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1 Introduction

The problem of finding solutions of ten-dimensional supergravities with a compact manifold

filling internal directions is of manifest importance for phenomenological applications (for

reviews on that subject, see, for example, [2–6]). Most of the variety of different vacua

in string theory comes from the choice of the internal manifold, the simplest example

of which is a flat torus. However, toroidal compactifications lead to lower-dimensional

theories that are, in some sense, “too simple” in that they typically do not entail realistic

phenomenology. In particular, toroidal compactifications of minimally supersymmetric

ten-dimensional theories to four dimensions yield N = 4 theories that are non-chiral [7].

Less trivial examples of manifolds that lead to interesting lower-dimensional physics are

given by manifolds with special geometry such as Calabi-Yau (or, more generally, SU(3)

structure) manifolds [8]. An important feature of these manifolds is that they preserve less

supersymmetry, thus leading to more realistic models. This is a direct consequence of the

holonomy principle, which states that the parallel spinor equation

∇ε = 0 (1.1)
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has m solutions ε if and only if the holonomy group of ∇ is contained in the joint stabilizer

subgroup of m spinors, which in turn is related to the G structure of the manifold. Then,

m defines the amount of supersymmetry preserved by the background.

In this paper, we study heterotic supergravity, that is the low-energy limit of heterotic

string theory, which was first constructed in [9–11]. Heterotic supergravity consists of

N = 1, D = 10 supergravity coupled to super Yang-Mills theory. The ingredients are a

ten-dimensional manifold M, equipped with a Lorentzian metric ĝ, an NS 3-form Ĥ, a

dilaton φ̂ and a gauge connection A∇̂, with gauge group SO(32) or E8×E8. It was shown

in [9] that the anomaly cancellation condition of ten-dimensional super Yang-Mills theory

coupled to N = 1, D = 10 supergravity can be written as a Bianchi identity on Ĥ,

d̂Ĥ =
α′

4
Tr(F̂ ∧ F̂ − R̃ ∧ R̃) , (1.2)

where d̂ is the ten-dimensional exterior derivative, F̂ is the curvature 2-form of the gauge

connection A∇̂ and R̃ is the curvature 2-form of a connection ∇̃. Different connections

used in the anomaly cancellation condition (1.2) correspond to different renormalization

schemes [12] and there is some discussion about the correct choice of the curvature R̃ in the

literature (see, for example, [13] and references therein). In particular, string theory appears

to prefer the choice ∇̃ = +∇̂ [14, 15], with ±∇̂ being the metric compatible connections

on the tangent bundle of M with torsion ±Ĥ. From a purely supergravity point of view,

the connection ∇̃ is determined by imposing the instanton equation R̃ · ε = 0 [13]. For the

purpose of this paper, we will adopt the latter point of view.

In the case of vanishing NS 3-form flux, Ĥ = 0, the internal manifold should be Ricci-

flat and Kähler. Such a solution typically does not stabilize all Kähler moduli. Owing

to the different scale properties of the terms on the opposite sides of the equation above,

a solution with non-zero NS 3-form flux breaks scale invariance and is thus capable of

stabilizing the Kähler moduli [16]. In the present paper, we construct order α′ solutions

with non-zero NS 3-form flux that preserve N = 1/2 supersymmetry (that is two real

supercharges) in 1+3 external dimensions. The usual N = 1 supersymmetry (that is four

real supercharges) implied by the BPS equations is halved by the presence of a domain wall.

At the zeroth order in α′, the BPS equations are solved by M = R1,2 × c(X6) with

vanishing NS 3-form flux Ĥ = 0 and φ̂ = const. Here, c(X6) is the metric cone over a

six-dimensional nearly Kähler manifold X6. At the first order in α′, the BPS equations can

be solved by choosing the gauge connection to be A∇̂ = LC∇ and Ĥ = 0, φ̂ = const [1],

where LC∇ is the Levi-Civita connection on c(X6). Less trivial solutions with Ĥ 6= 0 can

be obtained if the gauge field is chosen to be an instanton [1, 17–23]. In our analysis,

we exploit the instanton solution of [1] and reformulate it in the framework of dynamic

SU(3) structures. Moreover, we consider previously unexplored combinations of instanton

configurations thereby extending results of [1, 22, 23]. In addition, we reproduce some of

the solutions found in [1, 22, 23], in special corners of our instanton configuration space.

Finally, in the α′ → 0 limit, our construction becomes a sub-sector of the more general

zeroth order analysis of [24].
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The paper is organized as follows. In the next section, we review the G structure

formalism for solving the BPS equations of heterotic supergravity, as developed in [24, 25].

We also introduce our ansatz for the metric, the NS 3-form and the dilaton and discuss

the zeroth order in α′ solution. At the first order in α′, the gauge field F̂ couples to

the other fields and therefore becomes non-trivial. The subject of section 3 is to review

the construction of a certain type of seven-dimensional Yang-Mills instantons that were

found in [1]. These instantons are employed in order to solve the Yang-Mills sector of the

theory. In section 4, we combine the seven-dimensional Yang-Mills instantons with the

other fields in order to lift the zeroth order solution of section 2 to a fully 10-dimensional

solution that is valid at the first order in α′. This involves solving the Bianchi identity

and a careful treatment of the equations of motion up to this order. We will also unveil

a subtle relationship between static and dynamic SU(3) structures on the six-dimensional

compact part X6 of the ten-dimensional space-time manifold, which is a consequence of the

warping included in the metric ansatz. In section 5, we present explicit solutions assuming

that W−1 = 0, that is the torsion class W1 of the dynamic SU(3) structure on X6 has

vanishing imaginary part. The precise dynamics of the solution depends on the choice

of instanton configurations. Our solutions include, in a unified description, special cases

of [1, 22, 23] and some new ones. We end the main body of the paper by providing a few

concluding remarks in section 6. Finally, our conventions for indices and normalizations

are summarized in appendix A.

2 Geometry of the domain-wall background

For a background with vanishing fermionic vacuum expectation values to be supersymmet-

ric, the supersymmetry transformations of the corresponding fermionic fields must vanish.

This implies certain conditions on the background, known as BPS equations. For the

fermionic content of heterotic supergravity, one finds that the BPS equations up to and

including terms of order α′ are given by

−∇̂ε = 0 ,(
d̂φ̂− 1

2
Ĥ

)
· ε = 0 ,

F̂ · ε = 0 ,

(2.1)

for a Majorana-Weyl spinor ε. Here and in the following, hatted objects denote ten-

dimensional quantities. The conventions used in this paper are summarized in appendix A.

We are interested in the background given by a four-dimensional domain wall with

six internal directions filled by a compact manifold X6 with SU(3) structure. We a priori

choose the following metric ansatz,

ĝ = e2A(xm)
(
ηαβdxαdxβ + e2∆(xu)dx3dx3 + guv(x

m)dxudxv
)
. (2.2)

The world-volume of the domain wall is parametrized by the coordinates xα with α ∈
{0, 1, 2}. The coordinate x3 is chosen to be transverse to the domain wall and will hence-

forth also be denoted by y. The orthonormal frame on the internal six-dimensional manifold
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X6 is given by {eu} = {euu dxu} with u ∈ {4, 5, . . . , 9} and underlined indices denote tangent

space (local Lorentz) indices. Finally, the set of coordinates {xm} = {x3, xu} combines all

of the directions transverse to the domain wall world-volume. To summarize, the total

ten-dimensional space-time manifold M locally splits as

M = R1,2 × R×X6 , (2.3)

with a flat metric ηαβ = diag(−1, 1, 1) on R1,2 and a general metric guv(x
m) compatible

with a y-dependent SU(3) structure on X6.

As a starting point of our further analysis, we shall briefly repeat here the derivation of

G structures consistent with the above ansatz, following [24, 25]. First, the Killing spinor

ε is decomposed according to our metric ansatz as

ε(xα, xm) = ρ(xα)⊗ η(xm)⊗ θ , (2.4)

where ρ is the covariantly constant spinor on the world-volume R1,2 of the domain wall, θ

is an eigenvector of the third Pauli matrix and η is a covariantly constant Majorana spinor

on the seven-dimensional space X7 := R × X6. The spinor ρ has two real components,

which corresponds to the two real supercharges that our background preserves. In four-

dimensional terminology this corresponds to N = 1/2 supersymmetry.

We would like to preserve (1+2)-dimensional Lorentz invariance on the domain wall

world-volume. This restricts φ̂ and Ĥ such that

∂αφ̂ = 0 , Ĥαmn = 0 , Ĥαβn = 0 . (2.5)

Hence, the only non-zero components of the NS 3-form flux are Ĥyuv, Ĥuvw and Ĥαβγ =

`εαβγ with εαβγ being the totally antisymmetric symbol on R1,2, normalized to ε012 = +1.

Note that this is the same ansatz for φ̂ and Ĥ as in [24] and that the system of [25] can be

recovered by setting Ĥyuv and ` to zero.

We now proceed by introducing a G2 structure on the seven-dimensional manifold

X7 = R×X6 with metric

g7 = e2∆(xu)dx3dx3 + guv(x
m)dxudxv . (2.6)

The G2 structure form ϕ ∈ Λ3(X7) and its seven-dimensional Hodge dual Φ := ∗7ϕ ∈
Λ4(X7) are constructed using the seven-dimensional gamma matrices Γm and the spinor η,

which is parallel with respect to −∇,

ϕmnp = −iη†Γmnpη , Φmnpq = η†Γmnpqη . (2.7)

The gamma matrices Γm are taken to satisfy {Γm,Γn} = 2(g7)mn, and we define a totally

anti-symmetrized product of gamma matrices as Γm1...mp := Γ[m1
· · ·Γmp]. The first two
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equations in (2.1) then imply the following relations [24, 25],

d7ϕ = 2d7φ̂ ∧ ϕ− ∗7Ĥ − `Φ ,

d7Φ = 2d7φ̂ ∧ Φ ,

∗7d7φ̂ = −1

2
Ĥ ∧ ϕ ,

0 =
1

2
∗7 `− Ĥ ∧ Φ .

(2.8)

Here, d7 and ∗7 are the differential and the Hodge star defined on X7.

Taking into account the decomposition X7 = R×X6, we can rewrite these equations

in terms of an SU(3) structure defined on X6 and the domain wall direction. First, we

decompose η into two six-dimensional spinors of definite chirality,

η =
1√
2

(η+ + η−) . (2.9)

An SU(3) structure on X6 is uniquely specified via a real 2-form J and a complex 3-form

Ω = Ω+ + iΩ−, which are defined for every fixed value of y using the spinors η± [24, 25],

Ωuvw = η†+γuvwη− , Juv = ∓η†±γuvη± , (2.10)

where the γu are gamma matrices on X6 satisfying {γu, γv} = 2guv. The forms (J,Ω) obey

the following relations,

J ∧Ω = 0 ,
1

3!
J ∧ J ∧ J =

i

8
Ω∧ Ω̄ = ∗1 , ∗J =

1

2
J ∧ J , ∗Ω± = ±Ω∓ , (2.11)

where ∗ is the six-dimensional Hodge star with respect to the metric guv(x
m). The Hodge

star ∗ is in our conventions related to ∗7 via

∗7 ω(6)
p = e∆(∗ω(6)

p ) ∧ dy , ∗7(dy ∧ ω(6)
p ) = e−∆ ∗ ω(6)

p . (2.12)

Here, ω
(6)
p is a p-form with legs only in the X6 directions.

The relation between the G2 structure (ϕ,Φ) and the SU(3) structure (J,Ω) can be

expressed as [24–26]

ϕ = e∆dy ∧ J + Ω− ,

Φ = e∆dy ∧ Ω+ +
1

2
J ∧ J ,

(2.13)

where the prefactor e∆ is a consequence of the metric ansatz (2.2).

Substituting the decomposition (2.13) into (2.8), one obtains

dJ = e−∆Ω′− − 2 e−∆φ̂′Ω− + 2 dφ̂ ∧ J − J ∧ d∆− ∗H + `Ω+ ,

J ∧ dJ = J ∧ J ∧ dφ̂ ,

dΩ+ = e−∆J ∧ J ′ − e−∆φ̂′J ∧ J + 2 dφ̂ ∧ Ω+ + Ω+ ∧ d∆ ,

– 5 –
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dΩ− = 2 dφ̂ ∧ Ω− − e−∆ ∗Hy −
1

2
`J ∧ J , (2.14)

∗dφ̂ =
1

2
e−∆Hy ∧ Ω− −

1

2
H ∧ J ,

∗φ̂′ = −1

2
e∆H ∧ Ω− ,

0 =
1

2
∗ `− Ω+ ∧H −

1

2
e−∆Hy ∧ J ∧ J .

Here, a prime denotes the derivative with respect to the coordinate y, and d is the exterior

derivative on the six-dimensional manifold X6. The two exterior derivatives d7 and d are

related via

d7ω = dω + dy ∧ ω′ (2.15)

for some p-form ω. The ten-dimensional NS 3-form Ĥ is taken to decompose into the

following parts, respecting (2.5),

Ĥ = H + dy ∧Hy + ` volR1,2 , (2.16)

with

H =
1

3!
Huvwdxu ∧ dxv ∧ dxw and Hy =

1

2!
Hyuvdx

u ∧ dxv (2.17)

having legs solely in the X6 directions. We also define the volume form of R1,2 as volR1,2 :=
1
3!εαβγdxα ∧ dxβ ∧ dxγ .

Note that (2.14) may be regarded as a generalization of the Hitchin flow equations [27].

This a common situation in four-dimensional BPS domain-wall solutions of ten-dimensional

supergravity theories [24, 25, 28–30]. In the absence of Ĥ, φ̂ and ∆, the system of equations

in (2.14) reduces to

J ∧ dJ = 0 , dJ = Ω′− ,

dΩ− = 0 , dΩ+ = J ∧ J ′ ,
(2.18)

which are the original Hitchin flow equations.

The structure forms J and Ω are tightly related to the torsion classes defined as

irreducible representations of the torsion Tmn
p under the stability group SU(3). A manifold

with SU(3) structure in general has a connection with torsion

Tmn
p ∈ Λ1 ⊗ so(6) . (2.19)

The 1-form index is the upper index of the torsion tensor, while the lower antisymmetric

pair of indices [mn] label an element of so(6) = su(3)⊕su(3)⊥. Decomposing the torsion into

irreducible representations of the holonomy group and taking into account that the su(3)

piece drops out when acting on SU(3)-invariant forms, we obtain the intrinsic torsion [2]

T 0
mn

p ∈ Λ1 ⊗ su(3)⊥ = (3⊕ 3̄)⊗ (1⊕ 3⊕ 3̄)

= (1⊕ 1)⊕ (8⊕ 8)⊕ (6̄⊕ 6)⊕ 2(3⊕ 3̄) .

W1 W2 W3 W4,W5

(2.20)
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The tensors W1, . . . ,W5 are the five torsion classes that appear in the derivatives of the

structure forms,

dJ = −3

2
Im(W1Ω̄) +W4 ∧ J +W3 ,

dΩ = W1J ∧ J +W2 ∧ J + W̄5 ∧ Ω .
(2.21)

We now depart from the general discussion and focus on nearly Kähler manifolds, which

support instanton connections of the type found in [1] and are defined by the following

condition on the torsion classes,

W2 = W3 = W4 = W5 = 0 , while W1 = W+
1 + iW−1 (2.22)

is the only non-zero contribution to the intrinsic torsion. In addition, we set

A = 0 and ∆ = 0 . (2.23)

The system of equations in (2.14) is then solved by an NS 3-form flux and a dilaton of the

form [24],

Ĥ = −1

2
φ′Ω+ +

(
3

2
W−1 +

7

8
`

)
Ω− −

(
2W−1 + `

)
J ∧ dy + ` volR1,2 ,

φ̂ = φ(y) ,

(2.24)

provided the structure forms J and Ω satisfy the following flow and structure equations,

J ′ = (W+
1 + φ′)J , dJ = −3

2
W−1 Ω+ +

3

2
W+

1 Ω− ,

Ω′− = −
(

3W−1 +
15

8
`

)
Ω+ +

3

2
(W+

1 + φ′)Ω− , dΩ = W1J ∧ J .
(2.25)

By acting with a y-derivative on the second equation in (2.11), one also learns that

Ω′+ =
3

2
(W+

1 + φ′)Ω+ + α(y)Ω− , (2.26)

with some as yet undetermined function α(y). The expressions (2.24)–(2.26) represent

the most general solution of the first two BPS equations in (2.1) with the general metric

ansatz (2.2) and A = ∆ = 0 on a nearly Kähler manifold X6.

Before constructing order α′ solutions, we shall first discuss the zeroth order case. We

have already solved the first two BPS equations in (2.1). In addition, the third BPS equa-

tion in (2.1) is solved by F̂ = 0. In order to have a full heterotic supergravity solution, we

also need to check that the Bianchi identity and the time-like components of the equations

of motion are satisfied. The latter leads to the condition ` = 0, as will be shown in more

detail in section 4.3. The Bianchi identity at the zeroth order in α′ simply becomes d̂Ĥ = 0.

From this condition, we obtain the following set of equations,

0 = φ′W+
1 − 3(W−1 )2 , (2.27)

0 = φ′′ +
3

2
(φ′)2 +

13

2
φ′W+

1 , (2.28)

0 = φ′α− 3(W−1 )′ − 21

2
W+

1 W
−
1 −

9

2
φ′W−1 . (2.29)
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We can immediately read off two special solutions

1. φ = const. , W+
1 = any , W−1 = 0 , α = any , (2.30)

2. φ =
2

3
log (ay + b) , W+

1 = 0 , W−1 = 0 , α = 0 , (2.31)

where a, b are integration constants and ‘any’ means a free function. The first case corre-

sponds to a nearly Kähler geometry with constant dilaton and vanishing NS 3-form flux.

The second case is Calabi-Yau with flux. Both solutions are contained in [24] as spe-

cial cases. This concludes our analysis of the zeroth order case, and we shall turn to the

construction of order α′ solutions.

3 Yang-Mills sector

3.1 Yang-Mills instantons on R×X6

In this section, we review the construction of Yang-Mills instantons à la Harland and

Nölle [1]. In their terminology, an instanton is a solution of F̂ · ε = 0, which is the third

BPS equation in (2.1). At the zeroth order in α′, one may simply set F̂ = 0 and ignore

the Yang-Mills sector altogether. This is consistent, since the coupling of F̂ to the other

supergravity fields only starts to arise at linear order in α′. Since our goal is to construct

order α′ solutions, we need a non-trivial F̂ .

We will study the instanton equation on the manifold X7 = R × X6 with

‘h-cone’ metric1

g7 = dy2 + (h(y))2 g̃ , (3.1)

where g̃ is a fixed (that is y-independent) nearly Kähler metric on X6 with components

given by g̃uv(x
u), and h(y) is a warp factor. Note that this metric is further restricted as

compared to the g7 introduced in the previous section. We henceforth take g7 to have the

form (3.1).

The orthonormal frame on X7 is given by {σm} = {dy, h eu} with m = 3, 4, . . . , 9

and u = 4, 5, . . . , 9. Here, {eu} = {euu dxu} is an orthonormal frame on X6 satisfying

e
u
ue
v
vδuv = guv. Associated to the y-independent metric g̃, there is a static (that is y-

independent) SU(3) structure on X6 defined in terms of a real 2-form J̃ and a complex

3-form Ω̃. The orthonormal frame {eu} on X6 can be arranged such that J̃ and Ω̃ take the

following standard form,

J̃ = e4 ∧ e5 + e6 ∧ e7 + e8 ∧ e9 ,

Ω̃ = (e4 + ie5) ∧ (e6 + ie7) ∧ (e8 + ie9) .
(3.2)

These forms satisfy dΩ̃+ = 2J̃ ∧ J̃ and dJ̃ = 3Ω̃−, showing that the manifold X6 is indeed

nearly Kähler with W̃+
1 = 2 and W̃−1 = 0. In addition, they obey the equations in (2.11)

with tildes everywhere.

1The metric (3.1) may be regarded as a generalized cone metric. It reduces to the standard cone metric

on R+ ×X6 upon setting h(y) = y.
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The instanton equation F̂ · ε = 0 on X7 reduces to

∗7 F̂ = −(∗7Q) ∧ F̂ where Q = h3 dy ∧ Ω̃+ +
1

2
h4J̃ ∧ J̃ . (3.3)

Via the coordinate redefinition, assuming h ≥ 0 (see footnote 3),

dy = ef(τ)dτ where ef(τ) = h(y(τ)) , (3.4)

the metric (3.1) transforms into

g7 = e2f gZ with gZ = dτ2 + g̃ , (3.5)

where gZ is the metric on the cylinder. Since (3.3) is conformally invariant and the met-

ric (3.1) is conformal to the cylinder metric, instantons on the cylinder will also solve (3.3).

The instanton equation on the cylinder is

∗Z F̂ = −(∗ZQZ) ∧ F̂ where QZ = dτ ∧ Ω̃+ +
1

2
J̃ ∧ J̃ , (3.6)

and ∗Z is the Hodge star with respect to the cylinder metric gZ .

To solve (3.6), we use the same ansatz for the gauge connection as in [1], namely

A∇̂ = can∇+ ψ(τ)euIu , (3.7)

where can∇ is the canonical connection on X6 defined by

canωu
v
w = LCωu

v
w +

1

2
(Ω̃+)wvue

u
u , (3.8)

and the matrices Iu, generating the orthogonal complement of su(3) in g2 ⊂ so(7) are

defined by the following relations,

(Iu)3
v = −(Iu)v3 = −δuv , (Iu)wv = −1

2
(Ω̃+)uvw . (3.9)

Together with the generators of su(3), denoted (Ii)
u
v, they form a basis of the Lie algebra

g2. The curvature 2-form F̂ = 1
2 [A∇̂,A∇̂] of the gauge connection (3.7) becomes [1]

F̂ = canR+
1

2
ψ2f iuve

u ∧ evIi + ψ̇dτ ∧ euIu +
1

2
(ψ−ψ2)(Ω̃+)uvwe

v ∧ ewIu =: F(ψ) , (3.10)

where f
i
uv is a structure constant appearing in the Lie algebra commutator

[Iu, Iv] = f iuvIi + fwuvIw , (3.11)

and a dot denotes a derivative with respect to τ . It was shown in [1] that such an F̂ solves

the instanton equation (3.6) if and only if the function ψ(y) satisfies the ‘kink equation’

ψ̇ = 2ψ (ψ − 1) . (3.12)

This equation has two fixed points, ψ = 0 and ψ = 1, which correspond to the canonical

connection can∇ and the Levi-Civita connection LC∇ on X7, respectively. There is also
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a non-constant solution. It interpolates between the two fixed points and is given by the

kink function

ψ(τ) =
1

2
(1− tanh[τ−τ0]) . (3.13)

The integration constant τ0 fixes the position of the instanton in the τ direction. In terms

of the original variables y and h(y), the kink equation becomes

h(y)ψ′(y) = 2ψ(y) (ψ(y)− 1) . (3.14)

It has the same fixed points, ψ = 0 and ψ = 1, as (3.12). The non-constant solution is

formally given by

ψ(y) =
1

2
(1− tanh[τ(y)−τ0]) , (3.15)

with τ(y) determined by (3.4).

Heterotic supergravity contains another curvature 2-form besides F̂ , namely R̃. As

explained in section 1, we adopt the supergravity point of view for the purpose of this

paper, which implies the instanton equation also for R̃, that is

R̃ · ε = 0 . (3.16)

Given that we have found an explicit instanton solution for the ansatz (3.7), we will make

the same ansatz also for ∇̃. Each connection, however, comes equipped with its own

independent scalar function ψ. To distinguish between the two, we put

R̃ = F(ψ1) and F̂ = F(ψ2) , (3.17)

where F(ψ) was defined in (3.10). The precise choices for ψ1,2 will be made later.

3.2 Bianchi identity

The Green-Schwarz anomaly cancellation condition for the heterotic string at order α′ can

be written as a Bianchi identity for the NS 3-form Ĥ, namely [9, 13]

d̂Ĥ =
α′

4
Tr(F̂ ∧ F̂ − R̃ ∧ R̃) . (3.18)

With the results from the previous subsection, one may explicitly evaluate the right-hand

side of this equation. First, one has

d̂Ĥ = −α
′

4
Tr(F(ψ1) ∧ F(ψ1)−F(ψ2) ∧ F(ψ2)) . (3.19)

Inserting (3.10) and using the kink equation (3.14), we can express the Bianchi identity in

the following form,

d̂Ĥ = −α
′

4

[
3h
(
(ψ′1)2 − (ψ′2)2

)
dy ∧ Ω̃+ + 2

(
ψ2

1(2ψ1 − 3)− ψ2
2(2ψ2 − 3)

)
J̃ ∧ J̃

]
, (3.20)

which will turn out to be useful in the following sections.
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4 Warped nearly Kähler domain wall

4.1 Static versus dynamic SU(3) structures on X6

In section 2, we began our general discussion by assuming a dynamic, that is y-dependent,

SU(3) structure on (X6, g) characterized by a pair of forms (J,Ω). This was subsequently

specialized in section 3 to the case where g = (h(y))2 g̃ with a static, that is y-independent,

SU(3) structure on (X6, g̃) with the forms (J̃ , Ω̃).

Given that a pair of SU(3) structure forms uniquely specifies a metric and the relation

g = (h(y))2 g̃ , (4.1)

it is clear that the two pairs (J,Ω) and (J̃ , Ω̃) are not unrelated. Indeed, the Hodge star

satisfies ∗ωp = h6−2p∗̃ωp for a p-form ωp on X6, and, together with 1
3!J

3 = ∗1 as well as
1
3! J̃

3 = ∗̃1, this implies

J = h2J̃ . (4.2)

The relation between Ω and Ω̃ is a little more subtle, due to the fact that there can also

be a mixing between real and imaginary parts. To parametrize this mixing, we write

Ω+ = h3 cosβ Ω̃+ + h3 sinβ Ω̃− , Ω− = −h3 sinβ Ω̃+ + h3 cosβ Ω̃− , (4.3)

with a y-dependent mixing angle β ∈ [0, 2π). A shift of β → β+π can be compensated by

a sign flip of h, and so we may restrict ourselves to β ∈ [0, π). The chosen parametrization

automatically guarantees that

i

8
Ω̃ ∧ ¯̃Ω = ∗̃ 1 =⇒ i

8
Ω ∧ Ω̄ = ∗1 , and

∗̃ Ω̃± = ±Ω̃∓ =⇒ ∗Ω± = ±Ω∓ ,
(4.4)

which is required in order to be compatible with our SU(3) structure conventions as formu-

lated in (2.11). Finally, comparing the expressions for dJ and dΩ with the tilded versions

in section 3.1, we learn that

W+
1 = 2h−1 cosβ and W−1 = −2h−1 sinβ . (4.5)

Thus, mixing in (4.3) occurs unless either W+
1 or W−1 vanish. Setting both W+

1 and W−1
to zero and thereby reducing to a Calabi-Yau geometry is not possible.2

Upon inserting the above expressions into the flow equations in (2.25), it follows that

h′ = cosβ +
1

2
hφ′ , (4.6)

0 = h2

(
hβ′ + 6 sinβ − 15

8
`h

)
. (4.7)

Moreover, the as yet unknown coefficient function α(y) in (2.26) is now fixed as

α(y) = 3W−1 +
15

8
` = −6h−1 sinβ +

15

8
` . (4.8)

2We are interested in solutions where (X6, g) is compact. Here and in the following, we thus consider

only finite h and exclude the possibility of taking the decompactification limit h→ ±∞.
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The expression (2.24) for the NS 3-form Ĥ in terms of (J̃ , Ω̃) becomes

Ĥ = h2

[
−1

2
hφ′ cosβ + 3 sin2 β − 7

8
`h sinβ

]
Ω̃+

+h2

[
−1

2
hφ′ sinβ − 3 sinβ cosβ +

7

8
`h cosβ

]
Ω̃− (4.9)

+h (4 sinβ − `h) J̃ ∧ dy + ` volR1,2 .

It is instructive to pause here and reflect on what we have achieved so far. Provided

the coupled ordinary differential equations (4.6)–(4.7) involving the scalar functions h, β,

` and φ are satisfied, we have a solution of the first two BPS equations in (2.1) for the

metric ansatz

ĝ = ηαβdxαdxβ + dx3dx3 + (h(x3))2 g̃uv(x
w)dxudxv , (4.10)

and the restrictions in (2.5). The third BPS equation in (2.1) is solved by the instanton

construction presented in section 3.1. However, we still need to ensure that the Bianchi

identity is satisfied and check that the time-like components of the equations of motion are

obeyed. These issues will be addressed in the next two subsections.

4.2 Embedding of the instanton in the ten-dimensional solution

In order to embed the instanton solution of section 3.1 into a fully ten-dimensional solution,

we need to impose the Bianchi identity (3.18). In section 3.2, we have already computed

the right-hand side of the Bianchi identity. The left-hand side can be further specified by

applying a ten-dimensional exterior derivative d̂ on the expression (4.9) for Ĥ,

d̂Ĥ =

{[
−1

2
h3φ′ sinβ − 3h2 sinβ cosβ +

7

8
`h3 cosβ

]′
− 3h (4 sinβ − `h)

}
dy ∧ Ω̃−

+

[
−1

2
h3φ′ cosβ + 3h2 sin2 β − 7

8
`h3 sinβ

]′
dy ∧ Ω̃+ (4.11)

+2

[
−1

2
h3φ′ cosβ + 3h2 sin2 β − 7

8
`h3 sinβ

]
J̃ ∧ J̃

+`′dy ∧ volR1,2 .

Comparing with (3.20), we obtain the following additional conditions on the scalar functions

h, β, ` and φ, now also coupled to the instanton solutions ψ1,2 as given in (3.13),

h3φ′ cosβ − 6h2 sin2 β +
7

4
`h3 sinβ =

α′

2

(
ψ2

1(2ψ1 − 3)− ψ2
2(2ψ2 − 3)

)
, (4.12)[

h3φ′ sinβ + 6h2 sinβ cosβ − 7

4
`h3 cosβ

]′
= −6h (4 sinβ − `h) , (4.13)

`′ = 0 . (4.14)

From the dy∧Ω̃+ term in (4.11), one obtains also the y-derivative of (4.12). This, however,

yields no further condition and is thus omitted. The relation (4.13) may be re-written in
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the form

sinβ

(
h2φ′′ +

3

2
(hφ′)2 + 27hφ′ cosβ +

105

32
`2h2 − 111

4
`h sinβ (4.15)

+12 sin2 β + 48

)
− 3

4
`h2φ′ cosβ = 0 ,

after using (4.6), (4.7) and (4.14).

4.3 Equations of motion

The equations of motion of heterotic supergravity up to and including terms of order α′ read

R̂µν + 2(∇̂d̂φ̂)µν −
1

4
ĤκλµĤν

κλ +
α′

4

[
R̃µκλσR̃ν

κλσ − tr
(
F̂µκF̂ν

κ
)]

= 0 ,

R̂+ 4∆̂φ̂− 4|d̂φ̂|2 − 1

2
|Ĥ|2 +

α′

4
tr
[
|R̃|2 − |F̂ |2

]
= 0 ,

e2φ̂d̂ ∗̂ (e−2φ̂F̂ ) + Â ∧ ∗̂F̂ − ∗̂F̂ ∧ Â+ ∗̂Ĥ ∧ F̂ = 0 ,

d̂ ∗̂ e−2φ̂Ĥ = 0 .

(4.16)

Here, R̂µν and R̂ are the Ricci tensor and the scalar curvature, respectively. They are

computed from the full ten-dimensional metric (4.10). The gauge field Â corresponds to

the curvature F̂ = F(ψ2), and its components can be read off from

A∇̂ = can∇+ ψ2(y)euIu = d̂ + Â . (4.17)

We will, however, not need the explicit form of this field. Finally, we define |ω|2 :=
1
p!ωµ1...µpω

µ1...µp for a p-form ω, and we note that the Einstein equation has been simplified

by means of the dilaton equation.

Since we adopted the supergravity point of view on the curvature R̃, we do not need

to verify explicitly all the equations of motion. The precise implication for the equations

of motion following from the BPS equations and Bianchi identity is a somewhat subtle

point [13, 24, 31, 32] (for recent discussions, see also [33–36]). We remark that ansätze

for the connections and various other assumptions, such as the considered order in the

α′ expansion, differ in the literature, and this effects the conclusions that are drawn. For

the purpose of this paper, we shall follow a conservative strategy and assume that, for our

set-up, the BPS equations together with the Bianchi identity and the time-like components

of the equations of motion imply the remaining components of the equations of motion.

The time-like components of the Yang-Mills equation are trivially satisfied by the an-

satz, since the time-like components F̂0µ of the corresponding field strength are identically

zero. The same is true for the mixed (0µ)-components of the Einstein equations where

µ 6= 0. Hence, we are left with the following two equations,

R̂00 + 2(∇̂d̂φ̂)00 −
1

4
Ĥ0µνĤ0

µν = 0 , (4.18)

∇̂µ
(

e−2φ̂Ĥµν0
)

= 0 . (4.19)
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For our field ansatz, (4.19) is satisfied trivially, whereas (4.18) implies

` = 0 . (4.20)

This condition eliminates any flux that has legs in the domain-wall world-volume directions.

4.4 Summary of the system of equations

For the warped nearly Kähler domain wall considered in this paper, we have obtained in

the previous sections a system of coupled non-linear ordinary differential equations for the

scalar functions h, β and φ. This system of equations is a consequence of consistently

embedding the instanton on R×X6 into a full-fledged heterotic supergravity solution with

NS 3-form flux given by (4.9). Before we study explicit solutions, it is beneficial to first

collect and summarize the complete system of equations. This shall then serve as the

central point of reference for the remainder of this paper.

Having set ` = 0 in accordance with the result of the previous subsection, the full set

of equations then reads as follows,

h′ = cosβ +
1

2
hφ′ , (4.21)

0 = h2(hβ′ + 6 sinβ) , (4.22)

0 = h3φ′ cosβ − 6h2 sin2 β − α′

2

(
ψ2

1(2ψ1 − 3)− ψ2
2(2ψ2 − 3)

)
, (4.23)

0 = sinβ

(
h2φ′′ +

3

2
(hφ′)2 + 27hφ′ cosβ + 12 sin2 β + 48

)
, (4.24)

hψ′1 = 2ψ1 (ψ1 − 1) , (4.25)

hψ′2 = 2ψ2 (ψ2 − 1) . (4.26)

This is an a priori over-determined system since there are six equations for the five scalar

functions h, β, φ, ψ1 and ψ2. It is supplemented by the determination of the torsion class

W1 of the warped six-dimensional space (X6, g) via W1 = 2h−1 e−iβ.

A solution obeying (4.21)–(4.26) guarantees that the corresponding ten-dimensional

fields ĝ, Ĥ, φ̂ and A∇̂ satisfy the BPS equations (2.1), the Bianchi identity (3.18) and,

in turn, also the equations of motion (4.16). Since the connection −∇̂ determined by

the NS 3-form flux (4.9) preserves one parallel spinor ε as in (2.4), we are dealing with

an N=1/2 solution from the point of view of R1,3 spanned by the non-compact coordi-

nates {x0, x1, x2, x3}.
An analytic solution to the highly complicated system of equations (4.21)–(4.26) would

be too much to ask for. Instead, one may concentrate on special cases and hope to find ana-

lytic or numerical solutions there. An obvious specialization is to turn off either W+
1 or W−1 .

The first case, that is W+
1 = 0, can be dealt with very quickly. Setting W+

1 = 0 and

assuming h < ∞ implies cosβ = 0. However, (4.22) then immediately leads to h = 0,

which causes the metric to be ill-defined. We thus conclude that a well-defined solution

requires W+
1 6= 0.

Fortunately, the second case, that is W−1 = 0, turns out to be more fruitful. It will be

the subject of the next section.
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5 Explicit solutions with W−
1 = 0

In this section, we investigate the solution of (4.21)–(4.26) for the special case that W−1 = 0.

For h < ∞ this implies sinβ = 0, hence cosβ = 1. (Here, we are restricting to β ∈ [0, π),

without loss of generality, as explained below (4.3).) Therefore, the relation (4.3) involves

no mixing,

Ω+ = h3Ω̃+ and Ω− = h3Ω̃− . (5.1)

The system of equations in (4.21)–(4.26) then reduces to

h′ = 1 +
1

2
hφ′ , (5.2)

h3φ′ =
α′

2

(
ψ2

1(2ψ1 − 3)− ψ2
2(2ψ2 − 3)

)
, (5.3)

hψ′1 = 2ψ1 (ψ1 − 1) , (5.4)

hψ′2 = 2ψ2 (ψ2 − 1) , (5.5)

and the NS 3-form flux is simply given by

Ĥ = −1

2
h3φ′Ω̃+ = −α

′

4

(
ψ2

1(2ψ1 − 3)− ψ2
2(2ψ2 − 3)

)
Ω̃+ . (5.6)

We remark that there are no terms containing Ω̃− and J̃ ∧ dy. Indeed, in the absence of `,

those contributions are precisely measured by W−1 , which is taken to vanish here. Hence,

the NS 3-form flux is completely internal, that is Hy = 0. The solution then belongs to

the same class of half-flat constructions as those obtained in [23], given the condition on

the dilaton dφ = 0. The precise forms of the solutions, however, depend on the instanton

configurations in question. The relation to solutions contained in the existing literature

will be clarified below.

Following [1, 22], we may integrate (5.2)–(5.5) after performing a combined coordinate

and function redefinition y → τ , h(y)→ f(τ) of the form3

dy = ef(τ)dτ , h(y) = ef(τ(y)) . (5.7)

The metric then becomes

ĝ = ηαβdxαdxβ + e2f(τ)
(
dτ2 + g̃uv(x

w)dxudxv
)
, (5.8)

3Note that this transformation requires h to be non-negative. However, for the solutions discussed below

this is not always the case. For the cases with ψ1 = 0, 1 and ψ2 = 0, 1, one may solve (5.2)–(5.5) directly and

this yields a solution valid for all y ∈ R. In cases where at least one of the ψ1,2 is a non-constant solution

of (5.4)–(5.5) and when expressed in terms of y, our solutions are only valid on a half-space ranging from the

physical location of the domain wall to infinity. It is then interesting to ask whether and how the solution

can be continued across the domain wall. A general argument for the existence of such a continuation for

all y ∈ R has been given in [22], section 5.6. We will, however, not attempt to answer this question in the

present paper.
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and (5.2)–(5.5) turn into

φ̇ = 2(ḟ − 1) , (5.9)

2(ḟ − 1)e2(f−τ) =
α′

2
e−2τ

(
ψ2

1(2ψ1 − 3)− ψ2
2(2ψ2 − 3)

)
, (5.10)

ψ̇1 = 2ψ1 (ψ1 − 1) , (5.11)

ψ̇2 = 2ψ2 (ψ2 − 1) , (5.12)

where a dot denotes a derivative with respect to the new coordinate τ . Equation (5.9)

implies

φ(τ) = φ0 + 2(f − τ) , (5.13)

with a constant of integration denoted φ0. Equation (5.10) can be integrated as well, and

we find

e2f = e2(τ−τ0) +
α′

4

(
ψ2

1 − ψ2
2

)
, (5.14)

with some constant of integration denoted τ0. The different choices for ψ1,2 are either 0,

1 or the interpolating kink solution (3.13) with integration constants τ1,2. This leaves us

with a total of 8 different instanton configurations, which are discussed below.

Case 1: ψ1 = ψ2. All α′ corrections cancel out and we revert to the zeroth order

solution of [23], section 3.6, that is

f = τ − τ0 , φ = φ0 − 2τ0 . (5.15)

This is shown in figure 1. The NS 3-form flux vanishes, Ĥ = 0, the dilaton is constant,

and the ten-dimensional metric

ĝ = ηαβdxαdxβ + dx3dx3 + (x3)2g̃uv(x
w)dxudxv (5.16)

is the cone metric on X7 together with the flat Minkowski metric on R1,2 (ignoring the

irrelevant integration constant τ0, which can always be absorbed by a scale transformation

of the coordinate x3 := eτ−τ0).

Case 2: ψ1 = 1, ψ2 = 0. This case admits a static solution with a linear dilaton,

f = f0 :=
1

2
log

(
α′

4

)
and φ = φ0 + 2(f0−τ) . (5.17)

The general solution can immediately be stated by inserting the values for ψ1,2 into (5.13)–

(5.14),

e2f = e2(τ−τ0) +
α′

4
and eφ−φ0 = e−2τ0 +

α′

4
e−2τ . (5.18)

This is a special case of [1], section 5.1 (with ψ = 0) and of [22], section 5.5 (with Qe = 0,

a = 1 and taking the decompactification limit in the S1 direction). An exemplary plot

showing the behavior of f(τ) and φ(τ) is shown on the left of figure 2.
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Figure 1. Solution for case 1 (ψ1 = ψ2). This is the trivial solution corresponding to a cone metric

with constant dilaton and vanishing NS 3-form flux.

The transformation back to the original variable y is problematic, however. Solv-

ing (5.7), with the solution (5.18) inserted, formally yields

y(τ) =
1

2

(√
4 e2(τ−τ0) + α′ −

√
α′ artanh

[√
1 +

4

α′
e2(τ−τ0)

])
+ y0 . (5.19)

For finite τ , the argument of artanh is always greater than one and thus y(τ) is ill-defined

over the reals. One may however directly solve (5.2)–(5.5) for this case. After inserting (5.3)

into (5.2) and considering the inverse function y(h), we obtain

y − y0 = h−
√
α′

2
artanh

(
2h√
α′

)
. (5.20)

Another inversion, which however cannot be performed explicitly, yields h(y). We see that

in terms of the original variables y and h(y), this case is equivalent to the scenario discussed

in [23], section 4.5.2.

The graph of h(y) has a kink shape and a zero at the value y = y0, which indicates

the location of the domain wall. In addition, (5.20) does not have solutions for all values

of y. Instead, y is constrained to lie in the interval |y − y0| ≤ ymax. The boundary value

ymax can only be determined numerically. It depends on α′ and y0. As y → ±ymax, h(y)

limits to ∓
√
α′

2 . We note that the scalar curvature for the metric (4.10) given by the

following expression,

R̂ = −12h−1h′′ − 30h−2(h′)2 + h−2R̃ , (5.21)

diverges at the location of the domain wall, y = y0, and we thus expect the supergrav-

ity approximation to break down in the vicinity of the domain wall. In the expression

above, R̃ denotes the scalar curvature of the static nearly Kähler metric g̃ on X6, which is

conventionally normalized to R̃ = 30 [37].

– 17 –



J
H
E
P
1
1
(
2
0
1
4
)
1
5
2

-10 -5 5 10
Τ

5

10

15

20

ΦHΤL

fHΤL

-6 -4 -2 2 4 6
y

-6

-4

-2

2

4

ΦHyL-Φ
�
0

hHyL

Figure 2. Solution for case 2 (ψ1 = 1, ψ2 = 0). The solution is plotted in terms of the new

coordinate τ on the left and in terms of the old coordinate y on the right. We have adjusted the

free constants to α′ = 64, τ0 = 0, φ0 = 3 and y0 = 0, for concreteness.

The solution for φ(y) can be implicitly written as

φ(h) = log

(
h2

4h2 − α′

)
+ φ0 , (5.22)

where it is understood that the solution for h(y) should be inserted. Taken at face value,

this solution is ill-defined as a function of y, even inside the range |y−y0| ≤ ymax, since the

argument inside the log is negative. This can be cured by using that log(−|x|) = log |x|+iπ,

and absorbing the second term into a new integration constant φ̃0 = φ0 + iπ. The solution

for φ then reads as follows,

φ(h) = log

(∣∣∣ h2

4h2 − α′
∣∣∣)+ φ̃0 . (5.23)

As y → ±ymax we have φ → ∞, and as y → y0 we have φ → −∞. The plots of h(y) and

φ(y), ignoring the integration constant φ̃0, are shown on the right of figure 2.

Case 3: ψ1 = 0, ψ2 = 1. Contrary to the previous case, there is no static solution in

this case. The general solution (5.13)–(5.14) now becomes

e2f = e2(τ−τ0) − α′

4
, eφ−φ0 = e−2τ0 − α′

4
e−2τ . (5.24)

This case appeared neither in [1] nor in [22]. It should be noted that the expression for f(τ)

following from (5.24) is ill-defined for τ < τdw, where τdw = τ0 + 1
2 log(α

′

4 ) is the location

of the domain wall. For τ → τdw from above, the scalar curvature R̂, given in terms of the

new variables τ and f(τ) by4

R̂ = −6 e−2f
(

2f̈ + 5ḟ2
)

+ e−2f R̃ , (5.25)

is divergent, indicating a breakdown of the supergravity approximation in this region.

When transformed back to the original variables y and h(y), the solution (5.24) is valid

4This expression is obtained from (5.21) by applying the transformation (5.7).

– 18 –



J
H
E
P
1
1
(
2
0
1
4
)
1
5
2

-1.0 -0.5 0.5 1.0
y

-2

-1

1

2

ΦHyL

hHyL

Figure 3. Numerical solution in terms of the original functions h(y) and φ(y) for case 3 (ψ1 = 0,

ψ2 = 1). We have adjusted the free constants to α′ = 4, y0 = 0 and φ0 = 4 for concreteness. The

solution becomes singular at the point y = y0 = 0, which is the physical location of the domain

wall.

only in the half-space y ∈ [y0,∞), where y0 = y(τdw) is the physical location of the domain

wall in the y coordinate.

As in the previous case, we obtain a solution for all y ∈ R by directly solving (5.2)–

(5.5). We find

y − y0 = h−
√
α′

2
arctan

(
2h√
α′

)
. (5.26)

This case can also be found in [23], section 4.5.3. Again, the graph of h(y) has a kink

shape and a zero at the value y = y0, which indicates the location of the domain wall. For

y → ±∞, the function h(y) becomes approximately linear h(y) ≈ y. The solution for φ(y)

is given implicitly by

φ(h) = log

(
h2

4h2 + α′

)
+ φ0 . (5.27)

The graph of φ(y) has a singularity, φ → −∞, at the domain wall location y = y0 and

approaches the limiting value φ → log(1
4) + φ0 as y → ±∞. The plots of h(y) and φ(y)

are shown in figure 3. We remark that this case can be obtained from case 2 by applying

the transformation α′ → −α′ (and using that artanh(iz) = i arctan(z)). This is due to the

fact that cases 2 and 3 are related by interchanging ψ1 and ψ2, which amounts to a sign

flip of the order α′ term in (5.14). In the same way, case 5 is related to case 4, and case 7

is related to case 6, as can be seen below.

Case 4: ψ1 = kink, ψ2 = 0. The solution in this case becomes

e2f = e2(τ−τ0) +
α′

16
[1− tanh(τ−τ1)]2 , φ(τ) = φ0 + 2(f−τ) . (5.28)

It is a special case of [22], section 5.2 (with Qe = 0, a = 1 and taking the decompactification

limit in the S1 direction). As τ → +∞, the function f(τ) approaches the linear solution
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Figure 4. Exemplary solutions for case 4 (ψ1 = kink, ψ2 = 0) with α′ = 16 and φ0 = 10.

f(τ) = τ . For τ → −∞, the function f(τ) converges to the constant value 1
2 log(α

′

4 ). The

graph for finite values of τ qualitatively depends on whether τ0 < τ1 or vice versa. This can

be seen from figure 4, where f(τ) and φ(τ) are plotted for different values of the integration

constants. We note also that the scalar curvature (5.25) remains finite for all τ ∈ R.

Case 5: ψ1 = 0, ψ2 = kink. The general solution (5.14) becomes

e2f = e2(τ−τ0) − α′

16
[1− tanh(τ−τ2)]2 , φ(τ) = φ0 + 2(f−τ) . (5.29)

The right-hand side approaches zero as τ → τdw from above and then becomes negative

for sufficiently small values of τ . Hence, f(τ) derived from expression (5.29) is ill-defined

for τ < τdw. The limiting value τdw is given by

eτdw =
e

2
3

(τ0+2τ2)X
1
3 − 2 e2τ2

√
6 e

1
3

(τ0+2τ2)X
1
6

, where X = 27α′+8 e2(τ2−τ0)+
√

27α′
(
27α′+16 e2(τ2−τ0)

)
.

(5.30)

In addition, the scalar curvature (5.25) diverges as τ → τdw from above. The limiting value

τdw corresponds to the physical location of the domain wall and our solution exists on the

half-space τ ∈ (τdw,∞). The graphs of f(τ) and φ(τ) are displayed in figure 5.

Case 6: ψ1 = kink, ψ2 = 1. For this set-up, we obtain from (5.14)

e2f = e2(τ−τ0) +
α′

16
[tanh(τ−τ1) + 1] [tanh(τ−τ1)− 3] . (5.31)

For τ → +∞, this solution behaves approximately linear f(τ) ≈ τ . However, depending on

the choice of the free parameters, the function f(τ) may not be well-defined everywhere,

because there can be regions where the right-hand side of (5.31) becomes negative. We

have plotted two qualitatively different scenarios in figure 6. In the plot on the left, the

function f(τ) is well-defined everywhere. In addition, the scalar curvature (5.25) has a

kink shape implying in particular that it is finite and smooth for all τ ∈ R. The plot on

the right is very similar to case 5. In this case, the function f(τ) derived from (5.31) is

ill-defined for τ < τdw, where

eτdw =

√
α′ e2τ0 + eτ0+2τ1

√
α′ eτ0−3τ1

√
α′ eτ0−τ1 + 16 eτ1−τ0 − 8 e2τ1

2
√

2
, (5.32)
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Figure 5. Exemplary solution for case 5 (ψ1 = 0, ψ2 = kink) with α′ = 16, τ0 = −5, τ2 = 3 and

φ0 = −2.
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Figure 6. Plots of the solution for case 6 (ψ1 = kink, ψ2 = 1) for α′ = 44050 on the left

and α′ = 4 · 105 on the right. The other parameters have been adjusted to τ0 = 5, τ1 = 10 and

φ0 = 0. The two graphs have the same asymptotics as τ → +∞, but behave qualitatively differently

elsewhere.

and the scalar curvature (5.25) diverges as τ → τdw from above. As in case 5, the limiting

value τdw corresponds to the physical location of the domain wall and our solution exists

on the half-space τ ∈ (τdw,∞). The distinction between the two scenarios can be made by

means of the radicand in the numerator on the right-hand side of expression (5.32). If it

is positive, the solution behaves as shown in the plot on the right. This is the case when

α′ > 2 e2(τ1−τ0). For α′ ≤ 2 e2(τ1−τ0) on the other hand, the solution is globally well-defined

as shown in the plot on the left.

Case 7: ψ1 = 1, ψ2 = kink. The general solution (5.14) now reads as follows,

e2f = e2(τ−τ0) − α′

16
[tanh(τ−τ2) + 1] [tanh(τ−τ2)− 3] . (5.33)

This case is similar to case 6, except for the flipped sign in front of the order α′ term on

the right-hand side. It has already appeared in [1] and in [22], section 5.7 as a special case
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Figure 7. Exemplary solution for case 7 (ψ1 = 1, ψ2 = kink) with α′ = 64, τ0 = 25, τ2 = 10 and

φ0 = 20.

(with Qe = 0, a = 1 and taking the decompactification limit in the S1 direction). The

kink solution (3.13) for ψ2 approaches the value one, as τ → −∞. In this region, the α′

corrections cancel and we recover the zeroth order behavior, that is linear f and constant

dilaton. In the limit τ → +∞, the expression
(
ψ2

1 − ψ2
2

)
becomes 1. Thus, for τ � 1, the

functions f and φ also become linear and constant, respectively. However, they are shifted

by an offset compared to the τ → −∞ asymptotics. The α′ corrections are non-constant

in an intermediate region and have the important effect of gluing together the different

asymptotic functions. This can be seen from figure 7, where the graphs of f(τ) and φ(τ)

are plotted for this case. The scalar curvature (5.25) is finite and smooth for all τ ∈ R.

Case 8: ψ1 = kink, ψ2 = kink, with τ1 6= τ2. The general solution (5.14) turns into

the following expression,

e2f = e2(τ−τ0) +
α′

16

[
tanh2(τ−τ1)− 2 tanh(τ−τ1)− tanh2(τ−τ2) + 2 tanh(τ−τ2)

]
. (5.34)

For τ → +∞, the contributions from the α′ corrections vanish and we recover the zeroth

order behavior, that is linear f and constant dilaton. For τ finite, the corrections become

important and the precise behavior depends on the choice of free parameters. Two qual-

itatively different scenarios are depicted in figure 8. The plot on the left is an example

from a region in parameter space, where the solution resembles that of case 7, with an

additional bump, however. In this case the solution is globally well-defined and the scalar

curvature (5.25) is finite and smooth everywhere. In other regions of parameter space, the

solution is similar to that of case 5. This can be seen from the plot on the right. Here, the

function f(τ) is ill-defined for τ < τdw, where τdw is the log of the largest real root of the

octic equation

4
(
b2 + x2

)2 (
c2 + x2

)2
+ α′a2(b2 − c2)

(
(b2 + c2)x2 + 2b2c2

)
= 0 , (5.35)
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Figure 8. Plots of the solution for case 8 (ψ1 = kink, ψ2 = kink, with τ1 6= τ2) for τ1 = 3 on the

left and τ1 = −6 on the right. The other parameters have been adjusted to α′ = 64, τ0 = 7, τ2 = −5

and φ0 = −4. The two graphs have the same asymptotics as τ → +∞, but behave qualitatively

differently elsewhere.

with x = eτdw , a = eτ0 , b = eτ1 , c = eτ2 . The closed-form expression for τdw is very lengthy

and is thus omitted here for the sake of brevity. The limiting value τdw corresponds to the

physical location of the domain wall and the scalar curvature (5.25) diverges as τ → τdw

from above. Our solution exists on the half-space τ ∈ (τdw,∞). On the other hand, if

there is no solution of (5.35) over the positive reals, we are in a region of parameter space

where a globally well-defined solution, such as the one shown in the plot on the left, exists.

6 Conclusions and outlook

In this paper, we have studied (1+3)-dimensional domain wall solutions of heterotic super-

gravity on a six-dimensional warped nearly Kähler manifold X6 in the presence of gravi-

tational and gauge instantons of the type constructed in [1]. The instanton contributions

are necessary for solving the Yang-Mills sector and the Bianchi identity (3.18) at order α′,

which is the order we have considered. The ten-dimensional solutions constructed in this

paper are of the form

ĝ = ηαβdxαdxβ + dy2 + (h(y))2g̃uv(x
w)dxudxv , (6.1)

Ĥ = H + dy ∧Hy , (6.2)

φ̂ = φ(y) . (6.3)

where all fields only depend on the non-compact coordinate y transverse to the domain wall.

Our solutions preserve two real supercharges, which corresponds to N=1/2 supersymmetry

from the viewpoint of the four non-compact dimensions spanned by {xα, y}.
Following the general formalism developed in [24, 25], we introduced a pair of y-

dependent SU(3) structure forms (J,Ω) on X6 defined via the parallel spinors η± and

rewrote the BPS equations (2.1) as a set of compatibility relations involving J , Ω, H, Hy

and φ. There is also a static, that is y-independent, SU(3) structure denoted (J̃ , Ω̃) on X6.

The two structures (J,Ω) and (J̃ , Ω̃) are related by means of the warp factor h(y) and a

y-dependent mixing angle β.

– 23 –



J
H
E
P
1
1
(
2
0
1
4
)
1
5
2

The BPS equations and Bianchi identity then reduce to a set of ordinary differential

equations involving the free functions h, β and φ. The complete system of coupled non-

linear ordinary differential equations, as summarized in (4.21)–(4.26), is too complicated

to solve in full generality. Instead, we studied the special branches W+
1 = 0 and W−1 = 0.

While the case W+
1 = 0 can be quickly discarded for it leads to a singular metric, the

second case, W−1 = 0, allows for the construction of a variety of solutions depending on the

choice of instantons ψ1,2 for the gravitational and gauge sector. In total, there are eight

distinct cases, including already known solutions (cases 1-4 and 7) from [1, 22, 23] as well

as some new ones (cases 5, 6 and 8).

For the solutions with W−1 = 0, the ten-dimensional fields take the following sim-

pler form,

ĝ = ηαβdxαdxβ + e2f(τ)
(
dτ2 + g̃uv(x

w)dxudxv
)
, (6.4)

Ĥ = −α
′

4

(
ψ2

1(2ψ1 − 3)− ψ2
2(2ψ2 − 3)

)
Ω̃+ , (6.5)

φ = φ0 + 2(f − τ) , (6.6)

e2f = e2(τ−τ0) +
α′

4

(
ψ2

1 − ψ2
2

)
, (6.7)

where ψ1,2 are either 0, 1 or the kink solution (3.13), and we used the convenient reparam-

eterization dy = ef(τ)dτ , h(y) = ef(τ(y)). In case one (equivalent to zeroth order in α′),

f = τ−τ0, which leads to a cone metric with constant dilaton and vanishing NS 3-form

flux. The other cases typically asymptote to this zeroth order behavior either at τ → +∞,

τ → −∞ or τ → ±∞. Close to the domain wall, care must be taken as to the validity of

the supergravity approximation. Indeed, in some of the cases, the scalar curvature diverges

as the domain wall is approached.

The NS 3-form flux Ĥ is always proportional to Ω̃+ in all our explicit constructions. It

would be interesting to have access to solutions with a more general Ĥ that also includes

terms proportional to Ω̃− and J̃ ∧ dy. It remains to be seen whether this can be achieved

by finding a solution of the general system (4.21)–(4.26) with both W+
1 6= 0 and W−1 6= 0 or

whether another, perhaps rather different, ansatz is necessary. This is left for future work.
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A Conventions

In this paper we use the following conventions for indices and normalizations. The full

range of (1+9)-dimensional indices is split by the presence of the domain wall and will be

distinguished by means of the following set of Greek and Latin letters,

µ, ν, ρ, σ = 0, 1, . . . , 9 ,

α, β, γ, δ, ε = 0, 1, 2 ,

a, b, c, . . . ,m, n = 3, 4, . . . , 9 ,

u, v, w, x, y, z = 4, 5, . . . , 9 .

(A.1)

These are understood as curved space-time indices. In addition, we sometimes need to use

tangent space (local Lorentz) indices, which are denoted by underlined indices.

(Anti-)symmetrization is always performed with a factor of (1/n!), that is with weight

one. For example, we define

A[µBν] :=
1

2!
(AµBν −AνBµ) , (A.2)

for the case n = 2. A p-form ω is expanded into components according to

ω :=
1

p!
ωµ1...µpdxµ1 ∧ · · · ∧ dxµp . (A.3)

The Clifford action of a p-form ω on a spinor ε is defined as

ω · ε :=
1

p!
ωµ1...µpγ

µ1...µpε, (A.4)

where γµ1...µp := γ[µ1 · · · γ µp] and we use the Clifford algebra convention {γµ, γν} = 2gµν

for the higher-dimensional gamma matrices γµ.

A connection ∇ on a manifold M with vielbein σ
a
b is defined to act on vectors vb and

spinors ε in the following way,

∇avb = ∂av
b + Γa

b
cv
c ,

∇aε = ∂aε+
1

4
ωa · ε , ωa =

1

2
ωa

c
bγc

b .
(A.5)

The components of the spin connection ωa
b
c are related to Γa

b
c via

ωa
b
c = Γa

b
c − σdc∂aσ

b
d . (A.6)

The torsion T a of the connection ∇ is defined as T a = ∇σa. Using (A.5)–(A.6), we can

expand the torsion into components as follows,

T a = ∇σa = dσa + ωab ∧ σb = Γb
a
c σ

b ∧ σc , or

Tbc
a = Γ[b

a
c] ,

(A.7)

where ωab = ωc
a
b dxc is the connection 1-form and the σa = σ

a
b dxb define an orthonormal

frame on M.
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