,5,6,7 + Pm

1|3|2,4,5,6,7 +
[
s34C

m
1|234,5,6,7 − s24C

m
1|324,5,6,7 + (4 ↔ 5, 6, 7)

]

QDm
1|4|23,5,6,7 = ∆m

1|23,4,5,6,7 + k
p
4C

mp

1|23,4,5,6,7 + (km1234567 − km4 )P1|4|23,5,6,7

+ s24C
m
1|324,5,6,7 − s34C

m
1|234,5,6,7 +

[
s45C

m
1|23,45,6,7 + (5 ↔ 6, 7)

]

which can be summarized by a general formula similar to the scalar case in (9.9),

QDm
i|A|B,C,D,E = ∆m

i|A,B,C,D,E + k
p
AC

pm

i|A,B,C,D,E
+ (kmiABCDE − kmA )Pi|A|B,C,D,E

+
[
Cm

i|S[A,B],C,D,E + (B ↔ C,D,E)
]
+

∑

XY=A

(Pm
i|Y |X,B,C,D,E − Pm

i|X|Y,B,C,D,E) . (9.11)

Tensorial generalizations at rank r ≥ 2 additionally involve refined versions of the anoma-

lous ∆ superfields in (8.19). The simplest example occurs at seven points,

QDmn
1|2|3,4,5,6,7 = ∆mn

1|2,3,4,5,6,7 + δmn∆1|2|3,4,5,6,7 + k
p
2C

mnp

1|2,3,4,5,6,7 (9.12)

+ 2(k
(m
1234567 − k

(m
2 )P

n)
1|2|3,4,5,6,7 +

[
s23C

mn
1|23,4,5,6,7 + (3 ↔ 4, 5, 6, 7)

]
,

where ∆1|2|3,4,5,6,7 is given by (8.23). The structure of the scalar and vector cases (9.9)

and (9.11) inspires the following generalization of (9.12) to multiparticle slots:

QDmn
i|A|B,C,D,E,F = ∆mn

i|A,B,C,D,E,F + δmn∆i|A|B,C,D,E,F + k
p
AC

mnp

i|A,B,C,D,E,F

+ 2(k
(m
iABCDEF − k

(m
A )P

n)
i|A|B,C,D,E,F

+
[
Cmn

i|S[A,B],C,D,E,F + (B ↔ C,D,E, F )
]

+
∑

XY=A

(Pmn
i|Y |X,B,C,D,E,F − Pmn

i|X|Y,B,C,D,E,F ) . (9.13)
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This in turn allows to infer the BRST variation of Dm1...
i|A|... superfields at generic rank:

QDm1m2...mr

i|A|B1,...,Br+3
= ∆m1m2...mr

i|A,B1,...,Br+3
+

(
r

2

)
δ(m1m2∆

m3...mr)
i|A|B1,...,Br+3

+ k
p
AC

pm1...mr

i|A,B1,...,Br+3

+ r(k
(m1

iAB1...Br+3
− k

(m1

A )P
m2...mr)
i|A|B1,...,Br+3

+
[
Cm1...mr

i|S[A,B1],B2,...,Br+3
+ (B1 ↔ B2, . . . , Br+3)

]

+
∑

XY =A

(Pm1...mr

i|Y |X,B1,...,Br+3
− Pm1...mr

i|X|Y,B1,...,Br+3
) . (9.14)

Recall that momentum conservation kmiA1...Ar+4
= 0 implies BRST exactness of the un-

refined representatives ∆m1...mr

i|A1,...,Ar+4
of the anomalous ∆ superfields. Hence, the latter do

not contribute when the relations (9.9), (9.11), (9.13) and (9.14) are applied to physical

amplitudes. However, the situation is completely different for their refined counterparts

∆m1...mr

i|A|B1,...,Br+5
. As will be demonstrated in the following, refined ∆ superfields are not

BRST closed, regardless of momentum phase space constraints, so Q exactness can be

clearly ruled out. Starting from seven points, refined anomaly superfields ∆m1...mr

i|A|B1,...,Br+5

at ghost-number three cannot be discarded in the discussion of one-loop amplitudes, see

[31].

The ghost-number-four expression for Q∆m1...mr

i|A|B1,...,Br+5
can be inferred by analogy

with (9.9) to (9.14). Since (8.19) identifies ∆m1...mr

i|A|B1,...,Br+5
to be the anomaly counterpart

of Dm1m2...mr

i|A|B1,...,Br+3
, the BRST transformation of the former follows from (9.9) and (9.14)

upon discarding anomalous terms and converting Cm1...
i|... , Pm1...

i|... → Γm1...
i|... :

Q∆i|A|B,...,F = kmA Γm
i|A,B,...,F +

∑

XY =A

(Γi|Y |X,B,...,F − Γi|X|Y,B,...,F )

+
[
Γi|S[A,B],C,D,E,F + (B ↔ C,D,E, F )

]
(9.15)

Q∆m1m2...mr

i|A|B1,...,Br+5
= k

p
AΓ

pm1...mr

i|A,B1,...,Br+5
+ r(k

(m1

iAB1...Br+5
− k

(m1

A )Γ
m2...mr)
i|A|B1,...,Br+5

+
[
Γm1...mr

i|S[A,B1],B2,...,Br+5
+ (B1 ↔ B2, . . . , Br+5)

]

+
∑

XY =A

(Γm1...mr

i|Y |X,B1,...,Br+5
− Γm1...mr

i|X|Y,B1,...,Br+5
) . (9.16)

Together with expressions for QCm1...
i|... and QPm1...

i|... in (7.9) and (7.17), one can check

BRST closure of the right-hand side of (9.9) and (9.14).
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9.3. Momentum contractions of refined pseudoinvariants

The procedure from the previous section is now extended to higher refinement. In the

simplest scalar cases at seven- and eight-points, we find

QD1|2,3|4,5,6,7 = ∆1|2|3,4,5,6,7 +∆1|3|2,4,5,6,7 + km3 Pm
1|2|3,4,5,6,7 + km2 Pm

1|3|2,4,5,6,7

+
[
s34P1|2|34,5,6,7 + s24P1|3|24,5,6,7 + (4 ↔ 5, 6, 7)

]
(9.17)

QD1|23,4|5,6,7,8 = ∆1|23|4,5,6,7,8 +∆1|4|23,5,6,7,8 + km23P
m
1|4|23,5,6,7,8 + km4 Pm

1|23|4,5,6,7,8

+
[
s35P1|4|235,6,7,8 − s25P1|4|325,6,7,8 + s45P1|23|45,6,7,8 + (5 ↔ 6, 7, 8)

]

− P1|2,4|3,5,6,7,8 + P1|3,4|2,5,6,7,8

QD1|4,5|23,6,7,8 = ∆1|4|23,5,6,7,8 +∆1|5|23,4,6,7,8 + km4 Pm
1|5|23,4,6,7,8 + km5 Pm

1|4|23,5,6,7,8

+ s24P1|5|324,6,7,8 − s34P1|5|234,6,7,8 + s25P1|4|325,6,7,8 − s35P1|4|235,6,7,8

+
[
s46P1|5|23,46,7,8 + s56P1|4|23,56,7,8 + (6 ↔ 7, 8)

]
,

signaling the general rule

QDi|A,B|C,D,E,F = ∆i|A|B,C,D,E,F +∆i|B|A,C,D,E,F + kmAPm
i|B|A,C,D,E,F

+kmBPm
i|A|B,C,D,E,F +

[
Pi|A|S[B,C],D,E,F + Pi|B|S[A,C],D,E,F + (C ↔ D,E, F )

]
(9.18)

+
∑

XY =A

(P1|Y,B|X,C,D,E,F − P1|X,B|Y,C,D,E,F ) +
∑

XY =B

(P1|Y,A|X,C,D,E,F − P1|X,A|Y,C,D,E,F ) .

Given the appearance of two different momentum contractions kmAPm
i|B|A,... and kmBPm

i|A|B,...,

(9.18) can be viewed as a weaker result in comparison to the relations in section 9.2 for a

single k
p
AC

pm1...

i|A,...
.

Recall that tensorial superfields Dm1...
i|A|B1,...

give rise to additional terms ∼ km, δmn

absent in the scalar case, see (9.11), (9.13) and (9.14). The same kind of contributions

appear in the vector and tensor generalization of (9.18), e.g.

QDm
1|2,3|4,...,8 = ∆m

1|2|3,...,8 +∆m
1|3|2,4,...,8 + k

p
3P

mp

1|2|3,...,8 + k
p
2P

mp

1|3|2,4,...,8

+
[
s34P

m
1|2|34,5,...,8 + s24P

m
1|3|24,5,...,8 + (4 ↔ 5, . . . , 8)

]

+ (km12345678 − km23)P1|2,3|4,...,8 , (9.19)

QDmn
1|2,3|4,...,9 = ∆mn

1|2|3,...,9 +∆mn
1|3|2,4,...,9 + δmn∆1|2,3|4,...,9 + k

p
3P

mnp

1|2|3,...,9

+ k
p
2P

mnp

1|3|2,4,...,9 +
[
s34P

mn
1|2|34,5,...,9 + s24P

mn
1|3|24,5,...,9 + (4 ↔ 5, . . . , 9)

]

+ 2(k
(m
123456789 − k

(m
23 )P

n)
1|2,3|4,...,9 . (9.20)
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This allows to anticipate the multiparticle version at general rank,

QDm1...mr

i|A,B|C1,...,Cr+4
= ∆m1...mr

i|A|B,C1,...,Cr+4
+∆m1...mr

i|B|A,C1,...,Cr+4
+

(
r

2

)
δ(m1m2∆

m3...mr)
i|A,B|C1,...,Cr+4

+
[
Pm1...mr

i|A|S[B,C1],C2,...,Cr+4
+ Pm1...mr

i|B|S[A,C1],C2,...,Cr+4
+ (C1 ↔ C2, . . . , Cr+4)

]

+ r(k
(m1

iABC1...Cr+4
− k

(m1

AB )P
m2...mr)
i|A,B|C1,...,Cr+4

+ k
p
AP

pm1...mr

i|B|A,C1,...,Cr+4
+ k

p
BP

pm1...mr

i|A|B,C1,...,Cr+4

−
∑

XY =A

(Pm1...mr

i|X,B|Y,C1...Cr+4
− Pm1...mr

i|Y,B|X,C1...Cr+4
)

−
∑

XY =B

(Pm1...mr

i|A,X|Y,C1...Cr+4
− Pm1...mr

i|A,Y |X,C1...Cr+4
) , (9.21)

where the deconcatenation terms ∼
∑

XY =A,B follow by analogy with (9.18). In com-

parison to the counterpart (9.14) of lower refinement, terms of the form ∆m1...mr

i|A|B,C1,...
,

rk
(m1

A P
m2...mr)
i|A,B|C1,...

, kpAP
pm1...mr

i|B|A,C1,...
, Pm1...mr

i|A|S[B,C1],C2,...
and

∑
XY=A . . . are doubled in (9.21).

This suggests the following BRST variation for D superfields at general refinement,

QDm1...mr

i|A1,...,Ad|B1,...,Br+d+2
=

[
∆m1...mr

i|A2,...,Ad|A1,B1,...,Br+d+2
+ (A1 ↔ A2, . . . , Ad)

]

+

(
r

2

)
δ(m1m2∆

m3...mr)
i|A1,...,Ad|B1,...,Br+d+2

+ rk
(m1

iB1B2...Br+d+2
P

m2...mr)
i|A1,...,Ad|B1,...,Br+d+2

(9.22)

+
(
k
p
A1

P
pm1...mr

i|A2,...,Ad|A1,B1,...,Br+d+2
+

[
Pm1...mr

i|A2,...,Ad|S[A1,B1],B2,...,Br+d+2
+ (B1 ↔ B2, . . . , Br+d+2)

]

−
∑

XY =A1

(Pm1...mr

i|X,A2,...,Ad|Y,B1,...,Br+d+2
− Pm1...mr

i|Y,A2,...,Ad|X,B1,...,Br+d+2
) + (A1 ↔ A2, . . . , Ad)

)
.

Again, we can directly infer the BRST variation of the anomalous counterparts ∆m1...
i|... by

discarding their appearance in the right-hand side of (9.22) and replacing the remaining

terms via Cm1...
i|... , Pm1...

i|... → Γm1...
i|... :

Q∆m1...mr

i|A1,...,Ad|B1,...,Br+d+4
= rk

(m1

1B1B2...Br+d+4
Γ
m2...mr)
i|A1,...,Ad|B1,...,Br+d+4

(9.23)

+
(
k
p
A1

Γpm1...mr

i|A2,...,Ad|A1,B1,...,Br+d+4
+
[
Γm1...mr

i|A2,...,Ad|S[A1,B1],B2,...,Br+d+4
+(B1 ↔ B2, . . . , Br+d+4)

]

−
∑

XY=A1

(Γm1...mr

i|X,A2,...,Ad|Y,B1,...,Br+d+4
− Γm1...mr

i|Y,A2,...,Ad|X,B1,...,Br+d+4
) + (A1 ↔ A2, . . . , Ad)

)
.

Using (9.23) and the Q variation (7.17) of the pseudoinvariants, one can verify BRST

closure of the right-hand side of (9.22). This is a strong consistency check since it requires

every single term in (9.22) to conspire.
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10. Pseudoinvariant relations for ki momentum contractions

In the previous section, D superfields defined in (8.15) were shown to generate relations for

kBj
contractions of pseudoinvariants. We shall now investigate the second family of ghost-

number-two objects, the L superfields defined in (8.17). It turns out that their BRST

variations relate contractions of Pm1...
i|... with the momentum ki of the reference leg i to

pseudoinvariants of lower rank.

10.1. ki contractions of unrefined pseudoinvariants

This section is devoted to the unrefined superfields Lm1...mr

i|A1,...,Ar+4
, see (8.17). The BRST

variations of the simplest scalars are given by

QL1|2,3,4,5 = ∆1|2,3,4,5 + km1 Cm
1|2,3,4,5 (10.1)

QL1|23,4,5,6 = ∆1|23,4,5,6 + km1 Cm
1|23,4,5,6 + P1|2|3,4,5,6 − P1|3|2,4,5,6

QL1|234,5,6,7 = ∆1|234,5,6,7 + km1 Cm
1|234,5,6,7

+ P1|23|4,5,6,7 + P1|2|34,5,6,7 − P1|34|2,5,6,7 − P1|4|23,5,6,7

QL1|23,45,6,7 = ∆1|23,45,6,7 + km1 Cm
1|23,45,6,7

+ P1|2|3,45,6,7 − P1|3|2,45,6,7 + P1|4|23,5,6,7 − P1|5|23,4,6,7 ,

and thereby provide relations for kmi Cm
i|A,B,C,D. The explicit form of L1|2,3,4,5 and L1|23,4,5,6

can be found in (8.18), and the former underpins the first example in (8.2) provided that

momentum conservation km12345 = 0 renders ∆1|2,3,4,5 BRST exact.

The examples in (10.1) suggest the multiparticle pattern,

QLi|A,B,C,D = ∆i|A,B,C,D + kmi Cm
i|A,B,C,D (10.2)

+
[ ∑

XY =A

(Pi|X|Y,B,C,D − Pi|Y |X,B,C,D) + (A ↔ B,C,D)
]
,

where the anomalous ∆i|A,B,C,D are defined by (8.19) and also appear in the relations

(9.9) for different contractions kmACm
i|A,B,C,D.

The simplest Q variations of ghost number two vectors Lm
i|A,B,C,D,E read

QLm
1|2,3,4,5,6 = ∆m

1|2,3,4,5,6 + kn1C
mn
1|2,3,4,5,6 +

[
km2 P1|2|3,4,5,6 + (2 ↔ 3, 4, 5, 6)

]
(10.3)

QLm
1|23,4,5,6,7 = ∆m

1|23,4,5,6,7 + kn1C
mn
1|23,4,5,6,7 +

[
km4 P1|4|23,5,6,7 + (4 ↔ 5, 6, 7)

]

+ km23P1|23|4,5,6,7 + Pm
1|2|3,4,5,6,7 − Pm

1|3|2,4,5,6,7 , (10.4)

59



see (8.18) for the expansion of Lm
1|2,3,4,5,6. The novel class of terms ∼ km in (10.3) and

(10.4) are reproduced by the general formula,

QLm
i|A,B,C,D,E = ∆m

i|A,B,C,D,E + kni C
mn
i|A,B,C,D,E +

[
kmAPi|A|B,C,D,E (10.5)

+
∑

XY =A

(Pm
i|X|Y,B,C,D,E − Pm

i|Y |X,B,C,D,E) + (A ↔ B,C,D,E)
]
.

As the last explicit example in this section, consider the two-tensor relation,

QLmn
1|2,3,4,5,6,7 = ∆mn

1|2,3,4,5,6,7 + δmnΛ1|2,3,4,5,6,7 + k
p
1C

mnp

1|2,3,4,5,6,7

+ 2
[
k
(m
2 P

n)
1|2|3,4,5,6,7 + (2 ↔ 3, 4, 5, 6, 7)

]
, (10.6)

subject to an anomalous trace with Λ1|2,3,4,5,6,7 given by (8.25). Its generalization

Λm1...mr

i|A1,A2,...,Ar+6
to multiparticle slots and higher rank is defined in (8.24) and finds ap-

pearance in the general rank-two relation,

QLmn
i|A,B,C,D,E,F = ∆mn

i|A,B,C,D,E,F + δmnΛi|A,B,C,D,E,F + k
p
iC

mnp

i|A,B,C,D,E,F
(10.7)

+
[ ∑

XY =A

(Pmn
i|X|Y,B,C,D,E,F − Pmn

i|Y |X,B,C,D,E,F ) + 2k
(m
A P

n)
i|A|B,C,D,E,F

+ (A ↔ B, . . . , F )
]
.

The expressions (10.2), (10.5) and (10.7) for QLm1...mr

i|A1,A2,...,Ar+4
at rank r = 0, 1, 2 lead to a

natural generalization for higher ranks,

QLm1...mr

i|A1,...,Ar+4
= ∆m1...mr

i|A1,...,Ar+4
+

(
r

2

)
δ(m1m2Λ

m3...mr)
i|A1,...,Ar+4

+ k
p
iC

pm1...mr

i|A1,...,Ar+4

+
[ ∑

XY =A1

(Pm1...mr

i|X|Y,A2,...,Ar+4
− Pm1...mr

i|Y |X,A2,...,Ar+4
)

+ rk
(m1

A1
P

m2...mr)
i|A1|A2,...,Ar+4

+ (A1 ↔ A2, . . . , Ar+4)
]
. (10.8)

Similar to (9.14) for k
p
A1

C
pm1...mr

i|A1,...,Ar+4
as derived from QDm1...

i|... , two classes of anomalous

terms appear in (10.8). The unrefined ∆m1...mr

i|A1,...,Ar+4
common to both relations are BRST

exact under momentum conservation, see (9.6), and can be discarded in the context of

amplitudes. However, the second anomalous term Λm1...mr

i|A1,...,Ar+6
in the trace of (10.8) is not

even BRST closed, regardless of the momentum phase space. Its non-vanishing Q variation

follows as the anomaly analogue of (10.2) and (10.8), i.e. by dropping the anomalous
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contributions from the latter and replacing the rest according to Cm1...
i|... , Pm1...

i|... → Γm1...
i|... :

QΛi|A,B,C,D,E,F = kmi Γm
i|A,B,C,D,E,F (10.9)

+
[ ∑

XY =A

(Γi|X|Y,B,C,D,E,F − Γi|Y |X,B,C,D,E,F ) + (A ↔ B,C,D,E, F )
]

QΛm1...mr

i|A1,A2,...,Ar+6
= k

p
i Γ

pm1...mr

i|A1,...,Ar+6
+

[
rk

(m1

A1
Γ
m2...mr)
i|A1|A2,...,Ar+6

(10.10)

+
∑

XY=A1

(Γm1...mr

i|X|Y,A2,...,Ar+6
− Γm1...mr

i|Y |X,A2,...,Ar+6
) + (A1 ↔ A2, . . . , Ar+6)

]

Together with the BRST transformations (7.9) and (7.17) of pseudoinvariants, (10.9) and

(10.10) allow to check BRST closure of (10.8) and furnish a strong consistency check on

the results in this section.

10.2. ki contractions of refined pseudoinvariants

We next proceed to refined versions Lm1...
i|A1,...,Ad|B1,...

of the ghost-number-two objects under

discussion. In the simplest scalar cases,

QL1|2|3,4,5,6,7 = ∆1|2|3,4,5,6,7 + Λ1|2,3,4,5,6,7 + km12P
m
1|2|3,4,5,6,7

+
[
s23P1|23|4,5,6,7 + (3 ↔ 4, 5, 6, 7)

]
(10.11)

QL1|23|4,5,6,7,8 = ∆1|23|4,5,6,7,8 + Λ1|23,4,5,6,7,8 + km123P
m
1|23|4,5,6,7,8

+
[
s34P1|234|5,6,7,8 − s24P1|324|5,6,7,8 + (4 ↔ 5, 6, 7, 8)

]

QL1|4|23,5,6,7,8 = ∆1|4|23,5,6,7,8 + Λ1|23,4,5,6,7,8 + km14P
m
1|4|23,5,6,7,8

+ s24P1|324|5,6,7,8 − s34P1|234|5,6,7,8 +
[
s45P1|45|23,6,7,8 + (5 ↔ 6, 7, 8)

]

+ P1|2,4|3,5,6,7,8 − P1|3,4|2,5,6,7,8 ,

where the expansion of L1|2|3,4,5,6,7 is given in (8.18). This generalizes to

QLi|A|B,C,D,E,F = ∆i|A|B,C,D,E,F + Λi|A,B,C,D,E,F + kmiAP
m
i|A|B,C,D,E,F (10.12)

+
[
Pi|S[A,B]|C,D,E,F +

∑

XY =B

(Pi|A,X|Y,C,D,E,F − Pi|A,Y |X,C,D,E,F ) + (B ↔ C,D,E, F )
]
.

Interestingly, (10.12) contains a contraction of Pm
i|... with the combined momentum kmiA =

kmi + kmA including the refined slot A and does not isolate its ki contraction. This is

analogous to the shortcoming of the relation (9.18) to address the two-term combinations

kmAPm
i|B|A,C,D,E,F + kmBPm

i|A|B,C,D,E,F instead of the individual terms.

61



Vectorial and tensorial BRST variations exhibit novel terms ∼ km, δmn which are

absent for the scalars (10.12), e.g.

QLm
1|2|3,...,8 = ∆m

1|2|3,...,8 + Λm
1|2,3,...,8 + k

p
12P

pm

1|2|3,...,8

+
[
s23P

m
1|23|4,...,8 + km3 P1|2,3|4,...,8 + (3 ↔ 4, . . .8)

]
, (10.13)

QLmn
1|2|3,...,9 = ∆mn

1|2|3,...,9 + Λmn
1|2,3,...,9 + δmnΛ1|2|3,...,9 + k

p
12P

pmn

1|2|3,...,9

+
[
s23P

mn
1|23|4,...,9 + 2k

(m
3 P

n)
1|2,3|4,...,9 + (3 ↔ 4, . . .9)

]
. (10.14)

Experience with the scalar counterpart (10.12) suggests that only the non-refined multi-

particle slots Bj give rise to deconcatenation terms. This leads to the following all-rank

generalization:

QLm1...mr

i|A|B1,...,Br+5
= ∆m1...mr

i|A|B1,...,Br+5
+ Λm1...mr

i|A,B1,...,Br+5
+

(
r

2

)
δ(m1m2Λ

m3...mr)
i|A|B1,...,Br+5

(10.15)

+ k
p
iAP

pm1...mr

i|A|B1,...,Br+5
+

[
Pm1...mr

i|S[A,B1]|B2,...,Br+5
+ rk

(m1

B1
P

m2...mr)
i|A,B1|B2,...,Br+5

+
∑

XY =B1

(Pm1...mr

i|A,X|Y,B2,...,Br+5
− Pm1...mr

i|A,Y |X,B2,...,Br+5
) + (B1 ↔ B2, . . .Br+5)

]
.

For the extension of (10.15) to L superfields of higher refinement d, one can expect that

three classes of terms Λm1...mr

i|A,B1,...,Br+5
, kpAP

pm1...mr

i|A|B1,...,Br+5
and Pm1...mr

i|S[A,B1]|B2,...,Br+5
have to be

symmetrized in A1 ↔ A2, . . . , Ad. We therefore propose the following expression for the

most general case:

QLm1...mr

i|A1,...,Ad|B1,...,Br+d+4
= ∆m1...mr

i|A1,...,Ad|B1,...,Br+d+4
+

(
r

2

)
δ(m1m2Λ

m3...mr)
i|A1,...,Ad|B1,...,Br+d+4

(10.16)

+
[
Λm1...mr

i|A2,...,Ad|A1,B1,...,Br+d+4
+ (A1 ↔ A2, . . . , Ad)

]
+ k

p
iA1A2...Ad

P
pm1...mr

i|A1,...,Ad|B1,...,Br+d+4

+
[{

Pm1...mr

i|A2,...,Ad,S[A1,B1]|B2,...,Br+d+4
+ (A1 ↔ A2, . . . , Ad)

}
+ rk

(m1

B1
P

m2...mr)
i|A1,...,Ad,B1|B2,...,Br+d+4

+
∑

XY =B1

(Pm1...mr

i|A1,...,Ad,X|Y,B2,...,Br+d+4
− Pm1...mr

i|A1,...,Ad,Y |X,B2,...,Br+d+4
) + (B1 ↔ B2, . . .Br+d+4)

]
.

Similar to the correspondence between (10.8) and (10.10), one can infer the BRST variation

of Λm1...
i|... by trading the constituents of (10.16) for their anomaly counterparts,

QΛm1...mr

i|A1,...,Ad|B1,...,Br+d+6
= k

p
iA1A2...Ad

Γpm1...mr

i|A1,...,Ad|B1,...,Br+d+6
(10.17)

+
[{

Γm1...mr

i|A2,...,Ad,S[A1,B1]|B2,...,Br+d+6
+ (A1 ↔ A2, . . . , Ad)

}
+ rk

(m1

B1
Γ
m2...mr)
i|A1,...,Ad,B1|B2,...,Br+d+6

+
∑

XY=B1

(Γm1...mr

i|A1,...,Ad,X|Y,B2,...,Br+d+6
− Γm1...mr

i|A1,...,Ad,Y |X,B2,...,Br+d+6
) + (B1 ↔ B2, . . .Br+d+6)

]
.
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Using (10.17) and the BRST transformations (7.9) and (7.17) of pseudoinvariants, one can

verify that the right-hand side of (10.16) is BRST closed. Given the delicate interplay of

every single term in (10.16), this is a highly nontrivial consistency check for the results in

this section.

10.3. Trace relations and anomaly bookkeeping

The purpose of the above BRST-exact relations is to express momentum contractions of

pseudoinvariants in terms of simpler pseudoinvariants at lower rank. However, two classes

of obstructions arose, set by anomalous superfields ∆ and Λ. Only the unrefined special

case ∆m1...mr

i|A1,...,Ar+4
was shown to be BRST trivial under momentum conservation, see (9.6),

whereas refined ∆ superfields and any Λ superfield cannot be discarded in scattering am-

plitudes. Hence, it is desirable to identify relations among these anomalous admixtures.

In particular, one might wonder if the trace relations (6.30) and (7.20) found among

pseudoinvariants Pm1...
i|... and anomaly invariants Γm1...

i|... carry over to their counterparts

D, L and ∆, Λ at different ghost-number. Even though they all originate from the same

master recursion (8.4), there are subtleties under the slot rearrangements MAU
...
{Bj}|{Cj}

→

U ...
{Bj}|A,{Cj}

and MAU
...
{Bj}|{Cj}

→ U ...
A,{Bj}|{Cj}

entering the definitions (8.11) to (8.14).

Since the formal symbols Um1...mr

A1,...,Ad|B1,...,Bd+r+N
are eventually identified with either

J or Y , it is safe to impose their trace relations (6.21) and (7.19) on the U ,

δnpU
npm1...mr−2

B1,...,Bd|C1,...,Cd+r+N
= 2U

m1...mr−2

B1,...,Bd,C1|C2,...,Cd+r+N
+ (C1 ↔ C2, . . . , Cd+r+N ) . (10.18)

It turns out that this relation is not preserved under the slot rearrangementMAU
...
{Bj}|{Cj}

→

U ...
{Bj}|A,{Cj}

relevant for D and ∆ (followed by multiplication with MA) since

δnpU
npm1...mr−1

B1,...,Bd|A,C1,...,Cd+r+N
6= 2U

m1...mr−1

B1,...,Bd,C1|A,C2,...,Cd+r+N
+ (C1 ↔ C2, . . . , Cd+r+N ) .

(10.19)

The missing term to restore (10.18) is easily seen to be 2U
m1...mr−1

B1,...,Bd,A|C1,C2,...,Cd+r+N
which

in turn originates from the alternative slot rearrangement MAU
...
{Bj}|{Cj}

→ U ...
A,{Bj}|{Cj}

.

Since this is the defining map for L and Λ, we are led to the following trace relation:

δnpD
npm1...mr

i|A1,...,Ad|B1,...,Bd+r+4
= 2Lm1...mr

i|A1,...,Ad|B1,...,Bd+r+4
(10.20)

+ 2
[
Dm1...mr

i|A1,...,Ad,B1|B2,...,Bd+r+4
+ (B1 ↔ B2, . . . , Bd+r+4)

]
.
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The mixing between L and D superfields propagates to their anomalous counterparts

(D,L) → (∆,Λ):

δnp∆
npm1...mr

i|A1,...,Ad|B1,...,Bd+r+6
= 2Λm1...mr

i|A1,...,Ad|B1,...,Bd+r+6
(10.21)

+ 2
[
∆m1...mr

i|A1,...,Ad,B1|B2,...,Bd+r+6
+ (B1 ↔ B2, . . . , Bd+r+6)

]
.

Note that (10.21) and the BRST variation of (10.20) are consistent with the expressions

(9.22) and (10.16) for QDm1...
i|... and QLm1...

i|... .

The slot rearrangement MAU
...
{Bj}|{Cj}

→ U ...
A,{Bj}|{Cj}

entering the definition of L and

Λ preserves the trace relations (10.18) and bypasses the subtlety in (10.19). Hence, traces

of L and Λ fall into the same pattern found for Pm1...
i|... and Γm1...

i|... in (6.30) and (7.20),

δnpL
npm1...mr

i|A1,...,Ad|B1,...,Bd+r+6
= 2

[
Lm1...mr

i|A1,...,Ad,B1|B2,...,Bd+r+6
+ (B1 ↔ B2, . . . , Bd+r+6)

]

(10.22)

δnpΛ
npm1...mr

i|A1,...,Ad|B1,...,Bd+r+8
= 2

[
Λm1...mr

i|A1,...,Ad,B1|B2,...,Bd+r+8
+ (B1 ↔ B2, . . . , Bd+r+8)

]
.

(10.23)

Again, one can verify consistency of (10.23) and the BRST variation of (10.22) by means

of the expression (10.16) for QLm1...
i|... .

As a main benefit of this discussion, the trace relations (10.21) and (10.23) are useful

in manipulating anomalous ghost-number-three contributions to scattering amplitudes. In

particular, we can take advantage of the decoupling of unrefined objects ∆m1...mr

i|A1,...,Ar+4
as

well as its traces and discard the following right-hand sides:

1

2
δnp∆

npm1...mr

i|B1,...,Br+6
= Λm1...mr

i|B1,...,Br+6
+
[
∆m1...mr

i|B1|B2,...,Br+6
+ (B1 ↔ B2, . . . , Br+6)

]

1

4
δnpδqr∆

npqrm1...mr

i|B1,...,Br+8
=

[
Λm1...mr

i|B1|B2,...,Br+8
+ (B1 ↔ B2, . . . , Br+8)

]
(10.24)

+
[
∆m1...mr

i|B1,B2|B3,...,Br+8
+ (B1, B2|B1, B2, . . . , Br+8)

]
.

Generalizations to multitraces of ∆m1...mr

i|A1,...,Ar+4
are straightforward.
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Fig. 7 Overview of superfield families. Diagonal lines point towards the images of BRST

variations, and horizontal lines remind of trace relations.

10.4. The web of relations between ghost-number two and four

In the last sections we have constructed a variety of superfields and derived a rich set of

relations among them. The recursions which led to pseudoinvariants P in section 6 and to

anomaly invariants Γ in section 7 were unified to a master recursion (8.4) in section 8. As

detailed in sections 8.2 to 8.5, the master recursion points towards four further replicae D,

L, ∆ and Λ of the family of P and Γ which can be visualized in grids similar to fig. 1 and

fig. 6.

The BRST-exact relations presented in this section and section 9 mediate between

the six families of superfields as visualized in fig. 7. Since BRST action increases the ghost

number by one, we arrange the superfields according to their ghost number. As a second

coordinate for the roadmap of superfields, we take the number N of multiparticle slots in

the scalar and unrefined representatives, see section 8.1.

In fig. 7, the BRST variations of all the six families are represented by solid lines, the

arrows pointing towards the image of higher ghost number. The underlying expressions

are given in

• (9.22), (10.16) and (7.17) for BRST action on the non-anomalous fields D,L and P

• (9.23) and (10.17) for their anomalous counterparts ∆ and Λ

whereas QΓ = 0. Horizontal dashed arrows additionally remind of the mixing of D ↔ L

as well as ∆ ↔ Λ under the trace relations (10.20) and (10.21).
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11. Canonicalizing pseudoinvariants

In the previous sections, we have systematically derived two families of relations among

pseudoinvariants Pm1...
i|... at fixed reference leg i. This section is devoted to a different class

of relations which mediates between different choices of the reference particle i. It will be

demonstrated that any Pm1...
k|... with k 6= i can be expressed in terms of Pm1...

i|... , up to a con-

strained set of anomaly terms. This rearrangement will be referred to as canonicalization.

The anomalous admixtures in the canonicalization process reflect the property of the

hexagon gauge anomaly in both field and string theory to break the permutation symmetry

of one-loop amplitudes at multiplicity n ≥ 6. Apart from this anomaly subtlety, however,

we learn that the set of pseudoinvariants Pm1...mr

i|... at fixed reference leg i spans the same

space of kinematic factors as would be obtained by any other choice of reference leg k 6= i.

This is a necessary condition for the independence of string amplitudes on the choice of

the unintegrated vertex i.

The methods parallel the procedure in section 9 and 10, i.e. we identify suitable BRST

generators at ghost-number two to derive relations among ghost-number-three objects. The

Q generators to trade different choices of the reference leg i in Pm1...
i|... turn out to be minor

modifications of the ghost-number-two superfields of types D and L, see section 8.

We start by discussing the canonicalization of scalar invariants in detail. This serves

as a motivation of certain operations which capture the structure of the canonicalization

process and easily carry over to more general pseudoinvariants.

11.1. Canonicalizing scalar invariants

As pointed out in [24] through a few examples at low multiplicity, any scalar invariant

Ck|A,B,C as given in (2.40) can be cast into a basis of Ci|D,E,F with i 6= k. We shall

now present the general solution for arbitrary A,B,C and thereby develop the maps and

notation to extend the procedure to higher tensors and to refined pseudoinvariants.

The trial and error method in [24] to canonicalize C2|A,B,C towards C1|D,E,F leads to

the following expressions at multiplicity n ≤ 6 (suppressing the laborious case C2|34,56,1):

C2|1,3,4 = −Q(M12,3,4) + C1|2,3,4 (11.1)

C2|13,4,5 = −Q(M132,4,5) + C1|32,4,5 (11.2)

C2|1,34,5 = −Q(M12,34,5 +M123,4,5 −M124,3,5) + C1|2,34,5 + C1|23,4,5 − C1|24,3,5 (11.3)

C2|134,5,6 = −Q(M1342,5,6) + C1|342,5,6 (11.4)
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C2|13,45,6 = −Q(M132,45,6 +M1324,5,6 −M1325,4,6) + C1|32,45,6 + C1|324,5,6 − C1|325,4,6 (11.5)

C2|1,345,6 = −Q(M12,345,6 +M1234,5,6 +M1254,3,6 −M1235,4,6 −M1253,4,6 +M123,45,6 +M125,43,6)

+ C1|2,345,6 + C1|234,5,6 + C1|254,3,6 − C1|235,4,6 − C1|253,4,6 + C1|23,45,6 + C1|25,43,6 (11.6)

These examples can be easily verified using the form (2.35) of QMA,B,C . The following

three observations on (11.1) to (11.6) guide the way towards a general solution for both

the BRST ancestor and the set of C1|D,E,F which appear in the canonicalization of C2|...:

(i) Each term of the form −QM1D,E,F in the BRST generator is accompanied by a corre-

sponding invariant C1|D,E,F . By assuming this pattern to hold in general, knowledge

of the BRST generator already determines the canonicalization in terms of C1|D,E,F .

(ii) Suppose particle 1 appears in the left hand side as C2|1A,B,C (where A can be empty),

then each term of the BRST generator is of the form M1AD,E,F . In other words, the

entire slot 1A of the desired reference leg is concatenated with a pattern of M...D,E,F .

(iii) This pattern ofM...D,E,F must contain the information on the remaining labels 2, B, C.

The superfield D2|B,C as defined in (8.15) is the natural object to do so, and indeed,

its concatenation (2.37) with M1A reproduces the above BRST generators, e.g.

M1 ⊗D2|34,5 = M12,34,5 +M123,4,5 −M124,3,5 (11.7)

M13 ⊗D2|45,6 = M132,45,6 +M1324,5,6 −M1325,4,6 (11.8)

M1 ⊗D2|345,6 = M12,345,6 +M1234,5,6 +M1254,3,6 −M1235,4,6

−M1253,4,6 +M123,45,6 +M125,43,6 (11.9)

for (11.3), (11.5) and (11.6), respectively. The D superfields in the first two cases are

given in (8.16) whereas D2|345,6 can be inferred from C1|234,5,6 in (A.1).

So one can promote the sample canonicalizations of C2|1A,B,C in (11.1) to (11.6) to the

following general formula20,

Ck|iA,B,C = (℘i −Q)(MiA ⊗Dk|B,C) . (11.10)

20 To support the plausibility of the canonicalization prescription in (11.10), note that any

term in the concatenation product MiA ⊗ Dk|B,C takes the form MiA...,D,E. BRST action then

generates one term Ci|A...,D,E and up to five others, see (2.35). The map ℘i makes sure that the

Ci|A...,D,E contribution in −QMiA...,D,E is compensated. Other invariants of the form Cl 6=i|F,G,H

largely cancel thanks to the fine-tuned arrangement of slots governed by the recursive origin (8.4)

of Dk|B,C . Only one term Ck|iA,B,C with reference leg 6= i will emerge from the Q action on the

leading term Dk|B,C → Mk,B,C , as required by the left-hand side of (11.10).
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The “pseudoinvariantization” map ℘i in (11.10) is defined to transform MiA,B,C →

Ci|A,B,C according to observation (i) and, more generally,

℘i(J
m1...mr

B1,...,Bd|iA,C2,...,Cd+r+3
) ≡ Pm1...mr

i|B1,...,Bd|A,C2,...,Cd+r+3
(11.11)

℘i(J
m1...mr

iA,B2,...,Bd|C1,...,Cd+r+3
) ≡ Pm1...mr

i|A,B2,...,Bd|C1,...,Cd+r+3
. (11.12)

Loosely speaking, ℘i in (11.11) and (11.12) removes particle i from the leading position of

a word in Jm1...mr

B1,...,Bd|C1,...,Cd+r+3
and converts it into the reference leg of a pseudoinvariant.

Its remaining labels are those of the above current with particle i removed.

Further applications of (11.10) can be found in appendix F, see (F.1) to (F.6).

11.2. Canonicalizing unrefined pseudoinvariants

In order to canonicalize tensorial pseudoinvariants Cm1...mr

k|iA,B2,...,Br+3
to the form Cm1...mr

i|C1,...,Cr+3
,

it is tempting to simply replace Dk|B,C → Dm1...mr

k|B2,...,Br+3
in the scalar prescription (11.10).

However, D superfields at rank r ≥ 2 additionally generate anomalous terms such as

∆m1...mr

i|A1,...,A4
in (9.5) and (9.6). In order to have a well-defined notion of MiA⊗∆m1...mr

k|B1,...,Br+4

andMiA⊗Dm1...mr

k|B1,...,Br+2
(needed in the subsequent), we extend the concatenation operation

to anomaly building blocks and refined currents,

MiA ⊗ Ym1...mr

kB,B2,...,Bd|C1,...,Cd+r+5
≡ Ym1...mr

iAkB,B2,...,Bd|C1,...,Cd+r+5
(11.13)

MiA ⊗ Ym1...mr

B1,...,Bd|kC,C2,...,Cd+r+5
≡ Ym1...mr

B1,...,Bd|iAkC,C2,...,Cd+r+5
(11.14)

MiA ⊗Jm1...mr

kB,B2,...,Bd|C1,...,Cd+r+3
≡ Jm1...mr

iAkB,B2,...,Bd|C1,...,Cd+r+3
(11.15)

MiA ⊗ Jm1...mr

B1,...,Bd|kC,C2,...,Cd+r+3
≡ Jm1...mr

B1,...,Bd|iAkC,C2,...,Cd+r+3
. (11.16)

As before, the instruction to concatenate the word iA with kB and kC is clear from the

reference leg k of the parental Dm1...
k|... . The anomaly concatenations MiA ⊗ ∆m1...mr

k|B1,...,Br+4

serve to compensate for the anomalous part of Q(MiA ⊗Dm1...
k|... ):

Cm1m2...mr

k|iA,B2,...,Br+3
= (℘i −Q)(MiA ⊗Dm1m2...mr

k|B2,B3,...,Br+3
) (11.17)

+

(
r

2

)
δ(m1m2(MiA ⊗∆

m3m4...mr)
k|B2,B3,...,Br+3

) .

The cancellation of anomalous superfields on the right-hand side can be understood as

follows: The anomalous term in QMm1...mr

B1,...,Br+3
=

(
r
2

)
δ(m1m2Y

m3...mr)
B1,...,Br+3

+ . . . preserves the

structure of the slots Bk. In a truncation to anomaly building blocks, BRST action and
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the concatenation through MiA⊗ commute. Since δ(m1m2∆
m3m4...mr)
k|B2,B3,...,Br+3

in the second

line of (11.17) can be traced back to QDm1m2...mr

k|B2,B3,...,Br+3
, see (9.6), any anomalous contribu-

tion effectively originates from a “commutator” of the operations MiA⊗ and Q acting on

Dm1m2...mr

k|B2,B3,...,Br+3
.

Two simple examples of the general procedure in (11.17) are given by,

Cm
2|1,3,4,5 = (℘1 −Q)(M1 ⊗Dm

2|3,4,5)

= −Q
(
Mm

12,3,4,5 +
[
km3 M123,4,5 + (3 ↔ 4, 5)

])

+ Cm
1|2,3,4,5 + [km3 C1|23,4,5 + (3 ↔ 4, 5)] (11.18)

Cmn
2|1,3,4,5,6 = (℘1 −Q)(M1 ⊗Dmn

2|3,4,5,6) + δmn(M1 ⊗∆2|3,4,5,6)

= −Q
(
Mmn

12,3,4,5,6 +
[
2k

(m
3 M

n)
123,4,5,6 + (3 ↔ 4, 5, 6)

]

+
[
2k

(m
3 k

n)
4 (M1234,5,6 +M1243,5,6) + (3, 4|3, 4, 5, 6)

])

+ δmnY12,3,4,5,6 + Cmn
1|2,3,4,5,6 +

[
2k

(m
3 C

n)
1|23,4,5,6 + (3 ↔ 4, 5, 6)

]

+
[
2k

(m
3 k

n)
4 (C1|234,5,6 + C1|243,5,6) + (3, 4|3, 4, 5, 6)

]
. (11.19)

Further examples can be found in appendix F, see (F.7).

11.3. Canonicalizing non-refined slots in refined pseudoinvariants

Only minor modifications are required to generalize the above canonicalization rules to

refined pseudoinvariants Pm1m2...mr

k|A1,...,Ad|B1,...,Bd+r+3
, as long as the preferred reference leg i

resides in a unrefined slot Bj . By analogy with the first line of (11.17), it is natural to

expect a BRST generator of the form MiA ⊗Dm1m2...mr

k|B1,...,Bd|C2,...,Cd+r+3
.

Similar to the unrefined tensors, the BRST variation of refined D superfields incor-

porates anomalous ∆ superfields, see (9.22). In order to address them, recall that the

anomalous part of QJm1m2...mr

A1,...,Ad|B1,...,Bd+r+3
given in (6.16) has an unmodified slot structure.

Hence, we can neglect the concatenation with MiA and compensate the anomalous part

of Q(MiA ⊗Dm1m2...mr

k|B1,...,Bd|C2,...
) using the corresponding terms of MiA ⊗ QDm1m2...mr

k|B1,...,Bd|C2,...
.

This reasoning motivates the last two lines of

Pm1m2...mr

k|B1,...,Bd|iA,C2,...,Cd+r+3
= (℘i −Q)(MiA ⊗Dm1m2...mr

k|B1,...,Bd|C2,...,Cd+r+3
)

+MiA ⊗
{(r

2

)
δ(m1m2∆

m3m4...mr)
k|B1,...,Bd|C2,C3,...,Cd+r+3

(11.20)

+
[
∆m1m2...mr

k|B2,...,Bd|B1,C2,C3,...,Cd+r+3
+ (B1 ↔ B2, . . . , Bd)

]}

69



and guarantees that they cancel the anomalous contributions from the first line.

As the simplest application of (11.20),

P2|3|1,4,5,6 = (℘1 −Q)(M1 ⊗D2|3|4,5,6) +M1 ⊗∆2|3,4,5,6 (11.21)

= −Q
(
J3|12,4,5,6 + km3 Mm

123,4,5,6 +
[
s34M1234,5,6 + (4 ↔ 5, 6)

])

+ Y12,3,4,5,6 + P1|3|2,4,5,6 + km3 Cm
1|23,4,5,6 +

[
s34C1|234,5,6 + (4 ↔ 5, 6)

]
,

and more involved cases are displayed in appendix F, see (F.8) to (F.11).

11.4. Canonicalizing refined slots in refined pseudoinvariants

A different canonicalization procedure is needed when the preferred reference label i resides

in a refined slot Aj of a pseudoinvariant Pm1m2...mr

k|A1,...,Ad|B1,...,Bd+r+3
at d 6= 0. In order to gain

intuition for suitable BRST generators, consider the following examples:

P2|1|3,4,5,6 =−QJ12|3,4,5,6 + Y12,3,4,5,6 + P1|2|3,4,5,6 (11.22)

P2|13|4,5,6,7 =−QJ132|4,5,6,7 + Y132,4,5,6,7 + P1|32|4,5,6,7

P2|1|34,5,6,7 =−Q(J12|34,5,6,7 + J123|4,5,6,7 − J124|3,5,6,7)

+ Y12,34,5,6,7 + Y123,4,5,6,7 −Y124,3,5,6,7

+ P1|2|34,5,6,7 + P1|23|4,5,6,7 − P1|24|3,5,6,7 .

The appearance of anomalous contributions on the right-hand side is not surprising in view

of the examples (11.19) and (11.21). In the present cases, however, the BRST generators

are entirely built from refined building blocks J at d 6= 0. This is a defining property of

the L superfields defined in (8.17). Indeed, (11.22) is consistently described by

Pk|iA|B,C,D,E = (℘i −Q)(MiA ⊗ Lk|B,C,D,E) +MiA ⊗∆k|B,C,D,E . (11.23)

Similar to (11.17) and (11.20), the anomalous part of the BRST generator (i.e. the first

term of QLk|B,C,D,E = ∆k|B,C,D,E + . . . in (10.2)) is manually compensated by the last

term in (11.23), see the arguments in the previous sections 11.2 and 11.3.

In the tensorial generalization of (11.23), the anomalous traces in the expression (10.8)

for QL...
k|... = δ...Λ...

k|... + . . . have to be taken into account. This leads to the second line of

Pm1...mr

k|iA|B1,...,Br+4
= (℘i −Q)(MiA ⊗ Lm1...mr

k|B1,...,Br+4
)

+MiA ⊗
{(r

2

)
δ(m1m2Λ

m3...mr)
k|B1,...,Br+4

+∆m1...mr

k|B1,...,Br+4

}
. (11.24)

70



The structure of the following vector and tensor examples resembles the canonicalization

of Cm
2|1,3,4,5 and Cmn

2|1,3,4,5,6 performed in (11.18) and (11.19), respectively:

Pm
2|1|3,4,5,6,7 = (℘1 −Q)(M1 ⊗ Lm

2|3,4,5,6,7) +M1 ⊗∆m
2|3,4,5,6,7

= −Q
(
Jm
12|3,4,5,6,7 +

[
km3 J123|4,5,6,7 + (3 ↔ 4, 5, 6, 7)

])

+ Ym
12,3,4,5,6,7 +

[
km3 Y123,4,5,6,7 + (3 ↔ 4, 5, 6, 7)

]

+ Pm
1|2|3,4,5,6,7 +

[
km3 P1|23|4,5,6,7 + (3 ↔ 4, 5, 6, 7)

]
(11.25)

Pmn
2|1|3,4,5,6,7,8 = (℘1 −Q)(M1 ⊗ Lmn

2|3,4,5,6,7,8) +M1 ⊗ (δmnΛ2|3,4,...,8 +∆mn
2|3,4,...,8)

= −Q
(
Jmn
12|3,4,5,6,7,8 +

[
2k

(m
3 J

n)
123|4,5,6,7,8 + (3 ↔ 4, 5, 6, 7, 8)

]

+
[
2k

(m
3 k

n)
4 (J1234|5,6,7,8 + J1243|5,6,7,8) + (3, 4|3, 4, 5, 6, 7, 8)

])

+ δmnY12|3,4,5,6,7,8 + Ymn
12,3,4,5,6,7,8 +

[
2k

(m
3 Y

n)
123,4,5,6,7,8 + (3 ↔ 4, 5, 6, 7, 8)

]

+
[
2k

(m
3 k

n)
4 (Y1234,5,6,7,8 + Y1243,5,6,7,8) + (3, 4|3, 4, 5, 6, 7, 8)

]

+ Pmn
1|2|3,4,5,6,7,8 +

[
2k

(m
3 P

n)
1|23|4,5,6,7,8 + (3 ↔ 4, 5, 6, 7, 8)

]

+
[
2k

(m
3 k

n)
4 (P1|234|5,6,7,8 + P1|243|5,6,7,8) + (3, 4|3, 4, 5, 6, 7, 8)

]
. (11.26)

Finally, the canonicalization prescription (11.24) can be generalized to higher refinement.

We follow the usual logic and manually remove the anomalous contributions from the

natural BRST generator, see (10.16) for QLm1...mr

k|B2,...,Bd|C1,...,Cd+r+3
:

Pm1...mr

k|iA,B2,...,Bd|C1,...,Cd+r+3
= (℘i −Q)(MiA ⊗ Lm1...mr

k|B2,...,Bd|C1,...,Cd+r+3
)

+MiA ⊗
{(r

2

)
δ(m1m2Λ

m3...mr)
k|B2,...,Bd|C1,...,Cd+r+3

+∆m1...mr

k|B2,...,Bd|C1,...,Cd+r+3

+
[
Λm1...mr

k|B3,...,Bd|B2,C1,...,Cd+r+3
+ (B2 ↔ B3, . . . , Bd)

]}
. (11.27)

The simplest application occurs at eight-points,

P2|1,3|4,5,6,7,8 = (℘1 −Q)(M1 ⊗ L2|3|4,5,6,7,8) +M1 ⊗ (∆2|3|4,5,6,7,8 + Λ2|3,4,5,6,7,8)

= −Q
(
J12,3|4,5,6,7,8 + km3 Jm

123|4,5,6,7,8 +
[
s34J1234|5,6,7,8 + (4 ↔ 5, 6, 7, 8)

])

+ Y12|3,4,5,6,7,8 + Y3|12,4,5,6,7,8 + km3 Ym
123,4,5,6,7,8

+
[
s34Y1234,5,6,7,8 + (4 ↔ 5, 6, 7, 8)

]
(11.28)

+ P1|2,3|4,5,6,7,8 + km3 Pm
1|23|4,5,6,7,8 +

[
s34P1|234|5,6,7,8 + (4 ↔ 5, 6, 7, 8)

]
.

With the most general canonicalization prescriptions (11.20) and (11.27), any pseudoin-

variant Pm1...
k|... with reference leg k 6= i can be rewritten in terms of Pm1...

i|... . The anomalous

extra terms built from concatenations of superfields ∆ and Λ signal the breakdown of

permutation symmetry in anomalous one-loop amplitudes, see [29,31].
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12. Conclusion and outlook

As explained in the Introduction, the result of a multiloop superstring scattering amplitude

in the pure spinor formalism can be written in terms of pure spinor superspace expressions

in the cohomology of the BRST charge. This realization was the guiding principle which led

us to consider the general structures for one-loop amplitudes presented in this work. The

claim is that the kinematic factors considered in the previous sections form a convenient

and complete set of building blocks which make manifest the BRST cohomology properties

of one-loop amplitudes in pure spinor superspace.

Saturation of zero-modes in the pure spinor prescription implies that the external

vertices in the four-point amplitude contribute through a term proportional to dαdβN
mn

[4]. The measures defined in [4] summarize the net effect of zero-mode integrations by the

following rule,

dαdβN
mn → (λγ[m)α(λγ

n])β . (12.1)

The resulting kinematic factor of the open superstring four-point amplitude [4] is written

as V1T2,3,4 in the notation of equation (2.25) and can be checked to be in the BRST

cohomology. Its multiparticle generalization found in [24] incorporates the contributions

from OPE singularities through the basic structure VATB,C,D which is most elegantly

described using the BRST blocks from [32]. The reduction of the associated worldsheet

integrals [24] organizes these superfields into BRST-invariants such as the scalar

C1|23,4,5 = M1M23,4,5 +M12M3,4,5 −M13M2,4,5 (12.2)

in the five-point amplitude. The trial-and-error construction of scalar BRST-invariants up

to multiplicity eight [24] was improved to a systematic and recursive procedure in [32], see

section 2. Since their origin is ultimately related to the one-loop zero-mode pattern (12.1)

from the one-loop amplitude prescription, these BRST invariants encode the manifestly

gauge-invariant pieces of the N -point one-loop superstring amplitudes of [24].

However, each topology of open superstring amplitudes at genus one is anomalous for

N ≥ 6 external legs, and the cancellation of the anomaly relies on an interplay between

the cylinder and the Möbius strip [25]. Therefore the manifestly gauge-invariant form of

the amplitudes in [24] could not be the complete answer. Finding the missing anomalous

terms from their BRST properties was one of the main goals of this paper and led to the

concept of pseudo-cohomology introduced in section 3.
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As discussed in the main body, a more general class of superfields J extending

the prescription (12.1) gives rise to a recursive procedure to construct anomalous super-

fields P
mnp...

i|... , called BRST pseudoinvariants. As a defining property, their BRST vari-

ation takes the form VA(λγ
mWB)(λγ

nWC)(λγ
pWD)(WEγmnpWF ) which generalizes the

hexagon anomaly ǫ10F
5 to superspace and to higher number of external particles. The

bosonic components of several pseudoinvariants can be downloaded from the website [43].

Therefore, BRST cohomology considerations point towards superfields with the correct

properties to describe the anomalous parts of one-loop open superstring amplitudes which

were not considered in [24]. The methods to generate these pseudoinvariants are natural

extensions of the well-tested recursion [32] for scalar BRST-invariants [24]. In an upcoming

work [29] these pseudoinvariants will be assembled into six-point one-loop amplitudes of

the open and closed superstring, the analogous treatment of higher multiplicity is left for

the future.

The field theory limit of superstring amplitudes is composed of scalar and tensorial

Feynman integrals. The underlying degeneration limit of the worldsheet reorganizes the

scalar kinematic factors of the superstring such that loop momenta contract tensorial BRST

pseudoinvariants. The recursive construction of this work naturally includes superfields

of arbitrary tensor rank and motivates kinematic companions for loop momenta. Their

precise appearance in one-loop amplitudes of SYM will be detailed in upcoming work [31].

The matching of worldsheet and momentum space representations of one-loop amplitudes

requires a precise control of the momentum contractions of pseudoinvariants. As shown in

sections 8 to 10, this problem is addressed by cohomology considerations which will allow

to identify the difference of the two representations as BRST exact [31].

Tensorial pseudoinvariants also play an essential role for closed string amplitudes and

capture their contributions beyond the naive doubling of open string worldsheet correla-

tors. As will be demonstrated in [29], the tensorial kinematic factors in this work provide a

compact description of the interactions between left- and right-moving degrees of freedom.

From a field-theory perspective, this points towards a squaring relation between the numer-

ators of Feynman integrals in SYM and supergravity amplitudes. It would be interesting

to realize the BCJ duality between color and kinematics [44] through the pseudoinvariants

of this work.

After finding the recursive formulas for pseudoinvariants of arbitrary orders, the nat-

ural question to ask is how these pseudoinvariants can be derived from the pure spinor
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multiloop amplitude prescription21 [4]. This is a challenge for the future. We suspect that

the solution involves a careful treatment of OPE contractions between the b-ghost and the

external vertices. The combinatorics must be such that spurious OPE singularities combine

to local functions on the worldsheet (which are regular for all values of zi−zj and denoted

by fij in [31]). This might bypass the subtleties related to b-ghost singularities pointed out

in [45]. Given that the b-ghost is a source of technical difficulties in amplitude calculations

with the pure spinor superstring, a first principles explanation for the pseudoinvariants

constructed in this paper might shed new light into this difficult corner of the formalism.
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Appendix A. Examples of BRST pseudoinvariants

This appendix gathers recursively generated expansions of various (pseudo-)invariants.

Their component expansions can be found at the website [43].

At six points, the recursions (2.40) for scalar and vector invariants yield

C1|234,5,6 = M1M234,5,6 +M1 ⊗
[
C2|34,5,6 − C4|23,5,6

]

= M1M234,5,6 +M12M34,5,6 +M123M4,5,6 −M124M3,5,6 (A.1)

−M14M23,5,6 −M142M3,5,6 +M143M2,5,6

C1|23,45,6 = M1M23,45,6 +M1 ⊗
[
C2|45,3,6 − C3|45,2,6 + C4|23,5,6 − C5|23,4,6

]

= M1M23,45,6 +M12M45,3,6 −M13M45,2,6 +M14M23,5,6 −M15M23,4,6

+M124M3,5,6 −M134M2,5,6 +M142M3,5,6 −M152M3,4,6

21 Some terms in the scalar Pi|... can be explained as the leftovers of the partial fraction manip-

ulations described in [24]. This applies to both the single-pole contribution from iterated OPEs

and to spurious double-pole singularities which can be removed via integration by parts.
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−M125M3,4,6 +M135M2,4,6 −M143M2,5,6 +M153M2,4,6

Cm
1|23,4,5,6 = M1M

m
23,4,5,6 +M1 ⊗

[
Cm

2|3,4,5,6 − Cm
3|2,4,5,6 + {km4 C4|23,5,6 + (4 ↔ 5, 6)}

]

= M1M
m
23,4,5,6 +M12M

m
3,4,5,6 −M13M

m
2,4,5,6 + km3 M123M4,5,6 − km2 M132M4,5,6

+
[
km4 M14M23,5,6 + (M124 +M142)M3,5,6 − (M134 +M143)M2,5,6 + (4 ↔ 5, 6)

]
.

The five-point invariants C1|23,4,5 and Cm
1|2,3,4,5 entering (A.1) are given by (2.41).

The recursions (3.13) and (4.15) for tensorial pseudoinvariants gives rise to

Cmn
1|23,4,5,6,7 = M1M

mn
23,4,5,6,7 +M1 ⊗

[
Cmn

2|3,4,5,6,7 − Cmn
3|2,4,5,6,7 + 2{k

(m
4 C

n)
4|23,5,6,7 + (4 ↔ 5, 6, 7)}

]

= M1M
mn
23,4,5,6,7 +M12M

mn
3,4,5,6,7 −M13M

mn
2,4,5,6,7 + 2(k

(m
3 M123 − k

(m
2 M132)M

n)
4,5,6,7

+ 2
[
k
(m
4 k

n)
5

{
(M145 +M154)M23,6,7 + (M1245 + symm(2, 4, 5))M3,6,7

− (M1345 + symm(3, 4, 5))M2,6,7

}
+ (4, 5|4, 5, 6, 7)

]

+
[
2k

(m
4

{
M14M

n)
23,5,6,7 + (M124 +M142)M

n)
3,5,6,7

− (M134 +M143)M
n)
2,5,6,7 − k

n)
2 (M1432 +M1342 +M1324)M5,6,7

+ k
n)
3 (M1423 +M1243 +M1234)M5,6,7

}
+ (4 ↔ 5, 6, 7)

]
(A.2)

C
mnp

1|2,3,4,5,6,7 = M1M
mnp
2,3,4,5,6,7 +M1 ⊗

[
3k

(m
2 C

np)
2|3,4,5,6,7 + (2 ↔ 3, 4, 5, 6, 7)

]

= M1M
mnp
2,3,4,5,6,7 +

[
3k

(m
2 M12M

np)
3,4,5,6,7 + (2 ↔ 3, 4, 5, 7)

]

+
[
6k

(m
2 kn3 (M123 +M132)M

p)
4,5,6,7 + (2, 3|2, 3, 4, 5, 6, 7)

]

+
[
6k

(m
2 kn3 k

p)
4 (M1234 + symm(2, 3, 4))M5,6,7 + (2, 3, 4|2, 3, 4, 5, 6, 7)

]
, (A.3)

where Cmn
1|2,3,4,5,6 is given by (3.14).

One can extract the following seven-point pseudoinvariants from the recursion in (5.21)

where the expansion of P1|2|3,4,5,6 is given by (5.22):

P1|23|4,5,6,7 = M1J23|4,5,6,7 +M1 ⊗
[
P2|3|4,5,6,7 − P3|2|4,5,6,7

]

= M1J23|4,5,6,7 +M12J3|4,5,6,7 −M13J2|4,5,6,7 + km3 M123M
m
4,5,6,7

− km2 M132M
m
4,5,6,7 +

[
(s34M1234 − s24M1324)M5,6,7 + (4 ↔ 5, 6, 7)

]
(A.4)

P1|2|34,5,6,7 = M1J2|34,5,6,7 +M1 ⊗
[
P3|2|4,5,6,7 − P4|2|3,5,6,7 + km2 Cm

2|34,5,6,7

]

= M1J2|34,5,6,7 +M13J2|4,5,6,7 −M14J2|3,5,6,7

− s23(M1243 +M1423)M5,6,7 + s24(M1234 +M1324)M5,6,7

+ km2 (M12M
m
34,5,6,7 + (M123 +M132)M

m
4,5,6,7 − (M124 +M142)M

m
3,5,6,7)

+
[
s25(M125M34,6,7 + (M1325 +M1235 +M1253)M4,6,7

− (M1425 +M1245 +M1254)M3,6,7) + (5 ↔ 6, 7)
]
. (A.5)
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The recursion (6.9) for vector pseudoinvariants yields the following seven-point example:

Pm
1|2|3,4,5,6,7 = M1J

m
2|3,4,5,6,7 +M1 ⊗

{
k
p
2C

pm

2|3,4,5,6,7 +
[
km3 P3|2|4,5,6,7 + (3 ↔ 4, 5, 6, 7)

]}

= M1J
m
2|3,4,5,6,7 +

[
km3

{
M13J2|4,5,6,7 + (M123 +M132)k

p
2M

p
4,5,6,7

}
+ (3 ↔ 4, 5, 6, 7)

]

+ k
p
2M12M

pm
3,4,5,6,7 +

[
s23

{
M123M

m
4,5,6,7 + km4 (M1234 +M1243 +M1423)M5,6,7

+ km5 (M1235 +M1253 +M1523)M4,6,7 + km6 (M1236 +M1263 +M1623)M4,5,7

+ km7 (M1237 +M1273 +M1723)M4,5,6

}
+ (3 ↔ 4, 5, 6, 7)

]
. (A.6)

The simplest pseudoinvariant of refinement d > 1 is generated by the recursion (6.19):

P1|2,3|4,5,6,7,8 = M1J2,3|4,5,6,7,8 +M1 ⊗
[
km2 Pm

2|3|4,5,6,7,8 + km3 Pm
3|2|4,5,6,7,8

]

= M1J2,3|4,5,...,8 +M12k
2
mJm

3|4,5,...,8 +M13k
3
mJm

2|4,5,...,8 + (M123 +M132)k
2
mk3nM

mn
4,5,6,7,8

+
[
s24M124J3|5,6,7,8 + s34M134J2|5,6,7,8 + s34(M1234 +M1324 +M1342)k

m
2 Mm

5,6,7,8

+ s24(M1324 +M1234 +M1243)k
m
3 Mm

5,6,7,8 + (4 ↔ 5, 6, 7, 8)
]

+
[
s24s35(M12435 +M13245 +M13524 +M12345 +M12354 +M13254)M6,7,8

+ s25s34(M12534 +M13254 +M13425 +M12354 +M12345 +M13245)M6,7,8

+ (4, 5|4, 5, 6, 7, 8)
]

(A.7)

Appendix B. Gauge transformations versus BRST transformations

The purpose of this appendix is to clarify the relation between gauge transformations

and BRST variations. As mentioned below (2.1), the response of the superfields in ten-

dimensional SYM to a gauge transformation δi in particle i is given by

δiA
i
α = Dαωi, δiA

i
m = kimωi, δiW

α
i = δiF

mn
i = 0 , (B.1)

with some scalar superfield ωi. In the following, we infer the gauge transformation of

multiparticle superfields from (B.1) using their recursive definition presented in [32] and

reviewed in section 2.2. This in turn determines the action of δi on the complete set of

building blocks for one-loop amplitudes as well as their (pseudo-)invariant combinations. In

particular, we will arrive at a dictionary to translate anomalous BRST variations at ghost-

number four to the corresponding anomalous gauge variations at ghost-number three. This

is a convenient approach to component expansions of the hexagon gauge anomaly in one-

loop amplitudes of multiplicity n ≥ 6.

76



B.1. Gauge variations of multiparticle superfields

The recursive definitions of the rank-two superfields K12 ∈ {A12
α , A12

m ,Wα
12, F

12
mn} in (2.8)

allows to infer their gauge variation from (B.1),

δ1A
12
α = Dαω1|2 + (k1 · k2)ω1A

2
α

δ1A
12
m = km12ω1|2 + (k1 · k2)ω1A

m
2

δ1W
α
12 = (k1 · k2)ω1W

α
2

δ1F
12
mn = (k1 · k2)ω1F

mn
2 .

(B.2)

We have introduced a shorthand for the multiparticle gauge scalar,

ω1|2 ≡ −
1

2
ω1(k1 ·A2), (B.3)

to unify the two-particle expressions in δ1A
12
α and δ1A

12
m . The two-particle gauge trans-

formations (B.2) reproduce the single particle pattern (B.1) with ω1 → ω1|2 and enrich it

by contact terms ∼ (k1 · k2). This closely mimics the appearance of contact terms in the

two-particle equations of motion (2.9).

It is straightforward to work out the multiparticle gauge transformation at |B| > 2

using the recursion for KB as described in section 2.2. The structure of contact terms in

gauge transformations up to multiplicity three is captured by the following variations for

the unintegrated vertex VB ≡ λαAB
α ,

δ1V1 = Qω1 , δ1V12 = Qω1|2 + (k1 · k2)ω1V2 (B.4)

δ1V123 = Qω1|23 + (k1 · k2)(ω1V23 + ω1|3V2) + (k12 · k3)ω1|2V3 (B.5)

δ1V231 = Qω23|1 + (k2 · k3)(ω1|3V2 − ω1|2V3)− (k1 · k23)ω1V23 . (B.6)

This parallels the contact terms in (2.14) and defines additional multiparticle gauge scalars

ω1|23 ≡ −
1

2
ω1|2(k12 ·A3)−

1

6

[
ω1(k

1 ·A23) + ω1|3(k
3 ·A2)− ω1|2(k

2 ·A3)
]
, (B.7)

ω23|1 ≡
1

2
ω1(k1 ·A23)−

1

6

[
ω1(k

1 ·A23) + ω1|3(k
3 ·A2)− ω1|2(k

2 ·A3)
]
,

where the terms proportional to 1
6 come from the corrections Hijk of (2.11). As a

consistency check of (B.7) one can show that δ1(V123 + V231 + V312) = 0 after using

δ1V312 = − δ1V132 due to the rank-two Lie symmetry in the first two labels.
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B.2. Gauge variations of Berends–Giele currents MA

As detailed in section 2.3, a convenient basis of multiparticle fields KB is furnished by

Berends–Giele currents KB, represented by calligraphic letters. In a cubic graph interpre-

tation of multiparticle fields KB shown in fig. 3, Berends–Giele currents KB assemble the

diagrams of a color-ordered SYM tree including |B| − 1 propagators. The dictionary up to

multiplicity four is given in (2.17) and (2.18).

For the Berends–Giele current MB = λαAB
α associated with the unintegrated vertex

VB , (B.4) to (B.6) translate into

δ1M1 = QΩ1 , δ1M12 = QΩ1|2 + Ω1M2 (B.8)

δ1M123 = QΩ1|23 + Ω1|2M3 + Ω1M23 (B.9)

with Berends–Giele gauge scalars

Ω1 ≡ ω1 , Ω1|2 ≡
ω1|2

s12
, Ω1|23 ≡

ω1|23

s12s123
−

ω23|1

s23s123
. (B.10)

With suitable multiparticle generalizations Ω1|23...p of (B.10), one can directly write down

a closed formula for the gauge transformations of MB,

δ1M12...p =

p−1∑

j=1

Ω1|23...jMj+1...p +QΩ1|23...p . (B.11)

With this form of δ1M12...p, the superspace representation
∑n−2

j=1 M12...jMj+1...n−1Mn of

the SYM tree amplitude [17] can be easily checked to be gauge invariant up to BRST exact

terms,

δ1

( n−2∑

j=1

M12...jMj+1...n−1Mn

)
= Q

( n−2∑

j=1

Ω1|2...jMj+1...n−1Mn

)
. (B.12)

B.3. Gauge variations of ghost number two building blocks

Similarly to δ1M12...p in (B.11), the Berends–Giele currents Am
B ,Wα

B and Fmn
B give rise to

gauge transformations

δ1A
m
12...p = km12...pΩ1|23...p +

p−1∑

j=1

Ω1|23...jA
m
j+1...p (B.13)

δ1W
α
12...p =

p−1∑

j=1

Ω1|23...jW
α
j+1...p (B.14)

δ1F
mn
12...p =

p−1∑

j=1

Ω1|23...jF
mn
j+1...p (B.15)
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which resemble their BRST variations (2.22). With (B.13) to (B.15), one can straight-

forwardly compute the gauge variations of all the building blocks Mm1...mr

B1,...,Br+3
and

Jm1...mr

A1,...,Ad|B1,...,Bd+r+3
introduced in (4.3) and (6.11), respectively. The simplest examples

MA,B,C and Mm
A,B,C,D are defined in (2.26) and (2.30), and their gauge variation

δ1M12...p,B,C =

p−1∑

j=1

Ω1|23...jMj+1...p,B,C (B.16)

δ1M
m
12...p,B,C,D = km12...pΩ1|23...pMB,C,D +

p−1∑

j=1

Ω1|23...jM
m
j+1...p,B,C,D (B.17)

resembles the contributions from a single slot to the BRST variations (2.27) and (2.31).

The variation of tensors or refined building blocks

δ1M
mn
12...p,B,C,D,E = 2k

(m
12...pΩ1|23...pM

n)
B,C,D,E +

p−1∑

j=1

Ω1|23...jM
mn
j+1...p,B,C,D,E (B.18)

δ1J12...p|B,C,D,E = km12...pΩ1|23...pM
m
B,C,D,E +

[
ΩS[12...p,B]MC,D,E + (B ↔ C,D,E)

]

+

p−1∑

j=1

Ω1|23...jJj+1...p|B,C,D,E (B.19)

δ1JB|12...p,C,D,E = −ΩS[12...p,B]MC,D,E +

p−1∑

j=1

Ω1|23...jJB|j+1...p,C,D,E (B.20)

does not reproduce the anomalous terms YA,B,C,D,E present in the BRST variations (3.2)

and (5.18). The S[A,B] map is defined in (5.14) and ΩS[12...p,B] is understood to be ar-

ranged in the form Ω1|....

As general rule, δiJ
m1...mr

A1,...,Ad|B1,...,Bd+r+3
can be reconstructed from those terms in

QJm1...mr

A1,...,Ad|B1,...,Bd+r+3
given in (6.13) where particle i appears in a current MiC . The gauge

variation follows by replacing MiC → Ωi|C and discarding any other term in the BRST

variation. The same prescription applies to anomaly building blocks Ym1...mr

A1,...,Ad|B1,...,Bd+r+5

which are recursively defined by (6.12), see (3.3) for the simplest scalar YA,B,C,D,E and

(7.12) for the general BRST transformation.

B.4. Gauge variations of pseudoinvariants

The above gauge variations of MB and Jm1...mr

A1,...,Ad|B1,...,Bd+r+3
are sufficient to study the

anomalous gauge transformations of pseudoinvariants. This in turn allows to probe the
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hexagon anomaly in field theory and string theory, see [31,29] for details. All the pseudoin-

variants Pm1...
i|... constructed by the recursion (6.17) are combinations of MiAJ where J

represents any ghost number two building block Jm1...mr

A1,...,Ad|B1,...,Bd+r+3
, possibly adjoined

by momenta. This makes the gauge variation in the reference leg i particularly convenient

to study: By (B.11), we have

δiMiAJ =

|A|−1∑

j=0

Ωi|a1a2...aj
Maj+1...a|A|

J − Ωi|AQJ +Q(Ωi|AJ ) . (B.21)

Up to the last BRST-exact term, this is closely related to the BRST transformation

QMiAJ =

|A|−1∑

j=0

Mia1a2...aj
Maj+1...a|A|

J −MiAQJ (B.22)

upon interchanging Ωi|B ↔ MiB for any |B| = 0, 1, . . . , |A|, i.e.

δiMiAJ = (QMiAJ )
∣∣
MiB→Ωi|B

+Q(Ωi|AJ ) . (B.23)

This can be applied term by term to the pseudoinvariants Pm1...
i|... obtained from (6.17),

δiP
m1...mr

i|A1,...,Ad|B1,...,Bd+r+3
= (QPm1...mr

i|A1,...,Ad|B1,...,Bd+r+3
)
∣∣
MiC→Ωi|C

+Q
(
Pm1...mr

i|A1,...,Ad|B1,...,Bd+r+3

∣∣
MiC→Ωi|C

)
, (B.24)

where the BRST transformations are given by (7.17). For example, the anomalous Q

variations of the simplest pseudoinvariants at six and seven points

QP1|2|3,4,5,6 = −M1Y2,3,4,5,6 (B.25)

QP1|23|4,5,6,7 = −M1Y23,4,5,6,7 −M12Y3,4,5,6,7 +M13Y2,4,5,6,7 (B.26)

QPm
1|2|3,4,5,6,7 = −M1Y

m
2,3,4,5,6,7 −

[
km2 M12Y3,4,5,6,7 + (2 ↔ 3, 4, 5, 6, 7)

]
(B.27)

translate into gauge variations

δ1P1|2|3,4,5,6 = − Ω1Y2,3,4,5,6 +Q(. . .) (B.28)

δ1P1|23|4,5,6,7 = − Ω1Y23,4,5,6,7 − Ω1|2Y3,4,5,6,7 + Ω1|3Y2,4,5,6,7 +Q(. . .) (B.29)

δ1P
m
1|2|3,4,5,6,7 = − Ω1Y

m
2,3,4,5,6,7 −

[
km2 Ω1|2Y3,4,5,6,7 + (2 ↔ 3, . . . , 7)

]
+Q(. . .) .(B.30)
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Gauge variations δkP
m1...
i|... beyond the reference leg i can still be obtained by trading any

MkB in the BRST variation QPm1...
i|... for Ωk|B, e.g.

δ2P1|2|3,4,5,6 = Q(. . .)

δ2P1|23|4,5,6,7 = Ω2|1Y3,4,5,6,7 +Q(. . .) (B.31)

δ2P
m
1|2|3,4,5,6,7 = Ω2|1k

m
2 Y3,4,5,6,7 +Q(. . .) .

These expressions of ghost number three can be evaluated in components using the methods

in [9]. As shown in [26], the bosonic components of (B.28) yield a Levi-Civita contraction

of five gluon field strengths, i.e. ∼ ǫm1n1...m5n5
km1

2 en1

2 . . . km5

6 en5

6 . We will argue in the next

section that any anomalous superfield has parity odd bosonic components.

B.5. Parity odd nature of multiparticle anomaly tensors

The component evaluation of 〈(λγmW2)(λγ
nW3)(λγ

pW4)(W5γmnpW6)〉 using the prescrip-

tion 〈λ3θ5〉 = 1 [3] is particularly simple for five external bosons: The lowest bosonic com-

ponent in the superfields occurs at order Wα
i → −1

4
(γmnθ)

αfmn
i (with fmn

i = 2k
[m
i e

n]
i in

terms of the gluon polarization vector eni ), so the contribution from five factors of Wi to

the order θ5 is unique. The single-particle instance Y2,3,4,5,6 of the anomaly superfields in

(3.3) therefore reduces to the correlator

〈(λγmγa1b1θ)(λγnγa2b2θ)(λγpγa3b3θ)(θγa4b4γmnpγ
a5b5θ)〉 =

1

45
ǫa1b1a2b2...a5b5 , (B.32)

which has been evaluated in [26] and shown to flip sign under spacetime parity.

It turns out that the same correlator (B.32) governs the bosonic components of a

generic YA,B,C,D,E built from multiparticle superfields Wα
A . This follows from the two-

form nature of the lowest bosonic component in the θ-expansion of the BRST blocks,

Wα
A = −

1

4
(γmnθ)

αfmn
A +O(θ3) , Fmn

A = fmn
A +O(θ2) , (B.33)

where the two-particle instance of the bosonic field strength fmn
A is given by,

1

2
fmn
12 ≡ k

[m
12 e

n]
2 (e1 · k2)− k

[m
12 e

n]
1 (e2 · k1)− k

[m
1 k

n]
2 (e1 · e2)− e

[m
1 e

n]
2 (k1 · k2) . (B.34)

The appearance of fmn
A in both superfields in (B.33) is an inevitable consequence of the

multiparticle equation of motion for DαW
β
A, see (2.9) and (2.14) for |A| = 2, 3 and (2.22)

for the Berends–Giele version at general multiplicity. The contact terms ∼ AB
αW

β
C in the
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multiparticle equations of motion do not contribute at zero’th order in θ since both factors

are fermionic with lowest gluon contributions at order θ1.

The correlator (B.32) and the leading θ behavior in (B.33) for the bosonic part of Wα
A

imply the gluon component

〈YA,B,C,D,E〉 =
1

45

(
−
1

4

)5

ǫa1b1a2b2...a5b5f
a1b1
A fa2b2

B . . . fa5b5
E (B.35)

for the scalar and unrefined anomaly superfield YA,B,C,D,E. Its generalization to higher

rank or refinement simply adjoins superspace factors of Am
B , see (4.6) and (6.12). The

latter can only contribute through their θ = 0 component since YA,B,C,D,E has a minimum

contribution of five thetas for external bosons. The same is true for the Ωi|C superfields due

to gauge transformations in particle i. Hence, the gluon components of an anomalous gauge

transformation 〈Ωi|CY
m1...mr

A1,...,Ad|B1,...,Bd+r+5
〉 are proportional to the ǫ10 tensor generated by

the correlator (B.32).

Appendix C. BRST variations of miscellaneous superfields

In this appendix we display explicit BRST variations of various superfields that were

omitted from the main text.

C.1. BRST variations before the Berends–Giele map

Even though we emphasized the simpler BRST transformations of the Berends–Giele ver-

sion of the various building blocks in the main body of this work, it is still convenient

to know the explicit Q variations of those building blocks prior to the application of the

Berends–Giele map in (2.17) and (2.18).

The precursor of the Berends–Giele recursion (4.3) for Mm1...mr

B1,...,Br+3
is based on the

expression (2.25) for TA,B,C as well as

Wm
A,B,C,D ≡

1

12
(λγnWA)(λγpWB)(WCγ

mnpWD) + (A,B|A,B,C,D) . (C.1)

For the higher rank generalizations

W
m1...mr−1|mr

B1,B2,...,Br+3
≡ Am1

B1
W

m2...mr−1|mr

B2,...,Br+3
+ (B1 ↔ B2, . . . , Br+3) (C.2)

Tm1...mr

B1,B2,...,Br+3
≡ Am1

B1
Tm2...mr

B2,...,Br+3
+ Amr

B1
W

mr−1...m2|m1

B2,...,Br+3
+ (B1 ↔ B2, B3, . . . , Br+3) ,
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one can show that

QTm
1,2,3,4 = km1 V1T2,3,4 + (1 ↔ 2, 3, 4) (C.3)

QTm
12,3,4,5 =

[
km12V12T3,4,5 + (12 ↔ 3, 4, 5)

]
+ (k1 · k2)

(
V1T

m
2,3,4,5 − V2T

m
1,3,4,5

)

QTm
123,4,5,6 =

[
km123V123T4,5,6 + (123 ↔ 4, 5, 6)

]

+ (k1 · k2)
[
V1T

m
23,4,5,6 + V13T

m
2,4,5,6 − (1 ↔ 2)

]

+ (k12 · k3)
[
V12T

m
3,4,5,6 − (12 ↔ 3)

]

QTmn
1,2,3,4,5 =

[
2k

(m
1 V1T

n)
2,3,4,5 + (1 ↔ 2, 3, 4, 5)

]
+ δmnY1,2,3,4,5

QTmn
12,3,4,5,6 =

[
2k

(m
12 V12T

n)
3,4,5,6 + (12 ↔ 3, 4, 5, 6)

]
+ δmnY12,3,4,5,6

+ (k1 · k2)
[
V1T

mn
2,3,4,5,6 − (1 ↔ 2)

]

QT
mnp
1,2,3,4,5,6 = 3δ(mnY

p)
1,2,3,4,5,6 +

[
3V1k

(m
1 T

np)
2,3,4,5,6 + (1 ↔ 2, 3, 4, 5, 6)

]
.

Similarly, the BRST variations of refined currents (5.7) can be computed to be

QJ1|23,45,6,7 = km1 V1T
m
23,45,6,7 +

[
V[1,23]T45,6,7 + (23 ↔ 45, 6, 7)

]
+ Y1,23,45,6,7 (C.4)

+ (k2 · k3)
[
V2J1|3,45,6,7 − (2 ↔ 3)

]
+ (k4 · k5)

[
V4J1|23,5,6,7 − (4 ↔ 5)

]

QJ12|34,5,6,7 = km12V12T
m
34,5,6,7 +

[
V[12,34]T5,6,7 + (34 ↔ 5, 6, 7)

]
+ Y12,34,5,6,7

+ (k1 · k2)
[
V1J2|34,5,6,7 − (1 ↔ 2)

]
+ (k3 · k4)

[
V3J12|4,5,6,7 − (3 ↔ 4)

]

QJ123|4,5,6,7 = km123V123T
m
4,5,6,7 +

[
V[123,4]T5,6,7 + (4 ↔ 5, 6, 7)

]
+ Y123,4,5,6,7

+ (k1 · k2)
[
V1J23|4,5,6,7 + V13J2|4,5,6,7 − (1 ↔ 2)

]

+ (k12 · k3)
[
V12J3|4,5,6,7 − (12 ↔ 3)

]

QJ1|234,5,6,7 = km1 V1T
m
234,5,6,7 +

[
V[1,234]T5,6,7 + (234 ↔ 5, 6, 7)

]
+ Y1,234,5,6,7

+ (k2 · k3)
[
V2J1|34,5,6,7 + V24J1|3,5,6,7 − (2 ↔ 3)

]

+ (k23 · k4)
[
V23J1|4,5,6,7 − (23 ↔ 4)

]
.

C.2. BRST variations after the Berends–Giele map

After applying the Berends–Giele map to the refined currents from (C.4), their BRST

variations become

QJ1|23,45,6,7 = km1 M1M
m
23,45,6,7 (C.5)

+ (s12M123 − s13M132)M45,6,7 + (s14M145 − s15M154)M23,6,7
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+ s16M16M23,45,7 + s17M17M23,45,6 + Y1,23,45,6,7

+M2J1|3,45,6,7 −M3J1|2,45,6,7 +M4J1|23,5,6,7 −M5J1|23,4,6,7

QJ12|34,5,6,7 = km12M12M
m
34,5,6,7

+ (s23M1234 − s13M2134 − s24M1243 + s14M2143)M5,6,7

+
[
(s25M125 − s15M215)M34,6,7 + (5 ↔ 6, 7)

]
+ Y12,34,5,6,7

+M1J2|34,5,6,7 −M2J1|34,5,6,7 +M3J12|4,5,6,7 −M4J12|3,5,6,7

QJ123|4,5,6,7 = km123M123M
m
4,5,6,7

+
[
(s34M1234 − s24(M1324 +M3124) + s14M3214)M5,6,7 + (4 ↔ 5, 6, 7)

]

+ Y123,4,5,6,7 +M12J3|4,5,6,7 −M3J12|4,5,6,7 +M1J23|4,5,6,7 −M23J1|4,5,6,7

QJ1|234,5,6,7 = km1 M1M
m
234,5,6,7

− (s12M4321 − s13(M2431 +M4231) + s14M2341)M5,6,7

+
[
s15M15M234,6,7 + (5 ↔ 6, 7)

]
+ Y1,234,5,6,7

+M23J1|4,5,6,7 −M4J1|23,5,6,7 +M2J1|34,5,6,7 −M34J1|2,5,6,7 .

The following relations are useful to derive (C.5) from (C.4):

T12 = s12M12, T123 = s12(s23M123 − s13M213) (C.6)

T1234 − T1243 = s12s34(s23M1234 − s13M2134 − s24M1243 + s14M2143) (C.7)

T1234 = s12
[
s23s24(M1234 +M1243)− s13s14(M2134 +M2143) + s23s34M1234

− s13s34M2134 + s14s23M3214 − s13s24M3124

]
. (C.8)

Appendix D. The H superfields in the redefinition of refined currents

This appendix provides a general definition for the superfields H[A,B] and H[A,B] relevant

for the redefinition of refined currents Jm1...mr

A1,...,Ad|B1,...,Bd+r+3
.

D.1. The H[A,B] tensors from BRST blocks VC

As mentioned in section 2.2 and detailed in [32], the recursive construction of BRST blocks

KB ∈ {AB
α , A

m
B ,Wα

B , F
mn
B } requires redefinitions by BRST trivial quantities to maintain

the Lie symmetries. We define V̂[A,B] through a generalization of the recursion in (2.15) to

situations where both |A| 6= 1 and |B| 6= 1:

V̂[A,B] ≡ −
1

2

[
VA(kA ·AB) +AA

m(λγmWB)− (A ↔ B)
]

(D.1)
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There are two obstructions to express V̂[A,B] as a linear combination of BRST blocks VC

at multiplicity |C| = |A|+ |B|:

(i) Generic contributions to QV̂[A,B] have the form sijVC V̂[D,E]. They can be corrected

to sijVCV[D,E] by subtracting combinations of sijVCH[D,E] for some scalar superfields

H[D,E] to be defined in the next step.

(ii) After the above subtraction, the modified V̂[A,B] must still be shifted by a BRST exact

quantity QH[A,B] before it can be expressed in a basis of BRST blocks VC . If B = b1,

i.e. |B| = 1, this amounts to enforcing the Lie symmetries at multiplicity |A| + 1 by

adding QH[A,b1]. The latter was denoted by H[A,b1] ≡ Ha1a2...a|A|b1 in [32].

Let us illustrate the recursive nature of these points through the simplest examples at

multiplicity |A|+ |B| ≤ 5. Cases with |B| = 1 have been discussed in [32],

V̂[12,3] = V[12,3] +QH[12,3] (D.2)

V̂[123,4] = V[123,4] + (k12 · k3)H[12,4]V3 + (k1 · k2)(H[13,4]V2 −H[23,4]V1) +QH[123,4] (D.3)

V̂[1234,5] = V[1234,5] + (k123 · k4)H[123,5]V4 + (k12 · k3)(H[124,5]V3 +H[12,5]V34 −H[34,5]V12)

+ (k1 · k2)(H[134,5]V2 +H[13,5]V24 +H[14,5]V23 −H[24,5]V13 −H[23,5]V14 −H[234,5]V1)

+QH[1234,5] , (D.4)

where the corrections by QH[12...p−1,p] are explained in (ii) and the remaining terms are

due to step (i), see [32] for a closed formula. Requiring V[12...p−1,p] = V12...p to satisfy the

Lie symmetries at rank p turns (D.2) to (D.4) into a recursive procedure to determine

H[12...p−1,p] = H12...p and V12...p [32].

Cases with |B| 6= 1 introduce new classes of corrections H[A,B]:

V̂[12,34] = V[12,34] + (k1 · k2)(H[34,2]V1 −H[34,1]V2)

+ (k3 · k4)(H[12,3]V4 −H[12,4]V3) +QH[12,34] (D.5)

V̂[123,45] = V[123,45] + (k12 · k3)(H[12,45]V3 −H[3,45]V12)

+ (k1 · k2)(H[13,45]V2 +H[1,45]V23 −H[2,45]V13 −H[23,45]V1)

+ (k4 · k5)(H[123,4]V5 −H[123,5]V4) +QH[123,45] , (D.6)

The bracket notation V[A,B] on the right-hand side represents linear combinations of BRST

blocks such as V[12,34] = V1234 − V1243 or V[123,45] = V12345 − V12354, see appendix A of [32]

for more details. They follow by identifying V[A,B] with the cubic diagram depicted in

fig. 5 and expanding the latter in terms of a multiperipheral basis in fig. 3. The required
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Fig. 8 Triplet of subdiagrams whose color representatives sum to zero by virtue of the

Jacobi identity fe[abf c]de = 0. The expansion of the above V[A,B] in a basis of BRST

blocks VC can be understood using the same vanishing statement for triplets of diagrams.

The latter allows to expand the diagrammatic representative for V[A,B] shown in fig. 5

in terms of multiperipheral trees depicted in fig. 3 and described by VC .

diagram manipulations are depicted in fig. 8 and can be though of as the kinematic dual

of the Jacobi identity fe[abf c]de = 0 among color tensors along the lines of [44]. The

S[A,B] map defined in (5.14) will efficiently address the conversion of V[A,B] → VC once

the participating superfields are transformed into a basis of Berends–Giele currents.

With this understanding of the V[A,B] on the right-hand side of (D.2) to (D.6), the

redefining tensors QH[A,B] with |B| 6= 1 can be obtained recursively. In order to bypass

the inconvenience of “inverting” the BRST charge, we next present a setup to determine

the H[A,B] directly.

D.2. The H[A,B] tensors from BRST blocks Am
C

Also the BRST block Âm
12...p in its hatted version before H[B,C] modifications is defined

recursively in [32]. The expression given for Âm
12...p ≡ Âm

[12...p−1,p] can be straightforwardly

generalized to Âm
[B,C] with |C| 6= 1:

Âm
[B,C] ≡

1

2

[
A

p
BF

pm
C +Am

C (kC ·AB)− (B ↔ C)
]
+ (WBγ

mWC) . (D.7)

As shown in [32] for |C| = 1, the redefinitions of Âm
[B,C] and V̂[B,C] are mapped into each

other by exchanging the relevant BRST blocks VD ↔ Am
D and tradingQ ↔ kmBC = kmB+kmC .

Up to multiplicity four, this converts (D.2), (D.3) and (D.5) into

Âm
[12,3] = Am

[12,3] + km123H[12,3] (D.8)

Âm
[123,4] = Am

[123,4] + (k12 · k3)H[12,4]A
m
3

+ (k1 · k2)(H[13,4]A
m
2 −H[23,4]A

m
1 ) + km1234H[123,4] (D.9)

Âm
[12,34] = Am

[12,34] + (k1 · k2)(H[34,2]A
m
1 −H[34,1]A

m
2 )

+ (k3 · k4)(H[12,3]A
m
4 −H[12,4]A

m
3 ) + km1234H[12,34] . (D.10)

As emphasized in [32], knowledge of kmBCH[B,C] is a more convenient starting point to solve

for the scalar H[B,C] as compared to QH[B,C].
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D.3. The H[A,B] tensors from Berends–Giele currents KC

A convenient basis of multiparticle SYM fields KC to construct BRST (pseudo-)invariants

is furnished by the Berends–Giele currents, see section 2.3. The contact terms in the above

formulae turn out to simplify once we transform the superfields involved according to

H[12,3] =
H[12,3]

s12
, H[12,34] =

H[12,34]

s12s34
, H[123,4] =

H[123,4]

s12s123
+

H[321,4]

s23s123

H[123,456] =
1

s123s456

(H[123,456]

s12s45
+

H[321,456]

s23s45
+

H[123,654]

s12s56
+

H[321,654]

s23s56

)
. (D.11)

This amounts to applying the map in (2.17) and (2.18) separately to B and C in H[B,C].

The resulting H[B,C] are the natural superfields to describe the redefinitions of

V̂[B,C] ≡ −
1

2

[
MB(kB · AC) +AB

m(λγmWC)− (B ↔ C)
]

(D.12)

Âm
[B,C] ≡

1

2

[
Ap

BF
pm
C +Am

C (kC · AB)− (B ↔ C)
]
+ (WBγ

mWC) . (D.13)

In order to obtain the Berends–Giele images of the BRST blocks VD and Am
D with Lie

symmetries, we have to modify V̂[A,B] and Âm
[B,C] via

V̂[B,C] ≡ MS[B,C] +
∑

XY =B

(H[X,C]MY −H[Y,C]MX)

+
∑

XY =C

(H[B,X]MY −H[B,Y ]MX) +QH[B,C] (D.14)

Âm
[B,C] ≡ Am

S[B,C] +
∑

XY =B

(H[X,C]A
m
Y −H[Y,C]A

m
X)

+
∑

XY =C

(H[B,X]A
m
Y −H[B,Y ]A

m
X) + kmBCH[B,C] . (D.15)

Note that H[B,C] = 0 whenever |B| = |C| = 1. Comparison of (D.14) and (D.15) with

the above examples (say (D.6) or (D.10)) reveals two benefits of the basis of Berends–

Giele currents: Firstly, the pattern of BRST blocks on the right-hand side without an

accompanying factor of H[B,C] can be described by the S[B,C] map defined in (5.14).

Secondly, the contact terms in (D.6) or (D.10) are converted to simple deconcatenations.

Since MS[B,C] and Am
S[B,C] are known in terms of BRST blocks VD and Am

D of multiplicity

|D| = |B|+ |C| [32], one can view (D.15) as a constructive definition of H[B,C].
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Appendix E. On BRST exact relations among pseudoinvariants

E.1. BRST generator of Cm
1|A,B,C,D

According to the discussion in section 9.1 and in particular (9.6), the traceless components

of Cm1...mr

i|A1,...,Ar+3
are BRST exact. However, it is difficult to extract the BRST generators,

so we will explicitly carry out the analysis for vectors Cm
i|A,B,C,D.

When contracting (9.5) with momenta kmr knr of any particle r = i or r ∈ A,B,C,D,

the on-shell condition k2r decouples the anomalous term ∼ δmn, and we obtain the BRST

generator for the corresponding momentum contraction,

Q

[
kmr knrD

mn
i|A,B,C,D

2(kr · kiABCD)

]
= kmr Cm

i|A,B,C,D . (E.1)

Plugging this back into the kni contraction of (9.5) with its trace subtracted:

Cm
i|A,B,C,D = Q

1

(ki · kiABCD)

[
k
p
iD

pm

i|A,B,C,D
−

1

10
kmi δnpD

np

i|A,B,C,D

−
kmiABCDkni k

p
iD

np

i|A,B,C,D

2(ki · kiABCD)
+

1

10
kmi

∑

r∈i,A,B,C,D

knr k
p
rD

np

i|A,B,C,D

(kr · kiABCD)

]
. (E.2)

Similar to (9.3), the right-hand side is ill-defined if momentum conservation kmiABCD = 0

is imposed, so the vector invariant Cm
i|A,B,C,D is not BRST-exact in the momentum phase

space of 1 + |A| + |B| + |C| + |D| massless particles. The BRST generator for traceless

tensors of rank r ≥ 2 can be found by the same method.

E.2. Seven-point momentum contractions of Cm
1|A,B,C,D

The general formula (9.9) for QDi|A|B,C,D specializes to the following BRST exact relations

at seven-points:

QD1|234|5,6,7 = ∆1|234,5,6,7 + km234C
m
1|234,5,6,7 − P1|2|34,5,6,7 − P1|23|4,5,6,7

+P1|34|2,5,6,7 + P1|4|23,5,6,7 +
[
− s25C1|5234,6,7 − s45C1|5432,6,7

+ s35(C1|5324,6,7 + C1|5342,6,7) + (5 ↔ 6, 7)
]

(E.3)

QD1|5|234,6,7 = ∆1|234,5,6,7 + km5 Cm
1|234,5,6,7 + s56C1|234,56,7 + s57C1|234,57,6

+
[
s25C1|5234,6,7 − s35(C1|5324,6,7 + C1|5342,6,7) + s45C1|5432,6,7

]
(E.4)

QD1|23|45,6,7 = ∆1|23,45,6,7 + km23C
m
1|23,45,6,7 − P1|2|3,45,6,7 + P1|3|2,45,6,7

+
[
s25C1|3254,6,7 − s24C1|3245,6,7 − s35C1|2354,6,7 + s34C1|2345,6,7

]

+
[
s36C1|236,45,7 − s26C1|326,45,7 + (6 ↔ 7)

]
(E.5)

QD1|6|23,45,7 = ∆1|23,45,6,7 + km6 Cm
1|23,45,6,7 + (s26C1|326,45,7 − s36C1|236,45,7)

+(s46C1|546,23,7 − s56C1|456,23,7) + s67C1|23,45,67 . (E.6)
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Appendix F. Examples of the canonicalization procedure

This appendix gathers further applications of the canonicalization procedure in section 11.

We suppress the BRST generators since they can be reconstructed from the right-hand

side and do not contribute to amplitudes.

The canonicalization prescription (11.10) for scalar invariants implies that

C2|1,34,56 = C1|2,34,56 + C1|23,56,4 − C1|24,56,3 + C1|25,34,6 − C1|26,34,5

+ C1|235,6,4 − C1|236,5,4 − C1|245,6,3 + C1|246,5,3 + C1|253,4,6

− C1|254,3,6 − C1|263,4,5 + C1|264,3,5 +Q(. . .) (F.1)

C2|1345,6,7 = C1|3452,6,7 +Q(. . .) (F.2)

C2|1,3456,7 = C1|2,3456,7 + C1|23,456,7 − C1|26,345,7 + C1|234,56,7 − C1|236,45,7 − C1|263,45,7

+ C1|265,34,7 + C1|2345,6,7 − C1|2346,5,7 − C1|2364,5,7 + C1|2365,4,7 − C1|2634,5,7

+ C1|2635,4,7 + C1|2653,4,7 − C1|2654,3,7 +Q(. . .) (F.3)

C2|134,56,7 = C1|342,56,7 + C1|3425,6,7 − C1|3426,5,7 +Q(. . .) (F.4)

C2|13,456,7 = C1|32,456,7 + C1|324,56,7 − C1|326,45,7 + C1|3245,6,7

− C1|3246,5,7 − C1|3264,5,7 + C1|3265,4,7 +Q(. . .) (F.5)

C2|13,45,67 = C1|32,45,67 + C1|324,67,5 − C1|325,67,4 + C1|326,45,7 − C1|327,45,6

+ C1|3246,7,5 − C1|3247,6,5 − C1|3256,7,4 + C1|3257,6,4 + C1|3264,5,7

− C1|3265,4,7 − C1|3274,5,6 + C1|3275,4,6 +Q(. . .) . (F.6)

Except for the more laborious C2|345,67,1, (F.1) to (F.6) and the opening examples of

section 11.1 cover all canonicalizations of scalars C2|A,B,C up to multiplicity seven.

Next, we apply the canonicalization rule (11.17) to vectors and tensors:

Cm
2|13,4,5,6 = Cm

1|32,4,5,6 +
[
km4 C1|324,5,6 + (4 ↔ 5, 6)

]
+Q(. . .) (F.7)

Cm
2|1,34,5,6 = Cm

1|2,34,5,6 + Cm
1|23,4,5,6 − Cm

1|24,3,5,6 + km4 C1|234,5,6 − km3 C1|243,5,6 +Q(. . .)

+
[
km5 (C1|25,34,6 + C1|235,4,6 + C1|253,4,6 − C1|245,3,6 − C1|254,3,6) + (5 ↔ 6)

]

Cm
2|134,5,6,7 = Cm

1|342,5,6,7 +
[
km5 C1|3425,6,7 + (5 ↔ 6, 7)

]
+Q(. . .)

Cm
2|13,45,6,7 = Cm

1|32,45,6,7 + Cm
1|324,5,6,7 − Cm

1|325,4,6,7 + km5 C1|3245,6,7 − km4 C1|3254,6,7 +Q(. . .)

+
[
km6 (C1|326,45,7 + C1|3264,5,7 + C1|3246,5,7 − C1|3265,4,7 − C1|3256,4,7) + (6 ↔ 7)

]

Cmn
2|13,4,5,6,7 = Cmn

1|32,4,5,6,7 + δmnY132,4,5,6,7 + 2
[
k
(m
4 C

n)
1|324,5,6,7 + (4 ↔ 5, 6, 7)

]
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+ 2
[
k
(m
4 k

n)
5 (C1|3245,6,7 + C1|3254,6,7) + (4, 5|4, 5, 6, 7)

]
+Q(. . .)

Cmn
2|1,34,5,6,7 = Cmn

1|2,34,5,6,7 + Cmn
1|23,4,5,6,7 − Cmn

1|24,3,5,6,7 + δmn(Y12,34,5,6,7 + Y123,4,5,6,7 − Y124,3,5,6,7)

+ 2
[
k
(m
5 (C

n)
1|25,34,6,7 + C

n)
1|235,4,6,7 + C

n)
1|253,4,6,7 − C

n)
1|245,3,6,7 − C

n)
1|254,3,6,7) + (5 ↔ 6, 7)

]

+ 2k
(m
4 C

n)
1|234,5,6,7 − 2k

(m
3 C

n)
1|243,5,6,7 + 2

[
k
(m
5

{
k
n)
4 (C1|2345,6,7 + C1|2354,6,7 + C1|2534,6,7)

− k
n)
3 (C1|2435,6,7 + C1|2453,6,7 + C1|2543,6,7) + (5 ↔ 6, 7)

]

+ 2
[
k
(m
5 k

n)
6

{
C1|256,34,7 + C1|265,34,7 + (C1|2356,4,7 + symm(3, 5, 6))

− (C1|2456,3,7 + symm(3, 5, 6))
}
+ (5, 6|5, 6, 7)

]
+Q(. . .) .

The more laborious vectors Cm
2|1,345,6,7 and Cm

2|1,34,56,7 at multiplicity seven are omitted.

Finally, the following pseudoinvariants are canonicalized using (11.20):

P2|3|14,5,6,7 = P1|3|42,5,6,7 + Y142,3,5,6,7 + km3 Cm
1|423,5,6,7

+
[
s35C1|4235,6,7 + (5 ↔ 6, 7)

]
+Q(. . .) (F.8)

P2|34|1,5,6,7 = P1|34|2,5,6,7 + P1|4|23,5,6,7 − P1|3|24,5,6,7 + Y12,34,5,6,7 + Y123,4,5,6,7

−Y124,3,5,6,7 +
[
s45C1|2345,6,7 − s35C1|2435,6,7 + (5 ↔ 6, 7)

]

+ km4 Cm
1|234,5,6,7 − km3 Cm

1|243,5,6,7 +Q(. . .) (F.9)

P2|3|1,45,6,7 = P1|3|2,45,6,7 + P1|3|24,5,6,7 − P1|3|25,4,6,7 + Y12,3,45,6,7 + Y124,3,5,6,7

−Y125,3,4,6,7 +
[
s35(C1|2345,6,7 + C1|2435,6,7)− (4 ↔ 5)

]

+ km3 (Cm
1|23,45,6,7 + Cm

1|234,5,6,7 − Cm
1|235,4,6,7 + Cm

1|243,5,6,7 − Cm
1|253,4,6,7)

+
[
s36(C1|236,45,7 + C1|2346,5,7 + C1|2364,5,7 + C1|2436,5,7

− C1|2356,4,7 − C1|2365,4,7 − C1|2536,4,7) + (6 ↔ 7)
]
+Q(. . .) (F.10)

Pm
2|3|1,4,5,6,7 = Pm

1|3|2,4,5,6,7 + Ym
12,3,4,5,6,7 +

[
km4 (P1|3|24,5,6,7 + Y124,3,5,6,7) + (4 ↔ 5, 6, 7)

]

+
[
s34C

m
1|234,5,6,7 + km4 k

p
3(C

p

1|234,5,6,7 + C
p

1|243,5,6,7) + (4 ↔ 5, 6, 7)
]

+ k
p
3C

pm

1|23,4,5,6,7 + km3 Y123,4,5,6,7 +
[
s34

{
km5 (C1|2345,6,7 + C1|2354,6,7 + C1|2534,6,7)

+ km6 (C1|2346,5,7 + C1|2364,5,7 + C1|2634,5,7)

+ km7 (C1|2347,5,6 + C1|2374,5,6 + C1|2734,5,6)
}
+ (4 ↔ 5, 6, 7)

]
+Q(. . .) . (F.11)
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[3] N. Berkovits, “Super-Poincaré covariant quantization of the superstring,” JHEP 0004,

018 (2000) [arXiv:hep-th/0001035].

[4] N. Berkovits, “Multiloop amplitudes and vanishing theorems using the pure spinor

formalism for the superstring,” JHEP 0409, 047 (2004). [hep-th/0406055].

[5] N. Berkovits, “Pure spinor formalism as an N=2 topological string,” JHEP 0510, 089

(2005). [hep-th/0509120].

[6] P. Ramond, “Dual Theory for Free Fermions,” Phys. Rev. D 3, 2415 (1971) ;

A. Neveu and J. H. Schwarz, “Factorizable dual model of pions,” Nucl. Phys. B 31

(1971) 86 ;

A. Neveu and J. H. Schwarz, “Quark Model of Dual Pions,” Phys. Rev. D 4, 1109

(1971).

[7] M. B. Green and J. H. Schwarz, “Covariant Description Of Superstrings,” Phys. Lett.

B 136, 367 (1984) ;

M. B. Green and J. H. Schwarz, “Supersymmetrical String Theories,” Phys. Lett. B

109, 444 (1982).

[8] N. Berkovits, “Explaining Pure Spinor Superspace,” [hep-th/0612021].

[9] C.R. Mafra, “PSS: A FORM Program to Evaluate Pure Spinor Superspace Expres-

sions,” [arXiv:1007.4999 [hep-th]].

[10] J.A.M. Vermaseren, “New features of FORM,” arXiv:math-ph/0010025. ;

M. Tentyukov and J.A.M. Vermaseren, “The multithreaded version of FORM,”

arXiv:hep-ph/0702279.

[11] L. Anguelova, P.A. Grassi and P. Vanhove, “Covariant one-loop amplitudes in D=11,”

Nucl. Phys. B 702, 269 (2004). [hep-th/0408171].

[12] N. Berkovits and C.R. Mafra, “Equivalence of two-loop superstring amplitudes in

the pure spinor and RNS formalisms,” Phys. Rev. Lett. 96, 011602 (2006). [hep-

th/0509234].
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