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Abstract

Group field theories represent a second quantized reformulation of the loop quantum gravity state
space and a completion of the spin foam formalism. States of the canonical theory, in the traditional
continuum setting, have support on graphs of arbitrary valence. On the other hand, group field the-
ories have usually been defined in a simplicial context, thus dealing with a restricted set of graphs. In
this paper, we generalize the combinatorics of group field theories to cover all the loop quantum grav-
ity state space. As an explicit example, we describe the group field theory formulation of the KKL spin
foam model, as well as a particular modified version. We show that the use of tensor model tools
allows for the most effective construction. In order to clarify the mathematical basis of our construc-
tion and of the formalisms with which we deal, we also give an exhaustive description of the combina-
torial structures entering spin foam models and group field theories, both at the level of the boundary
states and of the quantum amplitudes.

1. Introduction

The field of non-perturbative, background independent, quantum gravity has witnessed several important
developments in the last decades.

In particular, loop quantum gravity [1-3] emerged as a prominent candidate in the endeavour to fully
describe the kinematics of quantum geometry. At its base lie quantum states that can be defined in a purely
algebraic and combinatorial manner, a complete basis for which is provided by spin networks: graphs labelled by
irreducible representations of the Lorentz or the rotation group. Furthermore, a quantum dynamics for such
quantum geometric states can be rigorously defined, although both its solution and the extraction of effective
classical dynamics are fraught with difficulties.

On the covariant side, spin foam models [3-9] rose to prominence both as a new approach to lattice
gravity path integrals and as a covariant definition of the dynamics of loop quantum gravity states. They are
similarly based on combinatorial and algebraic structures. Space—time is replaced by a (simplicial) complex
and discrete quantum geometric data. This data comes in the form of group/algebra elements or
representations, labelling various components of the complex. It plays the role of the discrete metric,
reproducing at the covariant level the histories for quantum states. In the case of four-dimensional quantum
gravity, the most actively studied models are the Engle—Pereira—Rovelli-Livine (EPRL) model [10, 11], the FK
model [12] and the BO model [13].

Group field theory (GFT) [14-20] also took a more central role in the quantum gravity landscape, in
connection to loop quantum gravity and spin foam models. These are quantum field theories on group
manifolds characterized by a peculiar non-local pairing of field variables in their interactions and motivated
from both the canonical and the covariant perspective. In fact, on the one hand, they represent a second
quantized, Fock space reformulation of the loop quantum gravity state space. In this capacity, spin network
vertices play the role of fundamental quanta, created/annihilated by field operators. Meanwhile, their
canonical quantum equations of motion (e.g. the Hamiltonian constraint equation) are encoded in (a sector
of) the quantum equations of motion for the n-point functions of the corresponding field theory [21]. On
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the other hand, they provide a completion of the spin foam formalism. A spin foam model, defined on a
given (simplicial) complex, encodes a finite number of degrees of freedom. This presents the issue of
defining a quantum dynamics for the infinite degrees of freedom that one expects a quantum gravity theory
to possess. One strategy, following the lattice gravity interpretation of spin foam models, is to define some
refinement procedure for the spin foam complex. Thereafter, one looks for fixed points as the renormalized
amplitudes flow under coarse graining [22]. A second strategy focusses on defining an appropriate sum over
spin foams, including a sum over the complexes themselves [4—6, 23]. This is more directly in line with the
interpretation of spin foams as histories of spin networks. GFTs provide a natural and elegant way to define
this sum. In fact, for any given spin foam model, there is a GFT model, whose perturbative expansion around
the Fock vacuum, generates a series catalogued by spin foam complexes, weighted by the appropriate
amplitude. In other words, the spin foam complexes arise as GFT Feynman diagrams and spin foam
amplitudes as GFT Feynman amplitudes. Thus, GFT models complete the spin foam picture and moreover,
any GFTmodel defines a complete spin foam model. If one then keeps in mind that GFT's give a second
quantized formulation of canonical 1LQG, one obtains a direct link between the canonical and covariant
approaches [21].

Such sums over complexes is not reserved solely for the GFT formalism. Tensor models [24] are a
generalization of matrix models [25] to dimensions greater than two. They can be seen as providing a stripped-
down version of GFTs, reducing them to purely combinatorial models. Indeed, the group-theoretic data are
dropped altogether; equivalently, this can be seen as restricting the discrete geometric data to the graph-distance
metric and working with equilateral triangulations. As a result, the amplitudes depend only on the
combinatorics of the simplicial complexes. This allows one to focus principally on the sum over complexes.
Indeed, many of the recent advances in tensor models exert increasing analytic control over such series. Some of
these advances have been already extended to the more involved GFT framework. Thus, one should expect that
techniques from tensor models could play a greater role in the context of spin foam models and loop quantum
gravity, since one needs to exert analytical control over the spin foam sum, as well as the combinatorial structure
of quantum states. This paper provides one example of this fruitful exchange.

Animportantissue concerns the combinatorial structure of graphs and complexes and directly affects
the relation between the canonical and covariant approaches. On the one hand, the set of graphs supporting
quantum states of the canonical theory includes graphs of arbitrary valence. This stems partly from its
historic origin as a direct quantization of a continuum gravity theory. On the other hand, spin foam models
have often been defined to evolve quantum states with support on a restricted set of graphs, those that may be
endowed with a simplicial interpretation. Such a choice has several motivations: it facilitates calculations; it
is in this restricted context that their discrete geometric properties are best understood, in particular, the so-
called simplicity constraints that reduce topological Br theory to gravity [26—28]; such states arise as a
superselection sector for certain LG Hamiltonian constraints. This also implies that the boundary data in the
covariant setting are simplicial. Importantly, current GFTs share the same type of boundary states and
amplitudes.

To ensure a better matching between canonical LQG and covariant spin foam models, as well as to have a GFT
formulation for both approaches, one may want to generalize the combinatorial structures appearing in spin
foam models and GFT to arbitrary graphs and complexes. A second motivation arises from the study of physical
applications and the continuum limit, where it may be worth possessing a larger class of models at the outset.
Afterwards, physical rather than aesthetic or mathematical reasons restrict the combinatorial structures taking
part. This has been already done, at least partially, in the context of GFT renormalization [29-37], following
developments in tensor models [24, 38].

From another perspective, the matching with canonical LQG could also be achieved the other way
around, i.e. by working with a simplicial version of the canonical theory. Rather than dealing with a
quantization of continuum general relativity (GR), one views continuum Gr arising only as the effective
theory of the quantum dynamics for fundamental structures that are intrinsically discrete. From this point
of view, it makes sense to start with the simplest possible discrete structures, provided they are general
enough to recover continuum manifolds in some approximation, and generalize them only if and when
necessary. With respect to this criterion, simplicial complexes are sufficiently general. Let us emphasize
that the other reason for restricting to simplicial complexes (and fixed-valence graphs) is practical.
Controlling the sums over complexes and dealing with arbitrary superpositions of graph-based states is
complicated enough when their combinatorics is restricted. A generalization would seem, a priori, to make
things worse.

While the reluctance to complicate things may explain the delay in developing combinatorial generalizations
of spin foam models and GFTs, there is no obstruction, mathematical or conceptual, to doing so. In fact, a
generalization of current spin foam models, in particular the EPRL model, to a larger set of complexes was
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provided in [39]. The aim of this article is to show that the GFT framework is also completely comfortable with
the generation of complexes evolving arbitrary spin network states.

More precisely, our results are the following:

We give an extensive and exhaustive description of the combinatorial structures entering spin foam models
and GFTs, both at the level of the boundary states and of the quantum amplitudes. To this end, we define spin
foam atoms and molecules as structures that are directly adapted to the needs of spin foams and GFT. In
addition, we also investigate and detail the fundamental properties of combinatorial complexes in a more
precise, mathematical sense, introducing the concept of abstract polyhedral complexes as a generalization of
abstract simplicial complex to include abstract polytopes. This prepares the mathematical foundation and the
intuition for the GFT construction. Moreover, we believe it is of intrinsic value, clarifying, relating and extending
several results in the literature.

We generalize the combinatorics of GFTs through two mechanisms. The first proposal constitutes a very
formal (and thereby somewhat trivial) generalization of the GFT formalism to one based on an infinite number
of fields. Having said that, this multi-field GFT generates series catalogued by arbitrary two-complexes, while
arbitrary graphs label quantum states. This is a direct counterpart of the KKL-extension of gravitational spin
foam models. It shows the absence of any fundamental obstruction to accommodating arbitrary combinatorial
structures. However, one does not expect such a field theory to be useful since the sum over complexes appears
no more tamed than before.

More interesting and much more manageable is our second construction. As is well known, the standard
simplicial GFT contains an interaction based upon a two-complex that may be interpreted as the dual two-
skeleton of a D-simplex. Remarkably, at the two-complex level, arbitrary two-complexes can be decomposed in
terms of this simplicial two-complex. Thus, the standard GFT is sufficient to generate arbitrary two-complexes.
However, the subtle issue is to assign correct amplitudes. This is solved by a mild extension, wherein one
augments the data set over which the GFT field is defined, so as to exert more sensitive control over the
combinatorial structures generated by the theory. This is known as dual-weighting and permits one to tune the
theory to aregime, in which the perturbative series are catalogued by appropriately weighted arbitrary spin
foams (not just simplicial spin foams). Here we accomplish two things. First, we give an explicit GFT
formulation of the KKL-extension of the EPRL model (and of other similar spin foam models). Second, we
propose a new (set of) model(s) incorporating similar constraints that are arguably better motivated from the
geometric point of view.

The presentation of these results is structured as follows. In section 2, we set the stage for defining the
generalized GFTs, discussing the combinatorics structures upon which they are supported, as well as
introducing all the relevant concepts for the constructive way spin foam molecules (combinatorial two-
complexes) are generated in GFT's as a bonding of atoms determined by their boundary graphs. In particular,
we show how these graphs and molecules can be decomposed into graphs and atoms of a simplicial kind. In
the appendix, we show that these combinatorics are indeed the ones of combinatorial two-complexes, that is,
the n = 2 case of abstract polyhedral n-complexes. Then, in section 3, we review the definition of GFTs and
rephrase them in terms of the generalized combinatorics language. The definition of multi-field GFT which
generates arbitrary spin foam molecules is thereafter straightforward. For the implementation of dually-
weighted GFTs, we detail the dual-weighting mechanism that realizes, in a dynamical manner, the
decomposition of generic molecules in terms of simplicial building blocks. Finally, in section 4 we show how
gravitational spin foam models incorporating the relevant simplicity constraints in their operators can be
generalized to both the multi-field GFT as well as the dually weighted GFT. As an example we present the
details for the EPRL-simplicity constraints.

2. Combinatorics of spin foams

The graphical and topological structures, upon which spin foam models have support, tend to have a
rather molecular structure. This has been noted and explained in detail in [40]. The coming section
includes a self-contained description of these structures, one that increases its utility within the group
field theory framework. Moreover, while we have consciously opted for a physicochemical naming
convention, rather than the cephalopodal counterpart used in [40], we stress that its use is for purely
intuitive purposes.
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Given the technical nature of the coming section, we present a synopsis of the main points.
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One starts with a set of boundary graphs € that provide support for loop quantum gravity states. For a graph

¢ € €, onearrives at the corresponding bisected boundary graphb = f (¢) € B by bisecting each of its edges.
The graph b can be augmented to arrive at the corresponding two-dimensional spin foam atoma = a (b) € 2.
This spin foam atom a is the simplest spin foam structure with b as a boundary:b = 6 (a). Moreover, the bisected
boundary graph b can be decomposed into boundary patches p € . The boundary patches are important
because it is along these patches that atoms are bonded to form composite structures, known as spin foam
molecules 9T. The boundary () of these molecules are (generically a collection of) graphs in 8. Moreover, the
molecules are the objects generated in the perturbative expansion of the group field theory.

From the GFT perspective, however, one looks for as concise a way as possible to generate such structures. It
emerges that the complexity of the GFT generating function can be infinitely reduced by considering labelled
(~), n-regular, loopless (L) graphs én,L. The labels are associated to each edge and drawn from the set
{real, virtual}, while loopless means that the terminus of any edge does not coincide with its source. For this set
of objects, one can then follow an analogous procedure to generate B, 1, 2, and 0, ;.

Thereis a surjectionz,, . : &n,L — ¢, meaning that each graph in € is represented by a class of graphs in

En,L. This surjection can be extended to %n,L and ﬁﬂ) 1 but not the molecules ﬁmL. However, one can identify a

subset O, | _pw C I, 1, for which one can extend ,, | to asurjection 7, | _pw : M, —pw —> . Thus,

every molecule in 901 is represented by a class of molecules in 90t,, | _pw.

The key now is that the patches making up any graph in5,, ; come from a finite set of patches ‘[ , called n-

patches. Using these patches one can pick out a finite subset of simplicial n-graphs &1,5 C &'M, that are based on

the complete graph overn + 1vertices.B,, s, 2, s and M, s follow as before.

While En,s: B,.s and 2, s are finite sets, the set of simplicial spin foam molecules 911, s is infinite and

contains a subset M1, s_pw whose elements reduce properly to molecules in 9. But the set 90t s_py does not

cover M through some surjection, but maps onto a subset. To cover all of M, one needs M, ; _ - Having said

that, (i) there is a decompositionmap D,, | s : ﬁn,L_DW — ﬁn,S—DW and (ii) every graph or collection of

graphs from -‘B},)L arises as the boundary of some molecule in ﬁn, s—pw-Asaresult, Am/n,S—DW is sufficient to
support a spin foam dynamics for arbitrary LQG quantum states.
The forthcoming construction is separated into six parts. The first and second catalogue the basic building

blocks or atoms, along with the set of possible bonds that may arise between pairs of atoms. These structures are
drawn directly from those used in loop quantum gravity. Both the set of atoms and the set of their bonds are very
large and inspire an attempt to find smaller subsets, introduced in the third and forth part, that still probe the
whole space of graphical structures in some precisely defined sense which is explained and proven in the fifth and
sixth part.

After all these technicalities we will discuss the relation of the two-dimensional spin foam atoms and
molecules to higher dimensional topologies in a seventh subsection. Finally we will close this section
emphasizing that the whole construction can be equivalently carried out in the language of stranded diagrams
which is the usual one used in the GFT literature and is totally equivalent to the more LQG oriented language of
boundary graphs and spin foam atoms used in this work.
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Figure 1. A boundary graph ¢ and its bisected counterpartb.

2.1. Part 1: catalogue the basic building blocks
This part focusses on defining the structure underlying loop quantum gravity and spin foams:

B
UNLABELLED € ——=%_ 2

0

Definition 2.1 (boundary graph). A boundary graphisadoublec = (V, &), where V is the vertex setand € is the
edge (multi)set’, comprising of unordered two-element subsets of ¥ °, subject to the condition that the graph is
connected.

The set of boundary graphs is denoted by €. Indeed this is just the set of connected multigraphs.

Remark 2.2. One should note here that multi-edges (multiple edges joining two vertices), loops (edges whose
two vertices coincide) and even 1-valent vertices (vertices with only one incident edge) are allowed. Thus, €
constitutes a very large set. However, such graphs arise within loop quantum gravity, can be incorporated within
the group field theory framework and so, in principle, serve as an appropriate starting point. Later, this set can be
whittled down to a more manageable subset.

Definition 2.3 (bisected boundary graph). A bisected boundary graph is adouble,b = (W, &), constitutinga
bipartite graph with vertex partition V}, = ¥ U V), such that the vertices # € V are bivalent.

The set of bisected boundary graphs is denoted by 8.
Proposition 2.4. There is a bijection f : € — B.

Proof. Given aboundary graphc € €, the bisection map facts on eachedgeé = (##,) € &, replacing it by a pair
ofedges{(77), (7,7)}, where 7 is a newly created bivalent vertex effectively bisecting the original edge. Thus,
under the action of # :

— VYV — V), = Y U V, where V is the set of vertices bisecting the original edges of ¢;

— & — & = Usee{(m?), (7) : & = (77,)}is the multiset of newly bisected edges”.
This clearly results in an element of B and the constructive nature of the map assures its injectivity.
Givenagraphb € B, removing the vertex subset P and replacing the edge pair {(#v), (#,v)} by(##,) results
inanelementc € € suchthat(c) = b. Thus, fis surjective.* O

A graphc € € and its bisected counterpartb € 93 are presented in figure 1.
Remark 2.5. The bipartite property of the graphsb € 9 means that the pairs(#7) € &, are ordered and thus, b is

quite naturally a directed graph.

A multiset is an extension of set concept, in which elements are allowed to occur multiple times.
3 .. . __
For aloop, the two-element subset is itself a multiset (77).

4 Note thataloopé = (#7) € € isreplaced by the multiset of edges {(#7), (#/)} and thus & is a multiset.
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%J I

Figure 2. A spin foam atom and its (bisected) boundary graph.

Definition 2.6 (spin foam atom). A spin foam atomisatriple,a = (W, &,, Fy), of vertices, edges and faces. It is
constructed from the pair (b, ), whereb € 95 and a is a bulk map sendingb to:
— Y = VU YV}, where V = {v}isaone-element vertex set, containing the bulk vertex;

- & = EU &, where€ = ey {(vu) : v € V}. € contains precisely one edge for each vertex in 1}, joining it

to the bulk vertex v. Thus, u takes values in ¥ and V.
= Fo = Usep {(vi) : (#0) € &}, where (viv) is the prescription for a face in terms of the three vertices on its
boundary.

One denotes the set of spin foam atoms by 2.

Remark 2.7 (boundary map). By constructiona : %5 — 2l is a bijection. Moreover, one may define a boundary
map§ : A — B, such that fora constructed from (b, @), thismap is definedas§ (a) = a~!(a) = b.

Thus, as a result of the bijective property of the maps a and f3, the following proposition holds:
Proposition 2.8. The set 2 of spin foam atoms is catalogued precisely by the set € of boundary graphs.
Anillustrative example of such a structure is presented in figure 2.

Remark 2.9. A neat alternative to the above construction is given in [40]. One embeds the graphb € 9B in the
bounding three-sphere of a 4-ball. One performs a radial deformation retraction of this ball to a point, denoted
byv € V. This retraction restricts to the graph, where one denotes the path traced out by the vertex# € V and

v € Vasedges(vi), (v?) € € respectively, while the surface traced out by an edge in (#9) € &, is interpreted asa
face f = (vwv) € F,.In contrast, the definition given earlier was chosen to be purely combinatorial.

2.2. Part 2: bonding atoms to build molecules
The second step is to describe the procedure by which these atoms bond to form composite structures, thus
completing the unlabelled part of the diagram:

B K
8 lk a
UNLABELLED € —=%B_ 9 > M
e

Definition 2.10 (boundary patch). A boundary patchisadoublep = p, = (W), &,), where:

- V= UG # o

- &={m):ve 1’%} isa multiset of edges where each (#7) occurs at least once and at most twice.
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Figure 3. A boundary patch.

Figure 4. A bonding map y identifying two bondable patches.

Remark 2.11. Boundary patches are useful since they arise as the doubles p, (b) = (V;, &;), formed as the closure
of the star of ¥ € V, withinb € 8.

Thus, V, = {7} U {v € W, : (W) € & L,andE; = {e = (7) € & ). In words, aboundary patch p, (b)isa
graph containing v itself, all boundary edges containing v (the result of the star operation), as well as the
endpoints of these edges (the result of the closure operation). A simple example is depicted in figure 3.

The set of boundary patches is denoted by 3.

Remark 2.12 (generators). For some subset of patches, B, € B, the set of graphs generated by B, denoted
6 (Pgyp)- is the set of all possible graphs that are composed only of patches from P 5.
Then, itis quite clear that:

Proposition 2.13.8B = ¢ ([3).

Remark 2.14 (bondable). Two patches, p; (b)) and p,, (b,), whether or notb; and b, are distinct, are said to be
bondable, if| V| = |V;,|and|&;, | = |&;,| (and thus, they have the same number ofloops).

Definition 2.15 (bonding map). A bondingmap,y : p, (b;) — p,, (b,), is amap identifying, elementwise, two
bondable patches such that:

v — ¥ Vi — {171} —V, - {172}, &y — &y (1)

with the compatibility condition that for each identified pair vy € V;, — v, € V;,, then
e = (W) € &, — e = () € &,

A simple example is illustrated in figure 4.

Remark 2.16. The compatibility condition ensures that loops are bonded to loops. In principle, slightly more
general gluing maps can be incorporated within the group field theory framework, corresponding to loop edges
bonding to non-loop edges. However, these gluings are absent from the loop quantum gravity and spin foam
theories. Thus, there is no motivation to include them here.

Remark 2.17. Certainly, for two bondable patches, there are many bonding maps that satisfy the compatibility
condition. However, all may be obtained from a given one by applying compatible permutations to the sets V,
and &;,.

Definition 2.18 (spin foam molecule). A spin foam moleculeis a triple, m = (V,,, En, Fu ), constructed from a
collection of spin foam atoms quotiented by a set of bonding maps.
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Figure 5. The bonding }, of two atoms along an identification of patches .

Remark 2.19 (bonding example). It is worth considering the simple example of two spin foam atomsa; anda,,
with respective bisected boundary graphsb; = a~!(a;) andb, = a~!(a,) and two bondable patches P, (by )and
p;, (b2). Quotienting the pair a;,a, by abondingmapy : p,, (b)) — p, (b,) results ina spin foam molecule

m= ﬂy{ﬂh as}:
vm = tty{vap vaz}r Em = ﬁr{gup guz}r 7?m = ﬂy{rap 7:;12}: (2)

wheref, denotes the union of the relevant sets after the identification of the elements of (V;, C W, £, C &)
with those of (V,, € W, &;, C &,,). Thus, there exists still structure at the interface between the two bonded
atoms, specifically, p,, (b) = Py (b)) = P, (b,). A realization of the above example is presented in figure 5.

Remark 2.20 (molecule boundary). The boundary map 6 can be extended to the spin foam molecule
m = i}, {a} ;, where I, J are index sets. § (m) is identified as the subset of constituent boundary graphs,
Ujes 6 (a;) formed from the edges that remain unbonded, along with their vertices. In symbols:

Esm) = Ufg(aj) — Ug}'i’ V5(m) = {17, Ve (Vﬁ) S gg(m)}. (3)
jeJ iel

Wherey : P, (b)) — Py, (bj,)and &, = &;, U &;,.In general, § (m) need not be connected, but it will be the

disjoint union of some set of bisected boundary graphs. Moreover, these boundary graphs will very rarely

coincide with the boundary graphs associated to any of the constituent atoms.

If a spin foam molecule m has a non-vanishing boundary § (m) # @, one mightalso term it as a spin foam
radical. On the other hand, if§ (m) = @&, m can be called a saturated or closed spin foam molecule.

2.3. Part 3: specifying to loopless, regular and simplicial structures

There are few obvious restrictions one can have on graphs, atoms and molecules which will become important
later. These are loopless and regular structures as well as the restriction to a single type of spin foam atom which
we shall call simplicial. All of them mirror exactly the structure of the most general case. For example, loopless
structures are related in the following way:

K
3 N :
LOOPLESS ¢ —— B, Ay > M,
hra

Definition 2.21 (loopless structures). Loopless structures are specified by:

A loopless boundary graph,c € €y,isac = (V, ) € € withoutedges from any vertex# € V to itself, thatis
foreveryv € V :(#)gE.

Their images under the bisection map ff and thereafter the bulk map a straightforwardly define loopless
bisected boundary graphs 81 and loopless atoms 241 , respectively.

For agraph in®By, all of its patches are obviously loopless. In fact, the loopless patches are uniquely specified
by n, the number of edges. Therefore, we call it an n-patch, p,, and we have that 3, = U, {p,}. Moreover,
B, = o (P, ), theloopless graphs are generated by loopless patches.

Through the bonding maps y, one constructs loopless spin foamn molecules I ;..
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Figure 6. The complete graph overn + 1 vertices (n=4).

Remark 2.22 (loopless molecules). Loopless molecules are indeed the most natural class of two-dimensional
combinatorial objects, since they are triangulations of a certain kind of abstract (i.e. combinatorial) polyhedral
two-complexes. We provide the definition of abstract polyhedral complexes in the appendix and prove their
precise relation to 901 in proposition A.17.

This also means that arbitrary spin foam molecules 27, do not correspond naturally to two-complexes in
a combinatorial sense, exactly because they are containing loops. Nevertheless, from the quantum gravity
viewpoint, these structures are necessary to provide dynamics for the most general graph, upon which roc
states are based. Moreover, abstract polyhedral complexes can be generalized to match 1 (proposi-
tion A.14).

Another important restriction concerns the valency of boundary graph vertices:

Definition 2.23 (n-regular structures). An n-regular boundary graphc € €, isadoublec = (V, &) € €, for
which every vertex 7 € P is n-valent. In other words, there are exactly # edges (#9) € € containing #. Analogous
to definition 2.21, the notion of their bisected counterpartsB,, the related n-regular atoms2,,, as well as n—
regular molecules 9t ,,, is straightforward.

Remark 2.24 (n-regular and loopless). Combining these restrictions, one arrives at much simpler sets of graphs
8,1, atoms 2, ; and molecules M1, 1 . In particular, 8,1, = o (p, ), a single patch generates the whole set. Since
the structure of a GFT field is determined by a patch, these structures will play a role in single field GFTs,
explained in detail in section 3.

Nevertheless, the simplest GFT is not only defined in terms of one field, but also only one interaction term of
simplicial type. This motivates the following definition:

Definition 2.25 (n-simplicial molecules). The set of n-simplicial molecules 9, s consists of all molecules, which
are bondings of the single spin foam atoma,, 5 obtained from the connected graph with n + 1 vertices K1,

Aps ‘= ( bn,S) = (ﬂ(tn,s)) =a (ﬂ (Kn+1) )
A complete graph is displayed in figure 6.

Remark 2.26 (clarification on the notion ‘simplicial’). It must be emphasized that the special class of n
-simplicial molecules M, s C M, C My, like all other loopless molecules, are polyhedral two-complexes. We
call them simplicial because each spin foam atom in itself can be canonically understood as the dual two-skeleton
of an n-simplex (see figures 19 and 24, and the appendix). But this can be done only locally, since it has been
proven in [41] that not every simplicial spin foam molecule (referred to as GFT-gluing therein) can be assigned a
simplicial complex, for which the molecule arises as the dual two-skeleton.

Remark 2.27. As mentioned at the outset of this section, the construction presented here is effectively very
similar to the operator spin network approach devised in [40], which in turn is based upon the language of
operator spin foams [42,43].

For clarity, itis worth setting up a small dictionary between the two descriptions. To begin, loopless
boundary patches correspond to squids. Then squid graphs are defined as gluings of such patches where gluing
vertices of a patch to itself is allowed. Thus, these are what we call bisected boundary graphs. Our definition of
patches including loops in general is necessary from a GFT perspective. Moreover, the set of squid graphs
considered in [40] corresponds to that subset of boundary graphs without 1-valent vertices 7 € V. However,
this is a choice and is easily generalized.
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Squid graphs encode one-vertex spin foams through a retraction, which was mentioned above in remark 2.9
(in [40] also a more combinatorial definition is given), just as boundary graphs encode spin foam atoms. After
that, one-vertex spin foams are glued together by identifying pairs of squids, just like boundary patches are
bonded during the construction of spin foam molecules.

2.4.Part 4: labelled structures

The set of spin foam atoms 2l is efficiently catalogued by their boundary graphs €. However, this is a large
collection of objects and thus motivates one to seek out sub-atomic building blocks that are more concisely
presented but can nevertheless resemble all of €.

This search is divided into two stages. This first stage examines the boundary graphs in terms of their
constituent boundary patches. The set of such patches is very large. Thus, the first stage will focus on
manufacturing a manageable’ set of patches, with which, none the less, one may encode all the boundary graphs
inC.

Having accomplished this, the next stage examines the boundary graphs from the perspective of generating
them by bonding boundary graphs from a more manageable set.

To set the stage, in this part we introduce labelled structures:

B )
~ B ly& _ N
LABELLED € —=958_" 9 > M
~—"
3

Definition 2.28 (labelled boundary graph). A labelled boundary graph, ¢ is aboundary graph augmented with a
label for each edge drawn from the set{real, virtual}.

The set of such graphs is denoted by ¢ andis much larger than the set €, since fora graphc = (V, €) € €,
there are 2/¢!labelled counterparts in ¢.

Remark 2.29 (labelled structures). There are some trivial generalizations:

— The labelled bisected boundary graphs, denoted byg € B, are obtained using a bisection map E that maintains
edge labelling. Thus, if (#7,) € ¢ isareal (virtual) edge, then{v, (), (nv)} C b= /)N’ (¢)isareal
(respectively virtual) subset, where v is the bisecting vertex.

— The labelled spin foam atoms, denoted byd € 2, are obtained using a bulk map &, such that if ¥, (# 7) and
(7, v) are real (virtual), then so is (vi1 ¥, ). In other words, the faces inherit their label from the boundary
5 (&) = b, whered = &

— The labelled boundary patches, denoted by p € 8, are bonded pairwise using bonding maps 7 that ensure real
(virtual) elements bonded to real (respectively virtual) elements.

— With these bonding maps, labelled spin foam moleculest € 90 follow immediately.

2.5. Part 5: molecules from labelled, n-regular, loopless structures

This part focusses on defining a projection 7z which relates labelled graphs to unlabelled ones by contracting and
deleting the virtual edges, as well as its restriction to the labelled, n-regular, loopless structures, z,, 1 , I1,, | and
I1, 1 _pw, which can be shown to still map surjectively to arbitrary graphs and molecules:

5 A set with a (small) finite number of elements.

10
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Figure 7. Contraction/expansion and deletion/creation moves.

B —
UNLABELLED ¢ B_ >IN
s
Tn,L Hn,y, Hn‘L-DW
g a
~ e — —
LABELLED Cpp———> B, D/ > My —— My 1w
, -

1)

One can naturally identify the unlabelled boundary graphs € with the subset of labelled graphs that possess
only real edges ¢ eal C €. However, one would like to go further and utilize the unlabelled graphs to mark classes
oflabelled graphs. From another aspect, one would think of this class of labelled graphs as encoding an
underlying (unlabelled) subgraphc¢ € €.

To uncover this structure, one defines certain moves on the set of labelled graphs:

Definition 2.30 (reduction moves). Given a graph¢ € &, there are two moves that reduce the virtual edges of
the graph:

— given two vertices, ¥ and ¥, such that (v 7, ) is a virtual edge of ¢, a contraction move, removes this virtual edge
and identifies the vertices 7 and i;

— given a vertex v such that (#9) is a virtual loop, a deletion move is simply the removal of this edge. These inspire
two counter moves:

— given a vertex v, an expansion move partitions the edges, incident at 7, into two subsets. In each subset, 7 is
replaced by two new vertices 7 and #,, respectively, and a virtual edge (77, ) is added to the graph®.

— givenavertex ¥, a creation move adds a virtual loop to the graph at .

These moves are illustrated in figure 7.
Remark 2.31 (projector). This allows one to define a projection 7 : ¢ — ¢, which captures the complete
removal of virtual edges through contraction and deletion. It is well-defined, in the sense that contraction and
deletion eventually map to an element of € (that is, the graph remains connected) and the elementc € &
acquired from¢ € € isindependent of the sequence of contraction and deletion moves used to reduce the graph.

In turn, this means that the 77! (¢) partition & into classes.

In fact, one is interested only in the n-regular (n > 2) subset En. One denotes the restriction of 7 to these

subsets as 7,,.. Note that the 7, are no longer projections, since 7, (¢) with¢ € En need no longer be n-valent.
Proposition 2.32 (surjections). The maps m,, have the following properties:

— Themapu, : &, —> € is surjective, for n odd.

® Thereis subtlety for loops, in that both ends are incident at # and may (or may not) be separated by the partition.

11
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Figure 8. The expansion and creation moves to arrive at a 3-valent graph.
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Figure 9. The expansion and creation moves to arrive at a 4-valent graph.

— Themapum, : En —> Ceven C &, is surjective for n even, where €., is the subset of boundary graphs with
only even-valent vertices.

Proof. First, one proves the results for the lowest values of n. For n = 3, consider agraphc¢ € € and sayit
possesses an m-valent vertex (m > 3). Then, one may expand such a vertex to a sequence of 3-valent vertices
joined by a string of virtual edges. For a 2-valent vertex, one first creates a virtual loop and then expand the
resulting 4-valent vertex. For a 1-valent vertex, one simply creates a virtual loop. See figure 8 for an illustration of
these three cases processes.

For n even, one notes that the z,, maps into €., since contraction and deletion both preserve the evenness of
the vertex valency. Specializing for a moment to the case of n = 4, consider a graphc € €y.,. Once again,
examining an m-valent vertex in ¢ (m even), one may expand such a vertex to a sequence of 4-valent vertices
joined by a string of virtual edges. For a 2-valent vertex, one may simply add a virtual loop. See figure 9 for an
illustration.

To generalize to arbitrary n odd (even), then one need only to create(n — 3)/2 (respectively (n — 4)/2)
virtual loops at each vertex. O

Remark 2.33. In effect, one has encoded the unlabelled graphs in € in terms of labelled n-regular graphs in,,.
The surjectivity result above implies that for # odd (even), each graphc € € (respectively €., ) labels an class
z7 ' (c) of graphs in &1.

One can go even a step further, encoding € in terms of loopless, n-regular labelled graphs:

Remark 2.34 (surjection: 7, | ). There exists a sequence of expansion and creation moves that effecta (1-)-
move. Consider an element of &, that has (up to|n/2]) loops at some vertex 7. Then, applying a (1-1n)-move to
this vertex, one can remove all loops. The effect of this transformation is depicted in figure 10 for a vertex with
n=4and one loop. Thus, in each class 7, ' (¢), there is a loopless graph. As for 1 odd (even), there is a projection

12
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7T4,L Q

Figure 10. Use of a (1 —n)-move on an n-valent vertex with loop to create aloopless graph (n = 4 in the example).

Figure 11. A contraction move on an atom.

TpL EH,L — € (respectively €.ye,) such that z,, 1 is surjective. Thus again, the boundary graphsc label classes

-1 .o~
7, (0)in, ;.

Remark 2.35 (atomic reduction). There is an obvious and natural extension of the contraction/expansion and
deletion/creation moves, defined for¢ € € in definition 2.30, to labelled spin foam atomsd € A

— A contraction move on the virtual edge (#7,) € ¢ translates to: (i) the deletion of the virtual subset {v, (# V),
(%), (v0), (vin 9), (v )} C d, as well as (ii) the identifications # = 7 and (viy) = (viy).

— Adeletion move on a virtual loop (#7) € ¢ translates to the deletion of the virtual subset
{v, (#), (#9), (vwv), (viV)} C d.

The expansion and creation moves are similarly extended and they are illustrated in figure 11.
Quite trivially, one may extend the map x,, | of remark 2.34tod € 2, 1. Thismap 1,1 : A, — 2,

~l L o - &
1,1 = 6 o fom, 10 o0 issurjective. Thus, eacha € 2 marks anon-trivial class 77, (a) € 2, 1.

Remark 2.36 (molecule reduction). While the bonding of atoms in 2l just follows the procedure laid out in
remark 2.29, the reduction of a labelled spin foam molecule possesses certain subtleties. Within a spin foam
molecule, two scenarios arise for a virtual vertexv € m :

v & 5 (M): consider a virtual vertex v with the virtual edges and faces incident at v, here denoted by
{(W V), (V) Fand{(va % V), (V22 V)seee, (Vi V), (Vg% V) }, respectively. Following the rules laid
out in remark 2.35, a contraction move applied to that virtual substructure (i) deletes {7}, as well as
all edges and faces incident at v and (ii) identifies v = ¥; and pairwise (v;; . 17)=(Vii 17 )=(Viiz 1¥i41)>
foralli € {1,..., k}.
Asillustrated in figures 12 and 13, this contraction only behaves well when k = 2, that is, there are
two virtual edges of type (#v) incident at v. For other values of k, the resulting structure does not lie
within 93T and therefore ultimately, it lies outside 907; the reason is thatinam & 21 there are
precisely two edges of typee = (vi7) € £ incident at each vertexv ¢ § (m) while in the reduction of
am € Min general there occur anyk > 2 edgesata vertex v ¢ 5 (m).
Moreover, the above condition ensures good behaviour under deletion moves as well.

v € 5(): in this case, a similar argument reveals the necessity for precisely one virtual edge of type (#/)
incident at v to obtain a molecule m € 9% upon reduction.

13
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Figure 12. Contraction move with respect to a vertex v incident to two virtual edges in a molecule.

‘:‘5 """" a .:. ﬂ{71a72773} 11,

Figure 13. Contraction move with respect to a vertex v adjacent to three virtual edges as consequence of three bondings. The
contraction identifies three boundary vertices and the resulting vertex is incident to three bulk edges. Such a situation is not possible in
amoleculem € 9.

Remark 2.37 (dually-weighted molecules). remark 2.36 instructs that one is not interested in the whole of 9%t , |
,but rather in the subset that possesses vertices # € ¥ with at most two (respectively precisely two) virtual edges
incident at a vertex #. This set is denoted by 91,, | _pw- The reason for this nomenclature will become clear in
section 3. Fortunately, the expansion/creation moves act each time on a single vertex v, so that one may define a
surjective map IT, | _pw : ﬁn,L_DW —> M. In words, each unlabelled spin foam molecule is represented in
M, L—pw-

Remark 2.38. Anticipating the GFT application, it should be emphasized that the whole construction is based on
only one single kind of labelled patches, the n-patch. In the labelled case this is not unique but there are 2" n-
patches and we denote their set as‘[3,. Thus we have that’B,, 1 = o ([3,).

2.6. Part 6: molecules from simplicial structures
Finally, we can show that it is even possible to use only molecules obtained from bonding labelled atoms of
simplicial type to recover all arbitrary unlabelled molecules in terms of reduction:

5
UNLABELLED O S gp

LABELLED %’mﬁ

/ A Hn,s-nw

\ 5

P E = /gﬁ ~ —~ T~
SIMPLICIAL Cos Brs - A s > Mys —= My spw
¢

In propositions 2.32, it was shown that all boundary graphs could be encoded in terms of labelled, n-regular,
loopless graphs. Moreover, from the spin foam point of view these graphs occur as the boundaries of labelled

14
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spin foam atoms ﬁn,L andlabelled spin foam molecules ﬁﬂ,L_DW (see remarks 2.36 and 2.37). However, one
would also like to show that all possible boundary graphs arise as the boundary of molecules composed of atoms
drawn from a small finite set of types.

This can be achieved using the labelled version of simplicial graphs and atoms.

Remark 2.39 (labelled n-simplicial structures). Due to the label on each edge, there are 2"+ V("+2)/2 [gpelled n-
simplicial boundary graphs, denoted QN:H,S.

Through the maps ﬂN and @, defined in remark 2.29, one can rather easily obtain the labelled bisected n-
simplicial graphs®B,, s and labelled n-simplicial atoms 2, s, respectively.

Furthermore, label-preserving bonding maps 7 give rise to labelled n-simplicial molecules 0, s, and their
subclass ﬁn’ s_pw according to remark 2.37.

Remark 2.40 (atoms from patches). One can use an n-patch p, € 3, as the foundation for a bisected

simplicial n-graphb € %B,,s in the following manner:

— Amn-patch consists of a single n-valent vertex 7, 1-valent vertices ¥ withi € I, an n-element index set, and
labelled edges (#7").

— Foreach i, one creates a new vertex #', along with an edge (#'7") with the same label as (#9").

— For each pair of new vertices 7' and 7/ withi # j, one creates a new vertex »7, along with a pair of real edges
(#"9Y) and (#7p1).

The result is a simplicial #n-graph. In a moment, it will be useful to distinguish the constructed simplicial #-
graph byb,, the original n-patch by () = p, (by), and new patches by ;NJ?‘, (Gﬁ) fori € I.

The aim is summarized in the statement:

Proposition 2.41. Every graph in &n,L arises as the boundary graph of a dually-weighted molecule composed of
simplicial n-atoms.

Proof. The basic argument is fairly straightforward and goes as follows: given a graph¢ € %n)L, one bisects it and
thereafter cuts it into its constituent patches; one uses remark 2.40 to construct a simplicial n-atom from each
patch: one supplements this set of atoms with bonding maps that yield a molecule with ¢ as boundary. The
procedure is also sketched in figure 14.

Index: more precisely, consider a labelled, loopless, n-regular graph¢ € QNZn Lwithe = (P, &).Itis useful to
index the vertex set by #; withi € {1,..., |V |}. This induces an index for the edges; an edge joining 7; to 7; is

indexed by eij ), where a non-atom index (a) arises should multiple edges join the two vertices.

Bisect: the graph € has a bisected counterpart ﬁN (€) = b= Vs, &p)-The vertex setVy=VY U P, whereV is
the set of bisecting vertices. A vertex in V is indexed by v (@) if it bisects the edge el oft.

Cut: the boundary patches in bare pv (B) withi € {L..., |V|}. The patch p P, (b)is comprised of the vertex 7;,

@ form an n-element

the n vertices v(“) and n edges (v;v “)) The indices of type j(a), attached to the  elements ¥/,

index set I;,.

Each bisecting vertex v;; pia)

€ Visshared by precisely two patches.

Now one cuts the graph along each bisecting vertex and considers each patch in isolation. This cutting procedure
sends each p P, (b) — p(#), where p(#;) is a n-patch comprising of a vertex #;, n vertices vJ )andn edges

(i ViJ @).

Thus, after cutting, a bisecting vertex 191-1(“) is represented by 7/ @ in p(v;) and J’ @ in p()).

Atoms: for the patch p(#;), the n superscript indices j(a) are that indexing set I, defined a moment ago.
Thus, one may use remark 2.40 to construct, from p(#), asimplicial n- graph Gﬁ and there after a simplicial n-
atomdy,.

Through this process, one obtains a set of simplicial n-atoms, @, withi € {1,..., |V|}. This setis denoted bydy,
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Figure 14. Decomposition of an atom with boundary graph¢ € &n,L into simplicial atoms, sketched for the patches of two connected
verticesin¢ and n=3.

since the atoms are in one-to-one correspondence with the vertices ¥ ofb. They will be used to form a spin foam
molecule whose bisected boundary graph isb.

Bonding maps: for each pair 7/ ¥ e %17,-) 17} @ e GV]., define abonding map

yi(.a) : ﬁﬁ‘j(m (bﬂ) — ﬁv;(a) (b‘;j) (4)
ST 5)
ﬁlj(a) N 1;Ji(ﬂ) (6)

while the remaining n — 1 vertices in each patch are paired in an arbitrary way’ :
WWW%Hweh—mwﬂ—%ﬁwwﬁwea—ﬁw%. 7)

The set of bonding maps is denoted y3, since the maps are in one-to-one correspondence with the bisecting

vertices V of b.
Then, in the molecule @ = f,, dy, the only patches that remain unbonded are the original p(#;) for

i € {l..., |V|}. Moreover, after one relabels the identified vertices 195-“) = Olj (@ — v]’ @ one has truly come full

circle: the boundary of M, which may be extracted using remark 2.20, satisfies the relation 5(m) = b.

Dually-weighted: from remark 2.40, one notices that all edges added in the construction are real. Thus, the
moleculem € ﬁn,s_pw. O

Proposition 2.41 has the following consequence:
Corollary 2.42 (molecule decomposition). There is a decomposition map D,, | _g : ﬁn,L—DW — ﬁn, S_DW-

Proof. Consider i € 90, _pw. By proposition 2.41, one can decompose each of its atoms, leading to the image
of the molecule W itself under decomposition map D,, 1 _s. O

We note an important limitation.
Proposition 2.43. The projection IT, s_pw : ﬁn, s—pw — I is not surjective.

We sketch our reasoning here. Consider a genericm € 91 and let M be a representative in the class
11} _pw (m). Then, W consists of bonded spin foam atoms drawn from the set 2, ; . According to proposition
2.41,everyatom d € ﬁn,L has a decomposition into simplicial atoms of ﬁm s Justlike in the decomposition
utilized in 2.41, it is possible to show that any decomposition requires one to add real structures in order to
maintain the integrity of the boundary graph under reduction. However, if one adds in real structures, then one
does not arrive back to the original atom/molecule after reduction, since reduction just amounts to contraction

and deletion of virtual structures.

7 . . . . .. . - .
Asan aside, the bonding maps are specified only up to permutations of thesern — 1 vertex pairings, leading to( " 5 ! ) choices for each
bonding map. However, the resulting spin foam molecules possess the same boundary.
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2.7. Enhancing with higher-dimensional information
We pause to remark on the relationship between these molecular spin foam structures and D-dimensional
topologies. For clarity, we shall concentrate on n-regular structures.

The elements of 2, s possess at most two-dimensional components, and so in principle have no information
about any higher-dimensional embedding. Such higher-dimensional components must be added by some
mechanism. There exist two paths8 that one may follow, both of which set n = D.

Remark 2.44 (D-dimensional structure by hand). In the first approach, one notes that spin foam atoms 2 , 5
form the dual two-skeleton to a D-simplex. Thus, at the atomic level, the D-dimensional structure can be defined
by hand onceat the outset. As the result, the simplicial D-graphs implicitly encode the (D — 1)-dimensional
boundary of a D-simplex, while the simplicial D-patches are enhanced to(D — 1)-simplices. The tricky issue, of
course, comes when one bonds simplicial D-patches. These bonding maps should be augmented to identify

(D — 1)-dimensional information. With many subtleties, these enhanced bonding maps can be defined once at
the start and applied mechanically throughout the bonding process. However, the spin foam molecules,
reconstructed in the manner, will generically encode D-dimensional objects that are very ill-behaved from a
topological viewpoint [41, 45].

Remark 2.45 (D-dimensional structure from colouring). A second approach, which has gained alot of
traction in recent years, is based upon so-called D-coloured graphs [38]. Of course, this means defining yet
another set of boundary graphs, with yet more labels, their associated spin foam atoms, bonding maps and so
on. However, the definitions are like those given above, so we concentrate on their properties. Consider the set
oflabelled loopless D-regular boundary graphs ¢ p,L- Look for the subset that are D-colourable, in the sense
that one may assign to each edge another label drawn from the set{1,..., D}, such that the D edges of each
simplicial D-patch have distinct colour s. This subset is called ¢ D,coloured- It emerges that the simplicial (D + 1)
-graphs lie in this subset and they generate, when coloured and accompanied by bonding maps that conserve
edge colour, the whole of ¢ D.coloured- Remarkably, this colour information ensures that one can reconstruct an
abstract simplicial pseudo-manifold [41]. While not all graphs in ¢ p,1L are D-colourable, the D-dimensional
topologies encoded by such spin foam molecules are much better behaved than those reconstructed using the
first approach.

One could in principle attempt to make a more ambitious statement. By showing the existence, for D odd
(even), of a surjective map 7 p, coloured : & p,coloured — € (respectively €eyep ), one could conjecture the following:

Conjecture 2.46. D-coloured graphs capture all of € (€yep,)-

In essence, all one would need to show is that in every class zrD_,lL (c)c €& p,1», thereisa graph thatis D-
colourable.

The benefit would be that in this way one could, for arbitrary molecules m, specify the subclass whose
molecules allow for a subdivision into the colourable subclass of ﬁn) s—pw- Thus, all these molecules would have
awell-behaved topological structure as pseudo-D-manifolds. In particular, their atoms would carry the
structure of D-dimensional polytopes (see A.2).

2.8. Stranded diagrams

One might wonder at this stage how the structures above match the usual stranded graph description utilized in
group field theory. It emerges that stranded graphs can easily incorporate the information pertaining to generic
spin foam atoms and molecules, as well as virtual and simplicial structures. Moreover, stranded diagrams
provide a more succinct graphical representation for molecular spin foams. With this aim in mind, we provide
here a dictionary between the two descriptions.

Definition 2.47. A stranded atom is the double, s = (C, R), such that:

— Cisasetof vertices partitioned into subsets known as coils. This set C has an even number of elements and
coils are denoted by c.

The two paths mentioned above are the ones most often used in the quantum gravity literature. From the mathematical perspective there is
an interesting third way, detailed in [44]. Therein the authors extend embedded discrete structures to include topological data that encode
the underlying D-manifold as a branched cover.
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Figure 15. An example of the relation between (bisected) boundary graphs and stranded diagrams. While faces of atoms (and
molecules) are in one-to-one correspondence to bisection vertices in the graph description, in the stranded diagrams they are uniquely
represented by the strands.

— R isthesetof reroutings, where a rerouting is an edge, refered to quite frequently as a strand, joining a pair of
distinct vertices in C. This set of reroutings saturates the set of vertices, in the sense that each vertex is an
endpoint of exactly one strand.

We denote the set of stranded atoms by &.

Remark 2.48. One must take note of a particular type of rerouting, known as a retracing. This refers to a strand
joining two vertices in the same coil. One will see in moment that a retracing corresponds to aloop in the
associated boundary graph.

Remark 2.49. Consider a spin foam atoma = (¥, &, F) € 2. Aswas shown in proposition 2.7, it is completely
determined by its boundary graph¢ = (V, €) € €. Fromc, one constructs a stranded graph s = (C, R) by
‘exploding’ the vertices 7 € V. More precisely, for each edgeé = (#7,) € &, one creates two vertices in C (one
for each endpoint) and a strand in R joining them. The subset of vertices in C created from a given endpoint
vertex in V constitutes a coil.

The reverse operation is equally simple. Given a stranded diagram s, one constructs aboundary graph ¢ by
identifying the vertices within each coil.

These operations are clearly inversely related and are illustrated for a simple example in figure 15.

From the remark 2.49, the following holds:

Proposition 2.50. There exists a bijection between the set of spin foam atoms A and the set of stranded atoms S.
One can also bond stranded atoms to form stranded molecules.

Remark 2.51 (stranded counterparts). The stranded counterparts of various objects take the form:

— Astranded patchisacoilc C C along with retracings within that coil.

— Two stranded patches are bondable if they have the same number of vertices and the same number of
retracings. Knowledge of the retracing are necessary to capture the loop information of a boundary patch.

— Astranded bonding map identifies the vertices within two bondable stranded patches, with the compatibility
condition that the vertices associated to a retracing in one patch are identified with the vertices associated to a
retracing in the other. This is illustrated in figure 16.

— Astranded moleculeis a set of strand atoms quotiented by a set of stranded bonding maps, as drawn in
figure 17.

One can translate the concepts such as labelled, loopless, simplicial to the stranded diagram realization. This
is left to the interested reader since these structures are not extensively used in the remaining sections. Having
said that, we should also mention that stranded graphs are a natural and powerful tool in the GFT formalism.
One particular advantage of stranded diagrams as compared to bondings of boundary graphs is that the full
internal bonding structure, including the ordering of bondings of faces along patches, is represented in these
diagrams in terms of the strands. This is not possible in bondings of boundary graphs.
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Figure 16. Stranded bonding map.

Figure 17. Stranded molecule.

3. Group field theories: generating spin foam molecules

Having laid the combinatorial foundations, let us now turn to our main goal: defining a GFT framework that can
accommodate, both kinematically and dynamically, all the states and histories that one might expect to appear in
loop quantum gravity.

The route is divided into three parts. First, we shall summarize some generalities of the GFT set-up, with
respect to its definition as a quantum field theory generating spin foam molecules. This will clarify how the
graphs supporting1QG states, as well as the complexes supporting spin foam amplitudes, appear in this context.

Next, we shall outline the class of GFT models that are standard in the literature. These are based on a single
field and generate series catalogued by a specific subset of the unlabelled spin foam molecules 9. Via the
interpretation given in section 2.7, these are associated to n-dimensional simplicial structures.

Finally, we shall generalize the GFT framework to incorporate broader classes of models. There are two main
avenues to follow:

(i) One can stick with unlabelled structures but attempt to directly generate (larger subsets of) 21. In this
context, the first generalization is effected simply by broadening the type of interaction terms in the theory
while keeping a single field. Such models are already common in the GFT literature [29-38].

The second generalization involves passing from a single-field to multi-field group field theory. In this
manner, one can generate all of 97, albeit in a rather formal manner, with an infinite set of GFT fields.

(ii) One moves over to labelled structures, which permit a much simpler class of GFTs, based on a single GFT
field over alarger data domain. This data domain, inspired by a standard technique in tensor models known
as dual-weighting, allows one to generate dynamically the spin foam molecules in 901,, s_pw. Drawing upon
the results of section 2.6, one has encoded the molecules in 901, at least at the combinatorial level. This sets
the scene for section 4, where we devise a class of GFT models that generate weights for the molecules in 90t
and that effectively assign to the underlying molecules 9t the amplitude expected by the 4d EPRL quantum
gravity spin foam theory.

The nomenclature and definitions introduced in the previous section will be used extensively in the
following.

3.1. GFT generalities
Let us first recount the general definitions and structures of GFTs, as one finds them in the literature [14-20].
Definition 3.1 (group field). A group field, ¢, is a function over a group:

¢: G" —R, (8)

where Gisagroup, whilen € N.
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Definition 3.2 (group field theory). A group field theory is a quantum field theory for a group field, defined by a
partition function:

ZGrr = /D¢ e S, 9)

where D¢ denotes a (formal) measure on the space of group fields, while the action functional takes the form:

S19)= 5 [ 1de) #() Kigng) dig) + X, i [ 1dg) Wi({gj},_] IT4(s). (10)
o jen

K is the kinetic kernel, V; are vertex (interaction) kernels satisfying combinatorial non-locality, while I and J; are
finite sets indexing the interactions and the number of fields in the ith interaction, respectively. Meanwhile, [dg]
represents the appropriate number of copies of the measure on G and {4;} ; is the set of coupling constants’.

Remark 3.3 (kinetic kernel). The kinetic kernel is a real function with domain G*?" that (in some model
dependent manner) pairs arguments according to(g, ., g,,) witha € {1,...,n}:

K(g» &) =K(gp L1 - G &on)- (11)

Remark 3.4 (vertex kernels and combinatorial non-locality). Combinatorial non-locality is a property
possessed by GFT interaction kernels, effected through pairwise convolution of the field arguments. It is the
main peculiarity of GFTs with respect to local quantum field theories on space—time. In more detail, the GFT
interaction kernels do not impose coincidence of the points, in the group space G*", at which the interaction
fields are evaluated. Rather, the totality of field arguments from the smaller group space G occurringin a given
action term (thatis n X |J | for an interaction term with|J | group fields) is partitioned into pairs and the kernels

convolve such pairs:
W({gf},) =v({eus'}) (12)

where j, k € J,a, b € {1....,n}and (ja, kb)isan element of the pairwise partition of the set J X {1,..., n}. The
specific combinatorial pattern of such pairings determines the combinatorial structure of the Feynman diagrams
of the theory. It will be one of the main foci in later discussions, both in the standard GFT models and, later on, in
the generalized class of models.

Besides this combinatorial peculiarity, one deals with GFTs as one would any other QFT; the main features
follow.

Definition 3.5 (quantum observables). (Quantum) observables, O [¢], are functionals of the group field.

In particular, the kinetic and interaction terms are quantum observables. Due to their functional form, they
motivate interest in a subset of polynomial functionals of the field:

Definition 3.6 (trace observables). A trace observable is a polynomial functional of the group field that satisfies
combinatorial non-locality (since all group elements are traced over pairwise). Thus, they have the generic form:

O[¢] Ef[dg] B({gj}]) g ¢(gj), where [B({gj}])=[3({gjugk‘;}) (13)

and (ja, kb) is an element of the pairwise partition of the set J X {1...., n}.

Remark 3.7 (estimating observables). Expectation values of quantum observables are estimated using
perturbative techniques. For example, the observable O [¢], expanded with respect to the coupling constants
{A;} 1, leads to a series of Gaussian integrals evaluated through Wick contraction. The patterns of contractions are
catalogued by Feynman diagrams:

9 . . . .
There is an analogous set of actions for complex group fields and of course, one can define models involving several such fields.

20



10P Publishing

NewJ. Phys. 17 (2015) 023042 D Oriti et al

(O)grr = /D¢ O[¢] e519
GFT
7 /2o T T e S u(fo)
Hrﬁ(g]) ‘e b f1dg) #(e) Kigogy) 9(s)
i€l
=Zr ﬁA(F; {/11»}1), "

where C (I') are the combinatorial factors related to the automorphism group of the Feynman diagram I” and
A(I; {4;} 1) isthe weight of I in the series. The Feynman amplitudes A (I") are constructed by convolving (in
group space) propagatorsP = [K~! and interaction kernels. In this section, however, the focus lies solely on the
combinatorial aspects of the GFT perturbative expansion. Discussion of specific models is postponed to
section 4.

Remark 3.8 (stranded diagrams). The stranded diagram representation of the Feynman diagrams I is
immediate. With reference to section 2.8, one associates a coil ¢, with 7 vertices to each field ¢.

In an interaction term, the fields represent a set of coils C, while the combinatorial non-locality property of
the interaction kernel encodes the set of reroutings R. Thus, each interaction term represents a stranded atom
s =(C, R).

The kinetic term, through its involvement in the Wick contraction, is responsible for the bonding of these
stranded atoms. Then, the perturbative expansion is quite clearly catalogued by stranded molecules.

Through the bijection outlined in section 2.8, one could now map to spin foam atoms and molecules.

Remark 3.9 (quantum geometric interpretation). In section 4, we shall concentrate our attention on the
EPRL quantum gravity GFT. However, we provide some interpretation here for GFTs as models of quantum or
random geometry. The components of a GFT have already been understood in terms of topological structures,
primarily in two dimensions, but also secondarily in D dimensions (although this enhancement is a subtle issue
about which we have made some comments in section 2.7).

Keeping to D-dimensional language, the group fields correspond to (D — 1)-dimensional building blocks of
(D — 1)-dimensional topological structures, the trace observables. In a similar manner, the interaction terms in
the action correspond to the D-dimensional building blocks for D-dimensional topological structures
cataloguing the terms of the perturbative expansions.

Then, the estimating of observables(O; ... O;) via perturbative expansion, yields a sum over D-
dimensional topological structures, whose boundaries are precisely the /(D — 1)-dimensional structures
encoded by observables. In other words, one is calculating the correlation of the /(D — 1)-dimensional
structures.

The intention of both the data contained in the group G and the kernels (boundary B, kineticK and
interaction V) is to transform all these topological statements above into quantum geometrical ones. More
precisely, using results from loop quantum gravity, as well as lattice quantum gravity, depending on the precise
realization of the data set, it may be interpreted as one of the following: the discrete gravitational connection; the
discrete fluxes of the conjugate triad; or the eigenvalues of fundamental quantum geometric operators like areas
and volumes.

3.2. Combinatorial correspondence
Let us recast this GFT formalism in terms of the combinatorial structures detailed in section 2 :

— Theset of group fields is indexed by the set of patches:
= {d)p}‘ﬁ’ where ¢, : ¥l — R, (15)

andp = ({7} U W}, &)

— Thessetof trace observables is indexed by the set of bisected boundary graphs:

O = {Oh}%, where Op @] = /[dg [Bb( ) H (l)p (g;) (16)

eV

and b = (V U P, &). The patches of b are in correspondence with vertices of ¥ and one has that
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g, = 1g;; + (") € &}. Combinatorial non-locality is realized using the bisecting vertices V. Each such vertex
has a pair of incident edges and thus they encode a pairwise partition of the data set{g, } . Conversely, a
pairwise partition of this data set determines a graph b. Thus, the graphs in B catalogue the combinatorially
non-local configurations.

— Likewise, the set of vertex interactions is indexed by ‘B :

% [ 14g %o(ig,1%) TT o, (2. (17)
24
As aresult of the bijection in proposition 2.8, the interaction terms can be interpreted as generating spin foam
atomsa = a (b).

— Thekinetic term, through its role in the Wick contractions occurring in later perturbative expansions, is
responsible for the bonding of patches compatible according to the compatibility condition of definition

2.15,p = p, & py:
%/[ng ¢p(gol) [Kp(gwgoz) ¢p(gvz)» where [Kp(gw gvz) =[K({gm» gm}) (18)
is a function of group elements for each (v;7) € &,.

— Then, generic models are defined via :
7= /ch 512 (19)

with:

siol =2 [ 18] 4y (g) Ko 20.) 5 (80.) + e s [ 198) W(ig07) T] (- 20)

ey

— Sums and products of trace observables can be estimated perturbatively, generating series of the type:

1
(0 0n) = /qu Ob, [®] ... Op, (] 5191

1
= m;ﬁ mA(m; {ﬂb}%) (21)
5(m)=Ll_,b;

Thus, the Feynman diagrams generated by GFT's are actually better characterized as spin foam molecules.

Using the above index, one can catalogue the generalized classes of GFT models that make contact with the
set of spin foam molecules 1. This will be done in later sections.

Remark 3.10 (generalization and control). It is worth noting some motivations for considering such
generalized GFT models:

— Asone can see above, there is no technical obstacle whatsoever, within the GFT formalism, to passing from a
single-field GFT to a multi-field GFT(indexed by some set of patches) and/or stimulating new interaction
terms (indexed by some set of bisected boundary graphs). Such choices generate broader classes of spin foam
molecules, as one might wish from an 1QG perspective.

Given the facility with which such generalized GFTs are defined, a real issue is rather to pinpoint some
criterion, for selecting one model over another. Other important issues centre on settling (i) whether or not
one is able to control analytically or numerically the dynamics of such generalized GFT's and (ii) whether or
not such control is improved by one choice of combinatorics over another. Indeed, these issues should also be
posed from the spin foam perspective.

A common choice in the spin foam and GFT literature is to restrict to spin foam atoms and molecules with a
D-dimensional simplicial interpretation. This choice could be motivated as being more ‘ fundamental’, in the
sense that one can triangulate more general complexes but not vice versa, and as being simpler than other
alternatives.

— Moreover, generalized GFTs already exist in the literature. Indeed, so-called invariant tensor models, which
are in essence single-field GFTs with a specific subset of generalized interactions [38], have been the setting
for most studies on GFT renormalization [29-37] and for analysis using tensor model techniques [24].
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— Finally, even in models starting with simplicial interactions only, one should expect the quantum dynamics to
generate new effective interactions with generalized combinatorics. In turn, these new interaction terms
should then be taken into account in the renormalization flow of the simplicial models. Again, the issue is not
whether such combinatorial generalizations can be considered, but how one should deal with them in the
quantum dynamics of the theory.

3.3. Simplicial GFT
For amoment, let us focus on the GFT corresponding to the unlabelled, n-regular, simplicial structures: 8,, s,
A, sand 9, s from section 2.3. As shown in section 2.7, such structures have a simplicial interpretation. They
correspond to a particularly simple choice of combinatorics for the GFT action and represent a class of models
thatare by far the most used in the quantum gravity literature.

The parameter # is set to the dimension D of the space—time to be reconstructed via the GFT dynamics.

— Thegroup field corresponds to the unique unlabelled D-patchp, :
¢ =, : GP—R. (22)

— The pairing of field arguments in the interaction kernel is based upon the unique unlabelled simplicial D-
graphb € B g (thatis, Kp, 1, the complete graph over D + 1 vertices), which allows one to abbreviate
notation:

vb(g):v({gijgjgl}), with  i<j. (23)

Henceforth, when dealing with graphs based upon K, the markersi, j € {1,...,D + 1}indextheD + 1
vertices ¥ and thus the patches of b. The bisecting vertices are labelled by (ij)'’. The edge joining the vertex i to
the vertex (7) is denoted by ij, while the edge joining the vertex j to the vertex (ij) is denoted by ji.

— Inthekinetic kernel, the data indices are abbreviated to g, = g, and g, = g, .

— Theaction is therefore specified by:

D+1

1
Sig) =5 [ 1dg) $(5) K 8) #(e) +4 [ 1dg] Wo(e) [T #(g;)- (24)

j=1
Up to the precise form of the kinetic and interaction kernels.

— Thereis a distinguished subclass of trace observables indexed by B, 1, the unlabelled D-regular loopless
graphs. This stems from the property that each graph in B, | arises as the boundary of some spin foam
molecules in 9, s, while the boundary of every spin foam molecule in 9, s is a collection of graphs inBp 1 .

— The perturbative expansion of the partition function (the GFT vacuum expectation value) leads to a series
catalogued by saturated spin foam moleculesm € M p 5,6 (m) = @. Meanwhile, the evaluation of a generic
observable Oy, [¢]leads to a series catalogued by spin foam molecules with boundaryb, thatis:m € 91 ¢
withé (m) = b.

The combinatorics of the propagator and the simplicial vertex kernel are illustrated in figures 18 and 19 in
the three-dimensional case. Therein is drawn both the bisected boundary graph realization, alongside the usual
stranded diagram representation.

Remark 3.11. To translate the points made in section 2.7 into GFT language, one begins by noting that the spin
foam molecules M, s are interpretable as locally simplicial in D dimensions. Thus, the group field corresponds
toa(D — 1)-simplex, the interaction term corresponds to a D-simplex, while the kinetic term, through its role
in Wick contraction, corresponds to the gluing of D-simplices along shared (D — 1)-simplices.

Note that the GFT action prescribes only the bonding of the spin foam atoms along patches. This
corresponds to rules for identifying boundary (D — 1)-and (D — 2)-simplices. It does not specify uniquely the
gluing rules for the full D-dimensional information. As mentioned in section 2.7, there are two ways around this
limitation. The first is to add information by hand, which is rather unsatisfactory. The second is to restrict to the
so-called colored structures MM, oloured C My, s. Itis much more natural from the GFT point of view, since for

10 The parenthesis signifies that both (i) and (ji) mark the same bisecting vertex.
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Figure 18. Equivalent representation of combinatorics of propagator and simplicial interaction for a D = 3 GFT in terms of bisected
boundary graphs and in terms of the common stranded diagrams.

any given (simplicial) GFT model generating series catalogued by elements of 901, 5, there is an associated model

Figure 19. In D = 3, the neighbourhood of a vertex v (a spin foam atom) within a spin foam molecule m and finally seen as dual to a
tetrahedron.

generating the restricted subclass M, coloured- See the review [24] for details.

Remark 3.12. One could generalize the class of interaction terms to include those based on graphs from the set
Bp,1. Since these are composed of unlabelled D-patches, the GFT remains dependent on a single group field:

s1g) =5 [ 1ds) #(8) Kigug) dle) + X 4o [ ldg) Wolo) T] 6 (20 25)

beBp,1 ey

whereb = (P U V, &). Understanding the group field ¢ once more asa(D — 1)-simplex, the spin foam atoms
could still be given the interpretation of encoding D-dimensional building blocks with locally simplicial (D — 1)
-dimensional boundaries. All spin foam molecules generated by this GFT have boundariesinBp ;..

Thus, it is clear that the class of models specified by (25) is inadequate for the purposes of generating a
dynamics for all LQG quantum states with support in the larger space ‘8.

3.4. Multi-field group field theory
An obvious strategy for generating series catalogued by (larger subsets of) 901 is simply to increase the number of
field species entering the model. Such a scenario was already anticipated at the outset of the group field theory
approach to spin foams [23, 46]. However, from a field theoretic viewpoint, it is a rather unattractive strategy,
since the more one wishes to probe quantum states on arbitrary boundary graphs in B, the larger the number of
field species and interaction terms required. Thus, the resulting formalism is not easily controlled using QFT
methods. Having said that, with appropriate kinetic and interaction kernels, multi-field GFTs weight these
broader classes of spin foam molecules in the same manner as the generalized constructions one finds in the spin
foam literature. As a result, these GFT models are at the same level of formality. We illustrate multi-field GFTs
here simply because we wish to demonstrate the absence of any impediment in principle to having a GFT
formulation for the quantum dynamics of all LQG states.

A multi-field group field theory is devised in the following manner:
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A subset of group fields @gyp C @ isindexed by a subset of patches B¢ ;p € P :

Psyp = {¢p } Peus* (26)

A distinguished class of trace observables Osyp C O isindexed by Bsyp = o (Pgyp) € B, the bisected
boundary graphs generated by 3 :

Osup = {Ob } Bsup- (27)
In particular, observables of this type can be utilized as interaction terms in the action.
A class of action functionals is then specified by:

s[osn]= X [ 18] dy(2) Kilgo ) (g + 2 2 [ 1d] %o(ig)w) T] iz ©9)

pEPBsus beBsup eV

whereb = (Y U PV, &).
The expectation value of an arbitrary product of observables takes the form:
1
— =S| Psup | — .
(00 04) oy = /Dq>SUB O, [B]... Oy [@] o0 = 3 C(m)A(m, [ man).  (29)

meNsup
& (m)=Ui_,b;

Remark 3.13 (higher-dimensional interpretation). In this multi-field setting, one has lost the natural

connection between a class of models and a particular value of D, the dimension of the reconstructed space—
time. Without doubt, it is difficult to identify precisely generalized classes of spin foam molecules, such that
the reconstruction of a D-complex is always possible (and unique). In this non-simplicial setting, the
restriction to coloured structures is not available (to the best of our knowledge). Moreover, the set of gluing
rules that one would need to specify at the outset grows with the generality of the boundary graphs and spin
foam atoms.

Remark 3.14 (Three-dimensional example). Let us consider a particular multi-field GFT model and attempt to
provide it with a three-dimensional interpretation:

— Itisbased on unlabelled n-patches, with3 < n < L:
ngUB={pn:3<”<L}- (30)
Then, the group field ¢, could be viewed as representing an two-dimensional n-gon.

— Adistinguished class of trace observables is indexed by Bsyp = o (Pgyp) and they may be interpreted as
surfaces composed of polygons (as we have already stressed, reconstructing these surfaces is a subtle topic and
extra information must be put in by hand). As a specific example, consider the following trace observable:

Ou| oy, | = [ 121 Bo(g) 4, (), (2, (8, (2, (85): (31)

where

Bo(g) = B (8,85 823852 834803 8148, > 815851> 825852 835853 8as8os')- (32)

As illustrated in figure 20, one could associate a pyramid with a square base to the graph b. In this case, the spin

foam atom is simply a 3-ball.

— Anaction functional of the type given in (28), along with the partition function (29) generate spin foam
molecules that may be interpreted as three-dimensional objects composed of such building blocks.

Remark 3.15 (group field set @). GFT models based upon (in)finite subsets @syp C @ probe only subsets
Bsup C BandMsyp C D and thus, only subsets of the 1QG states and spin foam dynamics. One could
consider examining a model based on all of @ and all of @. In this manner, one would probe all of B and 90, as
one might expect in the traditional LQG context.
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Figure 20. The pyramid graph b, the associated spin foam atoma = « (b) and finally the pyramid 3-cell constructed around it.

The resulting construction, however, is likely to remain at a formal level. In fact, the multi-field GFT
realization depends upon infinitely many fields and, in order to have non-trivial dynamics for each field,
infinitely many interaction terms. This likely renders any field theoretic analysis rather impracticable.

Having said that, with appropriate choices for kinetic and interaction kernels, the multi-field GFT based
upon @ and O generates series probing all the spin foam molecules of 97, weighted by amplitudes
coinciding with the KKL extension of the EPRL quantum gravity model and propagating1QG states on
graphs in‘B.

To the extent that GFT's are currently analytically tractable, one is motivated to repackage the structures
generated above and devise a class of GFT models that encode the quantum dynamics of arbitrary LQG states,
while remaining more practically useful. This means managing to encode arbitrary boundary graphs using a
single or atleast a (small) finite number of GFT fields and interactions. The key to achieving this result, which we
now illustrate, lies in the use of labelled structures.

3.5. Dually weighted group field theories

This section focusses on the labelled structures En, S %n, S PQIV,,,S and ﬁn,s_DW C ﬁn, 5. The reason is that while
the first three sets of building blocks are finite, the set of dually-weighted molecules 9, s_py is rich enough to
encode all of 9T. Moreover, this translates to a GFT, based on a finite number of fields and interactions, that
generates sets of spin foam molecules large enough to propagate arbitrary LQG states.

3.5.1. Labelled simplicial GFT
Utilizing the labelled simplicial structures 3,, ®B,, s and 2, s to generate spin foam molecules 91, 5 is a simple
generalization of the simplicial model presented in section 3.3 :

— The et of group fields is indexed by the set of labelled n-patches:
b = {$ﬁ}‘fn’ where Nﬁ . 6¥l8 R, (33)

Note that this is a finite set of fields:|@| = || = 2". Also,|&;| = n.

— Thesetof trace observables is indexed by the set of labelled n-regular, loopless graphs B, | :
O={0i};, whee 0i[®]= f [dg) B3 ({g,1%) [T #5(e0) (34)
ey

where Bj implicitly depends on the edge labels drawn from {real, virtual}.

— The set of vertex interactions is indexed by labelled simplicial -graphs B, s. Since these are all based on the
complete graph overn + 1vertices, one can utilize the vertex labelling seen in equation (23) :

n+1

% [1ag1 Vi [T % (s,)- (35)

=1

This is a finite set of interactions:|B,, 5| = 21,
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Of course, the set of interaction terms can be extended to those indexed by %H,L =0 (fB;), and one should
probably expect them to be generated during the renormalization process. However, the point is that the
small set®B,, s is rich enough to generate spin foam molecules that could provide non-trivial correlations for

all ofB,, 1, and so is a well-chosen minimal model to take at the outset.
Again, using the bijection in proposition 2.8, the interaction terms can be interpreted as generating spin foam

atomsd = a (b).

— Thekinetic term is responsible for the bonding of patches just as in the unlabeled case (18) :

%/[dg] F3(2) Kigp &) P58, where  Ki(gy &) =K (g, g, ) (36)

— Then, the class of labelled simplicial GFTs is defined via :

ZS—GFT = Da 6_5[5] (37)
with:
n+1
s[8]=5 X [ 1ds B30 Kilsio 2 Fie2) + DI JAGERR 1 i) o9
PEP, €55 =

— trace observables can be estimated perturbatively, generating series of the type:
(85..0%), . = fqu i[3].. 05[] (7]
1 —

ﬁeﬁ",s C ( m
() =uluib:

Remark 3.16 (reducibility). As pointed out in remark 2.36, not all molecules in i, s reduce to a
molecule in 9. It is rather the dually-weighted subset 9, s_pw C M, s that possesses this property. As
a result, one needs a mechanism at the GFT level that isolates this subset. This mechanism is known as
dual-weighting.

3.5.2. Dually-weighted GFT
It emerges that employing a simple technique at the field theory level allows one to extract directly the subclass of
structures smn s—pw C mn s- This technique, dubbed dual-weighting in the the matrix model literature, assigns
parameterized weights to the vertices ¥ of the spin foam atoms& € 2, s and, through the bonding mechanism,
of the spin foam molecules ™ € M, s''. These weights can be tuned so that only virtual interior/boundary
vertices in V with precisely two virtual faces/one virtual face incident survive. This is precisely the condition
pinpointing the configurations in 90, s_pw.

The dual-weighting mechanism begins by enlarging the elementary data set from GtoG X M, where
M = {0, 1,..., M}. The integer M can be regarded as a free parameter of the theory. Since these data sets are
associated to edges of both patches and boundary graphs, they permit a new encoding of the edge labels
{real, virtual}. The reallabel is encoded as the zero element0 € M, while the virtuallabel is encoded by the non-
zeroelementsm € M — {0}.

— Thisin turn allows one to repackage the 2" fields $'~J (e P‘ﬁn) ¢) into a single field

¢:(GXx M) —R (40)

11 C . . . . . .
The dual-weighting moniker stems from the fact that in 2d these vertices are in one-to-one correspondence with the vertices of the dual
topological structure. In that context, these parameterized weights can be interpreted as coupling parameters for dual vertices.
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based on the unique unlabelled n-patch p, € B, g. This stems from the fact that these patches have the same
combinatorics, differing only in the choice of labels {real, virtual} assigned to their edges.

— Inprinciple, the trace observables are indexed once again by labelled, n-regular, loopless graphsg €%B,..
Encoding the labelling as above, one can re-index observables by unlabelled, n-regular, loopless graphsB,, 1 :

o={oal}, ,  where 0y[@) = [ [dg) Y By (g5 me}v) [T g5 mo), (41)

%n,L - _35
[m] vey

where the combinatorial non-locality extends to the M variables. In effect, the observable Oy incorporates all
2/*l]abelled observables with support on that graphical structure. However, combinatorial non-locality, in
conjunction with this novel label-encoding, places a restriction onBy, ({g,; 715} v). To detail this, one uses the
same indexing of vertices and edges as in (23) with an extra label (a) to number multi-edges. A simple
illustration for a bisected edge between two verticesi, j € P looks like:

ij(a) (19)(@) ji(a)

o

i ® ® @ j

Then the graph b dictates that the boundary kernel has the form:
By({g;; ms}y) =B ( {g,-j (a>g]§(1u); my } ) (42)

For labelled boundary graphs, both edges ij(a) and ji(a) are marked by the same label {real, virtual} (see
remark 2.29). This translates to the restriction that By ({g,; 7,} ) = 0 whenmj;,) = 0,mj;,) € M — {0}or
vice versa. Alternatively, By ({g,5 m5}v) # 0 onlywhen bothm;;,) = 0 = m;; () orboth

Mij(ay Mjia) € M — {0}

— The2("}") interaction terms are indexed by labelled simplicial graphs be B,.s. As with the boundary kernels,
one may re-encode the labelling in terms of the new data set. As a result, one can capture all the interaction
terms using the unique unlabelled, n-regular, loopless graphb € B, 5

n+1

2 [1a Y, Yol m TT (g5 m;), (43)
=1
where (analogously to (23)) :
Vo(g; m) = W( {gijg;l; mg}), with i<j, (44)

and the markersi, j € {1..,n + 1}indexthen + 1verticesV C band thus the patches ofb. Meanwhile, the
pair ij (with j # 7) indexes the edge joining the vertex i to the bisecting vertex (ij). Combinatorial non-locality
imposes an analogous constraint on this interaction kernel.

Just as for labelled simplicial GFTs, the set of interaction terms could be extended to those indexed by

B, = o (P, ), while still invoking the dual weighting mechanism. In terms of labelled structures, this

means that one could isolate ﬁn,L—DW C ﬁn,L.

— The kinetic term takes the form:

1
S [ 1081 X (s ) K (g, 55 mm, m2) (g5 ma), (45)
[m]
where:
K(g> & M, my) = [K<ggl, 85, M mvz)- (46)

Since the kinetic term is responsible for the bonding of the patches and bonding respects labelling, then
K # 0 onlywhenbothmy;; = 0 = my,; orbothmy,y, my,; € M — {0}.

Before stating the class of dually-weighted GFTs, we specify the precise form of the M-sector of
the various kernels. We shall leave the G-sector unspecified for the moment, dealing with specific
cases in section 4.
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Definition 3.17 (dual-weighting matrix). The dual-weighting matrix sequence,{ Ap; } >0, is a sequence of
invertible matrices (where M denotes the size of A ;) which satisfy the condition'”:

lim tr((.AM)k) = 51 (51)

M-

In the remainder we suppress the index M in the dual-weighting matrices.

Remark 3.18 (dual-weighting mechanism). The implementation of the dual-weighting mechanism places
certain restrictions on the kinetic, interaction and boundary kernels:

— Thekinetic kernel takes the form:
K(gp 8,5 My, m2) = R(gp 8 My, mZ) D_l(mh mZ)) (52)

whereK is constant across myj, myj € M — {0}, foreach j € {1...., n}. In other words, K only depends on
whether the edges are real or virtual. Meanwhile, D factorizes across the edges:

D(my, my) = [] s with d=((1) i’t) (53)

j=1

The condition on K means that the value it attains only depends on whether the edges are real or virtual. The
zero entries in the d-matrix are the manifestation of non-mixing of real and virtual edges. The dual-weighting
matrix A is the truly significant player, as it will be responsible for restricting the spin foam molecules in the
large-M limit.

— The interaction kernel takes the form:

_ . . 110
Yo(g; m) = Vo(g; m) 1 (m), where 1(m) = H - and i= (0 I)' (54)
ij
T isthe M x M identity matrix and the function V only depends on whether the edges are real or virtual.
— Meanwhile, the boundary kernels take the similar form:
By ({8, ms}v) = By ({gys molp) W{ms}w),  where  1({ms}w) = [] imjmic (55)
(i) (a)

andB only depends on whether the edges are real or virtual.

Of course, in true GFT style, one could shift the dual-weighting matrix to the interaction kernels, that is,
swapping I for A in the interaction kernel, while simultaneously swapping.A for 7 in the kinetic kernel.

12 . . . . . - . . . e
The trace invariant information contained within an MXxM matrix .4 can be characterized in a number of ways, perhaps most familiarly
through its M eigenvalues, which arise as the roots of the characteristic equation y , (t) = 0, where:

x4 () = det(tT — A). (47)

However, a less succinct way to package this information is in the traces of matrix powers: tr (.Ak ), where0 < k < M. To see this, notice that
one can rewrite the characteristic polynomial as:

r(d) k-1 0 w0
. w(£) uw) k-2 0

()= Y (=1 Mt (A A),  wh Aa=L 5 ; : : (48)
XA ,E) r ( ) where k! tr (Akil) tr (Ak72) tr (Ak—S) 1

tr (Ak> tr (A"’l) tr (Ak’z) v tr (A)
The eigenvalues are determined in terms of the traces and vice versa. In the large-M limit, it is clear therefore that one may impose an infinite

number of conditions on the matrix traces.For concreteness, let us consider as a specific sequence {.A , } the diagonal matrices
Awm ) = (=1)"M~Y25,,,s. These fulfill the conditions equation (51) since for odd k

mm’

— 00

“((Am)k) =M 0 (49)
M
and for even k
uf(an) ) = a2 (50)

which equals one for k=2 and tends to zero in the large-M limit for k > 2. For more uses of the dual-weighting mechanism see [47] and
references therein.
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Accordingly, in this realization, the boundary kernels should also contain the dual-weighting matrix to ensure
the correct propagation of virtual edges.

Now, back to the definition of the dually-weighted GFTs:

— Then, the class of dually-weighted GFT's is defined via :

ZDW—GFT = fde e_5[¢] (56)
with:
1
S[®]= > f [dg] Z(ﬁ(gl; my) K(g, &5 11, ma) ¢ (gy; ma)
[m]

n+1

+2 [ 141 Y, Volgs m) ﬂ b (g5 m;). (57)

— Atrace observable can be estimated perturbatively, generating series of the type:
__ 1 -s[@]
(0606 ) = p—— [ D2 0y[9)...04 @] ¢

1 .
= z oA m; 2). (58)
mEfon,s

& (m)=Ul,b;

As has been stated repeatedly, these series are in principle catalogued by labelled simplicial #n-molecules

W € 9, 5. However, the label-dependence'’ permits the collation and repackaging of the amplitudes
attached to the various labellings of each unlabelled simplicial #-moleculem € 91, 5. In the large-M, as one
can see in a moment, the label information plays an important role and must be made explicit once more.

Proposition 3.19 (large-M limit). I the large-M limit of the DW-GFT, the observable expectation values possess
perturbative expansions in terms of simplicial n-molecules within the dually-weighted subclass 9, s_pw (remark
2.37)
. . N _ 1 =
&TJOW. O"1>Dw_cm = Z - E)A(m, 2). (59)
meM,,s-pw

) (ﬁ)=|_li=1 E,‘

Proof. According to the definition of the amplitudes A (m; 1), withm € 9, s, in the perturbative sum (58), the

dual-weighting part of the amplitude factorizes across the vertices € V and for each vertex, denoted by A, it
takes one of two values:

1 for ¥ real.

tr| J] A| for ¢ virtual. (60)
(79)
More precisely, the amplitude A (m; 1) contains contributions from all the labelled counterparts ™ of m. In such
acounterpart, if ¥ is real, then the dual-weighting amplitude is unity, while if ¥ is virtual, the contribution is the
trace of a power of A, with one A-factor for each edge (#7) incident at v. Due to the dual-weighting property

(51), the second contribution vanishes in the limit M — oo unless there are precisely two/one edge(s) incident
at this internal/boundary vertex v. This is exactly the defining property of 9t,, s_pw (remark 2.37). O

Remark 3.20 (molecular interpretation). proposition 3.19 allows one to recast the perturbative series generated
by the DW-GFT in the large-M limit as a series catalogued by more generic molecules. This follows directly from
the reduction accomplished by the projection map 77, s_pw : ﬁn, s_pw — I (remark 2.42). From
proposition 2.43, I, s_pw does not cover the whole of 907, but only a subset " = IT, s_pw (ﬁn,S_DW). The

' For example, one could tweak the coupling constants to depend more sensitively on the reality/virtuality of the various edges of the
bisected graph. In that case, one would really have to catalogue the sum explicitly in terms of the elements of 91, s.
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perturbative series can indeed be rewritten as a sum over spin foam molecules:

A},iinw<og‘ OE/>DW—GFT - mem;cfm C*ff (m)

8 (m) =L, 7 s-DW ( Gi)

A (m; 2). (61)

Having said that, note that every collection of boundary graphs drawn from B can be evolved within this
DW-—GFT. Should one wish to include a larger set of effective molecules from 21, this could be easily obtained
by incorporation of more interaction terms with supportonB,, ;1 = ¢ (', 5).

In the quantum gravity context, this means that DW-GFTs are effectively GFT's describing physical inner
products and correlations of various quantum gravity states with support on arbitrary graphs, which are
estimated using perturbative series catalogued by spin foam molecules of the most general combinatorics.

Remark 3.21 (3d example revisited). Let us look again at the scenario of remark 3.14. From the dually-weighted
viewpoint:

— Theinterpretation is three-dimensional, thus one should take #n = 3, with afield ¢ : (G x M)* — R.

— The pyramid observable detailed in (31) has, among its realizations in the dually-weighted model, the
following one based on the graph b, illustrated in figure 21 (see the corresponding atom, figure 11) and
composed out of six fields:

Op[@] = f[dglz[m][Bb(g; m) (g M) (g, ma)p (g5 m3)p (g ma)P(gss ms) P (g me).  (62)
Where:

By (g; m) =B (312g2_11’ 82385, 854853 81481 815851 > 825852 836863 8acer» 8s68es s M M1y

My3, W32, M3y M43, M1y, M1, Mys, Msy, Hias, Ms), M3e, M3y Mgy Mes, Hses Mes). (63)

This packages together a number of observables, depending on the labels M. The observable of interest is
precisely the configuration where the labels 7154 and m5 are non-zero (indicating a virtual edge), while the
rest are zero (indicating real edges). Upon reduction of this virtual edge, one arrives at a graph in 90t with one
4-valent patch and four 3-valent patches just asin (31). One has represented the square base of the observable
(31) in terms of two triangles in the dually-weighted model.

Remark 3.22 (extensions). The dual-weighting mechanism can be applied to other classes of models:

— The construction above works for arbitrary valence 1, and can clearly be extended to multiple GFT fields, if so
wished. In models for D-dimensional gravity, we would like the valence of the graphs associated to quantum
states to be D, as in simplicial models, and for the same reasons. One should note, however, that in even
dimensions D, only effective nodes of even valency are then obtained after the dynamical contraction of
virtual links. We have already noticed this combinatorial restriction in the previous section (proposition
2.32).If one wants to generate graphs of truly arbitrary valence, using the same mechanism, one can easily do
so by incorporating a single odd-valent field species, endowed with a D-dimensional interpretation. Again,
this doubling of fields does not change the general features of the construction.

— Also, notice that the coloured extension of the GFT formalism can be directly applied to the dually-weighted
model, provided the valence 7 is chosen to be the space—time dimension D. This can be done, as we have seen,
either by choosingalso a simplicial GFT interaction, which brings one back to the standard simplicial setting,
or by choosing as GFT interactions only the tensor invariant ones. The result of doing so is, in both cases, a set
of GFT Feynman diagrams dual to combinatorial complexes whose full homological structure can be
reconstructed from the colour information.

Remark 3.23 (model building). The choice of group field determines that the kinematical state space of the
theory is populated by quantum states with support on arbitrary n-valent labelled graphs. The dual-weighting
mechanism is the part of the dynamics that ensures that those states are evolved by spin foam molecules that
reduce properly to arbitrary spin foam molecules. The precise choice of GFT action, incorporating the dual-
weighting mechanism, is then a matter of model building. In particular, depending on the choice of interaction
kernels, some classes of graphs, present in the kinematical Hilbert space, can be suppressed dynamically.

— Therefore, one possible criterion for model building stems from the wish to suppress or enhance specific
combinatorial structures. Conversely, one may want to start from the simplest set of GFT interactions that
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Figure 21. The graph b composed of six unlabelled 3-patches.

ensures that all kinematical states participate to the quantum dynamics. We have proven that simplicial spin
foam atoms, in the context of the dually-weighted theories, satisfy this criterion.

— Another criterion that might determine the choice of GFT interaction combinatorics emerges from the
correspondence between the interaction kernels and the matrix elements of a canonical LQG projector
operator in the Fock representation, emphasized in [21]. Prescribing the latter implies a choice for the former.
In general though, one should expect there to be infinitely many non-trivial matrix elements, meaning
infinitely many GFTinteraction kernels, unless these are restricted by very strong symmetry requirements. As
aresult, the real quest centres on pinpointing the subsets of interactions that are physically relevant at different
scales, in particular, to define the theory in some deep UV or IR regime. In other words, the problem becomes
that of GFT renormalization [29-34]. In fact, one should expect that the renormalization group flow will
select a finite set of GFT interactions to define a renormalizable GFT model. Moreover, this dictates which
new terms are relevant for the quantum dynamics at different scales. In turn, this prescribes a renormalizable
LQG dynamics.

To sum up this section, we have defined a class of GFT's admitting boundary states with higher-valent, node
structure. Rather than increasing the number of fields and interactions, we have extended the data set of the
usual simplicial GFT. Utilizing these extra arguments to invoke a dual-weighting matrix, in a limit of the theory,
we acquire the effective dynamical content of arbitrary spin foams and boundary states.

4. Spin foam models

The previous section explored the space of GFTs, concentrating on the development of a class whose
perturbative expansions were effectively catalogued by general spin foam molecules. From our point of view, the
next important step is to demonstrate that such dually-weighted models are compatible with quantum
gravitational dynamics, in particular, spin foam quantum gravity models.

There is a class of gravitational spin foam models in four-dimensions (D = 4) in the framework of simplicial
molecules 9t p s, of which the EPRL [10, 11, 48], the Freidel-Krasnov [12] and the Baratin—Oriti [ 13] models are
members. Moreover, all these models permit an extension to arbitrary spin foam molecules 9t [39], which we
call KKL-extension in the case of the EPRL model.

In this section, we shall first review gravitational spin foam models, in their generalized context , giving
explicit details of the EPRL model. We shall show that a multi-field GFT straightforwardly assigns these
amplitudes in the perturbative expansion. We shall then define a dually-weighted GFT model that assigns the
same as effective amplitudes in the large- M limit.

4.1. Four-dimensional spin foam quantum gravity

Definition 4.1 (spin foam model). A spin foam model is a quantum theory defined by a partition function of the

following form:
Zg= ) W(mA(m), (64)
meM
o(m)=g
where:
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— Mis the set of spin foam molecules from definition 2.18, or one of its subsets;
— A (m)is the spin foam amplitude associated by the model to m; and

— W (m) is the spin foam measure factor that weights m in the sum over such molecules.

Remark 4.2. The distinction between W (m) and A (m) might appear quite arbitrary. However, they are
distinguished to highlight the fact that within the spin foam formalism, while derivations for certain amplitudes
A (m) can be given, one must prescribe W (m) by hand. As one might expect, group field theory provides a
complete prescription for both A (m) and W (m).

Remark 4.3. In the operator spin foam formalism [42, 43], the spin foam amplitude is specified by the sets of
variables and operators that it associates to the components (vertices, edges, faces) of m. Here, those components
may be identified through combinations of the various verticesv € V,7 € V,7 € V,where V, = VUV U V
(remark 2.19). The variables are often drawn from some group-related structures, namely, group/algebra
elements or group representations. Sets of variables and operators are denoted by £ and O, respectively, while
individual variables and operators are denoted byl and o.

Remark 4.4 (gravitational spin foam model). A gravitational spin foam model is a spin foam model related to the
Holst—Plebanski action, that is, it includes some quantum version of the simplicity constraint. An interesting
feature at this stage is their locality property. They are local in the sense that the amplitude associated to a spin
foam molecule m factorizes into operators associated to each of the vertices in V), which depend only on the
labels attached to ‘nearby’ components, more precisely, components that contain a given vertex of 13,,. Explicitly:

A(m) = 22 H oo(Eo) H oﬁ<£p) H ov(,ﬁv) . (65)

VeV vey vey

As stated above, we shall focus on a particular four-dimensional gravitational spin foam model: the EPRL model
[10, 11, 48] and its KKL-extension. Once more, we emphasize that the same construction, including the
combinatorial generalization, applies to the other spin foam models as well.

Remark 4.5 (variables). In the group representation, the relevant variables are the group elements g ., € G,
G = SO(4), where (viw) € F, is aface of the molecule m. Itis convenient to identify certain subsets of variables:

£,=g,= U{gm;: (VW) € Fm},
%
£y=g, = U{ng: (1/1719) € T’m},
Lw=gy =‘ng N g (66)

The operators are functions of these group elements. For the EPRL model in the group element realization, only
the edge and vertex operators are non-trivial, thatis, O = 9, U O;.

Consider avertex# € P thatarises in the molecule after the bonding of two patches p, = p, = p and denote
the two edges in € incident at 7 by (v 7) and (v, 7). The operator associated to 7, which is usually called the edge
operator in the spin foam literature, is defined as follows:

Definition 4.6 (edge operator). The EPRL edge operator associated to v is:

07 (gv) = Pp v gvzv) f th'V thZV H [Z[ eJ tr]t(«ngv hVﬂ/ S]v No hVZV & vv)]’ (67)

e= ( 1719) €&y
where:

— pisthe boundary patch associated to the vertex ¥ (it may contain loops);

— J istheset of y-simple representations of g = Lie(G) = s0(4) = su(2), X su(2)_:

J= {]Elrrep(g) J= (]+, '_) with?—;:%and]’i EN/Z}. (68)
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— §; v is the gauge-covariant simplicity operator:

4y [y, 4 i) G| (i

@ [y, 4 Jin) i) G| (i

whered; = (2j, + 1)(21 + 1),]j,7) are su(2) coherent states'?, S%; is the unit two-sphere in the three-
dimensional hypersurface perpendicular to the 4-vector Nand Np = (1, 0, 0, 0).

o (r>1),
S],N = (69)

, (r<b,

Remark 4.7. Note that the edge operator factorizes across the edges of the intermediary patch p. Moreover, these
factors are independent of the edge being part of aloop. It is also worth elaborating on the gauge-covariance of
the simplicity operator, since this is not usually emphasized in the literature. The operator S y transforms as:

Simwn=hS;n b7, (71)
whereh € SO(4)andh > N denotes the rotated 4-vector.

Definition 4.8 (vertex operator). Consider a vertexv € V. The EPRL vertex operator associated to v is:

0 (8)=Y%() =TI (8w ) (72)
(ﬁﬁ)ﬁbﬂe&

whereb = (1}, &) is the bisected boundary graph associated to the spin foam atom in m containing v.

Notice that this is just the vertex operator of a BF spin foam model. This confirms the general fact that the
ingredients of a spin foam amplitudes can be freely shifted from vertex to edges, corresponding to a parallel shift
from interaction to kinetic term in the corresponding group field theory formulation.

Remark 4.9 (epre spin foam amplitude). These operator kernels are the constitutents of the EPRL spin foam
amplitudes. Their convolution, guided by the connectivity of the spin foam molecule m, to which they are
assigned, produces the amplitude A (m) for that molecule:

A = [1dg) TT oo TT ovs)- (73)

= vey

Remark 4.10. A direct quantum gravity interpretation follows after attaching a four-dimensional reference
frame to each vertex v, 7 and v. Then, one thinks of each h,; as the parallel transport matrix from v to #, while the

.+ are the parallel transport matrices from 7 to ¥ before explicit bonding of the spin foam atoms; hence, the v-
dependence arises. The ordered product of elements h,; arising in faces containing v, constitutes a holonomy
representation of the curvature tensor. The group elements transport pre-geometric quantities, which are
encoded in the elements of the representation moduleslabelled by J;. At the vertices 7, simplicity constraints are
applied to these elements (via the operator §; y ), to ensure the propagation of a geometric subset of
information.

Remark 4.11. The advantages of the strand diagram realization comes to the fore at this juncture, since the edges
and vertex operators factorize over the strands, namely:

p(gVIW’ gvzw; h"l‘;’ h"ﬁ) = Z tr/&(gvlw h;é S]ﬁ,Nv thV gv_z117v>’ (74)
ed
v(gvﬁﬁ’ gm?zﬁ) =06 (gm?lf/’ gvf/Zf/)‘ (75)

Remark 4.12. Since the edge operator is not a projector, in order to have the functional form of the kinetic
kernel, one should explicitly invert the propagator: K, = [P;l. We do not engage in this task for two reasons: (i)
the kinetic operator is of secondary interest to the propagator, since the propagator determines the Feynman
amplitudes; (ii) within a field theory approach, one can transfer the simplicity constraints from the propagator
to the the interaction kernels, leaving a projective propagator that may be directly incorporated as the kinetic
kernel.

14
51 (2) coherent states are defined as:

lji) = n lij) (70)

where/jj) is the highest weight state in the irrep jof su (2) andn = exp (7i - &) € SU(2), & are the generators of su (2).
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Thus, we have sufficient information already to lay out a multi-field GFT for the KKL-extension of the
EPRL model.

Definition 4.13 (multi-field EPRL GFT). A multi-field EPRL group field theory is defined by a partition function
of the form:

ZME—EPRL = f[dCD] e Swr-reRLl @l (76)
where:
Sur-ene (0] = Y [ 18] by (8,5) Ko (80 805 4 (805) + T 20 [ 181 Weg) [T 80)- 77)
peP beB ey

4.2. Dually-weighted EPRL GFT

At this point, we have at our disposal all the tools necessary to incorporate the EPRL model within the DW-
GFT formalism. In the following, we shall deal exclusively with 4-regular simplicial structures B4 5,24 s and
M 4 5, as well as their labelled counterparts.

Definition 4.14 (dually-weighted variables). The dually-weighted EPRL variables are:

— thegroupelements g . € G = SO(4), where(viv) € Fy;

— the dual-weighting indices m,; € {0, ..., M}, where(viv) € Fr;
With the distinction of real and virtual structures comes the responsibility of designing amplitudes that
assign the correct effective amplitude to the underlying real spin foam molecule. To this end, we shall first state

the operators and later show their efficacy.

Definition 4.15 (dually-weighted edge operator). The dually-weighted EPRL edge operator is:

05(g; my) = [P(gw 8y, My mm), (78)
where:
P (0 Zoi 1 ) = [ sy T [ P (8arir S s s ) (i 150)
e=(v7)es,
+ Pvirmal(gvlwa L9 Mo hm) dirual (725,995 mm&)], (79)
and:

— p = p,, the unique unlabelled 4-patch;

— the gravitational factors are:

preal(gv,ﬁ?’ gvz1717; th“” th17> = ZIVEJ trk(gvlw h;é Sh,No hVﬁ gv_ﬂl;(,)’ (80)

pvirtual(gvlﬁ?’ 8v5i5 Mo thV) = 5<g1/1\717 hgi) 5<h1’2‘7 gv_lew>’ (81)

— the dual-weighting factors are:

(10 (00
dreal = (0 0) dv1rtual = (0 .A) (82)

Remark 4.16. Notice that dual-weighting factors satisfyd = deq; + dyirtual- The real and virtuallabels encode
the conditions of the dual-weighting mechanism outlined in remark 3.18. Moreover, the real gravitational factor
coincides with the original p from equation (74). Thereby, the virtual strand factor decouples the information
assigned to the edge in one atom, from that assigned with the other.

Definition 4.17 (dually-weighted vertex operator). Consider a bulk vertex v. The dually-weighted EPRL vertex
operator is:
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0y (gﬁ my,) = Wh(gv) my), (83)

where b is the unique unlabelled 4-simplicial bisected boundary graph and:

Wb(&n mv) = H I:Vreal(gm-,l(,a gWZ{,> ireal(mw?lﬁ: mviz\"/) + Vvirtual(gw;l{,) gvng) ivirtual(mvﬁ\?a mvvﬁ)]- (84)
fE€Fn
fov

The factors are:
Vreal(gv‘-,l{,) gW2{,> = Vyirtual (gm;l‘;: gw;z‘;) =0 <gv1;l1;; gm;ﬂ;): (85)
and:

. 1 .
lreal = (O (O)) lyirtual = (8 2) (86)

Definition 4.18 (dually-weighted EPRL GFT). A dually-weighted EPRL group field theory is defined by a
partition function of the form:

ZpW-EPRL = f[d@]e_sUW—EPRL[m] 7)

where:

Spw—eprL [P] = l / [dg] Z(/)(gl; my) K(gp &£ My, my) ¢(g23 my)

2 (m]
n+l1
+2 [ 1dg) Vel ) [T (g5 ms)- (89)
[m] j=1

Now, it is time to confirm that these operator assignments lead to the correct effective amplitude.

Proposition 4.19. In the large-M limit, the effective amplitude assigned by the dually-weighted EPRL model to the
underlying real spin foam molecule coincides with that of the original EPRL model.

Proof. Utilizing proposition 3.19, in the large- M limit, the contributing molecules are restricted to those, for
which their virtual vertices v € V C W, liein precisely four virtual faces f € F;,. The amplitude is then:

A = [1dg1 Y TT ostgs mo) [T o8 m)- (89)

[m] veV veY

Then, the key calculation examines the effect of integrating out the variables associated to components in the
neighbourhood of this vertex v. More precisely, the amplitude assigned by the dually-weighted EPRL model to a
molecule containing such a vertex has the following factors:

VVirtual(gvlvlzo’ gvlvzm‘z) Pvirtual(gvlmfr’ 8,095 Mooy hvz?u)

Vvirtual(gvzvlzw gvmlo) Prirtual (gVﬂ?zﬂ;’ &vyiy > s Pusig )’ (90)

where the configuration is illustrated in figure 22.
Manipulating the amplitude, one may simplify the factors in (90) by integrating with respect to the elements
thesetg,:

fdgvA[EXpression(90)] = 5(hm]2 hv_léﬂ) 6(th1;]2 hv_zlm). (91)

This integration can be completed since the elements in g, only occur within the four factors (90). Now, one is
free to use these two §-functions to integrate out the variables h,,;, and h,,,;, , setting h, 5, = h,, 7, and

hy,s,, = hy,s, in the remaining factors within (89) to arrive at EPRL amplitude assigned to that molecule
obtained from m by molecular reduction along the virtual structure. We illustrate the reduction in figure 22. []

Remark 4.20 (imposing greater simplicity). Another tempting proposal is to impose the simplicity constraints
on both real and virtual structures. The motivation is that, assuming a polyhedral interpretation is available, the
polyhedra corresponding to the states of the model will now be decomposed into geometric simplices, the
geometricity of each being ensured by the imposition of the simplicity constraints. In the DW-GFT above, this

36



10P Publishing

NewJ. Phys. 17 (2015) 023042 D Oriti et al

V21

® |l

V1 @ ® U2

V21

Figure 22. Integrating out a virtual face.

amounts to altering the propagator (79), using:

Pvirtual(gvlfn‘/’ 8,995 thV’ hvﬂ) = Preal<gv11717’ &y, thV’ h"217) = z tr]ﬁ(gvlw h‘;é S]O,No hV217 g1/_2117\,> (92)
LEeJ

This defines, a priori, a different-spin foam model, with an expected higher degree of geometricity. A motivation
for this change stems from the logic that polytopes that are constructed from geometric simplices are likely to be
more physically viable than polytopes constructed from simplices that are only partially geometric (in the sense
that the simplicity constraints are not imposed on some of their virtual sub-facets).

Of course, it is worth clarifying that the resulting model can be interpreted in two equivalent ways:

— The perturbative series are catalogued by molecules in 971 5. In the large-M limit, the surviving molecules are

again those of ﬁ& s—pw- Within this model, reduction does not lead to effective amplitudes that coincide
with those assigned by the EPRL model to generic spin foam molecules.

— The perturbative series are catalogued by molecules in 91 5. Due to the coincidence of the strand factors in
(92), the dual-weighting part of the amplitude factorizes completely from the gravitational part, as well as
over the vertices v :

tr Hd:l:tr HA, (93)

() ()

where the product is over those edges (77) incident at v. Thus, one get the original simplicial EPRL model,
with a slight modification of the weights by a factor (93) for each vertex v.

5. Conclusions

The main purpose of this work has been to show that it is possible to define GFT's compatible with LQG in its full
combinatorial generality, that is for quantum states defined on arbitrary boundary graphs, in particular with
vertices of arbitrary valence.

In order to set the ground for our GFT construction, we gave a precise and exhaustive classification of the
combinatorial structures entering both group field theories and spin foam models, along with their associated
boundaries. To this end we used a physicochemical dictionary, with spin foam molecules obtained as bondings
of atoms which are in one-to-one correspondence with these general boundary graphs. In particular, we believe
that our classification complements, but also clarifies and completes the one in [39], which formed the basis for
the first combinatorial generalization of spin foam models. Moreover, our spin foam molecules turn out to be
combinatorial two-complexes in the precise sense of abstract polyhedral complexes, settling the question of
determining the kind of spin foam complexes a theory should be based on when in an abstract, non-embedded
context. (This is atleast a starting point, given that considerations about physical symmetries may require extra
data to encode D-dimensional topologies). We argued that these are the relevant combinatorial objects, in terms
of which the most general GFTs and spin foam models are defined.

With the ground properly set, it is straightforward to define a generalization of the well known simplicial
GFT using arbitrary atoms. We presented explicitly how this can be obtained by a multi-field GFT. Since it is
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extremely difficult to turn such a formally defined field theory, with a potentially infinite number of fields, into
an analytically manageable one, with the elaboration of concrete calculations and physical insights, we argued
that there is need for an alternative.

Indeed, we introduced dually-weighted GFT's, which generate arbitrary structures, at the expense of a slight
modification of the easiest simplicial GFT. Therefore, they are as controllable as the latter. The definition of DW-
GFT has been based firstly on the combinatorial possibility: (i) to decompose arbitrary boundary graphs into
simplicial ones—this permits their realization with single group field; and furthermore (ii) to decompose
arbitrary spin foam atoms and molecules into simplicial atoms that correspond to a simplicial GFT interaction.
These facts were proven in the combinatorics section in every detail.

Secondly, DW-GFT is based on the possibility to implement such a definition at the dynamical level. To this
end, we provided an example of a useful application of tensor model techniques to LQG. We realized a dynamical
mechanism for this decomposition of spin foam molecules in terms of a dual-weighting on a simplicial GFT.
The effect is that in the large- M limit only those molecules (still built from labelled, simplicial atoms) that can be
canonically reduced to arbitrary spin foam molecules survive. In this way, the DW-GFT gives rise to an effective
perturbative series over arbitrary molecules with the corresponding generalized spin foam amplitudes as
dynamical quantum weights.

Finally, we showed that in both cases the implementation of the dynamics of gravitational spin foam models,
generalized to arbitrary complexes, is possible. While the implementation along the lines we illustrate is generic,
we provided as an explicit example the spin foam operators in the case of the EPRL amplitude, thus obtaining a
dually weighted GFT whose Feynman amplitudes match the KKL spin foam amplitudes. Moreover, we have
given also a modification of the same model, resulting from a better justified imposition of geometricity
conditions, as suggested by our dually-weighted construction.

There are several tasks one might wish to tackle, on the basis of our results.

Concerning the geometry of gravitational models, the obvious first issue is the implementation of simplicity
constraints. We showed that their implementation in the known models can be straightforwardly applied to the
GFTs generating, directly or effectively, arbitrary spin foam molecules. This is in the same spirit as [39].
However, known models are all derived from arguments resting on the classical geometry of simplices. A spin
foam atom with arbitrary combinatorics, on the other hand, corresponds rather to a polytope. Taking the more
general combinatorics of LQG in earnest, it follows that a version of the simplicity constraints related to the
classical geometry of polytopes is needed. Of course, one is then left to deal with the independent matter of
quantizing any such geometricity constraints.

The topological structure of arbitrary molecules should also be considered more carefully. From the
simplicial case, it is well known that the good behaviour of a spin foam model of quantum gravity may rest upon
the spin foam molecules possessing an extension to a full D-dimensional topological structure. This is important
for the definition of a differential structure [49] and geometric quantities such as curvature, the control of
divergences [29-37], as well as for diffeomorphism symmetry [50-54]. A first question is therefore how these
issues translate to the case of polyhedral complexes. A straightforward solution to the issue might be to pass over
to coloured GFTs, which generate simplicial pseudo-D-manifolds. As we have shown, the DW-GFT can be
based on the coloured model without obstacle, and such formalism will then generate effectively all
combinatorial D-complexes in terms of their triangulations. Still, one may want an encoding of the topology of
general D-complexes directly at the level of generalized two-complexes, and this remains an interesting open
problem.

Besides these conceptual issues, the most important task is surely the investigation of the field theoretic
properties of DW-GFT. Among them, one would like to understand the large-N [24, 38, 55-59] and double
scaling [60] limits of our (coloured) DW-GFT and how it compares to the GFT theory without dual-weighting.
This would extend the results obtained in the context of tensor models. Next, the most important question is
probably renormalizability. As mentioned, there is no obstacle preventing the extension of the DW-GFT from
simplicial interactions to a sum over tensor invariant or bubble interactions. Investigating the renormalizability
of such models can therefore be carried out using the same techniques already applied in the GFT literature
[29-37].

Lastly, utilizing a recently proposed strategy based upon GFT condensates [61—-66], one can extract effective
cosmological dynamics directly from the fundamental GFT formulation. One should expect that a modification
of the combinatorial structures entering the microscopic dynamics would percolate directly to such effective
macroscopic dynamics. This may lead to interesting modification and could give an alternative way, alongside
renormalization analysis, to check the physical relevance and necessity of generalizing the combinatorics of
fundamental quantum gravity states and histories.
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Appendix A. Polyhedral complexes

The Feynman diagrams generated by GFTs are abstract combinatorial objects. It is therefore appropriate and
necessary to relate them to abstract combinatorial categories instead of the piecewise linear category. In this
appendix we will provide the definition for combinatorial complexes and show that spin foam molecules are a
certain subclass of these.

A generalization of the notion of finite abstract simplicial #-complex, briefly reviewed in (A.1), to finite
abstract polyhedral 7-complex is necessary to account for diagrams of more general GFTs. Providing such a
definition (A.3) based on the notion of abstract polytopes (A.2) and proving the relation with spin foam
molecules (A.4) is the main goal of this appendix.

To be clear, the goal is not to show that diagrams in any GFT are dual to some polyhedral 7-complex which is
certainly not true in general. The aim is rather to identify the diagrams themselves, that is spin foam molecules
and their subclasses (section 2), as polyhedral two-complexes (A.4). Then one could further specify subclasses of
polyhedral two-complexes which allow for an extension to higher n-complexes or for dual complexes of a
certain type.

A.1. Finite abstract simplicial complexes
To remind the reader on what is meant by a combinatorial complex and for the sake of a self-contained appendix
we provide the well known definitions [67] for the simplicial case in this section.

Definition A.1 (combinatorial simplicial complex). A finite abstract simplicial complex C$™ is a collection
(multiset) of ordered subsets 6 of a set of vertices C(p) = {v}, v2,..., ¥y, } such that

(C1) foreverys € C*™ande¢’ C calsos’ € C¥™,

Suchao’ C oiscalleda (boundary) face of o. All subsets of cardinality p + 1are called p-simpliceso, € C f;,r)n

and the dimension 7 of C*™ is defined as the maximal cardinality of simplices in C*'™. Thus C*™ = Up=a € f;,r)nw .
and itis also referred to as a simplicial n-complex.

Remark A.2 (intersection property). For piecewise linear cell complexes [4] a second defining property is that
all intersections of cells (simplices in this case) are again part of the complex, in the language of C¥™:

(C2) ife, 6/ € C™ theno N 6’ € C™,

In the case of abstract simplicial complexes (C2) follows trivially since such intersections are subsets and thus
boundary faces which are in C*™ due to property (C1).

A special class of interest are complexes which are pseudo-manifolds. For this the definition common in the
context of simplicial complexes in the topological sense [68] extends directly to the combinatorial context
(where again cells are simplices)[41] :

Definition A.3 (simplicial pseudo-manifold). A finite abstract simplicial #-complex C*™ is a (finite abstract
simplicial) n-dimensional pseudo-manifold if it has the following three properties: It is

(M1) dimensional homogeneous (also referred to as pure) : for each cell in the complex there is a -cell in the
complex which itis a face of.
(M2) strongly connected : Any two n-cells can be joined by a chain of n-cells in which each pair of neighbouring

cells hasa common n-1-face.

15 Every non-empty C™ contains the empty set which is considered as the unique (—1)-simplex, thus C{'™}, = {@} # @.
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(M3) non-branching : Each n-1-cell is face of at most two 7-cells. In the latter case the #1-1-cell and all its faces
are called boundary faces of the complex'°. If there are no boundary faces the complex is called a closed
pseudo-manifold.

The natural ansatz for a generalization from simplicial to polyhedral is to consider a complex built from
collections of abstract polytopes instead of simplices. This poses a twofold challenge. An abstract p-simplex
defined by an ordered set of its p + 1 vertices implies at the same time subsimplices given by all its subsets. For an
abstract polytope the subcell structure has to be specified in a different way. There is a well known alternative way
in terms of a partially ordered set (poset) [67] :

Definition A.4 (poset representation). For a finite abstract simplicial complex C*'™ the face poset F (C*™) is the
poset whose elements consist of all nonempty simplices of C*™ and whose partial order relation is the inclusion
relation on the set of simplices.

It will turn out in the following that this is the appropriate conceptual framework to extend from simplicial
to polyhedral.

A.2. Abstract polytopes
Fortunately there exists a combinatorial definition of abstract polytopes [69, 70] :

Definition A.5. An abstract n-polytope, i.e. an abstract polytope of finite dimension n > —1,isa poset(P, < )
obeying the properties (P0)—(P3) below. Elements of P are called faces. Totally ordered subsets (called chains)
have length p if they contain exactly p + 1faces. If they are maximal they are referred to as flags of P. Then the
first two defining properties are

(P0) P contains aleastand a greatest face, denoted f ; and f, .

(P1) Eachflaghaslengthn + 1(which defines the dimension).

For the statement of the second two defining properties a few more definitions are needed. The section of two
faces f, g of Pis defined as

flg==1{hlh € P,f<h<g} (94)

Each section of Pis itself a poset obeying the first two properties, with an appropriate dimension (it turns out that
itis even an abstract polytope if Pis). Thus, identifying each face fwith the section over theleast face F = f /f_,
each face can be attributed a dimension as well. Faces different from f_| and f, are called proper faces of P. As
usual one calls 0-faces vertices and 1-faces edges.

A poset P of dimension n with properties (P0) and (P1) is defined to be connected if eithern < 1,orn > 2
and for any two proper faces f, g of P there is a finite sequence of proper faces f = hg, hy, ..., hg_1, hy = g of P
such thath;_, and h;are incident fori = 1, ..., k. In this context incidence means thath,_; < h,orh,_; > h,,.

Furthermore Pis called strongly connected if each section of P (including itself) is connected.

With this we can state the remaining two defining properties:

(P2) Pisstrongly connected.

(P3) All one-dimensional sections of P are diamond-shaped; thatisforeveryp = 0, 1, ...n — 1,iffand gare
incident faces of Pof dimension p — land p + 1, then there are exactly two p-faces h of Psuch that
f<h<g.

Remark A.6 (Low dimensional polytopes). Up to n = 2 there is a very manageable amount of abstract
polytopes:

e Every 0-polytope is a single vertex, having the form P = {@, v} with@ < v.

e Because of (P3), every 1-polytope consists of a single edge, P = {@, v, v5, e} with@ < v; < e, i =1, 2

e Every finite 2-polytope is a polygon [69] of the form shown in figure 23."".

'® The notion of boundary face defined in this way applies to any combinatorial complex, not necessarily fulfilling (M3).
"7 Thereis only one infinite 2-polytope [69].
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Figure 23. Hasse diagram of the n-polygon (left) and of the pyramid (right) in a representation of faces in terms of vertices (remark
A.8).

Remark A.7 (Hasse diagrams). A good way to visualize posets P are Hasse diagrams (graphs drawn on the plane
where vertices represent the elements of Pand and edges the transitivity reduced ordering relations, i.e. there is
an edge for every two faces f < g in P for which thereisno hin Psuch that f < h < g which goes upwards from f
to g). In particular, since posets P obeying (P0) and (P1) are graded posets P = | J;__; R, a canonical way to
draw the Hasse diagram is with all elements of each P; on the same height in the plane (figure 23).

Remark A.8 (vertex representation). The face set of a graded poset P = [ ;:_l Ry (if countable) can be
represented by a collection of (ordered) sets in analogy to abstract simplicial complexes in the following way:
Vertices are labelled in an arbitrary way by natural numbers, Rg) = {v, 1, ...}. Then, every face fis represented
by the ordered set(v;, v;,,...) consisting of all vertices v;; < f ' In particular, the least face f_,isrepresented by
z.

Obviously, the representation in terms of vertices of the face poset of a simplicial complex is just the
simplicial complex itself. For a polytope, the crucial difference to a simplex is that its p-face sets are not
necessarily of cardinality p + 1, and in particular (C1) does not hold.

Remark A.9 (duality). A nice property of abstract polytopes is that they have a natural dualization by flipping
around the partial order. The finite graded structure, connectedness and diamond shape of 1-sections guarantee
that the dual poset is in fact an abstract polytope as well [69]. In terms of Hasse diagrams the dual polytope is
represented by the same graph but read from bottom up to top instead of from top down to bottom (figure 24).

A.3. Abstract polyhedral complexes

Itis now possible to define polyhedral complexes as collections of abstract polytopes in the same spirit as
simplicial complexes are collections of simplices. To the best of our knowledge, this has not been considered in
the literature so far. Technically, the essential difference between simplicial and polyhedral is the defining
condition (C1) which guarantees that the cells are indeed simplices carrying the full structure of subsimplices.
While these are just subsets of vertex sets there, for polytopes the subcell structure has to be spelled out explicitly
in terms of the partial order relation.

Definition A.10 (Combinatorial polyhedral complex). An abstract polyhedral complex CP°Y is a poset which

(P0’) containsaleast face, denoted f ;,and

(CT’) foreveryelement f € CP°Y the section F = f /f_ is anabstract polytope.
Remark A.11 (properties of polyhedral complexes). A few comments on the so defined complexes are in order:

(1)Even though there is no single greatest face in an abstract polyhedral complex CPY, it is a graded poset
P = |J}=_i B, dueto the grading of the polytopes it consists of. If C poly is finite there are polytopes of a

maximal dimension 7 and C**Y = CP°Y can be called an abstract polytope n-complex.

(2) Therefore a representation of the partial ordering in terms of Hasse diagrams is possible.

18 . . . Cqs . Lo . . .
Note again that different faces might have the same vertex set, which is the reason why this representation is a collection, i.e. a multiset. To
distinguish explicitly an extra label is needed.
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Figure 24. Hasse diagram of the dual of the pyramid in figure 23 which is itselfa pyramid. Moreover this labeling corresponds to the
pyramid vertex in figure 20.

(3) Condition (C1’) implies that all faces of a polytope F C CP°Y are again polytopes in CP°Y, just because this is
true for any abstract polytope (definition A.5).

(4)For the same reason the intersection property (C2) is true, i.e. that for any two faces f, g € CP°Y their
intersection as polytopes is again a polytope in CPY, f / f,Ng / f, ccrov,

(5)From the above properties it is obvious that the face poset F (C$™) of a simplicial n-complex is an abstract
polytope n-complex. Again one can represent the faces of a polyhedral complex by vertex sets as described in
remark A.8. For F (C3™) this gives back the original C$™ (up to vertex relabeling).

Now the conditions defining pseudo-manifolds can be directly applied to polyhedral complexes, where cells
are now the polytopes:

Definition A.12 (polyhedral pseudo-manifold). An abstract polyhedral 77-complex C$™ is an abstract
polyhedral n-dimensional pseudo-manifold if it has the properties (M1-M3) of definition A.3.

In fact, the manifold conditions (M1-M3) are implied by the polytope conditions (P1-P3). Showing this is
the crucial part of the following consequence:

Proposition A.13. Every abstract n-polytope P is an (abstract polyhedral) n-dimensional pseudo-manifold. The
boundary oP is a closed (n-1)-dimensional pseudo-manifold.

Proof. Let Pbe an abstract n-polytope. For n < 2 the proposition is trivial. Therefore let#n > 2 in the following.
The first part is rather straightforward: obviously, Pis an abstract polyhedral #-complex. Since P = f, /f_| isthe
single n-polytope in P (because of P0) and thus contains all other polytopes in P, (M1) and (M2) follow trivially.
In particular, all #-1-polytopes F = f /f_, € P are faces only of this single 72-polytope and hence are boundary
cells of P, proving (M3). Thus Pis a pseudo-manifold with boundaryoP = P — {f, }.

Since 9P still consist of polytopes (C1°) as sections over the unique least face f | € oP (P0’) which are of
maximal dimension#n — 1, it follows immediately that OP is a polyhedral 7-1-complex.

The proof, that oP is further a closed pseudo-manifold, is more illuminating. To this end the properties
(M1-M3) for aP will be shown to follow from the defining properties of P, (P1-P3).

(M1): let f € 0P bean arbitrary face of dimension0 < p < n — L. Sincealso f € Pandthus f | < f < f it
follows (P1) that there is a chain of length 7 in Pand hence a chain oflength n — 11in dP containingf.
Hence there is also an n-1-face gwith f < g.

(M2): the notion of strong connectedness in (M2) is much weaker that in (P2). In fact, (M2) already follows
from connectedness in the poset sense: since P is strongly connected (P2) it is also connected. This
implies in particular that for p = n — 1 every two p-faces have a finite sequence of p-faces incident along
p — 1 = n — 2 dimensional faces.

(M3): finally from (P3) it follows that in particular for every -2 -face f € P the section f, /f is diamond
shaped; that is, there are exactly two n-1-faces in Pwhich fis a face of.
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Thus, dP is a closed pseudo-manifold. O

A 4. Structure of spin foam molecules

Now the stage is set to analyse the structure of spin foam molecules, that is what kind of combinatorial
complexes they are. Defined as bonding of atoms consisting of triples of vertices, obviously they are simplicial
two-complexes. But since these triangular faces are only wedges of actual larger faces they turn out to be
simplicial subdivisions of polyhedral complexes and generalizations thereof.

In any case, with the understanding of the manifold conditions (M1-M3) it s clear that spin foam molecules
are homogeneous of dimension two (M1) and obviously strongly connected (M2). But since they are intended
to capture a higher dimensional structure of D > 2, in all interesting cases of spin foam atoms they are
branching.

In this section we discuss these statements in detail.

Proposition A.14 (spin foam molecules). Spin foam molecules are homogeneous, strongly connected simplicial
two-complexes.

Proof. Letm = (V,,, En, Frn) € M bea spin foam molecule. By definition (2.18), its vertex set comes with a
graded, tripartite structure V), = V' U ¥ U V and every face f € Fy, is defined by a triple of vertices

f= (v, % 7) € Vx P x V.Furthermore, according to definition 2.6, for f = (v, 7, #) € Fy, every pair of
vertices is an edge in €, concluding the proof of the defining condition (C1) of simplicial complexes.

By the same definition 2.6, for every vertexv € V), thereisaface f € F, such thatv € f, proving
homogeneity (M1). Finally, in (M2) holds since in an atom every pair of triangles is strongly connected and the
bonding transfers this property to the whole molecule. Thus m is a homogeneous and strongly connected
simplicial complex. O

Nevertheless, spin foam molecules are usually regarded as something more general than simplicial
complexes. Indeed one can consider our definition of the molecules as a triangulation of more general
complexes. This can be made precise in the following way: a simplicial subdivision'® of polyhedral complexes
can be defined exactly the same way as done in the case of simplicial complexes [67], by defining vertices for
every face and simplices for every chain, effectively subdividing all polytopes into simplices. Including
boundaries we introduce one modification to the standard definition, identifying the subdividing vertices of
each boundary n-1-cell with the subdividing vertex of the single 1-cell it is a face of:

Definition A.15 (simplicial subdivision). The simplicial subdivision of an abstract polyhedral 7-complex CP°Y is
the simplicial complex

ACPY = L {f fyf ] > o> o> o fy € CPWimy 12 1),

Here f, g € CPY areequivalent, f ~ g, ifand onlyifeither f=g or f € C%’:lyl) andg € C%’:)IY is the unique n-cell
suchthat f < g.

Remark A.16. Spin foam molecules have a very similar structure: Vertices # € P correspond to faces and
vertices 7 € V to edges, Therefore they can be regarded as simplicial subdivisions of some two-dimensional
objects. To determine their structure we define for a moleculem = (Y, Emy Fn) € Mwith Y, =V U V U 1%
the inverse to the subdivision, C™ = {@} U C(;) U C{}y U C(3), in the following way:

= C(5):="VY U Vs, is the set of bulk vertices and of boundary graph vertices on the boundary of m,
Vsm =V N Vsn.

— C{1):=Eint U Eex thatis internal edges, either between bulk vertices or a bulk and one boundary vertex in v,
Eint = { (vl, v2)| eV {(VIV), (vz, 17)} C é'm} U {(v, 17)| veV, ve 1_75m}
and boundary edges between two boundary vertices in V

19 . . . .. . P . . .
Even in the combinatorial topology context this is often called barycentric subdivision [67], even though there is no notion of centre in the
abstract setting. For this reason, and to highlight that it is a subdivision into simplices, we prefer to call it ‘simplicial subdivision’.
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Eot = {(171, 172)| IeP: (17119), (172, 0) € Sm}.

One can show that indeed the latter are edges on the boundary according to (M3). The internal edges are in
one-to-one correspondence to the vertices in V.

- Ch = { (ChHyN Uferm:OGf Hlve 9} is the set of unions of all triangles sharing a bisection point v € V.
These are either of the form (v, v,, ..., vk) for kverticesv; € V or, if they contain a boundary edge
(7, ) € Eexp> of the form (7, vy, v, W5, ..., Vi ). Due to the definition of bondings (remark 2.19) these are
the only two possibilities.

As this is a vertex representation, a partial ordering is given by the inclusion relations between cells in C™.
Itis then straightforward to show that AC™ = m.

Proposition A.17 (Loopless spin foam molecules). Loopless spin foam molecules without self-bondings are
simplicial subdivisions of homogenous, strongly connected polyhedral two-complexes.

Proof. Letm € 90 and consider C™ = {@} U Cfp) U C(1) U C(3). Trivially @ is the least face and elements of
C5) = VY U Vs and Cfl) are polytopes, being respectively vertices and edges build from those vertices. For the
proof that C™ is a polyhedral 2-complex, it remains to show that the elements of C(3), together with their subsets
inC™, are polygons.

Letv € mand f, = C5) N User,.7es f the corresponding face in C3). Consider first the case in which there
is exactly one bulk vertexv € V part of that face, v € f,. Then, since there are no self-bondings in m, the face has
the formCgy N (v, #, V) U (v, 7, V) = (v, #, 1) for#, 7, € Vs “Y, All the two-element subsets are edges in
C{1), thus the section f, /@ is a polytope in C™. One can then show by induction that every bonding taking # into
account effectively adds another v; € V to f, and edges of the so defined polygon are still in C{}). Finally, it may
then, for|f, N V| > 1occur that # and #, are bonded to each other and thus are not part of f, anymore. But still
the section f, /@ € C™. This concludes the proof of (C1’) and of C™ being a polyhedral complex.

Finally, homogeneity and strong connectedness of C™ are directly induced by m having these properties as a
simplicial complex (proposition A.14). O

Remark A.18. From the proof of proposition A.17 it is clear that spin foam molecules, in their full generality,
have to be described by an extension of the polytope concept which includes loops. Loops occur in self-bondings
of atoms as well as for patches of boundary graphs with loops, leading to faces with only one boundary edge.
Both cases can be easily included in a definition of generalized polytopes by loosening (P3), allowing two or one p-
faces in sections of p+1 with p-1 faces.

One can then prove that spin foam molecules 91 are simplicial subdivisions of generalized polyhedral
complexes. We are not presenting the details for this here because it is rather straightforward. Moreover, there
are good reasons to prefer polyhedral n-complexes to generalized polyhedral 7-complexes from a quantum
gravity perspective: While the former might have a higher dimensional extension to pseudo-D-manifolds
(D > n), thisis not expected for the latter. It has already been shown in the simplicial (n-regular) case that, with
the same extension, the loops in self-bondings lead to degeneracies such that there is no interpretation as
pseudo-D-manifolds [41].

In a GFT itis rather straightforward to implement the property that no self-bondings occur in the generation
of complexes. A complex field, together with interaction terms as functionals of either the field or its complex
conjugate are enough to generate bipartite graphs. In that case, no atom can be bonded to itself in the complexes
generated by the GFT. From this perspective, genuine polyhedral complexes are indeed the only combinatorial
objects occurring.
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