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Standardmodell Vakuumstabilität und einige Implikationen für
Higgs-Inflation

Die Entdeckung des Higgs Bosons vervollständigt das Standardmodell der
Teilchenphysik. Erweiterungen des Standardmodells, die die Probleme nicht
durch neue Physik zwischen der elektroschwachen Skala und der Planck Skala
lösen, sind interessant, da so das Standardmodell im wesentlichen bis zur
Planck Skala extrapoliert werden könnte, was auch durch die Werte für Higgs-
und Top-Masse gestützt wird. Die Analyse der Vakuumstabilität des Higgs-
Feldes sowie die Konsequenzen im Hinblick auf neue Physik, die durch nicht-
renormierbare Operatoren parametrisiert wird, sind Themen dieser Arbeit.
Ebenfalls wird die Rolle der Messung der Top Quark Masse an Hadronen-
Beschleunigern in Zusammenhang mit der Vakuumstabilität beleuchtet. Die
Matching-Bedingungen für das Renormierungsgruppenlaufen werden gegeben
und die Diskussion in Richtung Metastabilität eröffnet. Mögliche Implikationen
im Hinblick auf die BICEP2-Behauptung werden behandelt und die Konsequen-
zen von laufenden Kopplungen in Zusammenhang mit Higgs-Inflation-Szenarien
werden gegeben.

Standard Model Vacuum Stability and some Implications for Higgs
Inflation

The discovery of the Higgs particle has completed the SM. With the current
measured Higgs and Top masses, the SM could survive up to the Planck scale.
The SM cannot be a complete picture as some experimental and observational
facts require the extension of the SM, however some of the extensions do not
require the embedding of the SM into high energy scale, prompting the possibil-
ity that there is no new physics up to the Planck scale. We will tackle this issue
and investigate the vacuum stability of the SM Higgs field and its interplay
with possible new physics, parametrized by higher dimensional operators. Also
the role of the measurement of the top mass at hadron colliders in the context
of vacuum stability is discussed. Detailed matching conditions for the RGE
and the metastability issue will be given. Possible implications of the BICEP2
claim are given and the effect of running couplings for the Higgs inflation will
be reexamined, which is crucial to determine whether the Higgs inflation is still
a viable scenario.
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CHAPTER 1

INTRODUCTION

The question of how nature works and how we can understand the world around us

has always been the motivation for physicists to work, think, observe and speculate.

Taking the ingredients of special relativity and quantum mechanics and cluster

decomposition, the result we got is quantum field theory (QFT), which is the

tool that helps us to describe all known forces in nature except gravity. Through

fruitful input from both experimentalists and theorists we were able to establish

the Standard Model of Particle Physics (SM) as a very precise and extremely well

working theory.

The SU(3)C ×SU(2)L×U(1)Y gauge structure of the SM, together with spon-

taneous symmetry breaking, is a triumph of many generations of physicists. The

SM consisting of the quantum chromodynamics (QCD) [1–3] and the Electroweak

theory first proposed by Weinberg, Glashow and Salam [4, 5], describes almost all

experimental data with a very high accuracy. In 2012 the Higgs boson as the last

piece of the SM was discovered through both working groups, namely ATLAS [6]

and CMS [7] at the Large Hadron Collider (LHC) in Geneva. Furthermore, Peter

Higgs [8–10] and François Englert [11] were rewarded with the Nobel price 2013

for their contribution to “our understanding of the origin of mass of subatomic

particles” which shows the great value of their work.

The last piece of the SM – the Higgs boson – has been discovered. This is the

good news that we can take away from the last measurements of the LHC. However,

we see no sign of new physics at the LHC. All deviations between experiment and
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Chapter 1. Introduction

theoretical prediction went away by increasing the amount of data taken. One

might get the impression that particle physics is stuck and that there is nothing

left to be done.

Fortunately, this is not the case. There are several observational facts that

show us that we need physics beyond the Standard Model (BSM). Neutrino oscil-

lations are the first evidence for BSM since neutrinos are massless in the SM [12].

Oscillations can only occur if neutrinos are massive and there is no way to obtain

neutrino masses with the particle content of the SM at the renormalizable level.

Other observational evidence comes from cosmological considerations. To fit

the cosmic microwave background we need a sizable amount of dark matter within

the ΛCDM-model as well as a cosmological constant which is interpreted as dark

energy. Also the rotation curves of galaxies and gravitational lensing indicate that

the Universe should consist of 26% of dark matter.

Successful baryogenesis is also not possible within the SM because the CP-

violation is to small. Baryogenesis accounts for the fact that there is an asymmetry

between matter and anti-matter in the Universe [13].

A clear sign on theoretical grounds that the SM cannot be the ultimate theory of

nature is that the U(1)Y coupling suffers from a Landau pole at very high energies

far above the Planck scale rendering it problematic. However, a UV-completion

of the SM should already operate before the Landau pole healing this deficit.

Even with all these observations which call for BSM physics, it is tempting to

think about the SM to be valid up to the Planck scale and study the implications.1

Renormalization group (RG) running of the parameters of the theory provides a

possibility to extrapolate the SM from low energies to high energies. The analysis

of the one-loop RG-improved effective potential shows that with the current values

of the SM an instability of the potential at high scales occurs. Recently the

impact of non-renormalizable operators in the Higgs potential has been studied

parameterizing our ignorance of a UV-completion of the SM. This procedure works

as long as all the couplings remain finite (perturbatively small) and guarantee a

stable vacuum. While all the SM Landau poles are far above the Planck scale

(MP ≈ 1.2 × 1019 GeV), the Higgs potential is apparently on the edge of being

unbounded at high energies. It is thus of great importance to study in more detail

1We augment the Standard Model with 3 right-handed neutrinos νR to account for neutrino
masses in exactly the same way as in the SM, namely through Yukawa couplings with the Higgs.
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the issue of an unstable SM vacuum and whether new physics is necessary to

stabilize it.

The question of vacuum stability of the SM will be reexamined in this thesis in

the context of additional non-renormalizable operators as well as Weyl consistency

relations. Vacuum stability poses a test of the self-consistency of the theory. Also

the problems coming from the gauge dependence of the effective potential will be

discussed and analyzed. However, this problem is not entirely theoretical since

one important limiting fact is the actual value of the top mass. This question will

also be discussed. In this work we will tackle the question of vacuum stability and

go beyond in the direction of Higgs inflation and the consequences of a possible

detection of a high tensor-to-scalar ratio through the BICEP2 collaboration [14].2

If the one-loop RG-improved potential develops an instability at a scale below

the scale of inflation which is indicated to be of O(1016 GeV) if one believes in

the BICEP2 measurement this may pose serious problems for the SM vacuum in

terms of Higgs fluctuations in the early universe.

After introducing standard techniques of QFT and presenting the SM we will

proceed to review the standard results of the stability analysis of the SM with

certain extensions. Then we will go on and present Higgs inflation as an economic

idea of inflation as well as standard results from inflation. We will go beyond and

tackle the question: what are the implications of a correct BICEP2 measurement

would be for Higgs inflation. Tree-level analysis of Higgs inflation poses problems

in the context of a high tensor-to-scalar ratio and vacuum stability which we will

explore throughout this thesis. However, going beyond tree-level analysis poses

serious theoretical problems since the coupling to gravity renders the theory to

be non-renormalizable and without further assumptions on the underlying UV-

completion, one cannot proceed. Furthermore, another problem arises in terms of

a transformation between two reference frames namely Jordan frame and Einstein

frame. All these topics will be covered and we will give an outlook on the theory

of Higgs nflation independent of the fate of the BICEP2 claim.

2Higgs inflation here is the SM Higgs playing the role of the inflaton augmented with a
non-minimal coupling to gravity.
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CHAPTER 2

RENORMALIZATION

2.1 The Effective Action

In this chapter we want to set the stage for this work. We will present useful

knowledge on QFT which is important and valuable for the understanding of this

thesis. We present the effective potential and the effective action as objects of

fundamental importance in QFT and go further by pointing out their physical

importance beyond textbook knowledge.1

2.1.1 Green’s Functions and Generating Functional in a

QFT

Let us first consider

Z[J ] ≡
∫
Dϕ exp

[
i

∫
d4x [L(ϕ, ∂ϕ) + J(x)ϕ(x)]

]
(2.1)

Z[J ] is the generating functional of correlation functions; correlation functions are

the quantities where physical information is stored in. Here, the term J(x)ϕ(x)

represents a source term, which allows us to extract correlation functions by taking

functional derivatives of the generating functional with respect to the source J(x).

1Note that in section 4.4 there are several comments on physical quantities extracted from
the effective potential.
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Chapter 2. Renormalization

Z[J ] can formally also be written as

Z[J ] ≡ exp [iW [J ]] =

∫
Dϕ exp

[
i(S [ϕ] +

∫
Jϕ)

]
, (2.2)

where
∫
Jϕ denotes a short-hand notation for the integration over d4x. For exam-

ple the two-point function is given as

〈0|Tϕ(x1)ϕ(x2)|0〉 =
1

Z0

(
−i δ

δJ(x1)

)(
−i δ

δJ(x2)

)
Z[J ]

∣∣∣∣
J=0

, (2.3)

with Z0 = Z[0].

A general Green’s function can be extracted from the generating functional

which is given as

Gn(x1, . . . , xn) = 〈0|Tϕ(x1) . . . ϕ(xn)|0〉 =
(−i)n

Z0

δnZ[J ]

δJ(x1) . . . δJ(xn)

∣∣∣∣
J=0

. (2.4)

In equation (2.3) and (2.4), T stands for the time ordering operator. Both ex-

pressions do not distinguish between topologically connected and disconnected

diagrams. In most of the cases one is only interested in the connected part of

the Green’s functions. This is achieved by the Schwinger functional W which is

defined as

W [J ] = −i log [Z [J ]] . (2.5)

The connected Green’s functions are then given as

Gn
c (x1, . . . , xn) = (−i)n δnW [J ]

δJ(x1) . . . δJ(xn)

∣∣∣∣
J=0

. (2.6)

Note that W[J] does not generate vacuum graphs. With this at hand we can define

the effective action as the Legendre transformation of (2.5)

Γ[φc] = sup
J

(
W [J ]−

∫
d4x J(x)φc(x)

)
, (2.7)

which therefore has to be convex. The meaning of φc is not clear yet and will be

clarified now. At the supremum, J is given as a function of φc. Therefore, we have

6



2.1. The Effective Action

J = Jsup = J [φc]. With this in mind the meaning of φc can be deduced as follows:

0 =
δ

δJ(x)

(
W [J ]−

∫
Jφc

) ∣∣∣∣
sup

(2.8)

⇒ φc(x) =
δW

δJ(x)
=

1

Z[J ]

−iδZ[J ]

δJ(x)
= 〈ϕ〉J [φc]

. (2.9)

This means that the classical field φc is given by the expectation value of the

quantum field ϕ in presence of the source J . Performing the functional derivative

of the effective action leads to

δΓ[φc]

δφc(x)

∣∣∣∣
sup

=

∫
y

δW [J ]

δJ(y)

∣∣∣∣
sup︸ ︷︷ ︸

φc(y)|sup

δJ(y)

δφc(x)

∣∣∣∣
sup

− J(x)

∣∣∣∣
sup

−
∫
y

δJ(y)

δφc(x)

∣∣∣∣
sup

φc(y)

∣∣∣∣
sup

(2.10)

= −J(x)[φc]. (2.11)

This is an important property of Γ which is called quantum effective equation of

motion and it shows us that if external sources J are absent, i.e. J = 0, (2.11)

reduces to
δΓ[φc]

δφc
= 0. (2.12)

This shows why we talk about an effective action. Just as the classical physical

field configurations are obtained as extrema of the action, the physical quantum

field configurations arise as extrema of the effective action. The big difference

between an ordinary action of classical field theory and the effective action is that

the effective action already includes all quantum effects at tree-level. This will

become more clear in the next sections.

2.1.2 Tree-level Evaluation of the Effective Action

To see that Γ really generates the full quantum theory already at tree-level, we

will first define

W̃ [J, ~] via exp iW̃ [J, ~] ≡
∫
Dφc exp

i

~
(Γ[φc] + Jφc) (2.13)

where we have reintroduced ~ explicitly again. So, we just replace the classical

action S[φ] by the effective action Γ[φc]. Now we want to observe what happens

in the classical limit, i.e. ~→ 0, which corresponds to the evaluation of the right-

hand side at tree-level. In order to see what happens we first have to expand

7



Chapter 2. Renormalization

W̃ [J, ~] in loops or equivalently in powers of ~:

W̃ [J, ~] =
∑
L

~L−1WL[J ] . (2.14)

The classical limit means that the integral in (2.13) is dominated by a stationary

phase which minimizes the exponent:

δ

δφc
(Γ[φc] + Jφc)

∣∣∣∣
φc=φ̂

= 0, i.e.
δΓ

δφc

∣∣∣∣
φ̂

= −J . (2.15)

Evidently, we get back the quantum effective equation of motion already derived

in equation (2.11). This also implies a relation between W 0[J ] and Γ, namely

W 0[J ] = Γ[φ̂] + φ̂J. (2.16)

But this is just the inverse Legendre transformation for Γ, so we have W 0[J ] =

W [J ] and end up with

exp

(
i

~
(W [J ])

)
=

1

Z[0]

∫
Dφ exp

(
i

~
(S[φ] + Jφ)

)
= exp

(
i

~
(Γ[φ] + Jφ)

)
.

(2.17)

The interpretation of (2.17) is as follows: The functional integration Dφ is respon-

sible for the quantum fluctuation; if we replace the classical action S[φ] with the

quantum effective action Γ[φc], such that (2.11) holds, the path integral is obsolete

and we recover the full quantum theory if we work at tree-level. This also shows

that at tree-level, Γ and S are the same functionals, i.e.

Γ[ϕ] = S[ϕ] + ~K[ϕ], (2.18)

where K[ϕ] encodes the loop contribution to the effective action.

It should not be underestimated that the computation of the effective action is

non-trivial. The evaluation of Γ[φc] is a very hard job. To obtain a quantity which

is a little bit easier to access we define the effective potential from the effective

action which can be evaluated easier in some cases.

8



2.2. The Effective Potential

2.2 The Effective Potential

The effective action in (2.7) gives the one particle irreducible (1PI) correlation

functions by taking functional derivatives:

Γn(x1, . . . , xn) = (−i)n δnΓ[φc]

δφc(x1) . . . δφc(xn)
. (2.19)

A 1PI diagram is a diagram that cannot be cut into two pieces by cutting a single

internal line, so it cannot be subdivided into two disconnected diagrams. The

Feynman diagrams to physical processes are built from connected Green’s func-

tions and 1PI vertices. This is why connected Green’s functions are so important,

since they enter physical processes in experiments. The 1PI diagrams are genera-

tors of the effective action, so we can express Γ[φc] through the 1PI vertices if we

perform a Fourier transformation. The result is

Γ[φc] =
∞∑
n=0

1

n!

∫
dp1 . . . dpnδ

4(p1 + · · ·+pn)Γn(p1, . . . , pn)φ̃c(p1) . . . φ̃c(pn). (2.20)

Expanding the effective action in terms of derivatives, one ends up with:

Γ[φc] =

∫
d4x

(
−Veff(φc) +

1

2
(∂φc)

2Z(φc)

)
. (2.21)

If one sets the classical field φc to a constant value the only quantity entering

the effective action is the effective potential Veff . This makes sense since we want

to study electro-weak symmetry breaking with the help of the effective action.

The vacuum expectation value (VEV) of the field is non-zero and constant since

otherwise we would spontaneously break momentum conservation.

Combining (2.20) and (2.21); one obtains an expression for Veff in the limit of

vanishing external momenta

Veff(φc) = −
∞∑
n=0

1

n!
φncΓn(pi = 0) . (2.22)

9



Chapter 2. Renormalization

Taking (2.11) we can write it in the following way:

exp

(
i

~
Γ[φc]

)
=

∫
Dϕ exp

i

~

[
S [ϕ] +

∫
ϕJ [φc]−

∫
J [φc]φc

]
ϕ=φc+ϕ′

=

∫
Dϕ′ exp

i

~

[
S[φc + ϕ′] +

∫
J [φc]φc + J [φc]ϕ

′ −
∫
J [φc]φc

]
=

∫
Dϕ′ exp

i

~

[
S[φc + ϕ′]−

∫
δΓ

δφc
ϕ′
]

(2.23)

This is an integro-differential equation for the functional Γ[φc] and shows how hard

it is to compute Γ for realistic theories: We have to integrate out the quantum

fluctuations to compute the effective action Γ. To evaluate the one-loop correction

to the effective potential we go back to (2.23) and follow the presentation in [15].

The loop expansion of the effective potential corresponds to an expansion in powers

of ~. We start with an expansion of the action around the expectation value φc.

S[φc + ϕ′] = S[φc] +

∫
d4x S ′(x)ϕ′(x) +

1

2

∫
d4xd4yϕ′(x)S ′′(x, y)ϕ′(y) +O(ϕ′3)

(2.24)

where S ′(x) = δS[φc]
δϕ′(x)

denotes functional differentiation with respect to ϕ′(x). Using

(2.18) and taking the functional derivative with respect to φc (2.23) reduces to

e
i
~Γ[φc] =

∫
Dϕ′ exp

i

~

[
S[φc] +

1

2

∫
d4xd4yϕ′(x)S ′′(x, y)ϕ′(y)− ~

δK

δφc
ϕ′
]
.

(2.25)

Taking (2.25) and (2.18) together we can perturbatively solve for an expression for

the loop correction K[ϕ]. Since K[ϕ] is already 1-loop order and thus O(~) the

term linear in ϕ′ does not contribute to the integral at 1-loop order, so in order

to evaluate the right-hand side of (2.25) one has to perform a Gaussian integral.

After that one solves for Γ[φc] and ends up with

Γ[φc] = S[φc]− i ln
(

det(−S ′′)−
1
2

)
(2.26)

= S[φc] +
i

2
ln (det(−S ′′)) , (2.27)

where field independent constants have been dropped. Taking (2.21) and combin-

ing it with (2.27), one ends up with

Veff(φc) = V (φc)−
i

2

∫
d4k

(2π)4
ln det i

δ2S(φ)

δφ(x)φ(y)

∣∣∣∣
φ=φc

+O(~2), (2.28)

10



2.3. Regularization

where we have omitted to display explicitly the diagonalization and dropped field

independent constants.

This means that the effective action is given as a tree-level term and a loop

contribution, i.e. Veff ≈ V +V1−loop. Specifying the result to φ4-theory, which is an

important toy-model since the SM Higgs sector is similar, one ends up with the

following result:

Veff =
1

2
m2φ2 +

λ

4!
φ4 +

1

2

∫
d4k

(2π)4i
ln

(
m2 + λ

2
φ2 − k2

m2 − k2

)
. (2.29)

One sees that the integral is quadratically divergent, which reflects the fact that

the 1-loop effective potential needs to be renormalized. The first step to renor-

malization of a theory is a regularization of the divergent integrals, the topic of

the next section.

2.3 Regularization

The way to proceed in the calculations of QFT is always very similar on the

conceptual side but hard if one actually wants to compute something. One writes

down the loop diagrams to the propagators and the couplings; these diagrams

can be translated into integrals which are in general – to put in in cold words

– divergent. The way to proceed now is to choose a regulator for the integral

in order to deal with the divergences. The divergent part of the integrals are

subtracted through the counterterms which are introduced through the concept of

renormalization after specifying the renormalization conditions. We will give two

different types of regulators here but, there are of course more [16].

2.3.1 Cut-off Regularization

The cut-off regulator has the advantage of a physical meaning: One sets an upper

bound for the momenta in the loops. The momenta of particles are not allowed to

exceed the value of the UV cut-off usually denoted by Λ.

The main disadvantages of a hard cut-off regulator are that it violates both

gauge symmetry and Lorentz symmetry. As a consequence of violating gauge

11



Chapter 2. Renormalization

symmetry, the Ward identity does not hold any longer. This immediately shows

that a hard cut-off is not well suited for gauge symmetries which appear in particle

physics. However, in condensed matter systems the cut-off actually gets a physical

meaning since gauge symmetry and Lorentz symmetry are not symmetries imposed

by the Lagrangian.

2.3.2 Dimensional Regularization

Here we will introduce the idea of dimensional regularization which goes back to

the work in reference [17]. We have seen that some loop integrals are quadratically

divergent when we use a sharp cut-off as a regulator. One can blame the dimension

of space-time for this divergence, since if the dimension of space-time was small

enough, no divergence of the integral would occur. This is the idea of dimensional

regularization. The space-time dimension is promoted to an arbitrary number d.

If d is sufficiently small the integrals should converge and in the end we take the

limit d → 4 for physical quantities, which should be finite. We start with some

technical details of dimensional regularization: After performing a Wick rotation

with imaginary time, a typical integral to solve is of the form∫
ddlE
(2π)d

1

(l2E + ∆)2
=

∫
dΩd

(2π)d
·
∫ ∞

0

dlE
ld−1
E

(l2E + ∆)2
. (2.30)

The first factor accounts for the integration of a sphere in arbitrary dimensions.

Details to this calculation are given in appendix A.2. We present the important

result here: ∫
ddlE
(2π)d

1

(l2E + ∆)2
=

1

(4π)d/2
Γ(2− d

2
)

2

(
1

∆

)2− d
2

. (2.31)

One sees that the integral has isolated poles at negative integers for the Γ-function

which corresponds to integers for d > 4. The approximation for d = 4 dimensions

can be found using

Γ(2− d

2
) = Γ(ε/2) =

2

ε
− γ +O(ε) , (2.32)

where γ ≈ 0.5772 is the Euler-Mascheroni constant. When we put everything

together we obtain the result for the sample calculation as∫
ddlE
(2π)d

1

(l2E + ∆)2
−→
d→4

1

(4π)2

(
2

ε
− log ∆− γ + log(4π) +O(ε)

)
. (2.33)
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2.4. Renormalization of φ4-Theory

The big advantage of dimensional regularization is that we break neither Lorentz

invariance nor gauge invariance. This is why this regulator is very well suited for

particle physics problems.2 We note further that the 1
ε
-pole is accompanied by two

constant terms, namely log(4π)−γ. This is a generic property of dimensional regu-

larization and gives rise to the ms prescription if one performs the renormalization

of the theory.

2.4 Renormalization of φ4-Theory

To illustrate the concept of renormalization of a theory we will now show the

important example of φ4-theory which is more than only a toy model. It is very

closely related to the Standard Model Higgs sector since we deal there in prin-

ciple also with a φ4-theory. However, in the realistic case more fields and gauge

symmetries are involved.

The Lagrangian of φ4-theory is [16]

L =
1

2
(∂µφ)2 − 1

2
m2

0φ
2 − λ0

4!
φ4 (2.34)

with a real scalar field φ(x), and λ0 and m0 are the bare self-coupling and the bare

mass of the theory, respectively. λ0 and m0 are not accessible in experiments, but

merely tools for calculations. To describe physics one has to perform the renor-

malization of the Lagrangian which has further consequences for the parameters

of the theory. If one wants to formulate the Lagrangian in terms of physical and

so renormalized fields, one rewrites

L =
1

2
Z(∂µφr)

2 − 1

2
m2

0Zφ
2
r −

λ0

4!
Z2φ4

r . (2.35)

A rescaling of the field φ → Z1/2φr due to wavefunction renormalization oc-

curred to keep the residue of the propagator at 1, so that Lehmann-Symanzik-

Zimmermann-formalism for computing S-matrix elements still works. Up to now

the bare coupling constants still appear in the Lagrangian. We define

δZ = Z − 1, δm = m2
0Z −m2, δλ = λ0Z

2 − λ, (2.36)

2The choice of the regulator should of course not have any impact on physical quantities.
What we mean here is that loop calculations become easier to handle because useful relations
such as the Ward identities still hold.
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Chapter 2. Renormalization

with the physical coupling constant λ, the physical mass m, is and the countert-

erms δi, the Lagrangian reads

L =
1

2
(∂µφr)

2 − 1

2
m2φ2

r −
λ

4!
φ4
r +

1

2
δZ(∂µφr)

2 − 1

2
δmφ

2
r −

δλ
4!
φ4
r︸ ︷︷ ︸

Counterterms

. (2.37)

= 1
p2−m2

= −iλ

= i(p2δZ − δm)

= −iδλ

Table 2.1: Feynman rules for φ4-theory in renormalized perturbation
theory

The constants m and λ are to be experimentally determined, but the countert-

erms δi have to be calculated order-by-order in perturbation theory. We compute

the 1 loop contributions to the propagator and to the 4-point vertex to adapt the

counterterms δZ , δm and δλ. We begin with the contribution of the 4-point vertex.

The 1 loop 4-vertex reads as

= +

 + +


︸ ︷︷ ︸

1-loop diagrams in φ4−theory

+

︸ ︷︷ ︸
counterterm

.

(2.38)
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2.4. Renormalization of φ4-Theory

The 1-loop contributions in (2.38) can be calculated using the Feynman rules

presented in Table 2.1. The result is

=
(−iλ)2

2

∫
d4k

(2π)4

i

k2 −m2

i

(k + p)2 −m2
≡ (−iλ)2 · V (p2). (2.39)

The other diagrams in (2.38) can be obtained by interchanging momenta and

forming kinematic invariants. One ends up with:

= −iλ+ (−iλ)2i [V (s) + V (t) + V (u)]− iδλ . (2.40)

Here s, t, u are the Mandelstam variables. The task now is to evaluate V (p2)

introduced in (2.39). This can be done using dimensional regularization introduced

in chapter 2.3.2. The result is

V (p2) =
i

2

∫ 1

0

dx

∫
ddk

(2π)d
1

[k2 + 2xk · p+ xp2 −m2]2

=
i

2

∫ 1

0

dx

∫
ddl

(2π)d
1

[l2 + x(1− x)p2 −m2]2
(l = k + xp)

= −1

2

∫ 1

0

dx

∫
ddlE
(2π)d

1

[l2E − x(1− x)p2 +m2]
2 (l0E = −il0)

= −1

2

∫ 1

0

dx
Γ(2− d

2
)

(4π)d/2
1

[m2 − x(1− x)p2]2−d/2
. (2.41)

To evaluate the counterterms δm and δZ the 1-loop evaluation of the 2-point func-

tion is still missing. The diagrams to calculate are

= + + . (2.42)
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Chapter 2. Renormalization

To put it in equations one uses again the Feynman rules from Table 2.1 and ends

up with3

=
1

p2 −m2
+
−iλ

2

∫
ddk

(2π)d
i

k2 −m2
+ i(p2δZ − δm) (2.43)

=
1

p2 −m2
− iλ

2

1

(4π)d/2
Γ(1− d

2
)

(m2)1−d/2 + i(p2δZ − δm) . (2.44)

With a suitable choice of renormalization conditions, namely

=
i

p2 −m2
+ terms regular at p2 = m2 , (2.45)

= −iλ at s = 4m2, t = u = 0 , (2.46)

we are in the position to determine the counterterms δλ, δZ and δm. One finds via

the combination of (2.40), (2.41) and (2.46)

δλ = −λ2[V (4m2) + 2V (0)] (2.47)

=
λ2

2

Γ(2− d
2
)

(4π)d/2

∫ 1

0

dx

(
1

[m2 − x(1− x)4m2]2−d/2
+

2

[m2]2−d/2

)
. (2.48)

To determine the counterterms δZ and δm one observes that in (2.42) the relevant

loop diagram which is calculated in (2.44) is independent of p2. So one is able to

set the counterterms as follows

δZ = 0, δm = −λ
2

1

(4π)d/2
Γ(1− d

2
)

(m2)1−d/2 . (2.49)

Note that while some of the counterterms diverge in the limit d→ 4, the physical

parameters λ and m remain finite. The interested reader is referred to [18] where

most of the presented material is taken from.

3The factor 1
2 in (2.44) comes from symmetry considerations.
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2.5. Running Couplings

2.5 Running Couplings

In the previous section we have chosen a set of renormalization conditions in

equations (2.45) and (2.46) which seemed to be physical but in principle can be

chosen arbitrarily. We chose the mass m as the renormalization point but we

could have chosen an arbitrary scale µ which has no physical meaning at all.

However, physical theories should not depend on unphysical parameters. This

is somehow strange since this scale which entered the calculations due to the

choice of the renormalization conditions cannot have any physical meaning. This

is exactly the idea one applies to the physical quantities of the theory, namely

n-point Green’s functions. Physical quantities must not depend on the unphysical

renormalization scale µ. To give this ambiguity a physical meaning one introduces

the renormalization group equation.

We first start with the scaling property of the 1PI. We have for an arbitrary

renormalization scale µ

Gn
0 (pi, λ0,m0) = Z−n/2Gn(pi, λ(µ),m(µ), µ) , (2.50)

where we denote the external momenta with pi. Bare quantities do not know

anything about a renormalization scale. For this reason the derivative with respect

to the renormalization scale vanishes

0 = µ
d

dµ
Gn

0 (pi, λ0,m0)

= µ
d

dµ

(
Z−n/2Gn(pi, λ(µ),m(µ), µ)

)
. (2.51)

If one applies the chain rule, one ends up with

0 =

[
µ
∂

∂µ
+ β

∂

∂λ
− n

2
γ + γn

∂

∂m2

]
Gn(pi, λ(µ),m(µ), µ) , (2.52)
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Chapter 2. Renormalization

where β is the beta-function and γm and γ are the anomalous dimension of mass

and field respectively. These quantities are defined as

β(λ,
m

µ
) = µ

dλ

dµ
, (2.53a)

γ(λ,
m

µ
) =

1

Z
µ
dZ

dµ
, (2.53b)

γm(λ,
m

µ
) = µ

dm2

dµ
. (2.53c)

The consequence is that coupling constants in a QFT are not constants at all. The

renormalized, i.e. physical, couplings depend on the energy scale under considera-

tion and are therefore running couplings. Taking the equation from the previous

section one finds the beta-function for φ4-theory to be at 1-loop order

β(λ) =
3λ2

16π2
. (2.54)

The solution to equation (2.54) with the definition in equation (2.53b) is therefore

given as:

λ(µ) =
λ(µ0)

1− 3λ(µ0)
16π2 log

(
µ
µ0

) , (2.55)

which describes the running of the self-coupling λ. µ0 is the chosen renormalization

point while µ is the energy scale under consideration. Note that this equation for

the running coupling is only applicable in the vicinity of the renormalization point

µ0, which reflects the idea of perturbation theory. The corresponding β-functions

for the SM are given in the appendix B in the context of Weyl consistency relations.

With all these ingredients we now proceed to the SM.
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CHAPTER 3

THE STANDARD MODEL OF PARTICLE PHYSICS

3.1 SU(3)C × SU(2)L × U(1)Y Gauge Theory

The Standard Model (SM) is a gauge theory with 18 free parameters to be deter-

mined experimentally. They are:

• 3 gauge couplings

• 6 Yukawa couplings for quarks (corresponding to 6 quark masses)

• 3 Yukawa couplings for charged leptons (corresponding to 3 lepton masses)

• 3 angles of the Cabibbo–Kobayashi–Masakawa (CKM) matrix

• 1 CP-phase of the CKM matrix

• 1 Higgs mass

• 1 Higgs self-coupling

We will give the Lagrangian for the SM and see how these parameters act within

it. Here we follow [19] and [20]. The SM Lagrangian can be divided into four

different parts:

L = Lgauge + Lf + Lφ + LYukawa (3.1)
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Chapter 3. The Standard Model of Particle Physics

Before spontaneous symmetry breaking all gauge bosons are massless, because

if they were massive they would violate gauge invariance. Mass terms for the

fermions are also forbidden, because of the chiral structure which we will explore

when we see the particle content and the representations under the gauge groups.

In addition to the terms in (3.1) there are also ghost and gauge-fixing terms which

enter the Lagrangian due to quantization, but are not of relevance here. First we

start with the gauge part of the Standard Model Lagrangian.

Lgauge = −1

4
Gi
µνG

iµν − 1

4
W i
µνW

iµν − 1

4
BµνB

µν (3.2)

Here Gi
µν , W

i
µν and Bµν are the field strength tensors for SU(3)C , SU(2)Y and

U(1)Y respectively. They are given as

Gi
µν = ∂µG

i
ν − ∂νGi

µ − gsfijkGj
µG

j
ν , i, j, k = 1, . . . , 8 (3.3a)

W i
µν = ∂µW

i
ν − ∂νW i

µ − gεijkW j
µW

k
ν , i, j, k = 1, . . . , 3 (3.3b)

Bµν = ∂µBν − ∂νBµ. (3.3c)

(3.3a) and (3.3b) show the non-abelian gauge structure of SU(3)C and SU(2)L

due to the self-interactions represented by the last terms, respectively. Linear

combinations of W i
ν and Bν describe the weak bosons W±, Z0 and the photon

Aµ. Through the interaction with the Higgs field the weak gauge bosons become

massive after spontaneous symmetry breaking which we will see when we have a

closer look at the Higgs sector later.

Fermions of the Standard Model are organized in 3 families for quarks and lep-

tons each. Only quarks transform under the SU(3)C gauge group, leptons are color

singlets. All left-handed fields are doublets under SU(2)L. The U(1)Y -charge is

assigned in the way that after spontaneous symmetry breaking the electromagnetic

charge of the physical particles matches with the electrical charge observed in ex-

periment. This means Q = T 3
L+Y , where Q is the electric charge T 3

L the generator

of SU(2)L and Y the generator of U(1)Y . The meaning of handedness in terms

of representations of the Lorentz group is explained in more detail in appendix A

and must not be confused with handedness in the sense of a SU(2)L-charge.

In Table 3.1 the fermion content of the Standard Model is listed together with

the representation under the gauge group SU(3)C × SU(2)L × U(1)Y . To go on
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3.1. SU(3)C × SU(2)L × U(1)Y Gauge Theory

Names transformation Q = Y + T 3
L particle content

Quarks QmL =

(
umL
dmL

)
(3,2, 1

6
)

+2/3
−1/3

u1,2,3 = u, c, t

umR (3,1, 2
3
) +2/3 d1,2,3 = d, s, b

dmR (3,1,−1
3
) −1/3

Leptons LmL =

(
νmL
e−mL

)
(1,2,−1

2
)

0
−1

e1,2,3 = e, µ, τ

e−mR (1,1, -1) −1 ν1,2,3 = νe,µ,τ

Table 3.1: Transformation properties of the different families under
the gauge group SU(3)C×SU(2)L×U(1)Y . Q denotes the electromag-
netic charge. The corresponding covariant derivatives are given in the
appendix A.

we can give now the fermionic part of the SM Lagrangian. It is given as 1

Lf = iQ̄mL /DQmL + iL̄mL /DLmL + iūmR /DumR + id̄mR /DdmR + iē−mR /De
−
mR. (3.4)

D denotes the covariant derivatives of the SM particles which are defined in ap-

pendix A.4. The slash takes care of the fermionic structure through the contrac-

tion of γ-matrices with the covariant derivative /D = γµDµ. Further information

is given in appendix A.3. All fermions are massless due to the chiral structure of

the electroweak sector: No Dirac-mass term for fermions can be obtained since it

would not be a singlet under gauge transformations. This means that all parti-

cles in the SM are massless before spontaneous symmetry breaking (SSB). Let us

proceed to the Higgs part of the SM Lagrangian.

Lφ = (Dµφ)†Dµφ− V (φ) , (3.5)

where φ =

(
φ+

φ0

)
is a complex Higgs scalar. Its transformation properties under

the SM gauge group are (1, 2, 1
2
)φ. The covariant derivative is consequently given

by

Dµφ = (∂µ +
ig

2
~σ · ~Wµ +

ig′

2
Bµ)φ . (3.6)

The vector ~σ denotes the 2 × 2-matrices which generate the SU(2)-group, the

Pauli matrices. The square of the covariant derivative in (3.5) induces interac-

tions between the gauge fields and the Higgs field. Taking gauge invariance and

1The role of the right-handed neutrino concerning a possible Majorana mass will be briefly
discussed at the end of this chapter.
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Chapter 3. The Standard Model of Particle Physics

renormalizability as the building principles of the SM Lagrangian the Higgs po-

tential is restricted to

V (φ) = +
µ2

2
φ†φ+

λ

4
(φ†φ)2. (3.7)

If µ2 < 0 spontaneous symmetry breaking occurs which we will discuss in 3.2.

Furthermore, the gauge bosons W± and Z0 will become massive. The λ term

denotes the Higgs self-interaction; an important point for our later discussion is

the observation that we need λ > 0 due to vacuum stability. If λ < 0 held,

the potential would be unbounded from below which is not acceptable for a well-

defined theory. However, when quantum corrections to the potential are taken

into account this relation will change, since λ receives loop corrections.

Now we will give the Yukawa part of the Lagrangian:

LYukawa =− Y e
mnL̄mLφe

−
nR − Y

D
mnQ̄mLφdnR − Y U

mnQ̄mL(iσφ†)unR + h.c.. (3.8)

The SM offers no explanation on the renormalizable level for neutrino masses. But

since we want to argue that the SM might be valid up to the Planck scale we need

some explanation for neutrino masses which we will give in section 3.5.

3.2 Spontaneous Symmetry Breaking

The consequence of SSB is a non-vanishing VEV for the Higgs field φ which gen-

erates the masses of all elementary particles through the Yukawa couplings which

we will discuss now.

The Higgs VEV

〈φ〉 =

(
0
v√
2

)
(3.9)

can be obtained by minimizing the potential in (3.7). One obtains

v2 =
|µ2|
λ
. (3.10)

After SSB the Higgs doublet can be expanded around its VEV as

φ =

(
iω+

1√
2
(v +H − iz)

)
, (3.11)

22



3.2. Spontaneous Symmetry Breaking

where ω+ is a complex scalar, H and z are real. Since we are dealing with a

local gauge symmetry the would-be Goldstone modes ω+ and z are eaten up by

the gauge bosons as they become massive in unitary gauge. Here one sees that

the gauge structure is not manifest anymore, i.e. the notation in equation (3.9)

suggests that the SU(2)L × U(1)Y symmetry is broken. However, it is only the

vacuum state which violates gauge symmetry; the SM Lagrangian still respects the

imposed gauge symmetry which is the reason why we talk about a ‘spontaneously

broken symmetry’.

In unitary gauge, where ω+ and z are absorbed by W+
µ and Zµ the Higgs field

can thus be written as

φ =
1√
2

(
0

v +H

)
. (3.12)

After SSB the square of the covariant derivatives of the Higgs field in (3.5) and

(3.6) becomes

(Dµφ
†)(Dµφ) ⊃ 1

8
v2g2(W 1

µ − iW 2
µ)(W 1µ + iW 2µ)

+
1

8
v2(−gW 3µ + g′Bµ)(−gW3µ + g′Bµ). (3.13)

A redefinition of the gauge field and a diagonalization into the mass basis allows

us to read off the masses of the weak gauge bosons. We define

W±
µ =

1√
2

(W 1
µ ∓ iW 2

µ), (3.14a)

Z0
µ =

1√
g2 + g′2

(gW 3
µ − g′Bµ) (3.14b)

= W 3
µ cos θW −Bµ sin θW , (3.14c)

Aµ =
1√

g2 + g′2
(gW 3

µ + g′Bµ) (3.14d)

= W 3
µ sin θW +Bµ cos θW . (3.14e)

From equation (3.13) we can read off

mW =
v

2
g , mZ =

v

2

√
g2 + g′2 , mA = 0. (3.15)

The photon Aµ stays massless, which reflects the fact that one generator of

SU(2)L × U(1)Y is still unbroken. As a consequence we obtain another gauge

symmetry. SSB induces the breaking pattern SU(2)L × U(1)Y → U(1)Q with the
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Chapter 3. The Standard Model of Particle Physics

generator Q = T 3
L + Y . To get a feeling for the order of magnitude for the masses

it should be added that the physical measured values are

mW = 80.385± 0.015 GeV, mZ = 91.1876± 0.0021 GeV, v ≈ 246 GeV,

(3.16)

which can be found in reference [21].

In (3.14e) and (3.14c) we introduced the Weinberg angle θW for which the

following relations to the gauge couplings hold

cos θW =
g′√

g2 + g′2
, sin θW =

g√
g2 + g′2

. (3.17)

In particular, we find

sin2 θW = 1− m2
W

m2
Z

. (3.18)

All these relations are valid for tree-level considerations. Loop contributions

break these relations which is closely related to the parameter ∆ρ 6= 0 and the

Peskin-Takeuchi parameters S, T, U which constrain the possibility of QFT-like

new physics with a coupling to the electroweak sector. Furthermore, careful match-

ing has to be performed between on-shell parameters and ms-parameters to get

the best precision in the running of the parameters. Matching here means the

translation from physical on-shell parameters into ms-parameters.

Next we want to see the impact of SSB on the physical field H concerning the

interactions with the weak gauge bosons. Starting from (3.5) we obtain

Lφ = (Dµφ)†Dµφ− V (φ) (3.19)

= m2
WW

µ+W−
µ

(
1 +

H

v

)2

+
1

2
m2
ZZ

0µZ0
µ

(
1 +

H

v

)2

+
1

2
(∂µH)2 − V (φ)

(3.20)

and the Higgs potential becomes

V (φ)→ −µ
4

4λ
− µ2H2 + λvH3 +

λ

4
H4. (3.21)

We see that the Higgs field has interactions with the massive weak gauge bosons

as well as self-interactions. The self-interactions are a special feature about the

Higgs field; no other massive particle in the SM has self-interactions. The second
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3.2. Spontaneous Symmetry Breaking

term in (3.21) denotes the tree-level mass term for the Higgs,

mH =
√
−2µ2 =

√
2λv . (3.22)

This relation is also changed because of loop effects.

Let us now proceed to the Yukawa terms in (3.8) and see the consequences of

SSB for them. These terms turn into

−LYukawa = ūmLY
U
mn

v√
2

(
1 +

H

v

)
unR + (d, e) terms + h.c. (3.23)

= ūLY
U v√

2

(
1 +

H

v

)
uR + (d, e) terms + h.c., (3.24)

where uL = (uL, cL, tL)T . A similar definition holds for uR. In (3.24) the generation

of fermion masses through SSB is not yet obvious. To see that mass terms are

generated one has to diagonalize the Yukawa matrices Y . We already emphasized

that the Yukawa matrices are arbitrary 3 × 3 matrices. Diagonalization of the

Yukawa matrices Y can be performed through a bi-unitary transformation of the

chiral fermion fields using unitary matrices UX and WX . To put it in equations

one arrives at

UUY
UW †

U = diag(yu, yc, yt) = MU

√
2

v
, (3.25a)

UDY
DW †

D = diag(yd, ys, yb) = MD

√
2

v
, (3.25b)

UeY
eW †

e = diag(ye, yµ, yτ ) = Me

√
2

v
. (3.25c)

(3.25d)

We see that the tree-level masses of the fermions have been defined in (3.25a-

3.25c). A redefinition of the quark fields should now be done in order to see

physical consequences of the bi-unitary transformation. The change of variables

for the right-handed quark fields is as follows:

unR → W nm
U umR , dnR → W nm

D dmR . (3.26)

As a consequence the matrices WU and WD do not enter the Yukawa Lagrangian

(3.8). Through this redefinition of fields the kinetic terms for the right-handed
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fields in (3.4) stay untouched since the unitary matrices commute with the covari-

ant derivatives. So the matrices WU and WD disappear from the theory. However,

the matrices UU and UD will appear in the theory as we see now. One defines

unL → Unm
U umL , dnL → Unm

D dmL . (3.27)

As a consequence of this transformation the matrices UU and UD do enter the

Lagrangian in (3.8). Let us now first go one step back to make the consequence

of this redefinition manifest. We will write the kinetic term of the fermions (3.4)

in terms of mass eigenstates of the weak bosons. Plugging in the definitions in

(3.14a-3.14e) is straightforward and one ends up with

Lf = L̄L(i/∂)LL + ēR(i/∂)eR + Q̄L(i/∂)QL + ūR(i/∂)uR + d̄R(i/∂)dR (3.28)

+ g(W+
µ J

µ+
W +W−

µ J
µ−
W + Z0

µJ
µ
Z) + eAµJ

µ
EM . (3.29)

Taking the definitions of the currents given in the appendix (A.14-A.19) we see

that the neutral currents JµZ and JµEM are invariant under redefinition of the fields

given in (3.27) and (3.26). However, the matrices UU and UD enter the charged

currents. For example:

Jµ+ ⊂ ūnLγ
µdnL → ūnLγ

µ(U †UUD)nmdmL. (3.30)

We define

V = U †UUD (3.31)

as the Cabibbo–Kobayashi–Masakawa (CKM) matrix. It is the only source of CP-

violation in the SM.2

3.3 The Hierarchy Problem

The hierarchy problem is a fine-tuning problem which arises when the SM is em-

bedded into another theory. Every particle should receive radiative corrections;

however, the way these radiative corrections influence the parameters of the theory

is very different for scalars, fermions or gauge bosons.

2CP-violation in QCD due to a term FF̃ has strong bounds and is usually omitted.
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3.3. The Hierarchy Problem

Fermion masses are generated in the SM through the Higgs mechanism. How-

ever, if we set the fermion masses to zero after SSB the symmetry of the Lagrangian

is enhanced by a chiral symmetry for fermion masses. The consequence of this fea-

ture is that this symmetry protects fermion masses from arbitrary large radiative

corrections. It means that the radiative corrections of fermion masses are propor-

tional to the tree-level mass which means that in the limit of vanishing fermion

mass no mass is generated through loop corrections.

Gauge bosons are also protected from acquiring mass but on a different footing.

The Ward identity ensures that the gauge boson propagator stays transversal

which results in massless gauge bosons. As an example one can take QED where

exactly this happens. However, the role of the regulator used to evaluate the loop

integrals should be emphasized here. Since the Ward identity arises from gauge

invariance, it is crucial that one uses a regulator that respects gauge invariance.

One should not be surprised to get a result which artificially violates the Ward

identity if one uses a hard cut-off as a regulator which breaks both gauge and

Lorentz invariance.

The role for scalar particles is different now. Within the SM we know no

symmetry to protect scalar mass terms from radiative corrections. So, now we

want to have a look at the one-loop corrections to the Higgs mass. They are given

by the diagrams presented in figure 3.2 and 3.1.3

Figure 3.1: Radiative correction to a
scalar mass mH from a fermion with coupling
−λfHf̄f .

Figure 3.2: Radiative correction to a scalar
mass mH from an additional scalar particle S
with a coupling −λS |H|2|S|2.

Figure 3.1 induces radiative corrections as (assuming a coupling −λfHf̄f)

∆m2
H = −

λ2
f

8π2
Λ2 + . . . , (3.32)

where the integral has been regulated with a cut-off and the dots denote terms

which diverge at most logarithmically and are proportional to the mass of the

fermionmf . If the cut-off is large, say the Planck scaleMP the radiative corrections

3Gauge boson contributions are neglected here.
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may be very large from a naive point of view. However, the reasoning that the

cut-off should be interpreted as the scale of new physics is not correct. This is the

exact situation within the SM and the fact of a quadratic divergence of the Higgs

mass reflects the fact that the SM has to be renormalized. However, if the mass

of the fermion mf is big radiative corrections are big as well, i.e. ∆m2
H ∼ m2

f and

a cancellation in the counterterms has to be performed. This is fine-tuning and

reflects the one part of the hierarchy problem.

The situation for figure 3.2 is same where an additional scalar particle S with

mass ms is coupled. If we evaluate the diagram one obtains (assuming a coupling

−λS|H|2|S|2)

∆m2
H =

λS
16π2

[
Λ2 − 2m2

s ln
Λ

ms

+ . . .

]
. (3.33)

The role of a regulator has already been pointed out in the context of the Ward

identity. Here, we see again the consequences of a not well suited regulator: One

could argue that the quadratic divergence should play the role of a new physics

scale and that the radiative correction is quadratic divergent. However, if one

regulates the diagram in figure 3.2 with dimensional regularization the quadratic

divergence is not there which becomes obvious from a study of the divergence

structure. The quadratic divergence is an artifact of a bad choice for the regu-

lator. However, one observes that the logarithmic divergent piece stays and it

is proportional to the mass of the additional scalar ms. This means that if the

additional scalar ms is heavy, it is hard to understand why the mass of the scalar

H is small. One has to adjust the counterterm exactly for that purpose which is

fine-tuning.

In principle the same fine-tuning would if one introduced an additional vector-

like fermion with mass mf which does not couple to the Higgs directly but shares

gauge interactions with the Higgs.4 Through a two loop effect also a logarithmic

divergence proportional to the fermion mass mf appears. Due to the two loop

effect the fine-tuning is milder but still large if mf is heavy.

It should be emphasized again that the quadratic divergence introduced through

the cut-off is an artifact of the regularization scheme and that there is no deeper

physical meaning in the cut-off. One can understand this from the fact that the

divergence structure in another regularization scheme, i.e. dimensional regulariza-

tion does not yield a quadratic divergence. The hierarchy problem lies in the fact

4Note that a mass term of the form mf f̄f is possible.
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that heavy particles which couple to the scalar of the theory would pull the mass

up to the heavy scale. If this should be avoided, the price to pay is a high amount

of fine-tuning.

The most popular solutions for the hierarchy problem are Extra Dimensions

and Supersymmetry. Recently also conformal symmetry became more and more

popular and a promising way to evade the Hierarchy problem.

Supersymmetry: Every fermionic SM particle gets a bosonic super-partner

and vice versa. Since bosons and fermions contribute with opposite signs to loops,

the quadratic divergence vanishes naturally, i.e. the function C(λ, g2, ...) → 0 for

exact supersymmetry. Unbroken super-symmetry actually even guarantees van-

ishing quadratic divergences to all orders in perturbation theory. Introducing

super-symmetry is extending the symmetry of the Lagrangian by a symmetry be-

tween fermions and bosons. Since we know that in any renormalizable field theory

fermion masses diverge at most logarithmically, the same holds for boson masses if

super-symmetry is preserved. Unfortunately, super-symmetry cannot be an exact

symmetry of nature, so it needs to be broken. This soft breaking reintroduces the

fine-tuning problem depending on the mass-scale of the superpartners. The idea

of an additional symmetry which is softly broken to explain a small parameter is

exactly in the spirit of the notion of naturalness by t’Hooft.5 A good introduction

to super-symmetry is given in [22].

Extra-dimensions: The idea of extra-dimensions is that we actually live in

more than 4 dimensions of space-time which are however compactified. This results

in a shift of the Planck scale down to the electroweak scale, which shows that this

theory does not suffer from a hierarchy problem [23].

Anthropic “Solution”: The way to explain the big hierarchy between two

scales and the high amount of fine-tuning which is needed to stabilize these differ-

ent scales is that one assumes that such a high fine-tuning can only occur if there

is intelligent life which is there to observe it. The universe in which we live has all

properties which are necessary that intelligent life can exist and observe it. This

“solution” has the big disadvantage that there is nothing to discover or explain

anymore [24]. Everything what we observe and do not understand has to be the

way it is because otherwise we wouldn’t exist. In a certain way the anthropic

principle is a motivated way of giving up.

5The radiative corrections to the Higgs mass are: ∆m2
H = m2

soft
λ

16π2

[
ln ΛUV

msoft
+ · · ·

]
.
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Conformal symmetry: Also Conformal symmetry might play a role in solving

the hierarchy problem. Bardeen argued that conformal symmetry might play a

role in protecting the scalar mass term [25]. Whether this is true or not is not

clear today and further research has to be done in this field.

The hierarchy problem will play an important role in the discussion of inflation.

If a new scalar, the inflaton, is introduced and loop effects are taken into account

the hierarchy problem arises.

3.4 The Need for Physics beyond the Standard

Model

Until now in this thesis one might get the impression that the SM is a complete

theory which gives an explanation for all phenomena in nature. The SM has

withstood all experimental tests, however, it does not give satisfactory answers to

everything. First, we didn’t talk about gravity which is the fourth force of nature

that we know apart from the SU(3)C×SU(2)L×U(1)Y gauge theory we discussed

before. We expect gravity to play an important role at latest when we approach

the Planck scale, MP ∼ 1019 GeV, since ordinary quantum field theory, which is

based on a flat space-time, should not be applicable anymore. But also apart from

gravity, which does not play an important role in daily life particle physics, there

are evidences for BSM physics.

Neutrino masses: From experiments we know that neutrinos oscillate between

different flavors [12], which is only possible if neutrinos are massive. The SM itself

does not provide an explanation of the nature of neutrino masses. We also do not

know whether neutrinos are Dirac or Majorana particles. Ongoing experiments

are searching for neutrinoless double beta decay which is only allowed if neutrinos

are their own antiparticles (and hence Marjorana particles) [26].

Dark matter: The Standard Model of Cosmology is a successful model fitting

the Cosmic Microwave Background with a high accuracy. However, one needs a

high amount (∼ 26%) of dark matter to fit the data. Also direct observation of

the rotation curves of galaxies and gravitational lensing indicate a high amount

of matter which does not interact electromagnetically. However, the SM does not
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have a suitable candidate for a dark matter particle. From a theoretical perspec-

tive the idea of weakling interacting massive particles (WIMP) is an appealing

concept which until today could not be identified in nature. Ongoing experiments

concerning direct detection of dark matter such as XENON [27] or LUX [28] may

clarify the nature of dark matter.6 For a review on dark matter see for example

reference [31].

Strong CP-problem: The strong CP-problem is a fine tuning problem which

arises in QCD. The coupling of a possible term F̃F in the Lagrangian is apparently

extremely small (or even zero) which is unsatisfactory. A popular solution to the

strong CP-problem was proposed by Pecci and Quinn [32] in the spirit of t’Hooft’s

notion of naturalness [33]. This solution predicts a new light pseudoscalar, the

axion, which couples to gluons and photons. These axions could even make up

dark matter but until today all searches for axions are negative and the simplest

models of Pecci-Quinn symmetry are already ruled out but more sophisticated

ideas might provide a hint [21].

Baryogenesis: There is an asymmetry of matter and anti-matter in our universe.

To explain this asymmetry dynamically is the goal of baryogenesis. Successful

scenarios of Baryogenesis need to fulfill the three Sakharov conditions, which are

Baryon number violation, CP-violation and interactions out of thermal equilib-

rium [34]. The SM qualitatively meets all these conditions, but the CP-violation

not sufficient to explain the observed asymmetry over baryons and anti-baryons

quantitatively.7 Baryogenesis requires the electroweak phase transition to be of

first order, which is not possible with the observed Higgs mass. A nice overview

of mechanisms of baryogenesis beyond the SM is given in [36].

Cosmology: The 2011 Nobel prize was to given to S. Perlmutter, B. P. Schmidt

and A. G. Riess for the discovery of the accelerating expansion of the Universe

through observations of distant supernovae [37]. The accelerated expansion is

thought to be driven through dark energy. The problem of dark energy arises in

the context of cosmology. The Standard Model of Cosmology augmented with

a cosmological constant fits the data of the cosmic microwave background ex-

tremely well and as an outcome we need approximately 68% of Dark Energy to fit

the data. However, we need an absolute scale, the cosmological constant, whose

6The DAMA collaboration claimed direct detection of dark matter but until now no other
experiment is able to confirm their result but pushing down the limits on the interaction cross-
section in tension with the DAMA claim or excluding it [29][30].

7Baryon number violation can occur in the SM via sphalerons in the early universe [35].
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origin we cannot explain until today. We believe dark energy to be responsible

for an accelerated expansion of the Universe but we do not understand why the

cosmological constant is so small, yet not zero. Popular explanations of dark en-

ergy are quintessence scenarios, which basically add scalar fields to account for

the negative pressure needed for an accelerated expansion of the Universe [38].

Another promising route is the idea of back-reaction models where one starts from

Einsteins field equations of general relativity and takes the leading order terms of

non-linearity into account which are neglected in the ΛCDM-model [39]. It may

provide an explanation of dark energy in terms of geometry but the situation is

unclear. For reviews on dark energy see for example reference [40, 41].

Inflation: Another window to new physics may be the theory of the early uni-

verse which provides an explanation for the initial conditions of the ΛCDM-model,

inflation. Inflation explains in a nice way homogeneity and isotropy through an

era of exponential expansion in the early Universe. Further details concerning

inflation can be found in chapter 5.

All in all, we see that there are several good reasons for physics beyond the

Standard Model. Whether these reasons imply a scale of new physics between the

electro-weak scale and the Planck scale is another topic. The question whether fine-

tuning and hierarchy arguments are actually a good motivation for BSM physics is

completely unrelated to the need of BSM physics provided through experiments.

Furthermore, we do not know whether this physics beyond the Standard Model is

still within the scope of ordinary quantum field theory.

3.5 Right-handed Neutrinos and Type-I Seesaw

Until now there was no mechanism to give mass to neutrinos in this work. From

oscillation experiments we know that neutrinos have a non-vanishing mass. In a

certain way the “simplest” way of giving mass to neutrinos in complete analogy

to the mass generation of other fermions in the SM is adding three right-handed

neutrinos νnR. A consequence is that the Yukawa term is augmented by

LMν = −Y ν
mnL̄mL(iσφ†)νnR. (3.34)

It is now possible to write down a neutrino mass term. However, it should be

emphasized that a right-handed neutrino is by far not the only possibility. See
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for example reference [42] for a review. In the scenario with three additional

right-handed neutrinos everything goes through as it went in the quark sector.

An important consequence, however, is the unitary mixing matrix in complete

analogy to the CKM matrix which is denoted by Pontecorvo–Maki–Nakagawa–

Sakata (PMNS) matrix. In contrast to the quark sector the mixing angles in

the lepton sector are big [43]. The PMNS matrix also provides another source

of CP-violation apart from the know CP-violation of the CKM matrix which also

might account on a quantitative level for the CP-violation needed to accommodate

observations.

In the context of vacuum stability the presence of three right-handed neutri-

nos does not pose a problem at all. The right-handed neutrino have the same

contribution as the top Yukawa coupling which is the reason the self-coupling is

driven to smaller values for high energies. However, since neutrinos are orders

of magnitude smaller than the top quark, one can completely ignore them in the

stability discussion.

Note that there is in principle another term for the right-handed neutrinos

which breaks lepton number. Now, we want to explore the consequences of such a

term for the generation of neutrino masses. The neutrino part of the Lagrangian

augmented with a right-handed neutrino and allowed Majorana term reads [44, 45]

− LMν = Y ν
mnL̄mL(iσφ†)νnR +

1

2
ν̄RMRν

c
R + h.c., (3.35)

where the last term is the Majorana term which sets the second scale in the theory,

apart from the µ2-term in the Higgs potential. Note that MR is a 3 × 3-matrix.

Seeing as MR is not connected to the electroweak scale, we may assume it to be

much larger, MR � v This leads to the well known seesaw formula

mν = v2Y νTM−1
R Y ν . (3.36)

The big difference between this case and the case we showed before where no Ma-

jorana mass was apparent is that now the Yukawa couplings can be sizable which

leads to crucial consequences in the RGE running of the parameters. However,

neglecting for a moment the flavor structure we are able to estimate the neutrino

mass mν = O(0.1 eV) the Yukawa-coupling Y ν is of order unity for a seesaw scale

of MR = O(1014 GeV). Depending on the Majorana scale the Yukawa couplings

can be chosen in order to fulfill experimental bounds on neutrino masses. In

33



Chapter 3. The Standard Model of Particle Physics

the picture of a seesaw mechanism the smallness of neutrino masses is explained

through the suppression of a very heavy Majorana mass MR.

The consequences of the type-I seesaw mechanism are in principle already clear

from structure of the Lagrangian. Since the Yukawa coupling of the right-handed

neutrino might be of order one it contributes as much as the top Yukawa coupling

and, therefore, destabilizes the electroweak vacuum even further. This result is

obtained on numerical footing in reference [46].
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CHAPTER 4

STABILITY OF THE STANDARD MODEL

The goal of this chapter is to point out the interplay of physical parameters in

the context of vacuum stability of the SM. The tools we use were presented in

the previous chapters. We use the RGE running of the SM parameters to see the

impact of them on the stability of the SM. This stability analysis is an important

point for the discussion whether the SM might be valid all the way up to the

Planck scale. There are two important points made by our interpretation of the

LHC data: First, there is the discovery of the Higgs boson which completed the

SM and in particular a measurement of the Higgs mass mH ≈ 125 GeV which also

determines the self-coupling λ ∝ m
v
∝ 0.13. Second, they provide no evidence

for BSM physics. Hence, it is quite tempting to use RGEs of the SM and let the

parameters evolve to high scales and see their impact on vacuum stability. We

follow the analysis of reference [47] with slight modifications.1

One has to be really careful about the statements and the plots shown in this

section. The implicit assumption is that there is no new physics between the

electroweak scale and the Planck scale, which is quite a strong statement. However,

it is well motivated by the lack of any experimental sign of new physics because

one observes a peculiar behavior for λ and βλ near the Planck scale where both

quantities almost vanish if RGE running is applied.

1The RGEs are augmented by three right-handed neutrino without a Majorana term to
account for neutrino masses. - As it turns out in this framework the presence of right-handed
neutrinos is irrelevant for the following discussion.
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4.1 RGE Running of SM Parameters

We want to start with a general analysis of the SM gauge couplings. We use 2-

loop RGEs obtained from reference [48] and let the couplings evolve from the elec-

troweak scale to high scales. Figure 4.1 shows the running of the gauge couplings

of the SM. We see that all gauge couplings almost meet at a scale of O(1016 GeV)

which gives rise to GUT motivated extensions of the SM. Note, however, that any

new particles which might couple to the gauge bosons between the electroweak

scale and the Planck scale can significantly change this running of parameters. It

holds αi =
g2
i

4π
, where α1 is connected to the SU(3)C gauge coupling g. The same

holds for α2 and the SU(2)L gauge coupling and α3 and the U(1)Y gauge coupling.

We see that the situation for the size of the couplings is completely turned over
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Figure 4.1: Running of the SM gauge couplings at 2-loop. One sees
that the gauge couplings almost meet at a scale of O(1016 GeV) which
gives rise to supersymmetric extensions of the Standard Model. Note
that the U(1)Y coupling is GUT-normalized which accounts for a factor
of 5

3
. The RGEs are obtained from reference [48].

a high scales, i.e. the strong coupling of SU(3)C is not the strongest anymore.

This is no surprise and reflects the fact of asymptotic freedom of the non-abelian
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SU(3)C-part of the SM.2 One can also observe that the U(1)-coupling becomes

bigger with rising energy. In this behavior one can already have a glimpse at the

first fundamental conceptual failure of the SM, since the U(1)Y gauge coupling

encounters a Landau pole at very high energies. However, one should not won-

der too much about this conceptual problem since the U(1)Y Landau pole lies far

beyond the Planck scale where we expect a UV-completion of the SM anyway.

4.2 Stability Analysis of the Standard Model

In order to analyze the SM potential one let the couplings run from the low scale

to the high scale implicitly assuming that there is no new physics in between.

The consequence is that the potential changes from its tree-level version given in

equation (3.7).

An important fact one observes about the SM potential is that it is nearly

conformal for high values, i.e. the SM potential can be well approximated by its

RG-improved tree-level expression

Veff ≈
λ(µ)

4
φ4. (4.1)

This means that an instability of the SM potential occurs at a scale µ where

λ(µ) becomes negative. The SM vacuum is no longer bounded from below and

one expects the SM vacuum to be unstable. This picture is only partly true, since

the SM vacuum might also be very long-lived and as long as the lifetime of the

SM vacuum exceeds the lifetime of our Universe the theory might still make sense.

This means that long term existence of the electroweak vacuum is challenged. As

a matter of fact, that is exactly the situation we find in the SM as we can see in

figure 4.2. Note, however that here we used rather optimistic values for the top-

mass [47]. The top mass and its error are the decisive parameter for the question

whether the SM vacuum is stable or metastable. Furthermore, there are generic

limits in the determination of mt which we will encounter in section 4.6.

One observes in figure 4.2 that the Higgs potential becomes unbounded from

below at a scale of O(1011 GeV). One might be worried about this because this

2Asymptotic freedom is no general property of non-abelian gauge theories. QCD is asymp-
totically free because of the particle content of the SM which makes the β-function becomes
negative.
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Figure 4.2: Running of the Higgs self coupling λ computed via 3-
loop RGE running. The self-coupling becomes negative at a scale of
O(1011 GeV). This reflects the fact that the Higgs potential is un-
bounded from below in contrast with a desired stable vacuum. If
the vacuum is not sufficiently long-lived this would be a clear sign
of BSM physics, which should take care of this stability problem.
The three lines correspond to different top masses namely 172.1 GeV
(yellow),173, 1 GeV (blue), 174.1 GeV (red).

means that our vacuum is not absolutely stable. It provides a possibility for

BSM physics if one demands that new physics should take care of this instability,

i.e. new physics should step in at latest when λ(µ) turns negative. The job of any

kind of new physics which might step in between the electroweak scale and the

instability scale should be to overcome the top Yukawa coupling yt which drives

the self-coupling λ(µ) to negative values for high energies.

One solution of this would be to introduce a scalar singlet which couples to the

Higgs and overcomes the top-Yukawa contribution in order to prevent the λ(µ)

to turn negative. However, one has to be careful, since if one introduces another

scalar in the theory; the running of λ(µ) might change in the desired way but

one immediately runs into the hierarchy problem presented in section 3.3. For a

recent analysis of RGE running with an additional scalar singlet as a dark matter

candidate see reference [49].
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The general question is whether the values for λ(µ) and βλ(µ) at the Planck scale

MP are a coincident or if they have a special meaning in the sense of boundary

conditions of a UV-completion of the SM. This question has been adressed in

reference [50].

Another way out of this unfortunate situation is a tuning of the top-mass mt

such that absolute stability is still allowed. This tuning of a measured parameter

does not come out of the blue: There are generic limitations in the determination

of the top quark pole mass mt at hadron colliders. One might argue about the error

one is able to achieve today, but to be conservative an error of ∆mt ≈ O(ΛQCD)

can be estimated. A detailed discussion of the role of the top-quark pole mass and

the limitations of physical measurements in hadron colliders is given in section 4.6.

The running of λ(µ) in figure 4.2 is derived through 3-loop renormalization

group equations for λ and suitable matching conditions for the other relevant pa-

rameters. The line separating the instability region from the metastability region

is derived using

λ(φ) > − 8π2/3

4 log [φTU exp(γ)/2]
, (4.2)

where TU is the age of the Universe. Furthermore, one takes µ ≈ O(φ). There

are several standard simplifications which go into the expression displayed in (4.2)

and further details can be found in reference [51].

In figure 4.3 we display the phase diagram of the SM. The only relevant pa-

rameters are mH and mt as one can see. The line separating the stability region

and the metastability region is computed from the demand that λ(MP ) = 0. This

means that in order to compute this line one fixes an arbitrary Higgs mass and

then computes the value for the top-mass at which λ(MP ) = 0 is satisfied.3 The

error of this stability line comes mainly from the error in αs. The take away-

message from this plot is that vacuum stability is excluded by more than 2σ. But

one should be careful with this statement because there is a strong dependence on

the top quark pole mass and its error.

3This analysis can be done for different cut-offs below the Planck scale MP changing this
stability line.
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Figure 4.3: This figure shows the SM phase diagram in the Higgs-Top-
plane. The line separating the metastability and the stability region
is obtained by solving for which configuration of mt and mh the self-
coupling λ turns negative at the Planck scale. The line separating the
metastability and the stability region is obtained through the semi-
classical estimation presented in [51]. Colored error-bars are obtained
from error in αs and the 1-, 2- and 3-σ level of the SM values for mh

and mt. mt = (173.10 ± 0.66) GeV and mh = (125.66 ± 0.34) GeV in
contrast to figure 4.9. The central value favors metastability of the
electroweak vacuum. The small errors of mt indicate that absolute
stability is disfavored by more than 2σ. See section 4.6 for the role of
the top quark.

4.3 Weyl Consistency Relation in the Context of

the Standard Model

We have already pointed out that the SM possesses almost classical conformal

symmetry at high energies, i.e. the only dimensional coupling in the Lagrangian,

coupled to H†H, can be neglected. If one takes this feature serious, the question

arises how to take care of the classical conformal behavior if one lets the couplings

of the theory run. State of the art computations use a loop-number as high as

possible to gain as much as precision as possible since the running of parameters

has to be evolved over 16 orders of magnitude. It is true that one increases the

precision for gauge, Yukawa and quartic couplings in the determination separately
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if one uses loop orders as high as possible. However, one violates the structure

of classical conformal symmetry if one takes the same loop order for each gauge,

Yukawa and quartic couplings. As a consequence, one has to count differently in

the loops of respective couplings. Here we review briefly the work of [52]. As

the authors of [52] point out one has to fulfill the Weyl consistency conditions

which are a remnant of the almost classical conformal symmetry of the SM at

high energies.

The idea is to keep track of the classical conformal symmetry after renormal-

ization, which is a difficult task since the conformal symmetry is anomalous.4 The

idea is to first promote the couplings of the theory to functions of space-time,

i.e. hi = hi(x) and go on and work in an arbitrarily curved background. Now, a

conformal transformation applied to the theory at hand implies a change of the

space-time metric gµν → e2σ(x)gµν . This can be compensated by a change in the

renormalized couplings as hi(µ) → hi(e
−σ(x)µ). Expressing this is possible if one

performs a variation of the Schwinger functional W defined in 2.5. This can be

parametrized as

∆σW ≡
∫
d4xσ(x)

(
2gµν

δW

δgµν
− βi

δW

δhi

)
= σ

(
aE(γ) + χij∂µhi∂νhjG

µν
)

+ ∂µσw
i∂νhiG

µν + . . . , (4.3)

where a, χij and ωi denote functions of the renormalized couplings and βi is the

corresponding β function to the coupling hi. The important point is that the

functions displayed on the right-hand side of (4.3) are not independent of each

other. Furthermore, the Weyl anomaly should be abelian, which means

∆σ∆τW = ∆τ∆σW. (4.4)

This results in relations for the right-hand side of (4.3), namely

∂ã

∂gi
=

(
−χij +

∂wi

∂gj
− ∂wj

∂gi

)
βj , (4.5)

with ã ≡ a − wiβi. If one works this out for the SM one observes that in order

to respect the Weyl consistency conditions, one cannot apply an equal loop order

to all relevant couplings. As it turns out, a 1-loop order in the self-coupling λ

4An anomalous symmetry is one that is broken by quantum corrections. One cannot find a
measure Dφ in the path-integral which respects the symmetry.
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Chapter 4. Stability of the Standard Model

requires a 2-loop order in the Yukawa-couplings and a 3-loop order in the gauge

couplings in order to respect the Weyl consistency conditions. The naive thinking

that the highest loop order possible helps the most in fact violates the relations

derived in (4.5). The explicit equations for the case of the SM are given in the

appendix B.

108 1010 1012 1014 1016 1018

- 0.02

- 0.01

0.00

0.01

Energy @GeV D

Λ

Figure 4.4: Running of λ according to different loop orders and match-
ing with fixed mt = 173.1 GeV. Blue: 3-3-3 counting for gauge, Yukawa
and self-coupling with state of the art matching conditions. Yellow: 3-
2-1 counting with state of the art matching conditions. Green: 3-2-1
counting not exceeding the loop order imposed by Weyl consistency re-
lation. Red: 3-2-1 counting with most conservative matching according
to 2-loop in gauge, 1-loop in Yukawa and 0-loop in self-coupling.

Figure 4.4 shows the impact of the different counting schemes for the discus-

sion of stability of the Standard Model. One observes that the scale at which

the self-coupling λ(µ) becomes negative is less than 1 order of magnitude below

Λ ≈ 1011 GeV (blue and yellow). So we see that including the Weyl consistency

relations and therefore respecting the almost conformal nature of the Standard

Model at high scales, has a rather small impact on the discussion of stability. The

conclusions one draws are basically the same as if one takes that highest loop or-

ders available. The only difference is the scale at which λ(µ) turns negative, but

as we will discover in the next section, there are generic theoretical errors which
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4.4. Gauge Dependence of the Standard Model Vacuum Instability

are larger than 1 order of magnitude connected to the gauge dependence of the

effective potential.

There is another important message to take away from figure 4.4: The biggest

impact on the curves does not come from the different counting schemes but from

the difference in the matching conditions which are imposed. The comparison

between the blue and the yellow curve in figure 4.4 shows that the effect due to

different counting schemes is really small. But we observe that if we change the

loop order of the matching condition the impact is much bigger. The green curve

represents NNLO matching conditions in all variables resulting in a change of

more than 1 order of magnitude of the instability scale. The red curve, however, is

matched due to 2-loop matching for the gauge couplings, 1-loop matching for the

Yukawa coupling and 0-loop matching for the self-coupling. The difference to the

blue line which corresponds to the state of the art computation with 3-3-3 counting

and highest order in the matching conditions known is of 2 orders of magnitude. A

table with the different values for the couplings with different matching conditions

can be found in appendix B.2.

So, the different counting in the loop order for the different couplings is not

important for the exact value where the instability occurs, since there are intrinsic

errors which are bigger than the contribution from the Weyl consistency relations.

However, if one wants to analyze classical conformal symmetries and their behavior

on quantum level one should include loop orders of the respective couplings which

respect the Weyl consistency relation, because otherwise we violate the classical

conformal symmetry not only by the quantum nature of the theory but already

by hand through an inconsistent choice of loop orders for the β functions of the

theory.

4.4 Gauge Dependence of the Standard Model

Vacuum Instability

An important question if one deals with the effective potential is which of the

quantities one extracts from the effective potential are gauge independent and

which are plagued with a gauge dependence and have to be considered to be

unphysical to some extend. If we take all parameters of the SM as given except

the Higgs mass mh, the shape of the potential depends on several parameters.
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These parameters are the Higgs mass mh, the field φ and all parameters which

fix a chosen gauge which we summarize as ξ. We can define a critical Higgs mass

mc
h which tells us when the RGE improved effective potential develops a new

minimum at the same height as the electroweak minimum. This fact is illustrated

in figure 4.5 [53, 54].

Figure 4.5: Sketch of the effective potential in a fixed gauge with dif-
ferent values for the Higgs mass. If mh < mc

h the effective potential has
an additional minimum which lies below the electroweak one (metasta-
bility/instability). For mh = mc

h the two minima lie at the same level
and for mh > mc

h the second minimum lies above the electroweak min-
imum (absolute stability).

The condition for absolute stability of the effective potential can be put into

mathematical formula through the equations

Veff(φew,m
c
h; ξ)− Veff(φ̃,mc

h; ξ) = 0 , (4.6)

∂Veff

∂φ

∣∣∣∣
φew,mch

=
∂Veff

∂φ

∣∣∣∣
φ̃,mch

= 0 , (4.7)

where φew denotes the electroweak minimum and φ̃ the second minimum. If one
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4.4. Gauge Dependence of the Standard Model Vacuum Instability

takes into account that for large field values the effective potential can be approx-

imated through (4.1), we obtain (see reference [55])

λeff(φ̃,mc
h; ξ) = 0 , (4.8)

∂λeff

∂φ

∣∣∣∣
φ̃,mch

= 0 .5 (4.9)

The most important tool for the analysis of physical quantities which can be

extracted from the effective potential is the Nielsen identity [56]

∂

∂ξ
Veff(φ, ξ) = −C(φ, ξ)

∂

∂φ
Veff(φ, ξ) , (4.10)

where C(φ, ξ) is a correlator which involves the gauge-fixing functional and the

ghost fields. The exact form of C(φ, ξ) is not important for the argument here.

It is valid for the class of linear gauges and can be derived rigorously from BRST

non-invariance of a composite operator involving the ghost fields and the gauge

fixing functional.

The important point is the interpretation of equation (4.10). Since C(φ, ξ) is

in general not zero we conclude that the extrema of the effective potential are

gauge independent, i.e. spontaneous symmetry breaking is a gauge independent

fact. If spontaneous symmetry breaking takes place in one gauge there is no other

gauge where spontaneous symmetry breaking does not take place. However, we

cannot conclude that scale Λ at which the instability occurs in a chosen gauge is

a gauge-independent quantity. We will see that this is indeed not the case.

From an intuitive point of view one expects the critical Higgs mass to be gauge

independent since by taking values belowmc
h in one gauge a new minimum develops

and therefore it should happen in any gauge for the same mc
h. This can be formally

proven in the following way: One takes the condition for absolute stability given

in (4.6) and combines it with the Nielsen identity (4.10). Performing the total
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differential of (4.6) with respect to ξ leads to

∂Veff

∂φ

∣∣∣∣
φew,mch︸ ︷︷ ︸

=0 (stat.cond.)

∂φew

∂ξ
+
∂Veff

∂mh

∣∣∣∣
φew,mch

∂mc
h

∂ξ
+

∂Veff

∂ξ

∣∣∣∣
φew,mch︸ ︷︷ ︸

=0 (4.10) and (4.7)

=

∂Veff

∂φ

∣∣∣∣
φ̃,mch︸ ︷︷ ︸

=0 (stat.cond.)

∂φ̃

∂ξ
+
∂Veff

∂mh

∣∣∣∣
φ̃,mch

∂mc
h

∂ξ
+

∂Veff

∂ξ

∣∣∣∣
φ̃,mch︸ ︷︷ ︸

=0 (4.10) and (4.7)

. (4.11)

Rewriting now (4.11) yields(
∂Veff

∂mh

∣∣∣∣
φew,mch

− ∂Veff

∂mh

∣∣∣∣
φ̃,mch

)
∂mc

h

∂ξ
= 0 . (4.12)

Since the bracket in (4.12) is usually not vanishing one concludes for the critical

mass
∂mc

h

∂ξ
= 0 . (4.13)

This statement holds to all orders in perturbation theory and proves that the

critical mass mc
h is a gauge independent quantity.

However, the instability scale which is often used in the standard analysis as a

trigger that the potential becomes unbounded from below is a gauge dependent

quantity which we will explore now following references [53, 54]. The instability

scale Λ is the scale at which the running of λ becomes negative. So the instability

scale is connected to the point where the effective potential has the same height

as the electroweak minimum.6 This can be expressed in equations through

Veff(Λ; ξ) = Veff(φew; ξ) . (4.14)

We perform the total differential of equation (4.14) on both sides with respect

to ξ. The right-hand side does not possess any gauge dependence since φew is a

minimum and vanishes after applying the Nielsen identity (4.10). This leads to

∂Veff

∂φ

∣∣∣∣
Λ

∂Λ

∂ξ
+
∂Veff

∂ξ

∣∣∣∣
Λ

= 0 . (4.15)

6This point do not need to be a minimum of the effective potential. See figure 4.5 for
illustration.
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Now, applying the Nielsen identity to the second term in (4.15) lets a factor C(Λ, ξ)

appear and yields (
∂Λ

∂ξ
− C(Λ, ξ)

)
∂Veff

∂φ

∣∣∣∣
Λ

= 0 . (4.16)

If the instability scale Λ was a minimum, we would be back to the case where we

deduced the gauge independence of mc
h. So, since the instability scale Λ is not a

minimum we obtain
∂Λ

∂ξ
= C(Λ, ξ) . (4.17)

Equation (4.17) shows that the instability scale Λ is a gauge dependent quantity.

So the actual value of the instability scale is not a physical quantity and varies if

one changes the gauge. A full analysis of the gauge dependence of the instability

scale Λ for the 2-loop RGE improved effective potential has been carried out in

reference [53]. They find an instrinsic dependence of the instability scale Λ which

is of order of 1 magnitude. This also gives a hint for future treatment of the

RGE-improved effective potential. Since there is a generic gauge dependence of

the instability scale it probably does not make any sense in the context of vacuum

stability to increase loop numbers in the analysis even further. Generic gauge

dependence of the instability scale Λ on the one hand and errors in the top mass

(see 4.6) limit the analysis the most not the precision due to computed loops.

4.5 Additional Non-renormalizable Scalar Oper-

ators

An important point in the discussion of the stability of the effective potential is

that it develops a new minimum at φ ≈ 1031GeV.7 This point is usually ignored in

the discussion and one expects that new physics interactions, which should step in

at latest the Planck scale MP , take care of this deficit. However, one argues that

these new physics interactions should not affect the computation of the lifetime

of the electroweak vacuum. So the situation we are dealing with is the following:

One minimum of the effective potential Veff is the electroweak minimum that we

know and love, but it is not the true minimum of the theory. In this picture the

true minimum lies outside the validity of quantum field theory; one expects that

new physics should step in at latest at the Planck scale MP . However, the nature

7The RGE improved effective potential develops this new minimum. The 1-loop effective
potential is simply unbounded from below when crossing the instability scale.
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of this UV-completion of the SM is unknown. As a first step towards the study of

the impact of the UV-completion of the lifetime of the electroweak minimum, one

can start by parameterizing this new physics by non-renormalizable operators.

Therefore, we augment the SM by non-renormalizable scalar operators and

study their impact on the computation of the lifetime of the electroweak vacuum.

An analysis similar to the one done here can be found in references [57, 58]. We

restrict ourselves to the lowest possible higher dimensional operators, implicitly

assuming all other ones suppressed. This means that the potential takes the form

V (φ) =
λ

4
φ4 +

λ6

6

φ6

M2
P

+
λ8

8

φ8

M4
P

. (4.18)

The additional contribution from non-renormalizable operators to the Higgs self-

coupling is [58]

∆βλ =
λ6

16π2

m2

M2
P

. (4.19)

Furthermore, the 1-loop β functions of the additional couplings are given as

16π2βλ6 =
10

7
λ8
m2

M2
P

+ 18λ66λ− 6λ6(
9

4
g2

2 +
9

20
g2

1 − 3y2
t ) (4.20)

16π2βλ8 =
7

5
28λ2

6 + 30λ86λ− 8λ8(
9

4
g2

2 +
9

20
g2

1 − 3y2
t ). (4.21)

The idea is now that we let the SM evolve from the low scale physics that we know

up to the Planck scale without the non-renormalizable operators since their impact

in the low-energy regime is negligible. We solve the SM RGEs and note the value

of all relevant couplings at the Planck scale. Then, we turn on the new physics

interaction parametrized by scalar non-renormalizable operators suppressed by the

Planck scale MP and analyze their impact on the running for λeff.

Figure 4.6 shows the running of λ augmented by the non-renormalizable oper-

ators which might significantly change the running. Note that this figure might

change if other values of λ6 and λ8 at the Planck scale are imposed. λ crosses

the line of instability which renders the fact that the electroweak vacuum is too

short-lived. Figure 4.6 shows, for a particular choice of the non-renormalizable

couplings at the Planck scale MP that the generic statement that the precise struc-

ture of the UV-completion of the Standard Model does not significantly change

the computation of the lifetime of the electroweak vacuum is not true. A word

of caution about this plot should be added since strictly speaking the effective
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Figure 4.6: This plot shows in red the ordinary Higgs self-coupling
λ(µ) in the SM which has already been shown in figure 4.2. In blue
we show the impact of the non-renormalizable operators on the Higgs
self-coupling. The function which is plotted in blue is λeff(µ) ≈ λ(µ) +
λ6(µ)φ2

6M2
P

+ λ8(µ)φ4

8M4
P

in the approximation of φ ≈ O(µ) and running of the

field itself is neglected. The values of the non-renormalizable operators
at the Planck scale MP are λ6(MP ) = −2 and λ8(MP ) = 2.1.

field theory approach breaks down in the vicinity of the Planck scale MP and

the non-renormalizable operators, which are irrelevant in the low energy regime,

become very important and even dominant. In this sense it is important that the

minimum still lies below the Planck scale MP in order to ensure to that operators

beyond order 8 are still suppressed to some extent. The closer one approaches the

Planck scale the more important become the non-renormalizable operators and if

the minimum lies beyond the Planck scale, the operators of higher order should

have the most important impact. For different treatment see reference [58]. The

vacuum in this scenario is too short-lived to be an acceptable scenario within the

Standard Model. If the UV-completion, which is in this picture parametrized by

the non-renormalizable operators has these values at the Planck scale MP new

physics between the electroweak scale and the Planck scale has to step in and take

care of this deficit of the theory. Figure 4.7 and figure 4.8 show the running of

the non-renormalizable couplings. Concerning perturbativity the big values of λ8

should not worry us so much, since in the regime where the coupling is strong, the
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Figure 4.7: Running of the non-
renormalizable coupling λ6 for λ6(MP ) = −2
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Figure 4.8: Running of the non-
renormalizable coupling λ8 for λ8(MP ) = 2.1

suppression of the non-renormalizable operators is big.8 Figure 4.7 and figure 4.8

show the running of the non-renormalizable operators. The big coupling of λ8

concerning perturbativity should not worry us so much since in the regime where

the couping is strong the suppression of the non-renormalizable operators is big.

However, clearly this analysis is not complete yet and lacks severals features such

as derivatives which should be included for a full analysis.

In order to compute the lifetime τ of the electroweak vacuum one has to calcu-

late [59, 60]

1

τ
= T 3

U

S[φb]
2

4π2

∣∣∣∣det′ [−∂2 + V ′′(φb)]

det [−∂2 + V ′′(v)]

∣∣∣∣−1/2

e−S[φb] , (4.22)

where φb(r) is the O(4) symmetric solution to the so-called bounce which cor-

responds to the euclidean equation of motion. S[φb] denotes the action for the

bounce and [∂2 + V ′′(φb)] is the fluctuation operator. The computation of the

determinant is rather involved and to make physical meaning of the computation

one has to remove zero modes of the determinant, which is denoted through the

prime in the determinant of the numerator in equation (4.22). The computation

performed in [57] shows that the potential for small field values can be well ap-

proximated through the ordinary SM effective potential. So they find that up to

a scale of η ≈ 0.780MP the potential can be approximated by V new
eff (φ) = λeff

4
φ4

where λeff = λ+ λ6(µ)φ2

6M2
P

+ λ8(µ)φ4

8M4
P

. For the region φ > η bends down steeply for this

choice of λ6 and λ8 at the Planck scale which we also observe in figure 4.6. They

argue that a new minimum close to the Planck scale develops at φ
(2)
min = 0.979MP

and that because of this fact a linearization of the potential can be performed

8However, for a more realistic treatment one should still expect higher order terms to be
relevant.
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which yields

V (φ) =

[
λeff

4
η4 − λeffη

3

γ
(φ− η)

]
, (4.23)

where γ is given as

γ = −λeff η
3

(
λη3 + λ6

η5

M2
P

+ λ8
η7

M4
P

)−1

. (4.24)

They claim bounce solutions for (4.23) as

φb(r) =

 2η − η2

√
|λeff |

8
r2+R

2

R
0 < r < r,√

8
|λeff |

R

r2+R
2 r > r,

(4.25)

where

r2 =
8γ

λeffη2
(1 + γ), R

2
=

8

|λeff |
γ2

η2
. (4.26)

This means that solutions for equation (4.25) exist only in a certain range for γ,

namely −1 < γ < 0. In this way R is the size of the bounce and its action is given

at φb as

S[φb] = (1− (γ + 1)4)
8π2

3|λeff |
. (4.27)

Other bounce solutions are given as

φ
(2)
b (r) =

√
2

|λeff |
2R

r2 +R2
, (4.28)

where the allowed values for the size of the bounce can now lie in the range√
8
|λeff |

1
η
< R < ∞. However, if we take |φ| � MP and replace λeff by λ in

equation (4.28) the bounce action is degenerate in R and is given as

S =
8π2

3|λ|
. (4.29)

For a precise treatment the contribution of (4.28) should be taken into account

for the computation of the lifetime τ of the electroweak vacuum. However, as it

turns out, the contribution is exponentially suppressed if we only take into account

the tree level contributions coming from equations (4.22), (4.27) and (4.29) under

the assumption that a solution which requires −1 < γ < 0 exists. We see that

we meet these requirements for the case of interest, namely λ6(MP ) = −2 and
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λ8(MP ) = 2.1 since γ ≈ −0.963.

The authors of reference [57] now follow the treatment presented in [61] to

compute the fluctuation determinant. They proceed as follows:

log

(
det′(−∂2 + V′′(φb))

det(−∂2)

)1/2

=
1

2

∞∑
l=0

(l + 1)2 ln ρl, (4.30)

where ρl = limr→∞ ρl(r). In equation (4.30) ρl(r) is the solution of

ρ′′l (r) +
(2l + d− 1)

r
ρ′l(r)− V ′′(φb(r))ρl(r) = 0, (4.31)

where suitable boundary conditions have to be imposed like ρl(0) = 1 and ρ′l(0) =

0. Derivatives in equation (4.31) are understood to be taken with respect to r.

Special care has to be taken during the computation of the sum in equation (4.30)

since the eigenvalue for l = 0 is related to a negative mode and the eigenvalues for

l = 1 are related to translational modes, which are zero. These modes should be

treated separately and one has to compute the divergent sum without l = 0 and

l = 1. The procedure which takes care of the divergence is renormalization. The

ms renormalized sum of equation (4.30) is given as (see [57, 62]):[
1

2

∞∑
l>1

(l + 1)2 ln ρl

]
r

=
1

2

∞∑
l>1

(l + 1)2 ln ρl

−1

2

∞∑
l=0

(l + 1)2

[∫∞
0
drrV ′′

2(l + 1)
−
∫∞

0
drr3(V ′′)2

8(l + 1)3

]
−1

8

∫ ∞
0

drr3(V ′′)2
[
ln
(µr

2

)
+ γE + 1

]
. (4.32)

Through a truncation of the sum for suitable angular momentum L = 5 (standard

renormalization procedure) they obtain (L = RMP ):[
1

2

∞∑
l>1

(l + 1)2 ln ρl

]
r

= −2.49− 5.27 ln

(
1.48µ

MP

)
. (4.33)

Replacing the ρ0 (l = 0) with its absolute value (see [62]) they find the contribution

to the sum (4.30) as 1
2

ln |ρ0| = −0.806. The treatment of the zero modes which

correspond to (l = 1) is the following: ρ1 has to be replaced through ρ′1 as:

ρ′1 = lim
k→0

ρk1
k2
. (4.34)
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and ρk1 corresponds to the solution of equation (4.31) with V ′′(φb) + k2 instead of

V ′′(φb). Observing that ρ′1 possesses the dimension of length square yields that is

given in terms of R. All in all the contribution of the zero modes can be summed

up in 1
2
· 4 ln ρ′1 = 2 ln (0.0896R

2
).

In order to easier compare their results with the standard results from the

effective potential they chose the same renormalization scale µ = 1.32 · 1017 GeV

and find

τ = 5.45 · 10−212 TU , (4.35)

contradicting the standard result which we already displayed in figure 4.3. The

lifetime of the electroweak vacuum is way too short if one augments the Higgs

potential with φ6 and φ8 non-renormalizable operators and choses the values given

above at the Planck scale MP . Clearly this analysis is lacking features such as

loop corrections to the tree level contributions and a full treatment of dimension

8 operators. However, the work of [57] gives a hint that the common belief that

new physics at the Planck scale should not significantly influence the computation

of the lifetime of the electroweak vacuum may be wrong. On the contrary, they

find a significant change resulting in a really short-lived, unstable vacuum.

4.6 Top-mass Measurements

The top quark pole mass is usually deduced through the reconstruction of decay

products of the top at colliders. However, the technique used involves Monte Carlo

generators which model the process in consideration. The extracted mass parame-

ter is then nothing more and nothing less than the Monte-Carlo mass of the event

generator used, which introduces a model dependence in the measurement. The

translation between the mass parameter which has been extracted and the pole

mass is a very delicate process which is not yet fully understood. The process

of translating the extracted Monte-Carlo mass to the mass of a known renor-

malization scheme introduces an uncertainty of O(1 GeV) since the Monte Carlo

generators require modeling of jets, missing energy, initial state radiation contri-

butions, as well as of the hadronization part. This problem gets worse because

many event generators do not go beyond leading order and leading logarithm [63].
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The precise definition of a top quark pole mass is difficult from a theoretical

point of view. The definition of a mass is usually due to the first pole in the prop-

agator of a particle, which can be done rigorously for non-colored particles, e.g.

electrons. After renormalization of QED, the first pole of the propagator of the

electron is the physical “on-shell” mass of the electron. The implicit assumption

of this picture is somehow a free propagation of the particle since we compare

asymptotic states of the S-matrix. This is the first point where the definition of

a top quark pole mass has a shortcoming from a theoretical perspective, because

(top) quarks are colored and therefore do not meet the requirement of free prop-

agation for a suitable amount of time. QCD confinement does not allow us to

define a pole mass in a self-consistent way. Even worse, one is plagued with in-

frared renormalons which yield an ambiguity of O(ΛQCD) due to non-perturbative

effects. Any measurement of a top quark pole mass which is performed at hadron

colliders (i.e. Tevatron, LHC) is limited by ΛQCD. To the extend of our knowledge

today, it is impossible to perform measurements with a higher precision through

kinematical reconstruction of decay products of top quarks, i.e. final state leptons

and jets. This view is also shared in references [64, 65].

This deficit in the definition of a pole mass can be cured if one uses the ms

scheme in the process of renormalization. The mass then becomes a parameter

dependent on the energy scale in consideration: mms
t (µ). Determination of the

ms−mass is then possible in any process which is precisely measured on the one

hand and determined beyond leading order in QCD perturbation theory on the

other hand. In this way one can extract the mms
t (µ) and then proceed in the

calculation and determine the on-shell mass which is given through a relation

between bare and renormalized parameters, namely

θ0 = θOS − δθOS = θ(µ̄)− δθms. (4.36)

Equation (4.36) can be used to express ms quantities in terms of physical, on-shell

parameters. This reflects the fact that suitable matching conditions have to be

imposed in order to relate an ms mass to a pole mass. A process which meets the

requirements mentioned above is the total production cross section for top pair

production σ(tt̄ + X) [66]. Probably only at a future linear collider (ILC) is the

correct determination of the top quark pole mass possible within an accuracy of a
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4.6. Top-mass Measurements

few hundred MeV [64].9

Furthermore, there is in principle the possibility that new physics might influ-

ence the measurements of the top quark pole mass. Usually experimental mea-

surements are compared with SM predictions which leaves the possibility open

that there might be a Bias in the extraction of physical masses. However, it is

unlikely that these contributions cause large corrections.

The readers interested in the technical aspects of the extraction of the top quark

pole mass and the techniques involved are referred to references [67, 68].

As a summary of current top mass measurements one might give the following

relation between data extracted from experiment and physical pole mass as

mpole
t = mMonteCarlo

t ±∆. (4.37)

The important question is now which value for ∆. Some authors claim that one

may put ∆ ∼ O(ΛQCD) ∼ 250− 500 MeV [69] which motivates the plot shown in

figure 4.2 and figure 4.3 with rather optimistic values for the error of the mt. But

others are more conservative and estimate the error to be ∆ ∼ 1 GeV [63].

This sheds a different light on figure 4.3 since the value used there is rather

optimistic with an error of only ∆mt = 0.66 GeV, which lies below the (conser-

vative) estimate of the intrinsic error in the determination of the top quark pole

mass which is introduced through the uncertainty in relation (4.37).

All this discussion concerning the scheme used during renormalization may

appear awkward since we know that calculated in any scheme at sufficiently high

order the scheme dependence should disappear. However, in actual calculations

it might be important to keep in mind that scheme dependence is introduced of

which we should take care of by imposing suitable matching conditions to relate

the parameters in different schemes of the theory.

The question whether the SM vacuum is stable or not is a difficult subject

and poses problems on theoretical and experimental grounds. First of all we do

not know if there is new physics between the electroweak scale and the Planck

scale. If there is new physics the discussion of vacuum stability of the SM might

be obsolete. On theoretical grounds the errors due perturbation theory seem to

9Note that current measurements of mt through σ(tt̄+X) at the LHC still allow for absolute
vacuum stability [64].
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Figure 4.9: The plot shows the same as in figure 4.3 but with the
more conservative values mt = (173.1 ± 0.9) GeV and mh = (125.9 ±
0.4) GeV. Metastability is favored through the central value of mh and
mt. However, absolute stability is still allowed within less than 2-σ.

be small if one compares the gain in precession from e.g. two-loop order to three-

loop order. Also new physics which is connected to the Planck scale which can be

parametrized through non-renormalizable operators might significantly change the

results of standard vacuum stability analysis. However, on experimental grounds

the intrinsic error in the measurement of the top quark pole mass has to be reduced

in order to see whether the vacuum is stable or not. Even if the values measured

right now seem to indicate that meta-stability is preferred it is too early for a final

statement. Measurements of the top quark pole mass/top Yukawa coupling at a

future ILC provides the possibility to definitely answer the question of vacuum

stability of the SM. Also run 2 of the LHC might help to solve the question of

vacuum stability, not through a better measurement of the top mass but through

the discovery of new physics between the electroweak scale and the Planck scale.

One potential source of new physics is inflation which might be connected to an en-

ergy scale of O(1016 GeV) which was suggested through the result of BICEP2 [14].

We will go on and review the standard results of inflation to see whether Higgs

inflation is still a viable scenario in the context of the BICEP2 claim.
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CHAPTER 5

STABILITY AND INFLATION IN THE LIGHT OF

BICEP2

The aim of this chapter is to introduce the concept of inflation and study the

impact of possible detection of primordial gravitational waves in the context of

vacuum stability. The idea of inflation can be first found in references [70–72]

and is today the leading working hypothesis to explain the boundary conditions

of ΛCDM-model. Recently, there was the claim of detection of B-modes by the

BICEP2 collaboration [14] which would be evidence for primordial gravitational

waves generated by inflation. However, there is an ongoing debate whether the

measurement implies a signal or not [73, 74]. We will first start to motivate

inflation and then see the possible consequences of the BICEP claim in the context

of vacuum stability in a Higgs inflation scenario. In order to have a solid ground

we introduce the basic concepts of cosmology and then develop the tools to study

inflationary scenarios.

The first building block of cosmology is the cosmological principle, which states

that the Universe is homogeneous and isotropic on sufficiently large scales. Taking

the field equations from general relativity with this assumption leads to the Fried-

mann equations which are the starting point for standard cosmology; the model

which seems to be most compatible with observations is the ΛCDM-model. It

works extremely nice as a fitting model; however, the initial conditions of the Uni-

verse have to be extremely fine-tuned in order to comply with observations. These

problems go by the name of flatness problem and horizon problem. The flatness
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Chapter 5. Stability and Inflation in the Light of BICEP2

problem raises the question why our Universe is so flat nowadays.1 The horizon

problem states that patches of space-time which are causally disconnected also

seem to be extremely homogeneous. In other words: Why do points in space-time

which cannot talk to each other have (so many of) the same properties? This fine-

tuning is a priori a clear shortcoming of the ΛCDM model and makes extensions

desirable.

Inflation provides a dynamical explanation for the fine-tuning problems which

arise in the context of standard cosmology. In this section we will present the

flatness problem and the horizon problem in more detail and develop the idea

of inflation as a solution. To explain the basic concepts of inflation we follow

the lecture presented in [75] to give a short overview. Later we will explore the

observables which have to be accommodated if one takes the idea of inflation as a

serious possibility in the early Universe.

Throughout this chapter we will only consider single-field inflation, since multi-

field goes beyond the scope of this work. However, one has to keep in mind that

significant deviations of the relations presented in this section may be achieved if

one starts with the hypothesis of a multi-field inflation scenario.

5.1 Standard Cosmology and Inflation

It is convenient to derive the Friedmann equations to have a solid footing on which

we can start to talk about cosmology and finally about inflation.

5.1.1 Friedmann Equations

First, we take the Einstein equations of general relativity

Gµν + Λgµν = 8πGTµν , (5.1)

where the Einstein tensor Gµν is defined as Gµν ≡ Rµν − 1
2
gµνR. Rµν and R

are the Ricci tensor and the Ricci scalar, respectively and Tµν is the energy-

momentum tensor of the Universe. Λ is here the cosmological constant and G

1This corresponds to a fine-tuning problem since Ω = 1 is an unstable fixpoint. See equa-
tion (5.8) below.
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is the cosmological constant G = 1/M2
P . Λ in equation (5.1) must not be confused

with the instability scale of chapter 4. The gravitational constant Λ is very small

Λ ∝ 10−122M4
P in Planck units [76]. It is not understood why it is so small, yet

not zero. Comments on the value of the cosmological constant can be found in

references [77, 78]. We will set 8πG = 1 many times throughout this chapter.

Now, we can derive the Friedmann equations under important assumptions. The

assumptions are homogeneity, isotropy and a special form of a energy-momentum

tensor

Tµν = diag(ρ,−p,−p,−p), (5.2)

which corresponds to a perfect fluid in a comoving frame. In equation (5.2) ρ

and p are the matter energy density and the isotropic pressure, respectively. Re-

naming ρ − Λ → ρ and p + Λ → p together with these assumptions the Einstein

equations (5.1) reduce to

H2 =

(
ȧ

a

)2

=
1

3
ρ− k

a2
, (5.3)

Ḣ +H2 =
ä

a
= −1

6
(ρ+ 3p) . (5.4)

Details about the employed Friedmann–Robertson–Walker (FRW) metric and cos-

mology in general can be found in appendix C. Putting equation (5.3) and (5.4)

together we also obtain the continuity equation

dρ

dt
+ 3H(ρ+ p) = 0 . (5.5)

With this at hand we can proceed to the flatness and horizon problem.

5.1.2 Fine-tuning Problems in Cosmology

The flatness problem and the horizon problem are in principle no problems of

ΛCDM, but it remains unclear why the initial conditions have to be fine-tuned

like this in order to explain homogeneity and flatness. From a physical point of

view it is not satisfactory that the theory itself cannot predict the homogeneity

and isotropy in a natural way but these two conditions rather have to be put in

by hand. This is what we will explore now.
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5.1.2.1 Flatness Problem

If we take the Friedmann equation (5.3) we can rewrite it to make the flatness

problem more apparent. We write it as

1− Ω(a) =
−k

(aH)2
, (5.6)

where

Ω(a) ≡ ρ(a)

ρcrit(a)
, ρcrit(a) ≡ 3H(a)2 . (5.7)

Differentiation of equation (5.6) together with the continuity equation (5.5) yields

dΩ

d ln a
= (1 + 3w)Ω(Ω− 1) , (5.8)

where w denotes the equation of state parameter, i.e. w = p/ρ. It is apparent

from equation (5.8) that Ω = 1 is an unstable fixpoint if (1 + 3w) > 0. The

parameter Ω has to be fine-tuned very much in order to keep the system at this

unstable fixpoint. From the dynamics it is not natural for the system to stay

at this configuration: Already a little deviation from Ω = 1 would change the

evolution dramatically which is not compatible with observations.

5.1.2.2 Horizon Problem

The comoving horizon τ is defined to be the maximum distance a light ray can

travel between the time t = 0 and the time t = t′:

τ ≡
∫ t′

0

dt

a(t)
=

∫ a

0

da

Ha2
=

∫ a

0

d ln a

(
1

aH

)
. (5.9)

In equation (5.9) the comoving horizon was expressed in terms of the comoving

Hubble radius, (aH)−1. The comoving horizon τ corresponds to the causal horizon,

which means that particles which are separated over a distance greater than τ could

have never communicated with each other. Note the difference to the comoving

Hubble radius: Particles which are separated over a distance greater than (aH)−1

cannot communicate at present.

For a Universe which is dominated by a fluid the comoving Hubble radius takes

the following form:

(aH)−1 = H−1
0 a

1
2

(1+3w) . (5.10)
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The important observation about equation (5.10) is the dependence on the sign

of (1 + 3w). Depending on positive or negative sign, the comoving Hubble radius

grows or shrinks. This means that in a Big Bang scenario where the scale factor

a(t) grows monotonically, the comoving horizon τ scales like

τ ∝ a
1
2

(1+3w) . (5.11)

This means that if we look at the extreme situations of a matter dominated Uni-

verse (MD) (p = 0) or a radiation dominated Universe (RD) (p = ρ
3
) we find for

the comoving horizon τ

τ =

∫ a

0

da

Ha2
∝

{
a RD

a1/2 MD
. (5.12)

So we see that the comoving horizon grows monotonically in time. This means

that light entering the horizon comes from causally disconnected patches. But the

observation from CMB data tells us that the Universe was extremely homogeneous.

How can this be?

The crucial point in the discussion above was the monotonically increasing

comoving Hubble radius. It poses the serious problem to understand why causally

disconnected patches of the Universe seem to be equally homogeneous. This is

exactly where inflation steps in to change the evolution of the comoving Hubble

radius.

5.1.3 Conditions for Inflation

Inflation provides a solution to the flatness and horizon problems presented above

through an era of decreasing comoving Hubble radius. This shrinking comoving

Hubble radius also implies an accelerated expansion of the Universe. Furthermore,

it can be related to the pressure of the Universe in the following way

d

dt

(
H−1

a

)
< 0 ⇒ d2a

dt2
> 0 ⇒ ρ+ 3p < 0 . (5.13)

Depending on which quantity one looks at one encounters the three equivalent

criteria for successful inflationary models. Shrinking comoving Hubble radius,

accelerated expansion of the Universe or negative pressure are these three criteria
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as we can see from equation (5.13). A closer look at the accelerated expansion

reveals a relation between the second derivative of the scale parameter and the

Hubble rate as
ä

a
= H2(1− ε) , where ε ≡ − Ḣ

H2
. (5.14)

This means that we can quantify the acceleration as

ε = − Ḣ

H2
= −d lnH

dN
< 1 , (5.15)

where dN measures the number of e-folds which has to be around 60 in order to

match with observations from the CMB because otherwise inflation would be too

short.

In the next section we will give the general treatment of inflation in terms of a

new scalar field called inflaton which has a potential with a certain shape, in order

to meet observations.

5.2 Simple Models of Inflation

The idea of inflation has already been presented, but the open question is how to

achieve the conditions for successful inflationary scenarios. In order to do this one

usually introduces a new scalar field, the inflaton. The action is given through a

minimal coupling of the inflaton to gravity as

S =

∫
d4x
√
−g
[

1

2
R +

1

2
gµν∂µφ ∂νφ− V (φ)

]
= SEH + Sφ . (5.16)

Assuming FRW metric (see appendix C) the scalar energy momentum tensor takes

the form of a perfect fluid with pressure p and density ρ as

ρφ =
1

2
φ̇2 + V (φ) , (5.17)

pφ =
1

2
φ̇2 − V (φ) . (5.18)

This leads to the equation of state

wφ ≡
pφ
ρφ

=
1
2
φ̇2 − V

1
2
φ̇2 + V

, (5.19)
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which opens the possibility for negative pressure for certain configurations of the

potential V (φ). The potential has to dominate over the kinetic term 1
2
φ̇2 to ensure

a negative pressure. The dynamics of the scalar field and the FRW metric are

governed by the equations

φ̈+ 3Hφ̇+ V,φ = 0 and H2 =
1

3

(
1

2
φ̇2 + V (φ)

)
, (5.20)

where the 3Hφ̇-term is a friction term. Since the potential V (φ) dominates over the

kinetic term 1
2
φ̇2, the conditions for the potential are formulated as slow-roll condi-

tions where we already encountered the first slow-roll parameter in equation (5.15).

In order to have a sufficiently long accelerated expansion of the Universe the fric-

tion term 3Hφ̇ in equation (5.20) as well as the derivative of the potential V,φ have

to dominate over the second derivative of φ, i.e. |φ̈| � |3Hφ̇| , |V,φ|. This can be

ensured through a second slow-roll parameter which is

η = − φ̈

Hφ̇
= ε− 1

2ε

dε

dN
. (5.21)

Relating the two slow-parameters to the actual form of the potential yields

εv(φ) ≡
M2

pl

2

(
V,φ
V

)2

, ηv(φ) ≡M2
pl

V,φφ
V

. (5.22)

In order to have successful inflationary scenarios one has to match certain ob-

servations from the CMB. Important quantities which have to be met are the

number of e-folds as N ≈ 60 and the scalar spectral index ∆2
s ∼ 10−9. Successful

inflation also needs to fulfill the slow-roll parameters as εV , ηV < 1. The claim

of the BICEP2 collaboration is a tensor-to-scalar ratio of r = 0.20+0.07
−0.05. All the

requirements are summarized in table 5.1. See reference [13] for further details.

5.2.1 Cosmological Perturbations

Until now the physics of inflation is entirely described as a classical process. It

may explain the boundary conditions of the ΛCDM-model and solve the horizon

problem and the flatness problem but it does not give an explanation so far how

structure in the Universe may be formed. Combining inflation with quantum

mechanics provides a possibility to generate the initial seeds of all structure in the

Universe. The formal derivation is cumbersome and involved and can be found
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for example in reference [75]. The important result which we quote here is the

tensor-to-scalar ratio r which is given as

r ≡ ∆2
t

∆2
s

= 16 ε? , (5.23)

where ∆2
t is the amplitude of tensor perturbations in the CMB and ∆2

s the corre-

sponding quantity for scalar perturbations. Note, the relation to the ε-parameter

where the star denotes that it has to be evaluated at the horizon exit. This can

be related to the energy density in the early Universe through

V 1/4 ∼
( r

0.01

)1/4

1016 GeV . (5.24)

Equation (5.24) is an important relation to discuss the consequences of a possible

detection of primordial graviational waves in the context of vacuum stability.

Quantity Calculation Value

εV
M2

pl

2

(
V,φ
V

)2

< 1

ηV M2
pl
V,φφ
V

< 1

∆2
s ≈ 1

24π2
V
M4
P

1
εv

∣∣∣
k=aH

10−9

N ≈
∫ φ
φend

dφ√
2εV

60

r 16ε?V =
∆2
t

∆2
s

0.20+0.07
−0.05 (BICEP2 claim)

Table 5.1: Quantities in single-field slow-roll inflation which have to be
met according to observations and theoretical predictions. The values
given are the values during inflation. See reference [13] for further
details.

5.3 BICEP2 Measurement and Possible Issues

In march 2014 the BICEP2 collaboration announced the detection of a large tensor-

to-scalar ratio of 0.20+0.07
−0.05 [14], which would imply a very high energy density in

the early Universe if one assumes a single-field inflation scenario.2

2From an economic point of view single-field inflation scenarios are desired since the theory
loses its predictive power dramatically if one introduces multiple inflaton fields.
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The status about the BICEP2 claim is not entirely clear: There are several

criticisms that the dust foreground is not entirely understood by the collabora-

tion [73, 74] and what the collaboration interprets as a signal might be compatible

with the foreground. However, ongoing experiments like Keck Array and the

expected presentation of data from PLANCK might clarify the situation. Fur-

thermore, BICEP and PLANCK are working together now, so we will know about

the fate of the claim soon.

However, until now the BICEP2 claim is only a claim that merits investigation

in terms of possible consequences of a correct measurement and possible issues

with the observation.

5.4 Higgs Inflation

The idea of Higgs inflation (HI) is rather simple and seems quite natural: Since

we now know one elementary scalar particle, the Higgs, we take the Higgs as the

inflaton. This is an economic solution since inflationary scenarios introducing a

new particle suffer from a hierarchy problem. The idea of HI is not new and was

presented even before the Higgs discovery [79]. At first sight the Higgs potential

does not seem to be a good candidate since we need a flat potential for slow roll.

Obviously, the Higgs potential in the SM is not flat but a big non-minimal coupling

to gravity might help to obtain a scalar potential compatible with observations

regarding inflation.

The first key which maybe provides the possibility to take the Higgs as the

inflaton is a modification of the gravitational interaction. Scalar particles may be

coupled non-minimally to gravity in the following way which modifies the action

as

δSNM =

∫
d4x
√
−g
[
− ξΦ†ΦR

]
, (5.25)

where R is the Ricci scalar and Φ is a scalar particle. As a consequence the action

of the SM Higgs changes; it is given in the Jordan frame as

SJ =

∫
d4x
√
−g
[
−M

2

2
R− ξh

2

2
R +

∂µh∂
µh

2
− V (h)

]
, (5.26)
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with the standard Higgs potential given by

V (h) =
λ

4
(h2 − v2)2 . (5.27)

In equation (5.26) and (5.27) h denotes the Higgs field and v the vacuum expecta-

tion value as introduced in chapter 3, where both are written down in the Jordan

frame. However, the non-minimal coupling to gravity poses problems, since the

equations of motion are coupled and computations become hard. To avoid this

unfortunate situation one performs a conformal transformation which gives the

theory in the Einstein frame. The consequence is that the non-minimal coupling ξ

is removed and the relations deduced earlier are applicable and allow an analysis

at tree-level. The conformal transformation is defined to be

gµν → ĝµν = Ω2gµν , Ω2 =
M2 + ξh2

M2
P

, (5.28)

resulting in an effective Planck mass MP,eff ∼ M2 + ξh2. A difference between

M and MP is apparent if the VEV 〈h〉 = v is non-zero.3 The drawback of the

transformation (5.28) is that the kinetic term for the Higgs has a non-minimal

mixing. Therefore one replaces the scalar h by a canonically normalized scalar χ

such that

∂χ

∂h
=

√
Ω2 + 3

2
M2

P (Ω2)′2

Ω4
=

√
1 + (ξ + 6ξ2)h2/M2

P

(1 + ξh2/M2
P )2

(5.29)

holds. The transformation and the redefinition lead to the theory in the Einstein

frame as

SE =

∫
d4x
√
−ĝ
[
−M

2
P

2
R̂ +

∂µχ∂
µχ

2
− U(χ)

]
. (5.30)

The price to pay (which is actually desired) is a change of the form of the potential

as well as changes of the metric and the Ricci scalar.4 The consequence of the

non-minimal coupling of the Higgs to gravity is that the potential becomes flat in

the region of interest. This is shown in figure 5.1.

The potential U(χ) for large field values as h, χ�MP/ξ is given as

U(χ) ' λM4
P

4ξ2

(
1− e−

2χ√
6MP

)2

. (5.31)

3The difference between MP and MP,eff is negligible in most of the cases, because ξv �MP .
4Beyond tree-level the situation is much more complicated, since it is not entirely clear how

to treat the theory due to non-renormalizablity. The equivalence of the theory in Einstein frame
and Jordan frame beyond tree-level has not yet been studied very intensively. Some comments
can be found in reference [80].
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Figure 5.1: Sketch of the potential in HI in
the Einstein frame viable for large field region
h, χ�MP /ξ with fine-tuned top mass which
accounts for absolute stability and constant λ.

51 2 3 4
χ

U ( χ )

Figure 5.2: The schematic change of the ef-
fective potential in the Einstein frame depend-
ing on the value of λ0 relative to b/16. Green:
λ0 � b

16 , yellow: λ0 = b
16 , blue: λ0 � b

16 ,
dark orange: unstable potential for λ0 < 0.

However, for small field values h, χ � MP/ξ the potential turns into the usual

SM quadratic potential. In order to fulfill the constraints from observations the

non-minimal coupling to gravity is not arbitrary and is ξ ' 47000 if only tree-

level contributions are taken into account [81]. This is a really big coupling and

one should be rather skeptical whether this theory makes sense for perturbative

evaluation.

Generic tree-level predictions of HI are the correct amount of e-folds and a

successful slow-roll. Furthermore, on tree-level the prediction is a small tensor-

to-scalar ratio r of O(0.003). However, the situation changes for critical values

of the Higgs mass and top mass.5 The BICEP2 measurement, if taken seriously,

provides the possibility to determine the top quark pole mass on the grounds of

inflation and not on the grounds of the question of vacuum stability. However, in

the end also this boils down to the question whether the self-coupling λ is positive

up to the energy scale of inflation: otherwise the quantum fluctuations in the early

Universe would drive the system into the vacuum at high field values and not into

the electroweak vacuum. This will be discussed in more detail in section 5.5.

Furthermore, it should be pointed out that absolute stability of the electroweak

vacuum is indispensable for any consideration of HI. The top quark pole mass has

to be tuned in order to guarantee that there is no instability at a high scale. As

we will see this tuning gets even worse if one tries to accommodate a high value

for r in the theory.

5A high amount of fine-tuning for ξ and mt is necessary to achieve this.
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The BICEP2 claim initiated the study of HI beyond tree-level and some inter-

esting results were presented in reference [82–84] which we want to present briefly

here.

Starting point is the parametrization of the renormalization-group-improved

effective potential in the Einstein frame as in (5.31). The running of the self-

coupling λ can be parametrized as

λ(z) = λ0 + b (log z)2 , (5.32)

where z = µ
qMP

. Now the important point is that the self-coupling λ as well as its

β-function are close to zero near the Planck scale. Evaluating the self-coupling at

z′ = 1
κ
(1−e

2√
6

χ
MP ) and varying the values for λ0 and b yields the effective potential

in the Einstein frame. In the end the unphysical parameters λ0 and b have to be

translated into physical quantities such as mh and mt. A sketch of the influence

of the parameters on the potential in the Einstein frame is given in figure 5.2.

A more profound analysis of the loop contribution during HI can be found in

reference [82] where an analysis of HI at the critical point is done. This corresponds

to the point where λ0 = b
16

in figure 5.2. The authors find that the non-minimal

coupling can be reduced to ξ ' O(10) whereas the tensor-to-scalar ratio r is

also compatible with the BICEP2 result. The tensor-to-scalar ratio r and the

scalar spectral index ns depending on the parameters ξ and κ can be found in the

figures 5.3 and 5.4. These figures show that HI can account for a tensor-to-scalar

ratio of O(0.1) since the shape of the potential develops a high sensitivity on the

parameters of the theory near the critical point. The correct amount of e-folds

and the slow roll conditions also have been checked.

The interesting question now is if the tuning of the inflationary theory is com-

patible with observations from particle physics. Since HI is closely connected to

the form of the SM potential one expects a dependence of the potential during HI

on the top mass mt in the analogy to the dependence of the SM potential on the

top mass mt.

However, since one performs a conformal transformation, the relation between

the measured values of the top mass mt and the relevant value for the top mass

during inflation is not obvious. One cannot directly use the measured values in the

Einstein frame since the field χ does not correspond to the Higgs field. The main
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Figure 5.3: Inflationary indexes r and ns
which depend on ξ and κ. λ0 is fixed from
COBE normalization. Along the lines ξ is
fixed and κ varies between {0.9, 1.1}. Also
the PLANCK result is displayed with 1 and 2
σ contours [13]. This plot is taken from refer-
ence [82].

0.92 0.94 0.96 0.98 1.
0.01

0.02

0.05

0.1

0.2

ns

r

Κ=0.98
Κ=0.99

Κ=1

Κ=1.01

Κ=1.02

Κ=1.03

Κ=1.04

Κ=1.05

Κ=1.06

Figure 5.4: Same plot as in figure 5.3 with
constant κ. ξ varies between {5, 30}. This
plot is taken from reference [82].

problem is that the SM in the Einstein frame is non-polynomial and thus non-

renormalizable. This reflects the fact that further assumptions have to be made in

order to connect the SM during inflation and the low energy theory of the SM. In

this case the assumption is that there is no new physics between the electroweak

scale and the Planck scale in order to be able to perform the RG running of the

SM.

To start to make the connection between the theory in the Einstein frame for

inflation and the SM at low energies, one sees that the interaction between the

Higgs field and the top quark is given as [82]

L =
yt√

2
t̄tF (χ), (5.33)

where F (χ) = h
Ω

. Note that the field h is not canonically normalized and has

to be connected to the field χ with the help of equation (5.29). The aim is the

removal of divergencies in the arbitrary background fields which can be achieved

by adding counterterms in the action. This results in a modification of the t̄th

vertex through a change of the top Yukawa coupling yt and the self-coupling λ

yt → yt +
y3
t

16π2

(
3

ε
+ Ct

)
F ′2 (5.34)

λ→ λ− y4
t

16π2

(
6

ε
− Cλ

)
F ′4, (5.35)
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where the modification of λ comes from the top Yukawa contribution in the evo-

lution of λ. ε is the parameter of dimensional regularization, Ct and Cλ are the

constant parts of the counterterms and F ′ = dF/dχ. Note that these constant

parts cannot be fixed from theoretical calculation but rely on observations or on

a UV complete theory which hosts the SM at low energies which is not known to

us today. It holds for small field values h�MP/ξ that F ′ ≈ 1. As a consequence

the parameter Ct and Cλ are absorbed in the low energy definition of yt and λ

which means that they cannot be observed. However, in the inflationary region

where h > MP/ξ it holds F ′ → 0. This means that only the left-hand side of

equations (5.34) and (5.35) contribute in during inflation. To make the transition

between these two regimes suitable approximations can be made according to ref-

erence [82]. The consequence are modified masses during inflation which are given

as

m∗t = mt

(
1− y2

tCt
16π2

)
, m∗h = mh

(
1− y4

tCλ
16π2

v2

m2
h

)
. (5.36)

The presence of the constants Cλ and Ct reflects the uncertainty which arises

from the non-minimal coupling to gravity which renders the theory to be not

renormalizable. Combining now particle physics with cosmology they are able to

fix the unknown parameters Ct and Cλ. They conclude as an example to achieve

r = 0.12 with m∗h ' 122.6 GeV and m∗t ' 169.8 GeV, ξ ' 8. In order to match

with observables as Higgs mass and top mass one can fix Cλ ' 1 and Ct ' 1.5 to

get mh = 125.6 GeV and a top mass mt ' 171.5 GeV which is consistent within 2

σ of the measured value.

5.5 Stability and Higgs Inflation

A high tensor-to-scalar ratio implies big quantum fluctuations of the Higgs in the

early Universe which makes our Universe highly unlikely as pointed out in [85].

They point out that the survival probability of the SM vacuum is given as

PΛ ∝ e−
H2
?N

32Λ2 , (5.37)

where H? is the Hubble rate during inflation which is assumed to be constant.

The price to pay is a high amount of fine-tuning in the top mass to make HI

still a viable scenario. However, this fine-tuning is within reasonable errors of
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the top-quark pole mass. The whole point is to make the electroweak potential

absolutely stable on the one hand and tune the value of the top mass in order to

get the right answers for inflation on the other hand.

The situation is the following: The energy density in the early Universe was

very high if the BICEP2 claim is right which one can see from equation (5.24):

V ' 1016 GeV. This would imply that we would rather end up in the minimum at

the high scale and not in the electroweak one. An easy “way out” is the fine-tuning

of the top mass in order to obtain absolute stability for the SM potential. Other

authors also deal with the topic of HI in the context of vacuum stability see for

example reference [86].

From an effective field theory point of view the situation in HI is not satisfactory.

In order to accommodate the correct value of the tensor-to-scalar ratio r large

field inflation scenarios are preferred also in HI. Large field inflation scenarios

involve trans-Planckian field values which cannot be understood from standard

quantum field theoretic considerations. If one takes QFT seriously any kind of non-

renormalizable operators which appear due to an effective field theory approach

should appear in the potential. These non-renormalizable operators would be the

dominant contribution for large field inflation and should have dramatic impact

on the behavior of the potential in the Einstein frame. Only with a high amount

of fine-tuning these operators could be kept under control in the region of interest.

However, in order to avoid a reasoning like this one can introduce a shift-symmetry

at the Planck scale which would forbid such terms.

This brings a connection to section 4.5 where the impact of non-renormalizable

operators on the SM potential was discussed. It is clear that even a small value

for the coupling of the non-renormalizable operators has a severe impact on the

potential and therefore on the discussion whether HI is still a viable scenario. This

fact is also observed in reference [87] where the authors carry out an analysis of

the effective potential augmented by non-renormalizable operators in the context

of HI. However, they neglect a non-minimal gravitational coupling of the Higgs

to the Ricci scalar which seems to be indispensable in order to accommodate the

theory with observation.

A similar study of HI for a Higgs mass mh ' 126 GeV has been carried out

in [88]. Going beyond the usual assumptions of HI by adding conformal symmetry
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a study if HI can be a viable scenario is presented in reference [89]. They con-

clude that it is hard to accommodate the theory with the BICEP2 claim in this

framework.

5.6 Testability of the Great Desert Scenario in

the Context of Inflation

Since the top quark pole mass plays the decisive role in the considerations of

whether the SM can be a viable theory up to high scales and whether HI might

be the correct scenario to explain the evolution of the early Universe an exact

determination of the top quark pole mass is necessary. This might be done for

example at a future linear collider like the international linear collider (ILC). The

determination of a top quark pole mass at the ILC provides the possibility to rule

out HI (provided the BICEP2 claim turns out to be a discovery) but it also gives

the possibility to probe the self-consistency of the SM in terms of vacuum stability.

The fine-tuning in order to make HI still a viable scenario in the context of the

top quark pole mass is rather high. Only within a range of a few hundred MeV

HI is still a viable scenario provided that the high tensor-to-scalar ratio claimed

by BICEP2 turns out to be correct. This is then a sharp and precise “prediction”

which provides a possibility to rule out HI. However, if the tensor-to-scalar ratio

is not as high as claimed by BICEP2 this sharp constraint from a theoretical

perspective loses its power. The task to rule out HI becomes a harder again but

is still possible with a good measurement of the top mass.

Clearly any sign of BSM which is connected to a new physics scale would rule out

the hypothesis that the SM is valid all the way up to the Planck scale. If this new

physics is connected to a big amount of fine-tuning we cannot argue anymore that

the hierarchy problem is actually a problem and the main necessity/attractiveness

for HI is gone.

Table 5.2 summarizes the possibilities depending on the future of the BICEP2

claim and the actual value of the top quark mass. If no new physics is found

in LHC run 2 naturalness arguments become weaker and weaker and fine-tuning

seems to be unavoidable if new QFT-like physics should be accommodated. At

the moment the most promising route to go seems to be the determination of the
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SM SM + HI

mt > 173 GeV + r big (
√

)  
not stable ⇒New physics needed

mt ∼ 171 GeV + r big
√

(
√

)

stable ⇒Tuning of mt of O(100 MeV)

mt > 173 GeV + r small (
√

)  
not stable ⇒New physics needed

mt ∼ 171 GeV + r small
√ √

stable ⇒Tuning of mt

Table 5.2: Overview of the different possibilities of possible measure-
ments of the top quark mass and the tensor-to-scalar ratio r. Note that
the fine-tuning in order to make HI a viable scenario in the top mass is
very big if r is big. The table assumes no other new physics is found. A
tuning of the non-minimal coupling to gravity ξ is always implied. Note
further that more assumptions about the underlying UV-completion of
the SM have to be made in order to connect the measured Higgs and
top mass to inflation.

top mass mt and/or the top Yukawa coupling yt. Deviations in the top Yukawa

coupling from SM calculations may also give a hint for new physics.

Right now the SM seems to be perfectly fine if one accepts the discussion of

meta-stability which is maybe a little bit too optimistic at the moment assuming

optimistic errors of the top mass.
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CHAPTER 6

CONCLUSION AND OUTLOOK

The Standard Model, with slight extensions not related to high scale physics,

might be able to explain all observations in nature. Augmenting the SM with three

right-handed neutrinos has no severe consequences in terms of vacuum stability.1

We reviewed the standard results concerning vacuum stability and saw that a

metastable vacuum is a viable scenario if there is no new scale between the Planck

scale and the electroweak scale. However, the question whether the vacuum is

actually stable or metastable cannot be answered today since the error in the top

quark pole mass is too big. The issues with the definition and the measurement of

a top quark pole mass have been reviewed. Furthermore, the impact of additional

non-renormalizable operators has been discussed, as well as the impact of Weyl

consistency relations.

In the context of vacuum stability understanding arising scheme-dependences

and the correct use of the effective potential might still be improved. Some au-

thors even claim the vacuum to be unstable. They come to this result through

a mass-dependent renormalization scheme but they do not manage yet to treat

everything in a consistent way since they are forced to use ms-running for the

RGEs beyond 1-loop [90, 91]. One should be skeptical about the result and wait

for further improvement of these techniques. Other authors also see hints that

the SM vacuum is actually stable [92–94] using the RG flow technique. However,

also this treatment is not complete yet since the actual computation for the SM is

rather involved and not done yet. So from a theoretical perspective the situation is

1A Majorana term which gives rise to seesaw type-I is suppressed.
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not so clear and one should wait for improvements in the techniques and actually

apply them to the SM rather than to toy models. Perturbation theory actually

seems to be a good developed technique on which one can rely.

The actual problem in determining the fate of the SM vacuum seems to be

actually more an experimental problem in determining the top quark pole mass.

Future experiments, possibly carried out at an ILC, might help to improve the

understanding of a top quark pole mass as well as reduce the error bars, which are

crucial to judge the stability. But also any other deviation from SM physics might

provide a hint on how to solve this uncomfortable situation of vacuum stability.

The situation that there is no new physics between the Planck scale and the

electroweak scale might not be true and a possible detection of a high tensor-to-

scalar ratio from the BICEP2 experiment would imply a very high energy density

of O(1016 GeV) in the early universe near the GUT scale. The general predictions

of inflation have been reviewed and the possible consequences of the BICEP2

claim have been stated. From a naive tree-level analysis Higgs inflation seems to

be ruled out. However, analysis beyond tree-level might still give the possibility to

accommodate theoretical predictions with observations. It is crucial to understand

that going beyond tree-level is a hard task due to the non-renormalizability of the

theory which is introduced because of a non-minimal coupling to gravity of the

Higgs and the ambiguities which come from the transformation between Jordan

frame to Einstein frame. Without further assumptions one cannot say anything

about quantum corrections in Higgs inflation. This already shows how delicate

business is, since we almost know nothing about a possible UV-completion of the

SM.

For the future a better understanding of inflation is very important. Most

analysis is only carried out at tree-level and the proper treatment of quantum

corrections is hard. Even simple inflationary scenarios which seem to be good at

tree-level have to be fine tuned very much because they suffer from a hierarchy

problem once quantum corrections are taken into account, which one should do

for more realistic scenarios.

The nature of reheating, i.e. the process where the inflaton decays into the SM

particles, is not well understood and an improvement in terms of quantum field

theoretic treatment is highly desirable and might also help to exclude models of

inflation which seem to be reliable today.
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If the BICEP2 claim of a large tensor-to-scalar ratio of r ∼ O(0.1) is confirmed

from other experiments and the top mass is above the critical value excluding

absolute stability this poses a new serious problem for the SM. Our existence in

the universe would then not be understood because of the quantum fluctuations

in the early universe should have driven us into the vacuum at the high scale

rather than in the electroweak vacuum. But also if the BICEP2 claim turns out

to be wrong, the question of vacuum stability is still important. Is a theory with

a long-lived metastable vacuum really okay? And is that actually the case for the

SM? If one wants to build theories which provide absolute stability new physics

has to step in below the instability scale. This might be motivated also in terms

of the known problems which are not solved in the pure SM.

Even if there is no sign of new physics right now, we cannot be sure that the

simplest explanations for the problems of the SM are correct and further investi-

gation on the experimental side as well as in theory has to be done. Theory should

focus equally on better understanding on formal grounds as well as phenomenolo-

gially motivated extensions of the SM which should be preferably testable in future

experiments.

LHC Run 2 next year provides the possibility to probe the SM further and

eventually BSM signs show up which may give the possibility to rule out the

great desert scenario between the electroweak scale and the Planck scale. But also

low-energy experiments where the new physics may show up in loops provide the

possibility to find BSM contributions which would also be good news.
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APPENDIX A

DEFINITIONS, CONVENTIONS AND DETAILS

A.1 Metric and Unit Convention

The metric used in this work is

ηµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 , (A.1)

which can be used to raise and lower Lorentz indices. The unit convention used

here implies ~ = c = 1, which goes by the name of natural units. If one multiplies

the quantity under consideration with suitable powers of ~ and c and replaces

their values by the SI convention one obtains the quantity under consideration in

SI units. For example, a mass of 125 GeV corresponds to 125 GeV
c2 = 2.2×10−25 kg.
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A.2 Calculational Details in Dimensional Regu-

larization

Calculation of the area of a d-dimensional unit sphere:

(√
π
)d

=

(∫
dx e−x

2

)d
=

∫
ddx exp

(
−

d∑
i=1

x2
i

)
(A.2)

=

∫
dΩd

∫ ∞
0

dx xd−1e−x
2

=

(∫
dΩd

)
· 1

2

∫ ∞
0

d(x2)(x2)
d
2
−1e−(x2) (A.3)

=

(∫
dΩd

)
· 1

2
Γ(d/2). (A.4)

As a result we get: ∫
dΩd =

2πd/2

Γ(d/2)
. (A.5)

Further details to the calculation in 2.3.2 are given here:

∫ ∞
0

dl
ld−1

(l2 + ∆)2
=

1

2

∫ ∞
0

d(l2)
(l2)

d
2
−1

(l2 + ∆)2
(A.6)

=
1

2

(
1

∆

)2− d
2
∫ 1

0

dx x1− d
2 (1− x)

d
2
−1. (A.7)

A.3 Clifford Algebra and Dirac Matrices

The Dirac matrices satisfy the Clifford algebra. They are given as

{γµ, γν} = 2gµν (A.8)

with the anti-commutator {·, ·}. Another identity the γ-matrices have to satisfy

is

(γµ)† = γ0γµγ0 = γµ. (A.9)

The chiral representation of the Dirac matrices is given by

γ0 =

(
0 12

12 0

)
, γi =

(
0 σi

−σi 0

)
, γ5 = iγ0γ1γ2γ3 =

(
−12 0

0 12

)
. (A.10)
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A shorthand notation for the chiral representation of the γ-matrices is

γµ =

(
0 σµ

σ̄µ 0

)
, (A.11)

where σµ ≡ (1, ~σ) and σ̄µ ≡ (1,−~σ) = σµ. The chiral projection operators are

defined as

PL =
1

2
(1− γ5), PR =

1

2
(1 + γ5). (A.12)

A.4 Covariant Derivatives of the Standard Model

Fields

We give here only the gauge transformation under the electroweak gauge group,

since the QCD part is not important for this work. The covariant derivatives of

the SM fields (and right-handed neutrino νR) are defined as follows

DµQL =

(
∂µ +

ig

2
~σ · ~Wµ +

ig′

6
Bµ

)
QL, (A.13a)

DµLL =

(
∂µ +

ig

2
~σ · ~Wµ −

ig′

2
Bµ

)
LL, (A.13b)

DµuR =

(
∂µ +

2ig′

3
Bµ

)
uR, (A.13c)

DµdR =

(
∂µ −

ig′

3
Bµ

)
dR, (A.13d)

Dµe
−
R = (∂µ − ig′Bµ) e−R, (A.13e)

DµνR = ∂µνR. (A.13f)
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A.5 Currents of the Standard Model

The charged and neutral currents of the SM are given as:

Jµ+
W =

1√
2

(ν̄Lγ
µeL + ūLγ

µdL), (A.14)

Jµ−W =
1√
2

(ēLγ
µνL + d̄Lγ

µuL), (A.15)

JµZ =
1

cos θW

[
ν̄Lγ

µ

(
1

2

)
νL + ēLγ

µ

(
−1

2
+ sin2 θW

)
eL + ēRγ

µ(sin2 θW )eR

(A.16)

+ūLγ
µ

(
1

2
− 2

3
sin2 θW

)
uL + ūRγ

µ

(
−2

3
sin2 θW

)
uR (A.17)

d̄Lγ
µ

(
−1

2
+

1

3
sin2 θW

)
dL + d̄Rγ

µ(
1

3
sin2 θW )dR

]
(A.18)

JµEM = ēγµe+ ūγµ
(

+
2

3

)
u+ d̄γµ

(
−1

3

)
d (A.19)

Where implicit summation over the three generations are understood.
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APPENDIX B

STANDARD MODEL RELATIONS

B.1 Weyl Consistency Relations for the SM

2
∂

∂αt
βλ =

∂

∂αλ

(
βt
αt

)
+O

(
α2
i

)
(B.1)

4
∂

∂α1

βλ =
∂

∂αλ

(
β1

α2
1

)
+O

(
α2
i

)
(B.2)

4

3

∂

∂α2

βλ =
∂

∂αλ
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β2

α2
2

)
+O

(
α2
i

)
(B.3)

2
∂

∂α1

(
βt
αt
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=

∂

∂αt

(
β1

α2
1
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(
α2
i
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2
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∂α2
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β2

α2
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α2
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α1 −

93

16
α2 − 20α3 +

(
9

4
+

21nt
4

)
αt

]}
, (B.12)
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βt = 2αt

{
9

4
αt − 4α3︸︷︷︸

Eq. (B.6)

− 17

24
α1︸ ︷︷ ︸

Eq. (B.4)

− 9

8
α2︸︷︷︸

Eq. (B.5)

+ 3α2
λ − 6αtαλ︸ ︷︷ ︸
Eq. (B.1)

−6α2
t + 18α3αt

+ α2
3

(
− 202

3
+

40nG
9

)
+ αt

(131

32
α1 +

225

32
α2

)
+

1187

432
α2

1 −
3

8
α1α2

+
19

18
α1α3 −

23

8
α2

2 +
9

2
α3α2

}
, (B.13)

βλ =
9

16
α2

2 −
9

2
αλα2︸ ︷︷ ︸

Eq. (B.3)

+
3

16
α2

1 −
3

2
αλα1︸ ︷︷ ︸

Eq. (B.2)

+
3

8
α1α2︸ ︷︷ ︸

Eqs. (B.2−B.3)

+12α2
λ

+ 6αλαt − 3α2
t︸ ︷︷ ︸

Eq. (B.1)

. (B.14)

nG stands for the number of generations, which we set to three and nt represents

the number of top-like quarks, which is taken to be one. The coloring should make

it easier to see the different contributions coming from equation (B.1-B.9). Below

each term the relevant equation is noted. Note that only the β-functions for 3 loops

in gauge, 2 loops in top Yukawa and 1 loop the self-coupling are displayed [52].

B.2 Matching Conditions in Different Loop Or-

ders

µ = mt λ yt g2 gY
LO 0.13023 0.99425 0.65294 0.34972

NLO 0.12879 0.94953 0.64755 0.35937
NNLO 0.12710 0.93849 0.64822 0.35760

Table B.1: Values of the relevant couplings computed in different loop
orders for the renormalization scale µ = mt, corresponding to mh =
125.66 GeV and mt = 173.1 GeV [47]

.
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APPENDIX C

FURTHER DETAILS OF COSMOLOGY

C.1 Friedmann–Robertson–Walker Metric

Under the assumption of homogeneity and isotropy of the Universe the line element

ds2 is given as

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

)
, (C.1)

where t is the time and r, θ and φ are spherical coordinates. a(t) is the scale

factor which characterizes the relative size of spacelike hypersurfaces at different

times and k denotes the curvature which can be either +1, 0,−1, corresponding

to positive curvature, flat space or negative curvature, respectively. One should

keep in mind that equation (C.1) uses comoving coordinates, which means that if

we assume a(t) to be increasing, i.e. an expanding Universe, the coordinates of

galaxies r, θ and φ stay untouched without forces acting on them.

Depending on the curvature of space k, equation (C.1) can be parametrized as

ds2 = −dt2 + a2(t)
[
dχ2 + Φk(χ

2)(dθ2 + sin2 θdφ2)
]
, (C.2)
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Appendix C. Further details of cosmology

where the parameter χ may take the following form

r2 = Φk(χ
2) ≡


sinh2 χ

χ2

sin2 χ

k = −1

k = 0

k = +1

. (C.3)

If the Universe expands or shrinks, the physical distance between two point

without peculiar motion cannot stay unchanged. However, in a comoving frame

the coordinates r, θ and φ stay the same. To obtain the physical distance between

two points one has to compute R = a(t)r. This means that the property of the

Universe, whether it expands or shrinks, is encoded in the evolution of the scale

factor a(t).

Another important quantity which should be mentioned is the Hubble rate H.

It defines the evolution of the Universe, i.e. whether it expands or shrinks and

therefore the definition of H involves the scale factor a(t). The precise definition

is

H =
ȧ

a
. (C.4)

C.2 Definitions of Einstein’s Gravity

Here we give the missing definitions which were not important in chapter 5, but

play an important role to understand the equations which appeared there.

The Einstein tensor is given as

Gµν ≡ Rµν −
1

2
gµνR , (C.5)

in terms of the Ricci tensor Rµν and the Ricci scalar R,

Rµν = Γαµν,α − Γαµα,ν + ΓαβαΓβµν − ΓαβνΓ
β
µα , R ≡ gµνRµν , (C.6)

where

Γµαβ ≡
gµν

2
[gαν,β + gβν,α − gαβ,ν ] . (C.7)

Commas denote partial derivatives. Note that the Christoffel symbols Γµαβ are

not proper tensors. One can to find a coordinate frame in which the Christoffel
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C.2. Definitions of Einstein’s Gravity

symbols vanish but if they were tensors they would vanish in every coordinate

frame. From a physical point of view this means that one can always introduce

for every point in space which are locally flat.
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