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Abstract
Groupfield theories represent a second quantized reformulation of the loop quantum gravity state
space and a completion of the spin foam formalism. States of the canonical theory, in the traditional
continuum setting, have support on graphs of arbitrary valence. On the other hand, group field the-
ories have usually been defined in a simplicial context, thus dealingwith a restricted set of graphs. In
this paper, we generalize the combinatorics of group field theories to cover all the loop quantum grav-
ity state space. As an explicit example, we describe the group field theory formulation of theKKL spin
foammodel, as well as a particularmodified version.We show that the use of tensormodel tools
allows for themost effective construction. In order to clarify themathematical basis of our construc-
tion and of the formalismswithwhichwe deal, we also give an exhaustive description of the combina-
torial structures entering spin foammodels and group field theories, both at the level of the boundary
states and of the quantum amplitudes.

1. Introduction

Thefield of non-perturbative, background independent, quantum gravity has witnessed several important
developments in the last decades.

In particular, loop quantumgravity [1–3] emerged as a prominent candidate in the endeavour to fully
describe the kinematics of quantumgeometry. At its base lie quantum states that can be defined in a purely
algebraic and combinatorialmanner, a complete basis for which is provided by spin networks: graphs labelled by
irreducible representations of the Lorentz or the rotation group. Furthermore, a quantumdynamics for such
quantumgeometric states can be rigorously defined, although both its solution and the extraction of effective
classical dynamics are fraught with difficulties.

On the covariant side, spin foammodels [3–9] rose to prominence both as a new approach to lattice
gravity path integrals and as a covariant definition of the dynamics of loop quantum gravity states. They are
similarly based on combinatorial and algebraic structures. Space–time is replaced by a (simplicial) complex
and discrete quantum geometric data. This data comes in the form of group/algebra elements or
representations, labelling various components of the complex. It plays the role of the discretemetric,
reproducing at the covariant level the histories for quantum states. In the case of four-dimensional quantum
gravity, themost actively studiedmodels are the Engle–Pereira–Rovelli–Livine(EPRL) model [10, 11], the FK
model [12] and the BOmodel [13].

Group field theory (GFT) [14–20] also took amore central role in the quantum gravity landscape, in
connection to loop quantum gravity and spin foammodels. These are quantum field theories on group
manifolds characterized by a peculiar non-local pairing of field variables in their interactions andmotivated
from both the canonical and the covariant perspective. In fact, on the one hand, they represent a second
quantized, Fock space reformulation of the loop quantum gravity state space. In this capacity, spin network
vertices play the role of fundamental quanta, created/annihilated by field operators.Meanwhile, their
canonical quantum equations of motion (e.g. theHamiltonian constraint equation) are encoded in (a sector
of) the quantum equations of motion for the n-point functions of the corresponding field theory [21]. On
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the other hand, they provide a completion of the spin foam formalism. A spin foammodel, defined on a
given (simplicial) complex, encodes a finite number of degrees of freedom. This presents the issue of
defining a quantum dynamics for the infinite degrees of freedom that one expects a quantum gravity theory
to possess. One strategy, following the lattice gravity interpretation of spin foammodels, is to define some
refinement procedure for the spin foam complex. Thereafter, one looks for fixed points as the renormalized
amplitudes flow under coarse graining [22]. A second strategy focusses on defining an appropriate sum over
spin foams, including a sum over the complexes themselves [4–6, 23]. This is more directly in line with the
interpretation of spin foams as histories of spin networks. GFTs provide a natural and elegant way to define
this sum. In fact, for any given spin foammodel, there is a GFTmodel, whose perturbative expansion around
the Fock vacuum, generates a series catalogued by spin foam complexes, weighted by the appropriate
amplitude. In other words, the spin foam complexes arise as GFT Feynman diagrams and spin foam
amplitudes as GFT Feynman amplitudes. Thus, GFTmodels complete the spin foam picture andmoreover,
anyGFTmodel defines a complete spin foammodel. If one then keeps inmind that GFTs give a second
quantized formulation of canonical LQG, one obtains a direct link between the canonical and covariant
approaches [21].

Such sums over complexes is not reserved solely for theGFT formalism. Tensormodels [24] are a
generalization ofmatrixmodels [25] to dimensions greater than two. They can be seen as providing a stripped-
down version ofGFTs, reducing them to purely combinatorialmodels. Indeed, the group-theoretic data are
dropped altogether; equivalently, this can be seen as restricting the discrete geometric data to the graph-distance
metric andworkingwith equilateral triangulations. As a result, the amplitudes depend only on the
combinatorics of the simplicial complexes. This allows one to focus principally on the sumover complexes.
Indeed,many of the recent advances in tensormodels exert increasing analytic control over such series. Some of
these advances have been already extended to themore involvedGFT framework. Thus, one should expect that
techniques from tensormodels could play a greater role in the context of spin foammodels and loop quantum
gravity, since one needs to exert analytical control over the spin foam sum, as well as the combinatorial structure
of quantum states. This paper provides one example of this fruitful exchange.

An important issue concerns the combinatorial structure of graphs and complexes and directly affects
the relation between the canonical and covariant approaches. On the one hand, the set of graphs supporting
quantum states of the canonical theory includes graphs of arbitrary valence. This stems partly from its
historic origin as a direct quantization of a continuum gravity theory. On the other hand, spin foammodels
have often been defined to evolve quantum states with support on a restricted set of graphs, those thatmay be
endowed with a simplicial interpretation. Such a choice has several motivations: it facilitates calculations; it
is in this restricted context that their discrete geometric properties are best understood, in particular, the so-
called simplicity constraints that reduce topological BF theory to gravity [26–28]; such states arise as a
superselection sector for certain LQGHamiltonian constraints. This also implies that the boundary data in the
covariant setting are simplicial. Importantly, current GFTs share the same type of boundary states and
amplitudes.

To ensure a bettermatching between canonical LQG and covariant spin foammodels, as well as to have aGFT
formulation for both approaches, onemaywant to generalize the combinatorial structures appearing in spin
foammodels andGFT to arbitrary graphs and complexes. A secondmotivation arises from the study of physical
applications and the continuum limit, where itmay beworth possessing a larger class ofmodels at the outset.
Afterwards, physical rather than aesthetic ormathematical reasons restrict the combinatorial structures taking
part. This has been already done, at least partially, in the context of GFT renormalization [29–37], following
developments in tensormodels [24, 38].

From another perspective, thematching with canonical LQG could also be achieved the other way
around, i.e. by working with a simplicial version of the canonical theory. Rather than dealing with a
quantization of continuum general relativity (GR), one views continuumGR arising only as the effective
theory of the quantum dynamics for fundamental structures that are intrinsically discrete. From this point
of view, it makes sense to start with the simplest possible discrete structures, provided they are general
enough to recover continuummanifolds in some approximation, and generalize them only if and when
necessary.With respect to this criterion, simplicial complexes are sufficiently general. Let us emphasize
that the other reason for restricting to simplicial complexes (and fixed-valence graphs) is practical.
Controlling the sums over complexes and dealing with arbitrary superpositions of graph-based states is
complicated enough when their combinatorics is restricted. A generalization would seem, a priori, to make
things worse.

While the reluctance to complicate thingsmay explain the delay in developing combinatorial generalizations
of spin foammodels andGFTs, there is no obstruction,mathematical or conceptual, to doing so. In fact, a
generalization of current spin foammodels, in particular the EPRLmodel, to a larger set of complexes was
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provided in [39]. The aimof this article is to show that theGFT framework is also completely comfortable with
the generation of complexes evolving arbitrary spin network states.

More precisely, our results are the following:
We give an extensive and exhaustive description of the combinatorial structures entering spin foammodels

andGFTs, both at the level of the boundary states and of the quantumamplitudes. To this end, we define spin
foamatoms andmolecules as structures that are directly adapted to the needs of spin foams andGFT. In
addition, we also investigate and detail the fundamental properties of combinatorial complexes in amore
precise,mathematical sense, introducing the concept of abstract polyhedral complexes as a generalization of
abstract simplicial complex to include abstract polytopes. This prepares themathematical foundation and the
intuition for theGFT construction.Moreover, we believe it is of intrinsic value, clarifying, relating and extending
several results in the literature.

We generalize the combinatorics of GFTs through twomechanisms. Thefirst proposal constitutes a very
formal (and thereby somewhat trivial) generalization of theGFT formalism to one based on an infinite number
offields. Having said that, thismulti-fieldGFT generates series catalogued by arbitrary two-complexes, while
arbitrary graphs label quantum states. This is a direct counterpart of the KKL-extension of gravitational spin
foammodels. It shows the absence of any fundamental obstruction to accommodating arbitrary combinatorial
structures. However, one does not expect such afield theory to be useful since the sumover complexes appears
nomore tamed than before.

More interesting andmuchmoremanageable is our second construction. As is well known, the standard
simplicial GFT contains an interaction based upon a two-complex thatmay be interpreted as the dual two-
skeleton of aD-simplex. Remarkably, at the two-complex level, arbitrary two-complexes can be decomposed in
terms of this simplicial two-complex. Thus, the standardGFT is sufficient to generate arbitrary two-complexes.
However, the subtle issue is to assign correct amplitudes. This is solved by amild extension, wherein one
augments the data set overwhich theGFT field is defined, so as to exertmore sensitive control over the
combinatorial structures generated by the theory. This is known as dual-weighting and permits one to tune the
theory to a regime, inwhich the perturbative series are catalogued by appropriately weighted arbitrary spin
foams (not just simplicial spin foams).Here we accomplish two things. First, we give an explicit GFT
formulation of theKKL-extension of the EPRLmodel (and of other similar spin foammodels). Second, we
propose a new (set of)model(s) incorporating similar constraints that are arguably bettermotivated from the
geometric point of view.

The presentation of these results is structured as follows. In section 2, we set the stage for defining the
generalizedGFTs, discussing the combinatorics structures uponwhich they are supported, as well as
introducing all the relevant concepts for the constructive way spin foammolecules (combinatorial two-
complexes) are generated inGFTs as a bonding of atoms determined by their boundary graphs. In particular,
we show how these graphs andmolecules can be decomposed into graphs and atoms of a simplicial kind. In
the appendix, we show that these combinatorics are indeed the ones of combinatorial two-complexes, that is,
the n = 2 case of abstract polyhedral n-complexes. Then, in section 3, we review the definition of GFTs and
rephrase them in terms of the generalized combinatorics language. The definition ofmulti-field GFTwhich
generates arbitrary spin foammolecules is thereafter straightforward. For the implementation of dually-
weighted GFTs, we detail the dual-weightingmechanism that realizes, in a dynamicalmanner, the
decomposition of genericmolecules in terms of simplicial building blocks. Finally, in section 4we show how
gravitational spin foammodels incorporating the relevant simplicity constraints in their operators can be
generalized to both themulti-field GFT as well as the dually weighted GFT. As an example we present the
details for the EPRL-simplicity constraints.

2. Combinatorics of spin foams

The graphical and topological structures, upon which spin foammodels have support, tend to have a
rather molecular structure. This has been noted and explained in detail in [40]. The coming section
includes a self-contained description of these structures, one that increases its utility within the group
field theory framework. Moreover, while we have consciously opted for a physicochemical naming
convention, rather than the cephalopodal counterpart used in [40], we stress that its use is for purely
intuitive purposes.
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Given the technical nature of the coming section, we present a synopsis of themain points.

One starts with a set of boundary graphsC that provide support for loop quantum gravity states. For a graph
c C∈ , one arrives at the corresponding bisected boundary graphb c Bβ= ∈( ) by bisecting each of its edges.
The graphb can be augmented to arrive at the corresponding two-dimensional spin foam atoma b Aα= ∈( ) .
This spin foam atoma is the simplest spin foam structure withb as a boundary:b aδ= ( ).Moreover, the bisected
boundary graphb can be decomposed into boundary patches p P∈ . The boundary patches are important
because it is along these patches that atoms are bonded to form composite structures, known as spin foam
moleculesM. The boundary (δ) of thesemolecules are (generically a collection of) graphs inB.Moreover, the
molecules are the objects generated in the perturbative expansion of the group field theory.

From theGFTperspective, however, one looks for as concise away as possible to generate such structures. It
emerges that the complexity of theGFT generating function can be infinitely reduced by considering labelled
∼( ), n-regular, loopless (L) graphsC

∼
n,L. The labels are associated to each edge and drawn from the set

real virtual{ , }, while looplessmeans that the terminus of any edge does not coincide with its source. For this set
of objects, one can then follow an analogous procedure to generateB͠n,L, A͠n,L andMn,L.

There is a surjection C Cπ ⟶∼
:n n,L ,L , meaning that each graph inC is represented by a class of graphs in

C
∼

n,L. This surjection can be extended toB͠n,L and A͠n,L but not themoleculesMn,L. However, one can identify a

subset M M⊂−n n,L DW ,L, for which one can extendπn,L to a surjection M MΠ ⟶− −:n n,L DW ,L DW . Thus,

everymolecule inM is represented by a class ofmolecules inM −n,L DW .

The key now is that the patchesmaking up any graph inB͠n,L come from afinite set of patches P͠n, called n-

patches. Using these patches one can pick out afinite subset of simplicial n-graphsC C⊂∼ ∼
n n,S ,L, that are based on

the complete graph over +n 1vertices.B͠n,S, A͠n,S andMn,S follow as before.

WhileC
∼

n,S,B͠n,S and A͠n,S arefinite sets, the set of simplicial spin foammoleculesMn,S is infinite and

contains a subsetM −n,S DW whose elements reduce properly tomolecules inM. But the setM −n,S DW does not

coverM through some surjection, butmaps onto a subset. To cover all ofM, one needsM −n,L DW. Having said

that, (i) there is a decompositionmap  M M⟶− − −D :n n n,L S ,L DW ,S DW and (ii) every graph or collection of

graphs fromB͠n,L arises as the boundary of somemolecule inM −n,S DW. As a result,M −n,S DW is sufficient to
support a spin foamdynamics for arbitrary LQGquantum states.

The forthcoming construction is separated into six parts. Thefirst and second catalogue the basic building
blocks or atoms, alongwith the set of possible bonds thatmay arise between pairs of atoms. These structures are
drawn directly from those used in loop quantum gravity. Both the set of atoms and the set of their bonds are very
large and inspire an attempt tofind smaller subsets, introduced in the third and forth part, that still probe the
whole space of graphical structures in some precisely defined sense which is explained and proven in the fifth and
sixth part.

After all these technicalities wewill discuss the relation of the two-dimensional spin foamatoms and
molecules to higher dimensional topologies in a seventh subsection. Finally wewill close this section
emphasizing that thewhole construction can be equivalently carried out in the language of stranded diagrams
which is the usual one used in theGFT literature and is totally equivalent to themore LQGoriented language of
boundary graphs and spin foam atoms used in this work.
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2.1. Part 1: catalogue the basic building blocks
This part focusses on defining the structure underlying loop quantum gravity and spin foams:

Definition 2.1 (boundary graph).A boundary graph is a doublec =  ( , ), where is the vertex set and is the
edge (multi)set2, comprising of unordered two-element subsets of 3, subject to the condition that the graph is
connected.

The set of boundary graphs is denoted byC. Indeed this is just the set of connectedmultigraphs.

Remark 2.2.One should note here thatmulti-edges (multiple edges joining two vertices), loops (edges whose
two vertices coincide) and even 1-valent vertices (vertices with only one incident edge) are allowed. Thus,C
constitutes a very large set. However, such graphs arise within loop quantumgravity, can be incorporated within
the groupfield theory framework and so, in principle, serve as an appropriate starting point. Later, this set can be
whittled down to amoremanageable subset.

Definition 2.3 (bisected boundary graph).A bisected boundary graph is a double,b b b=  ( , ), constituting a

bipartite graphwith vertex partition 
b ∪=   , such that the vertices ∈ v̂ are bivalent.

The set of bisected boundary graphs is denoted byB.

Proposition 2.4.There is a bijection C Bβ ⟶: .

Proof.Given a boundary graphc C∈ , the bisectionmap β acts on each edge = ∈ e v v¯ ( ¯ ¯ )1 2 , replacing it by a pair
of edges v v v v{( ¯ ˆ), ( ¯ ˆ)}1 2 , where v̂ is a newly created bivalent vertex effectively bisecting the original edge. Thus,
under the action of β :

– 
b ∪⟶ =    , where is the set of vertices bisecting the original edges ofc;

– b⟶ = ⋃ =∈   v v v v e v v{( ¯ ˆ), ( ¯ ˆ) : ¯ ( ¯ ¯ )}ē 1 2 1 2 is themultiset of newly bisected edges4.
This clearly results in an element ofB and the constructive nature of themap assures its injectivity.

Given a graphb B∈ , removing the vertex subset and replacing the edge pair v v v v{( ¯ ˆ), ( ¯ ˆ)}1 2 by v v( ¯ ¯ )1 2 results
in an elementc C∈ such that c bβ =( ) . Thus, β is surjective.‘ □

Agraphc C∈ and its bisected counterpartb B∈ are presented infigure 1.

Remark 2.5.The bipartite property of the graphsb B∈ means that the pairs b∈ vv( ¯ ˆ) are ordered and thus,b is
quite naturally a directed graph.

Figure 1.Aboundary graphc and its bisected counterpartb.

2
Amultiset is an extension of set concept, in which elements are allowed to occurmultiple times.

3
For a loop, the two-element subset is itself amultiset vv( ¯¯).

4
Note that a loop = ∈ e vv¯ ( ¯¯) is replaced by themultiset of edges vv vv{( ¯ ˆ), ( ¯ ˆ)} and thus b is amultiset.
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Definition 2.6 (spin foamatom).A spin foam atom is a triple,a a a a=   ( , , ), of vertices, edges and faces. It is
constructed from the pair b α( , ), whereb B∈ andα is a bulkmap sendingb to:

– a b∪=   , where = v{ } is a one-element vertex set, containing the bulk vertex;

– a b∪=   , where
b

= ⋃ ∈∈  vu v{( ) : }u . contains precisely one edge for each vertex in b , joining it

to the bulk vertex v. Thus, u takes values in and .

– a b= ⋃ ∈∈  vvv vv{( ¯ ˆ) : ( ¯ ˆ) }v̂ , where vvv( ¯ ˆ) is the prescription for a face in terms of the three vertices on its
boundary.

One denotes the set of spin foam atoms byA.

Remark 2.7 (boundarymap).By construction B Aα ⟶: is a bijection.Moreover, onemay define a boundary
map A Bδ ⟶: , such that fora constructed from b α( , ), thismap is defined as a a bδ α= =−( ) ( )1 .

Thus, as a result of the bijective property of themapsα and β, the following proposition holds:

Proposition 2.8.The setA of spin foam atoms is catalogued precisely by the setC of boundary graphs.

An illustrative example of such a structure is presented infigure 2.

Remark 2.9.Aneat alternative to the above construction is given in [40].One embeds the graphb B∈ in the
bounding three-sphere of a 4-ball. One performs a radial deformation retraction of this ball to a point, denoted
by ∈ v . This retraction restricts to the graph, where one denotes the path traced out by the vertex ∈ v̄ and

∈ v̂ as edges ∈ vv vv( ¯), ( ˆ) respectively, while the surface traced out by an edge in b∈ vv( ¯ ˆ) is interpreted as a
face a= ∈ f vvv( ¯ ˆ) . In contrast, the definition given earlier was chosen to be purely combinatorial.

2.2. Part 2: bonding atoms to buildmolecules
The second step is to describe the procedure bywhich these atoms bond to form composite structures, thus
completing the unlabelled part of the diagram:

Definition 2.10 (boundary patch).A boundary patch is a double p p p p= =  ( , )v̄ , where:

– 
p p∪= v{ ¯} ,p ≠ ∅ ;

– 
p p= ∈ vv v{( ¯ ˆ) : ˆ } is amultiset of edges where each vv( ¯ ˆ)occurs at least once and atmost twice.

Figure 2.A spin foam atom and its (bisected) boundary graph.

6

New J. Phys. 17 (2015) 023042 DOriti et al



Remark 2.11.Boundary patches are useful since they arise as the doubles p b =  ( ) ( , )v v v¯ ¯ ¯ , formed as the closure

of the star of ∈ v̄ , withinb B∈ .
Thus, b b∪= ∈ ∈  v v vv{ ¯} { ˆ : ( ¯ ˆ) }v̄ , and b= = ∈ e vv{ ( ¯ ˆ) }v̄ . Inwords, a boundary patch p b( )v̄ is a

graph containing v̄ itself, all boundary edges containing v̄ (the result of the star operation), as well as the
endpoints of these edges (the result of the closure operation). A simple example is depicted infigure 3.

The set of boundary patches is denoted byP.

Remark 2.12 (generators). For some subset of patches,P P⊆SUB , the set of graphs generated byPSUB, denoted
Pσ ( )SUB , is the set of all possible graphs that are composed only of patches fromPSUB.
Then, it is quite clear that:

Proposition 2.13.B Pσ= ( ).

Remark 2.14 (bondable).Twopatches, p b( )v̄ 11
and p b( )v̄ 22

, whether or notb1 andb2 are distinct, are said to be

bondable, if∣ ∣ = ∣ ∣ v v¯ ¯1 2
and∣ ∣ = ∣ ∣ v v¯ ¯1 2

(and thus, they have the same number of loops).

Definition 2.15 (bondingmap).A bondingmap, p b p bγ ⟶: ( ) ( )v v¯ 1 ¯ 21 2
, is amap identifying, elementwise, two

bondable patches such that:

⟶ − ⟶ − ⟶   { } { }v v v v¯ ¯ , ¯ ¯ , (1)v v v v1 2 ¯ 1 ¯ 2 ¯ ¯1 2 1 2

with the compatibility condition that for each identified pair ∈ ⟶ ∈ v vˆ ˆv v1 ¯ 2 ¯1 2, then

= ∈ ⟶ = ∈ e v v e v v( ¯ ˆ ) ( ¯ ˆ )v v1 1 1 ¯ 2 2 2 ¯1 2.

A simple example is illustrated infigure 4.

Remark 2.16.The compatibility condition ensures that loops are bonded to loops. In principle, slightlymore
general gluingmaps can be incorporatedwithin the group field theory framework, corresponding to loop edges
bonding to non-loop edges. However, these gluings are absent from the loop quantum gravity and spin foam
theories. Thus, there is nomotivation to include themhere.

Remark 2.17.Certainly, for two bondable patches, there aremany bondingmaps that satisfy the compatibility
condition.However, allmay be obtained from a given one by applying compatible permutations to the setsv̄1

andv̄1
.

Definition 2.18 (spin foammolecule).A spin foammolecule is a triple,m m m m=   ( , , ), constructed froma
collection of spin foamatoms quotiented by a set of bondingmaps.

Figure 3.Aboundary patch.

γ

Figure 4.Abondingmap γ identifying two bondable patches.
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Remark 2.19 (bonding example). It is worth considering the simple example of two spin foam atomsa1 anda2,

with respective bisected boundary graphsb aα= − ( )1
1

1 andb aα= − ( )2
1

2 and two bondable patches p b( )v̄ 11
and

p b( )v̄ 22
. Quotienting the paira1,a2 by a bondingmap p b p bγ ⟶: ( ) ( )v v¯ 1 ¯ 21 2

results in a spin foammolecule

m a a≡ ♯γ { , }1 2 :

m a a m a a m a a= ♯ = ♯ = ♯γ γ γ        { } { } { }, , , , , , (2)1 2 1 2 1 2

where♯γ denotes the union of the relevant sets after the identification of the elements of a a⊂ ⊂   ( , )v v¯ ¯1 1 1 1

with those of a a⊂ ⊂   ( , )v v¯ ¯2 2 2 2
. Thus, there exists still structure at the interface between the two bonded

atoms, specifically, p b p b p b≡ =( ) ( ) ( )v v v¯ ¯ 1 ¯ 21 2
. A realization of the above example is presented infigure 5.

Remark 2.20 (molecule boundary).The boundarymap δ can be extended to the spin foammolecule
m a= ♯ γ { } J{ } I , where I J, are index sets. mδ ( ) is identified as the subset of constituent boundary graphs,

a∪ δ∈ ( )j J j formed from the edges that remain unbonded, alongwith their vertices. In symbols:

m a m m= ⋃ − ⋃ = ∈δ δ γ δ δ
∈ ∈

    { }( )v v vv, ¯, ˆ : ¯ ˆ . (3)
j J i I

( ) ( ) ( ) ( )j i

Where p b p bγ ⟶: ( ) ( )v i v i¯ ¯i i1 1 2 2
and ∪=γ  v v¯ ¯i i i1 2

. In general, mδ ( )need not be connected, but it will be the

disjoint union of some set of bisected boundary graphs.Moreover, these boundary graphswill very rarely
coincidewith the boundary graphs associated to any of the constituent atoms.

If a spin foammoleculem has a non-vanishing boundary mδ ≠ ∅( ) , onemight also term it as a spin foam
radical. On the other hand, if mδ = ∅( ) ,m can be called a saturated or closed spin foammolecule.

2.3. Part 3: specifying to loopless, regular and simplicial structures
There are few obvious restrictions one can have on graphs, atoms andmolecules whichwill become important
later. These are loopless and regular structures as well as the restriction to a single type of spin foam atomwhich
we shall call simplicial. All of themmirror exactly the structure of themost general case. For example, loopless
structures are related in the followingway:

Definition 2.21 (loopless structures). Loopless structures are specified by:
A loopless boundary graph,c C∈ L, is ac C= ∈ ( , ) without edges from any vertex ∈ v̄ to itself, that is

for every ∈ v̄ : ∈vv( ¯¯) .
Their images under the bisectionmap β and thereafter the bulkmapα straightforwardly define loopless

bisected boundary graphsBL and loopless atomsAL, respectively.
For a graph inBL, all of its patches are obviously loopless. In fact, the loopless patches are uniquely specified

by n, the number of edges. Therefore, we call it an n-patch, pn, andwe have thatP p= ⋃ =
∞ { }n nL 1 .Moreover,

B Pσ= ( )L L , the loopless graphs are generated by loopless patches.
Through the bondingmaps γ, one constructs loopless spin foammoleculesML.

Figure 5.The bonding♯γ of two atoms along an identification of patches γ.
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Remark 2.22 (looplessmolecules). Looplessmolecules are indeed themost natural class of two-dimensional
combinatorial objects, since they are triangulations of a certain kind of abstract (i.e. combinatorial) polyhedral
two-complexes.We provide the definition of abstract polyhedral complexes in the appendix and prove their
precise relation toML in proposition A.17.

This alsomeans that arbitrary spin foammoleculesM, do not correspond naturally to two-complexes in
a combinatorial sense, exactly because they are containing loops. Nevertheless, from the quantum gravity
viewpoint, these structures are necessary to provide dynamics for themost general graph, uponwhich LQG

states are based.Moreover, abstract polyhedral complexes can be generalized tomatchM (proposi-
tion A.14).

Another important restriction concerns the valency of boundary graph vertices:

Definition 2.23 (n-regular structures).An n-regular boundary graphc C∈ n is a doublec C= ∈ ( , ) , for
which every vertex ∈ v̄ is n-valent. In otherwords, there are exactly n edges ∈ vv( ¯ ˆ) containing v̄. Analogous
to definition 2.21, the notion of their bisected counterpartsBn, the related n-regular atomsAn, as well as −n
regularmoleculesMn, is straightforward.

Remark 2.24 (n-regular and loopless).Combining these restrictions, one arrives atmuch simpler sets of graphs
Bn,L, atomsAn,L andmoleculesMn,L. In particular,B pσ= ( )n n,L , a single patch generates thewhole set. Since
the structure of a GFTfield is determined by a patch, these structures will play a role in singlefieldGFTs,
explained in detail in section 3.

Nevertheless, the simplest GFT is not only defined in terms of onefield, but also only one interaction termof
simplicial type. Thismotivates the following definition:

Definition 2.25 (n-simplicialmolecules).The set of n-simplicial moleculesMn,S consists of allmolecules, which
are bondings of the single spin foam atoman,S obtained from the connected graphwith +n 1vertices +Kn 1,

a b cα α β α β= = = +( )( ) ( ) ( )K: : ( ) : .n n n n,S ,S ,S 1

A complete graph is displayed infigure 6.

Remark 2.26 (clarification on the notion ‘simplicial’). Itmust be emphasized that the special class of n
-simplicialmoleculesM M M⊂ ⊂n n,S ,L L, like all other looplessmolecules, are polyhedral two-complexes.We
call them simplicial because each spin foamatom in itself can be canonically understood as the dual two-skeleton
of an n-simplex (seefigures 19 and 24, and the appendix). But this can be done only locally, since it has been
proven in [41] that not every simplicial spin foammolecule (referred to asGFT-gluing therein) can be assigned a
simplicial complex, for which themolecule arises as the dual two-skeleton.

Remark 2.27.Asmentioned at the outset of this section, the construction presented here is effectively very
similar to the operator spin network approach devised in [40], which in turn is based upon the language of
operator spin foams [42, 43].

For clarity, it is worth setting up a small dictionary between the two descriptions. To begin, loopless
boundary patches correspond to squids. Then squid graphs are defined as gluings of such patcheswhere gluing
vertices of a patch to itself is allowed. Thus, these arewhat we call bisected boundary graphs. Our definition of
patches including loops in general is necessary from aGFTperspective.Moreover, the set of squid graphs
considered in [40] corresponds to that subset of boundary graphswithout 1-valent vertices ∈ v̄ . However,
this is a choice and is easily generalized.

Figure 6.The complete graph over +n 1 vertices (n= 4).
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Squid graphs encode one-vertex spin foams through a retraction, whichwasmentioned above in remark 2.9
(in [40] also amore combinatorial definition is given), just as boundary graphs encode spin foam atoms. After
that, one-vertex spin foams are glued together by identifying pairs of squids, just like boundary patches are
bonded during the construction of spin foammolecules.

2.4. Part 4: labelled structures
The set of spin foam atomsA is efficiently catalogued by their boundary graphsC. However, this is a large
collection of objects and thusmotivates one to seek out sub-atomic building blocks that aremore concisely
presented but can nevertheless resemble all ofC.

This search is divided into two stages. This first stage examines the boundary graphs in terms of their
constituent boundary patches. The set of such patches is very large. Thus, the first stage will focus on
manufacturing amanageable5 set of patches, withwhich, none the less, onemay encode all the boundary graphs
inC.

Having accomplished this, the next stage examines the boundary graphs from the perspective of generating
themby bonding boundary graphs from amoremanageable set.

To set the stage, in this part we introduce labelled structures:

Definition 2.28 (labelled boundary graph).A labelled boundary graph, c̃ is a boundary graph augmentedwith a
label for each edge drawn from the set real virtual{ , }.

The set of such graphs is denoted by C
∼
and ismuch larger than the setC, since for a graphc C= ∈ ( , ) ,

there are ∣ ∣2 labelled counterparts inC
∼
.

Remark 2.29 (labelled structures).There are some trivial generalizations:

– The labelled bisected boundary graphs, denoted byb B∈∼ ͠ , are obtained using a bisectionmap β∼ thatmaintains

edge labelling. Thus, if c∈v v( ¯ ¯ ) ˜1 2 is a real (virtual) edge, then b cβ⊂ =∼ ∼
v v v v v{ ˆ, ( ¯ ˆ), ( ¯ ˆ)} (˜)1 2 is a real

(respectively virtual) subset, where v̂ is the bisecting vertex.

– The labelled spin foam atoms, denoted bya A∈∼ ͠ , are obtained using a bulkmapα∼, such that if v̂, v v( ¯ ˆ)1 and

v v( ¯ ˆ)2 are real (virtual), then so is vv vv( ¯ ˆ ¯ )1 2 . In otherwords, the faces inherit their label from the boundary

a bδ = ∼∼( ) , where δ α=∼ ∼−1.

– The labelled boundary patches, denoted by p P∈∼ ͠ , are bonded pairwise using bondingmaps γ∼ that ensure real
(virtual) elements bonded to real (respectively virtual) elements.

– With these bondingmaps, labelled spin foammolecules m M∈͠ follow immediately.

2.5. Part 5:molecules from labelled, n-regular, loopless structures
This part focusses on defining a projection πwhich relates labelled graphs to unlabelled ones by contracting and
deleting the virtual edges, as well as its restriction to the labelled, n-regular, loopless structures,πn,L,Πn,L and
Π −n,L DW, which can be shown to stillmap surjectively to arbitrary graphs andmolecules:

5
A set with a (small)finite number of elements.
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One can naturally identify the unlabelled boundary graphsC with the subset of labelled graphs that possess

only real edgesC C⊂∼ ∼
real . However, onewould like to go further and utilize the unlabelled graphs tomark classes

of labelled graphs. From another aspect, onewould think of this class of labelled graphs as encoding an
underlying (unlabelled) subgraphc C∈ .

To uncover this structure, one defines certainmoves on the set of labelled graphs:

Definition 2.30 (reductionmoves).Given a graphc C∈ ∼
˜ , there are twomoves that reduce the virtual edges of

the graph:

– given two vertices, v̄1 and v̄2, such that v v( ¯ ¯ )1 2 is a virtual edge of c̃, a contractionmove, removes this virtual edge
and identifies the vertices v̄1 and v̄2;

– given a vertex v̄ such that vv( ¯¯) is a virtual loop, a deletionmove is simply the removal of this edge. These inspire
two countermoves:

– given a vertex v̄, an expansionmove partitions the edges, incident at v̄, into two subsets. In each subset, v̄ is
replaced by two new vertices v̄1 and v̄2, respectively, and a virtual edge v v( ¯ ¯ )1 2 is added to the graph6.

– given a vertex v̄, a creationmove adds a virtual loop to the graph at v̄.

Thesemoves are illustrated infigure 7.

Remark 2.31 (projector).This allows one to define a projection C Cπ ⟶∼
: , which captures the complete

removal of virtual edges through contraction and deletion. It is well-defined, in the sense that contraction and
deletion eventuallymap to an element ofC (that is, the graph remains connected) and the elementc C∈
acquired fromc C∈ ∼

˜ is independent of the sequence of contraction and deletionmoves used to reduce the graph.

In turn, thismeans that the cπ− ( )1 partitionC
∼
into classes.

In fact, one is interested only in the n-regular ( >n 2) subsetC
∼

n. One denotes the restriction of π to these

subsets asπn. Note that theπn are no longer projections, since cπ (˜)n withc C∈ ∼
˜ n need no longer be n-valent.

Proposition 2.32 (surjections).Themapsπn have the following properties:

– Themap C Cπ ⟶∼
:n n is surjective, for n odd.

Figure 7.Contraction/expansion and deletion/creationmoves.

6
There is subtlety for loops, in that both ends are incident at v̄ andmay (ormay not) be separated by the partition.
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– Themap C C Cπ ⟶ ⊂∼
:n n even , is surjective for n even, whereCeven is the subset of boundary graphswith

only even-valent vertices.

Proof. First, one proves the results for the lowest values of n. For n=3, consider a graphc C∈ and say it
possesses anm-valent vertex ( >m 3). Then, onemay expand such a vertex to a sequence of 3-valent vertices
joined by a string of virtual edges. For a 2-valent vertex, onefirst creates a virtual loop and then expand the
resulting 4-valent vertex. For a 1-valent vertex, one simply creates a virtual loop. See figure 8 for an illustration of
these three cases processes.

For n even, one notes that theπn maps intoCeven since contraction and deletion both preserve the evenness of
the vertex valency. Specializing for amoment to the case of n=4, consider a graphc C∈ even. Once again,
examining anm-valent vertex inc (m even), onemay expand such a vertex to a sequence of 4-valent vertices
joined by a string of virtual edges. For a 2-valent vertex, onemay simply add a virtual loop. See figure 9 for an
illustration.

To generalize to arbitrary n odd (even), then one need only to create −n( 3) 2 (respectively −n( 4) 2)
virtual loops at each vertex. □

Remark 2.33. In effect, one has encoded the unlabelled graphs inC in terms of labelled n-regular graphs inC
∼

n.
The surjectivity result above implies that for n odd (even), each graphc C∈ (respectivelyCeven) labels an class

cπ − ( )n
1 of graphs inC

∼
n.

One can go even a step further, encodingC in terms of loopless, n-regular labelled graphs:

Remark 2.34 (surjection:πn,L).There exists a sequence of expansion and creationmoves that effect a (1-n)-

move. Consider an element ofC
∼

n that has (up to⌊ ⌋n 2 ) loops at some vertex v̄. Then, applying a (1-n)-move to
this vertex, one can remove all loops. The effect of this transformation is depicted infigure 10 for a vertexwith
n=4 and one loop. Thus, in each class cπ − ( )n

1 , there is a loopless graph. As for n odd (even), there is a projection

Figure 8.The expansion and creationmoves to arrive at a 3-valent graph.

Figure 9.The expansion and creationmoves to arrive at a 4-valent graph.

12

New J. Phys. 17 (2015) 023042 DOriti et al



C Cπ ⟶∼
:n n,L ,L (respectivelyCeven) such thatπn,L is surjective. Thus again, the boundary graphsc label classes

cπ − ( )n,L
1 inC

∼
n,L.

Remark 2.35 (atomic reduction).There is an obvious and natural extension of the contraction/expansion and
deletion/creationmoves, defined forc C∈ ∼

˜ in definition 2.30, to labelled spin foamatomsa A∈∼ ͠ :

– A contractionmove on the virtual edge c∈v v( ¯ ¯ ) ˜1 2 translates to: (i) the deletion of the virtual subset v{ ˆ, v v( ¯ ˆ)1 ,
v v( ¯ ˆ)2 , vv( ˆ), vv v( ¯ ˆ)1 , a⊂ ∼vv v( ¯ ˆ)}2 , as well as (ii) the identifications =v v¯ ¯1 2 and =vv vv( ¯ ) ( ¯ )1 2 .

– Adeletionmove on a virtual loop c∈vv( ¯¯) ˜ translates to the deletion of the virtual subset
a⊂ ∼v vv vv vvv vvv{ ˆ, ( ¯ ˆ), ( ¯ ˆ), ( ¯ ˆ), ( ¯ ˆ)} .

The expansion and creationmoves are similarly extended and they are illustrated infigure 11.
Quite trivially, onemay extend themapπn,L of remark 2.34 toa A∈∼ ͠

n,L. Thismap A AΠ ⟶͠:n n,L ,L ,

Π δ β π β δ≡ ◦ ◦ ◦ ◦ ∼∼− −
n n,L

1
,L

1
is surjective. Thus, eacha A∈ marks a non-trivial class a AΠ ∈ ͠− ( )n n,L

1
,L.

Remark 2.36 (molecule reduction).While the bonding of atoms in A͠ just follows the procedure laid out in
remark 2.29, the reduction of a labelled spin foammolecule possesses certain subtleties.Within a spin foam
molecule, two scenarios arise for a virtual vertex m∈ ͠v̂ :

mδ∉ ∼ ͠v̂ ( ): consider a virtual vertex v̂ with the virtual edges and faces incident at v̂, here denoted by
v v v v{( ¯ ˆ),..., ( ¯ ˆ)}k1 and v v v v v v v v v v v v{( ¯ ˆ), ( ¯ ˆ),..., ( ¯ ˆ), ( ¯ ˆ)}k k k12 1 12 2 1 1 1 , respectively. Following the rules laid

out in remark 2.35, a contractionmove applied to that virtual substructure (i) deletes v{ ˆ}, as well as
all edges and faces incident at v̂ and (ii) identifies ≡v v¯ ī and pairwise ≡+v v( ¯)ii 1 =+v v( ¯ )ii i1 + +v v( ¯ )ii i1 1 ,
for all ∈i k{1,..., }.
As illustrated infigures 12 and 13, this contraction only behaves well when k=2, that is, there are
two virtual edges of type vv( ¯ ˆ) incident at v̂. For other values of k, the resulting structure does not lie
withinM and therefore ultimately, it lies outsideM; the reason is that in am M∈ there are
precisely two edges of type = ∈ e vv( ¯) incident at each vertex mδ∉v̄ ( )while in the reduction of
a m M∈͠ in general there occur any ⩾k 2 edges at a vertex mδ∉ ∼ ͠v̄ ( ).
Moreover, the above condition ensures good behaviour under deletionmoves aswell.

mδ∈ ∼ ͠v̂ ( ): in this case, a similar argument reveals the necessity for precisely one virtual edge of type vv( ¯ ˆ)
incident at v̂ to obtain amoleculem M∈ upon reduction.

Figure 10.Use of a −n(1 )-move on an n-valent vertexwith loop to create a loopless graph (n=4 in the example).

Figure 11.A contractionmove on an atom.
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Remark 2.37 (dually-weightedmolecules). remark 2.36 instructs that one is not interested in thewhole ofMn,L

, but rather in the subset that possesses vertices ∈ v̂ with atmost two (respectively precisely two) virtual edges
incident at a vertex v̂. This set is denoted byM −n,L DW. The reason for this nomenclature will become clear in
section 3. Fortunately, the expansion/creationmoves act each time on a single vertex v̄, so that onemay define a
surjectivemap M MΠ ⟶− −:n n,L DW ,L DW . Inwords, each unlabelled spin foammolecule is represented in
M −n,L DW.

Remark 2.38.Anticipating theGFT application, it should be emphasized that thewhole construction is based on
only one single kind of labelled patches, the n-patch. In the labelled case this is not unique but there are2n n-
patches andwe denote their set as P͠n. Thuswe have thatB Pσ=͠ ͠( )n n,L .

2.6. Part 6:molecules from simplicial structures
Finally, we can show that it is even possible to use onlymolecules obtained frombonding labelled atoms of
simplicial type to recover all arbitrary unlabelledmolecules in terms of reduction:

In propositions 2.32, it was shown that all boundary graphs could be encoded in terms of labelled, n-regular,
loopless graphs.Moreover, from the spin foampoint of view these graphs occur as the boundaries of labelled

Figure 12.Contractionmovewith respect to a vertex v̂ incident to two virtual edges in amolecule.

Figure 13.Contractionmovewith respect to a vertex v̂ adjacent to three virtual edges as consequence of three bondings. The
contraction identifies three boundary vertices and the resulting vertex is incident to three bulk edges. Such a situation is not possible in
amoleculem M∈ .
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spin foamatoms A͠n,L and labelled spin foammoleculesM −n,L DW (see remarks 2.36 and 2.37).However, one
would also like to show that all possible boundary graphs arise as the boundary ofmolecules composed of atoms
drawn froma smallfinite set of types.

This can be achieved using the labelled version of simplicial graphs and atoms.

Remark 2.39 (labelled n-simplicial structures).Due to the label on each edge, there are + +2 n n( 1)( 2) 2 labelled n-
simplicial boundary graphs, denotedC

∼
n,S.

Through themaps β∼ andα∼, defined in remark 2.29, one can rather easily obtain the labelled bisected n-
simplicial graphsB͠n,S and labelled n-simplicial atoms A͠n,S, respectively.

Furthermore, label-preserving bondingmaps γ∼ give rise to labelled n-simplicial moleculesMn,S, and their

subclassM −n,S DW according to remark 2.37.

Remark 2.40 (atoms frompatches).One can use an n-patch p P∈∼ ͠
n n as the foundation for a bisected

simplicial n-graphb B∈∼ ͠
n,S in the followingmanner:

– A n-patch consists of a single n-valent vertex v̄, 1-valent vertices v̂ i with ∈i Iv̄ an n-element index set, and

labelled edges vv( ¯ ˆ )i .

– For each i, one creates a new vertex v̄ i, alongwith an edge v v( ¯ ˆ )i i with the same label as vv( ¯ ˆ )i .

– For each pair of new vertices v̄ i and v̄ j with ≠i j , one creates a new vertex v̂ ij, alongwith a pair of real edges

v v( ¯ ˆ )i ij and v v( ¯ ˆ )j ij .

The result is a simplicial n-graph. In amoment, it will be useful to distinguish the constructed simplicial n-
graph byb

∼
v̄ , the original n-patch by p p b≡ ∼∼ ∼v( ¯) ( )v v¯ ¯ , and newpatches by p b

∼∼ ( )v v¯ ¯i i
for ∈i I .

The aim is summarized in the statement:

Proposition 2.41.Every graph inC
∼

n,L arises as the boundary graph of a dually-weightedmolecule composed of
simplicial n-atoms.

Proof.The basic argument is fairly straightforward and goes as follows: given a graphc C∈ ∼
˜ n,L, one bisects it and

thereafter cuts it into its constituent patches; one uses remark 2.40 to construct a simplicial n-atom from each
patch: one supplements this set of atomswith bondingmaps that yield amolecule with c̃ as boundary. The
procedure is also sketched infigure 14.

Index:more precisely, consider a labelled, loopless, n-regular graphc C∈ ∼
˜ n,L, withc =  ˜ ( , ). It is useful to

index the vertex set by v̄i with ∈ ∣ ∣i {1,..., }. This induces an index for the edges; an edge joining v̄i to v̄ j is

indexed by e ,ij
a( ) where a non-atom index a( ) arises shouldmultiple edges join the two vertices.

Bisect: the graph c̃ has a bisected counterpart c b b bβ = =∼∼ ∼ ∼ (˜) ( , ). The vertex set 
b ∪=∼   , where is

the set of bisecting vertices. A vertex in is indexed by v̂ij
a( ) if it bisects the edge eij

a( ) of c̃.

Cut: the boundary patches inb
∼
are p b

∼∼ ( )v̄i
with ∈ ∣ ∣i {1,..., }. The patch p b

∼∼ ( )v̄i
is comprised of the vertex v̄i,

the n vertices v̂ij
a( ) and n edges v v( ¯ ˆ )i ij

a( ) . The indices of type j(a), attached to the n elements v̂ij
a( ) , form an n-element

index set Iv̄i
.

Each bisecting vertex ∈ v̂ij
a( ) is shared by precisely two patches.

Nowone cuts the graph along each bisecting vertex and considers each patch in isolation. This cutting procedure

sends each p b p⟶∼∼ ∼ v( ) ( ¯ )v iī
, where p∼ v( ¯ )i is a n-patch comprising of a vertex v̄i, n vertices v̂i

j a( ) and n edges

v v( ¯ ˆ )i i
j a( ) .

Thus, after cutting, a bisecting vertex v̂ij
a( ) is represented by v̂i

j a( ) in p∼ v( ¯ )i and v̂ j
i a( ) in p∼ v( ¯ )j .

Atoms: for the patch p∼ v( ¯ )i , the n superscript indices j(a) are that indexing set Iv̄i
, defined amoment ago.

Thus, onemay use remark 2.40 to construct, from p∼ v( ¯ )i , a simplicial n-graphb
∼

v̄i
and there after a simplicial n-

atoma∼v̄i
.

Through this process, one obtains a set of simplicial n-atoms,a∼v̄i
with ∈ ∣ ∣i {1,..., }. This set is denoted bya∼ ,
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since the atoms are in one-to-one correspondencewith the vertices ofb
∼
. Theywill be used to form a spin foam

molecule whose bisected boundary graph isb
∼
.

Bondingmaps: for each pair b∈ ∼
v̄i

j a
v

( )
ī
, b∈ ∼
v̄ j

i a
v

( )
¯j
, define a bondingmap

p b p bγ ⟶∼ ∼∼ ∼ ( )( ): (4)ij
a

v v v v
( )

¯ ¯ ¯ ¯
i
j a i j

i a j( ) ( )

⟶v v¯ ¯ (5)i
j a

j
i a( ) ( )

⟶v vˆ ˆ (6)i
j a

j
i a( ) ( )

while the remaining −n 1vertices in each patch are paired in an arbitrary way7 :

∈ − ⟶ ∈ −{ }{ }v k b I j a v l c I i aˆ : ( ) { ( )} ˆ : ( ) { ( )} . (7)i
j a k b

v j
i a l c

v
( ) ( )

¯
( ) ( )

¯i j

The set of bondingmaps is denoted γ , since themaps are in one-to-one correspondence with the bisecting

vertices of b
∼
.

Then, in themolecule m a= ♯ ∼͠ γ  , the only patches that remain unbonded are the original p∼ v( ¯ )i for

∈ ∣ ∣i {1,..., }.Moreover, after one relabels the identified vertices ≡ =v v vˆ ˆ ˆij
a

i
j a

j
i a( ) ( ) ( ) , one has truly come full

circle: the boundary of m͠, whichmay be extracted using remark 2.20, satisfies the relation m bδ = ∼∼ ͠( ) .

Dually-weighted: from remark 2.40, one notices that all edges added in the construction are real. Thus, the
molecule m M∈͠ −n,S DW. □

Proposition 2.41 has the following consequence:

Corollary 2.42 (molecule decomposition).There is a decompositionmap  M M⟶− − −D :n n n,L S ,L DW ,S DW.

Proof.Consider m M∈͠ −n,L DW. By proposition 2.41, one can decompose each of its atoms, leading to the image
of themolecule m͠ itself under decompositionmap −Dn,L S. □

Wenote an important limitation.

Proposition 2.43.The projection M MΠ ⟶− −:n n,S DW ,S DW isnot surjective.

We sketch our reasoning here. Consider a genericm M∈ and let m͠ be a representative in the class
mΠ −

− ( )n,L DW
1 . Then, m͠ consists of bonded spin foamatoms drawn from the set A͠n,L. According to proposition

2.41, every atom a A∈∼ ͠
n,L has a decomposition into simplicial atoms of A͠n,S. Just like in the decomposition

utilized in 2.41, it is possible to show that any decomposition requires one to add real structures in order to
maintain the integrity of the boundary graph under reduction.However, if one adds in real structures, then one
does not arrive back to the original atom/molecule after reduction, since reduction just amounts to contraction
and deletion of virtual structures.

Figure 14.Decomposition of an atomwith boundary graphc C∈ ∼
˜ n,L into simplicial atoms, sketched for the patches of two connected

vertices in c̃ and n=3.

7
As an aside, the bondingmaps are specified only up to permutations of these −n 1vertex pairings, leading to −( )n 1

2
choices for each

bondingmap.However, the resulting spin foammolecules possess the same boundary.
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2.7. Enhancingwith higher-dimensional information
Wepause to remark on the relationship between thesemolecular spin foam structures andD-dimensional
topologies. For clarity, we shall concentrate on n-regular structures.

The elements of A͠n,S possess atmost two-dimensional components, and so in principle have no information
about any higher-dimensional embedding. Such higher-dimensional componentsmust be added by some
mechanism. There exist two paths8 that onemay follow, both of which set n=D.

Remark 2.44 (D-dimensional structure by hand). In thefirst approach, one notes that spin foam atoms A͠D,S

form the dual two-skeleton to aD-simplex. Thus, at the atomic level, theD-dimensional structure can be defined
by hand once at the outset. As the result, the simplicialD-graphs implicitly encode the −D( 1)-dimensional
boundary of aD-simplex, while the simplicialD-patches are enhanced to −D( 1)-simplices. The tricky issue, of
course, comeswhen one bonds simplicialD-patches. These bondingmaps should be augmented to identify

−D( 1)-dimensional information.Withmany subtleties, these enhanced bondingmaps can be defined once at
the start and appliedmechanically throughout the bonding process. However, the spin foammolecules,
reconstructed in themanner, will generically encodeD-dimensional objects that are very ill-behaved from a
topological viewpoint [41, 45].

Remark 2.45 (D-dimensional structure from colouring).A second approach, which has gained a lot of
traction in recent years, is based upon so-calledD-coloured graphs [38]. Of course, thismeans defining yet
another set of boundary graphs, with yetmore labels, their associated spin foam atoms, bondingmaps and so
on. However, the definitions are like those given above, so we concentrate on their properties. Consider the set
of labelled looplessD-regular boundary graphsC

∼
D,L. Look for the subset that areD-colourable, in the sense

that onemay assign to each edge another label drawn from the set D{1,..., }, such that theD edges of each

simplicial D-patch have distinct colour s. This subset is calledC
∼

D,coloured. It emerges that the simplicial +D( 1)
-graphs lie in this subset and they generate, when coloured and accompanied by bondingmaps that conserve
edge colour , the whole ofC

∼
D,coloured. Remarkably, this colour information ensures that one can reconstruct an

abstract simplicial pseudo-manifold [41].While not all graphs inC
∼

D,L areD-colourable, theD-dimensional
topologies encoded by such spin foammolecules aremuch better behaved than those reconstructed using the
first approach.

One could in principle attempt tomake amore ambitious statement. By showing the existence, forD odd

(even), of a surjectivemap C Cπ ⟶∼
:D D,coloured ,coloured (respectivelyCeven), one could conjecture the following:

Conjecture 2.46.D-coloured graphs capture all ofC (Ceven).

In essence, all onewould need to show is that in every class c Cπ ⊂ ∼− ( )D D,L
1

,L, there is a graph that isD-
colourable.

The benefit would be that in this way one could, for arbitrarymoleculesm, specify the subclass whose
molecules allow for a subdivision into the colourable subclass ofM −n,S DW. Thus, all thesemolecules would have
awell-behaved topological structure as pseudo-D-manifolds. In particular, their atomswould carry the
structure ofD-dimensional polytopes (see A.2).

2.8. Stranded diagrams
Onemight wonder at this stage how the structures abovematch the usual stranded graph description utilized in
groupfield theory. It emerges that stranded graphs can easily incorporate the information pertaining to generic
spin foamatoms andmolecules, as well as virtual and simplicial structures.Moreover, stranded diagrams
provide amore succinct graphical representation formolecular spin foams.With this aim inmind, we provide
here a dictionary between the two descriptions.

Definition 2.47.A stranded atom is the double, s =  ( , ), such that:

–  is a set of vertices partitioned into subsets known as coils. This set has an even number of elements and
coils are denoted by c.

8
The two pathsmentioned above are the onesmost often used in the quantumgravity literature. From themathematical perspective there is

an interesting thirdway, detailed in [44]. Therein the authors extend embedded discrete structures to include topological data that encode
the underlyingD-manifold as a branched cover.

17

New J. Phys. 17 (2015) 023042 DOriti et al



–  is the set of reroutings, where a rerouting is an edge, refered to quite frequently as a strand, joining a pair of
distinct vertices in . This set of reroutings saturates the set of vertices, in the sense that each vertex is an
endpoint of exactly one strand.

We denote the set of stranded atoms by S.

Remark 2.48.Onemust take note of a particular type of rerouting, known as a retracing. This refers to a strand
joining two vertices in the same coil. Onewill see inmoment that a retracing corresponds to a loop in the
associated boundary graph.

Remark 2.49.Consider a spin foamatoma A= ∈  ( , , ) . Aswas shown in proposition 2.7, it is completely
determined by its boundary graphc C= ∈ ( , ) . Fromc, one constructs a stranded graph s =  ( , )by
‘exploding’ the vertices ∈ v̄ .More precisely, for each edge = ∈ e v v¯ ( ¯ ¯ )1 2 , one creates two vertices in (one
for each endpoint) and a strand in joining them. The subset of vertices in created from a given endpoint
vertex in constitutes a coil.

The reverse operation is equally simple. Given a stranded diagram s, one constructs a boundary graphc by
identifying the vertices within each coil.

These operations are clearly inversely related and are illustrated for a simple example infigure 15.

From the remark 2.49, the following holds:

Proposition 2.50.There exists a bijection between the set of spin foam atomsA and the set of stranded atomsS.

One can also bond stranded atoms to form strandedmolecules.

Remark 2.51 (stranded counterparts).The stranded counterparts of various objects take the form:

– A stranded patch is a coil ⊂ c alongwith retracings within that coil.

– Two stranded patches are bondable if they have the same number of vertices and the same number of
retracings. Knowledge of the retracing are necessary to capture the loop information of a boundary patch.

– A stranded bondingmap identifies the vertices within two bondable stranded patches, with the compatibility
condition that the vertices associated to a retracing in one patch are identifiedwith the vertices associated to a
retracing in the other. This is illustrated infigure 16.

– A strandedmolecule is a set of strand atoms quotiented by a set of stranded bondingmaps, as drawn in
figure 17.

One can translate the concepts such as labelled, loopless, simplicial to the stranded diagram realization. This
is left to the interested reader since these structures are not extensively used in the remaining sections.Having
said that, we should alsomention that stranded graphs are a natural and powerful tool in theGFT formalism.
One particular advantage of stranded diagrams as compared to bondings of boundary graphs is that the full
internal bonding structure, including the ordering of bondings of faces along patches, is represented in these
diagrams in terms of the strands. This is not possible in bondings of boundary graphs.

Figure 15.An example of the relation between (bisected) boundary graphs and stranded diagrams.While faces of atoms (and
molecules) are in one-to-one correspondence to bisection vertices in the graph description, in the stranded diagrams they are uniquely
represented by the strands.

18

New J. Phys. 17 (2015) 023042 DOriti et al



3.Groupfield theories: generating spin foammolecules

Having laid the combinatorial foundations, let us now turn to ourmain goal: defining aGFT framework that can
accommodate, both kinematically and dynamically, all the states and histories that onemight expect to appear in
loop quantumgravity.

The route is divided into three parts. First, we shall summarize some generalities of theGFT set-up, with
respect to its definition as a quantumfield theory generating spin foammolecules. This will clarify how the
graphs supporting LQG states, as well as the complexes supporting spin foam amplitudes, appear in this context.

Next, we shall outline the class of GFTmodels that are standard in the literature. These are based on a single
field and generate series catalogued by a specific subset of the unlabelled spin foammoleculesM. Via the
interpretation given in section 2.7, these are associated to n-dimensional simplicial structures.

Finally, we shall generalize theGFT framework to incorporate broader classes ofmodels. There are twomain
avenues to follow:

(i) One can stick with unlabelled structures but attempt to directly generate (larger subsets of)M. In this
context, the first generalization is effected simply by broadening the type of interaction terms in the theory
while keeping a singlefield. Suchmodels are already common in theGFT literature [29–38].
The second generalization involves passing from a single-field tomulti-field groupfield theory. In this
manner, one can generate all ofM, albeit in a rather formalmanner, with an infinite set of GFTfields.

(ii) One moves over to labelled structures, which permit a much simpler class of GFTs, based on a single GFT
field over a larger data domain. This data domain, inspired by a standard technique in tensormodels known
as dual-weighting, allows one to generate dynamically the spin foammolecules inM −n,S DW. Drawing upon
the results of section 2.6, one has encoded themolecules inM, at least at the combinatorial level. This sets
the scene for section 4, wherewe devise a class of GFTmodels that generate weights for themolecules inM
and that effectively assign to the underlyingmoleculesM the amplitude expected by the 4d EPRL quantum
gravity spin foam theory.

The nomenclature and definitions introduced in the previous sectionwill be used extensively in the
following.

3.1. GFT generalities
Let usfirst recount the general definitions and structures of GFTs, as onefinds them in the literature [14–20].

Definition 3.1 (groupfield).A group field,ϕ, is a function over a group:

ϕ ⟶× G: , (8)n

whereG is a group, while ∈ n .

Figure 16. Stranded bondingmap.

Figure 17. Strandedmolecule.
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Definition 3.2 (groupfield theory).A group field theory is a quantum field theory for a groupfield, defined by a
partition function:

∫ ϕ= ϕ−Z e , (9)S
GFT

[ ]

where ϕ denotes a (formal)measure on the space of group fields, while the action functional takes the form:

∫ ∫∑ ∏ϕ ϕ ϕ λ ϕ= +
∈

∈

  { } ( )S g g g g g g g g[ ]
1

2
[d ] ( ) ( , ) ( ) [d ] . (10)

i I i i j
J

j J
j1 1 2 2

i
i

⎛
⎝⎜

⎞
⎠⎟

 is the kinetic kernel,i are vertex (interaction) kernels satisfying combinatorial non-locality, while I and Ji are
finite sets indexing the interactions and the number offields in the ith interaction, respectively.Meanwhile, g[d ]
represents the appropriate number of copies of themeasure onG and λ{ }i I is the set of coupling constants

9.

Remark 3.3 (kinetic kernel).The kinetic kernel is a real functionwith domain ×G n2 that (in somemodel
dependentmanner) pairs arguments according to g g( , )a a1 2 with ∈a n{1,..., } :

= g g g g g g( , ) ( , ; ...; , ). (11)n n1 2 11 21 1 2

Remark 3.4 (vertex kernels and combinatorial non-locality).Combinatorial non-locality is a property
possessed byGFT interaction kernels, effected through pairwise convolution of the field arguments. It is the
main peculiarity of GFTswith respect to local quantum field theories on space–time. Inmore detail, theGFT
interaction kernels do not impose coincidence of the points, in the group space ×G n, at which the interaction
fields are evaluated. Rather, the totality offield arguments from the smaller group spaceG occurring in a given
action term (that is × ∣ ∣n J for an interaction termwith∣ ∣J groupfields) is partitioned into pairs and the kernels
convolve such pairs:

= − ( ){ } { }g g g (12)j
J

ja kb
1⎛

⎝⎜
⎞
⎠⎟

where ∈j k J, , ∈a b n, {1,..., } and ja kb( , ) is an element of the pairwise partition of the set ×J n{1,..., }. The
specific combinatorial pattern of such pairings determines the combinatorial structure of the Feynman diagrams
of the theory. It will be one of themain foci in later discussions, both in the standardGFTmodels and, later on, in
the generalized class ofmodels.

Besides this combinatorial peculiarity, one deals withGFTs as onewould any otherQFT; themain features
follow.

Definition 3.5 (quantumobservables). (Quantum) observables, ϕO [ ], are functionals of the group field.

In particular, the kinetic and interaction terms are quantumobservables. Due to their functional form, they
motivate interest in a subset of polynomial functionals of the field:

Definition 3.6 (trace observables).A trace observable is a polynomial functional of the groupfield that satisfies
combinatorial non-locality (since all group elements are traced over pairwise). Thus, they have the generic form:

∫ ∏ϕ ϕ≡ =
∈

−  ( ){ } ( ) { } { }O g g g g g g[ ] [d ] , where (13)j
J

j J
j j

J
ja kb

1⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

and (ja, kb) is an element of the pairwise partition of the set ×J n{1,..., }.

Remark 3.7 (estimating observables). Expectation values of quantumobservables are estimated using
perturbative techniques. For example, the observable ϕO [ ], expandedwith respect to the coupling constants
λ{ }i I , leads to a series of Gaussian integrals evaluated throughWick contraction. The patterns of contractions are
catalogued by Feynman diagrams:

9
There is an analogous set of actions for complex groupfields and of course, one can definemodels involving several suchfields.
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where ΓC ( ) are the combinatorial factors related to the automorphism group of the Feynman diagramΓ and
Γ λA ( ; { } )i I is theweight ofΓ in the series. The Feynman amplitudes ΓA ( ) are constructed by convolving (in

group space) propagators = −  1 and interaction kernels. In this section, however, the focus lies solely on the
combinatorial aspects of theGFT perturbative expansion. Discussion of specificmodels is postponed to
section 4.

Remark 3.8 (stranded diagrams).The stranded diagram representation of the Feynman diagramsΓ is
immediate.With reference to section 2.8, one associates a coil c, with n vertices to eachfieldϕ.

In an interaction term, the fields represent a set of coils,while the combinatorial non-locality property of
the interaction kernel encodes the set of reroutings. Thus, each interaction term represents a stranded atom
s =  ( , ).

The kinetic term, through its involvement in theWick contraction, is responsible for the bonding of these
stranded atoms. Then, the perturbative expansion is quite clearly catalogued by strandedmolecules.

Through the bijection outlined in section 2.8, one could nowmap to spin foam atoms andmolecules.

Remark 3.9 (quantumgeometric interpretation). In section 4, we shall concentrate our attention on the
EPRL quantum gravityGFT.However, we provide some interpretation here forGFTs asmodels of quantumor
randomgeometry. The components of a GFThave already been understood in terms of topological structures,
primarily in two dimensions, but also secondarily inD dimensions (although this enhancement is a subtle issue
aboutwhichwe havemade some comments in section 2.7).

Keeping toD-dimensional language, the group fields correspond to −D( 1)-dimensional building blocks of
−D( 1)-dimensional topological structures, the trace observables. In a similarmanner, the interaction terms in

the action correspond to theD-dimensional building blocks forD-dimensional topological structures
cataloguing the terms of the perturbative expansions.

Then, the estimating of observables〈 〉O O... l1 via perturbative expansion, yields a sum overD-
dimensional topological structures, whose boundaries are precisely the l −D( 1)-dimensional structures
encoded by observables. In other words, one is calculating the correlation of the l −D( 1)-dimensional
structures.

The intention of both the data contained in the groupG and the kernels (boundary, kinetic and
interaction) is to transform all these topological statements above into quantum geometrical ones.More
precisely, using results from loop quantum gravity, as well as lattice quantumgravity, depending on the precise
realization of the data set, itmay be interpreted as one of the following: the discrete gravitational connection; the
discretefluxes of the conjugate triad; or the eigenvalues of fundamental quantumgeometric operators like areas
and volumes.

3.2. Combinatorial correspondence
Let us recast this GFT formalism in terms of the combinatorial structures detailed in section 2 :

– The set of group fields is indexed by the set of patches:

p
P

p
pΦ ϕ ϕ= ⟶×  { } G, where : , (15)

and p p p∪=  v({ ¯} , ).

– The set of trace observables is indexed by the set of bisected boundary graphs:

b
B

b b p∫ ∏Φ ϕ= =
∈

 


{ } ( )O O g g g, where [ ] [d ] { } ( ) (16)v
v

v¯
¯

¯v̄

and b b∪=   ( , ). The patches ofb are in correspondence with vertices of and one has that
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b= ∈ g g vv{ : ( ¯ ˆ) }v vv¯ ¯ ˆ . Combinatorial non-locality is realized using the bisecting vertices . Each such vertex
has a pair of incident edges and thus they encode a pairwise partition of the data set g{ }v̄ . Conversely, a
pairwise partition of this data set determines a graphb. Thus, the graphs inB catalogue the combinatorially
non-local configurations.

– Likewise, the set of vertex interactions is indexed byB :

b b p∫ ∏λ ϕ
∈




 ( )g g g[d ] { } ( ). (17)v
v

v¯
¯

¯v̄

As a result of the bijection in proposition 2.8, the interaction terms can be interpreted as generating spin foam
atomsa bα= ( ).

– The kinetic term, through its role in theWick contractions occurring in later perturbative expansions, is
responsible for the bonding of patches compatible according to the compatibility condition of definition
2.15, p p p≡ ≅1 2:

p p p p∫ ϕ ϕ =  ( )( ) ( ) ( ) ( ) { }g g g g g g g g g
1

2
[d ] , , where , , (18)v v v v v v v v v v¯ ¯ ¯ ¯ ¯ ¯ ¯ ˆ ¯ ˆ1 1 2 2 1 2 1 2

is a function of group elements for each p∈ v v( ¯ ˆ)i .

– Then, genericmodels are defined via :

∫ Φ= Φ−Z e (19)S [ ]

with:

p p p b B b b p∫ ∫∑ ∏Φ ϕ ϕ λ ϕ= +
∈

∈



 ( ) ( ) ( ) ( )S g g g g g g g g[ ]

1

2
[d ] , [d ] { } ( ). (20)v v v v v

v
v¯ ¯ ¯ ¯ ¯

¯
¯v1 1 2 2 ¯

– Sums and products of trace observables can be estimated perturbatively, generating series of the type:

m
m

b b b b

m M

m b

b B

∫
∑

Φ Φ Φ

λ

=

=

Φ

δ

−

∈
=⊔ =



( { } )

O O
Z

O O

C
A

...
1

[ ] ... [ ] e

1

( )
; . (21)

S [ ]

( )

l l

i
l

i

1 1

1

Thus, the Feynman diagrams generated byGFTs are actually better characterized as spin foammolecules.

Using the above index, one can catalogue the generalized classes of GFTmodels thatmake contact with the
set of spin foammoleculesM. This will be done in later sections.

Remark 3.10 (generalization and control). It is worth noting somemotivations for considering such
generalizedGFTmodels:

– As one can see above, there is no technical obstacle whatsoever, within theGFT formalism, to passing from a
single-fieldGFT to amulti-fieldGFT(indexed by some set of patches) and/or stimulating new interaction
terms (indexed by some set of bisected boundary graphs). Such choices generate broader classes of spin foam
molecules, as onemight wish from an LQG perspective.
Given the facility withwhich such generalizedGFTs are defined, a real issue is rather to pinpoint some
criterion, for selecting onemodel over another. Other important issues centre on settling (i) whether or not
one is able to control analytically or numerically the dynamics of such generalizedGFTs and (ii) whether or
not such control is improved by one choice of combinatorics over another. Indeed, these issues should also be
posed from the spin foamperspective.
A common choice in the spin foam andGFT literature is to restrict to spin foam atoms andmolecules with a
D-dimensional simplicial interpretation. This choice could bemotivated as beingmore ‘ fundamental’, in the
sense that one can triangulatemore general complexes but not vice versa, and as being simpler than other
alternatives.

– Moreover, generalizedGFTs already exist in the literature. Indeed, so-called invariant tensormodels, which
are in essence single-fieldGFTswith a specific subset of generalized interactions [38], have been the setting
formost studies onGFT renormalization [29–37] and for analysis using tensormodel techniques [24].
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– Finally, even inmodels starting with simplicial interactions only, one should expect the quantumdynamics to
generate new effective interactions with generalized combinatorics. In turn, these new interaction terms
should then be taken into account in the renormalization flowof the simplicialmodels. Again, the issue is not
whether such combinatorial generalizations can be considered, but howone should deal with them in the
quantumdynamics of the theory.

3.3. Simplicial GFT
For amoment, let us focus on theGFT corresponding to the unlabelled, n-regular, simplicial structures:Bn,S,
An,S andMn,S from section 2.3. As shown in section 2.7, such structures have a simplicial interpretation. They
correspond to a particularly simple choice of combinatorics for theGFT action and represent a class ofmodels
that are by far themost used in the quantumgravity literature.

The parameter n is set to the dimensionD of the space–time to be reconstructed via theGFTdynamics.

– The groupfield corresponds to the unique unlabelledD-patch pD :

pϕ ϕ≡ ⟶ G: . (22)D
D

– The pairing offield arguments in the interaction kernel is based upon the unique unlabelled simplicialD-
graphb B∈ D,S (that is, +KD 1, the complete graph over +D 1vertices), which allows one to abbreviate
notation:

b = <− ( ){ }g g g i j( ) , with . (23)ij ji
1

Henceforth, when dealingwith graphs based upon +KD 1, themarkers ∈ +i j D, {1,..., 1} index the +D 1
vertices and thus the patches ofb. The bisecting vertices are labelled by ij( )10. The edge joining the vertex i to
the vertex ij( ) is denoted by ij, while the edge joining the vertex j to the vertex ij( ) is denoted by ji.

– In the kinetic kernel, the data indices are abbreviated to ≡g gv1 1̄
and ≡g gv2 ¯2

.

– The action is therefore specified by:

b∫ ∫ ∏ϕ ϕ ϕ λ ϕ= +
=

+

  ( )S g g g g g g g g[ ]
1

2
[d ] ( ) ( , ) ( ) [d ] ( ) . (24)

j

D

j1 1 2 2
1

1

Up to the precise formof the kinetic and interaction kernels.

– There is a distinguished subclass of trace observables indexed byBD,L, the unlabelledD-regular loopless
graphs. This stems from the property that each graph inBD,L arises as the boundary of some spin foam
molecules inMD,S, while the boundary of every spin foammolecule inMD,S is a collection of graphs inBD,L.

– The perturbative expansion of the partition function (theGFT vacuumexpectation value) leads to a series
catalogued by saturated spin foammoleculesm M∈ D,S, mδ = ∅( ) .Meanwhile, the evaluation of a generic
observable b ϕO [ ] leads to a series catalogued by spin foammolecules with boundaryb, that is:m M∈ D,S

with m bδ =( ) .

The combinatorics of the propagator and the simplicial vertex kernel are illustrated infigures 18 and 19 in
the three-dimensional case. Therein is drawn both the bisected boundary graph realization, alongside the usual
stranded diagram representation.

Remark 3.11.To translate the pointsmade in section 2.7 intoGFT language, one begins by noting that the spin
foammoleculesMD,S are interpretable as locally simplicial inD dimensions. Thus, the groupfield corresponds
to a −D( 1)-simplex, the interaction term corresponds to aD-simplex, while the kinetic term, through its role
inWick contraction, corresponds to the gluing ofD-simplices along shared −D( 1)-simplices.

Note that theGFT action prescribes only the bonding of the spin foam atoms along patches. This
corresponds to rules for identifying boundary −D( 1)- and −D( 2)-simplices. It does not specify uniquely the
gluing rules for the fullD-dimensional information. Asmentioned in section 2.7, there are twoways around this
limitation. Thefirst is to add information by hand, which is rather unsatisfactory. The second is to restrict to the
so-called colored structuresM M⊂n n,coloured ,S. It ismuchmore natural from theGFTpoint of view, since for

10
The parenthesis signifies that both ij( ) and ji( )mark the same bisecting vertex.
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any given (simplicial) GFTmodel generating series catalogued by elements ofMn,S, there is an associatedmodel

generating the restricted subclassMn,coloured. See the review [24] for details.

Remark 3.12.One could generalize the class of interaction terms to include those based on graphs from the set
BD,L. Since these are composed of unlabelledD-patches, theGFT remains dependent on a single group field:

b B

b b∫ ∫∑ ∏ϕ ϕ ϕ λ ϕ= +
∈ ∈

 S g g g g g g g g[ ]
1

2
[d ] ( ) ( , ) ( ) [d ] ( ) ( ), (25)

v
v1 1 2 2

¯
¯

D,L

where b b∪=   ( , ). Understanding the group fieldϕ oncemore as a −D( 1)-simplex, the spin foamatoms
could still be given the interpretation of encodingD-dimensional building blocks with locally simplicial −D( 1)
-dimensional boundaries. All spin foammolecules generated by this GFThave boundaries inBD,L.

Thus, it is clear that the class ofmodels specified by (25) is inadequate for the purposes of generating a
dynamics for all LQGquantum states with support in the larger spaceB.

3.4.Multi-field groupfield theory
Anobvious strategy for generating series catalogued by (larger subsets of)M is simply to increase the number of
field species entering themodel. Such a scenario was already anticipated at the outset of the group field theory
approach to spin foams [23, 46].However, from afield theoretic viewpoint, it is a rather unattractive strategy,
since themore onewishes to probe quantum states on arbitrary boundary graphs inB, the larger the number of
field species and interaction terms required. Thus, the resulting formalism is not easily controlled usingQFT
methods.Having said that, with appropriate kinetic and interaction kernels,multi-fieldGFTsweight these
broader classes of spin foammolecules in the samemanner as the generalized constructions onefinds in the spin
foam literature. As a result, theseGFTmodels are at the same level of formality.We illustratemulti-fieldGFTs
here simply becausewewish to demonstrate the absence of any impediment in principle to having aGFT
formulation for the quantumdynamics of all LQG states.

Amulti-field groupfield theory is devised in the followingmanner:

Figure 18.Equivalent representation of combinatorics of propagator and simplicial interaction for aD=3GFT in terms of bisected
boundary graphs and in terms of the common stranded diagrams.

Figure 19. InD=3, the neighbourhood of a vertex v (a spin foam atom)within a spin foammoleculem andfinally seen as dual to a
tetrahedron.
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– A subset of groupfieldsΦ Φ⊆SUB is indexed by a subset of patchesP P⊆SUB :

p PΦ ϕ= { } . (26)SUB SUB

– Adistinguished class of trace observables ⊆ SUB is indexed byB P Bσ= ⊆( )SUB SUB , the bisected
boundary graphs generated byPSUB :

b B= { }O . (27)SUB SUB

In particular, observables of this type can be utilized as interaction terms in the action.

– A class of action functionals is then specified by:

p P

p p p

b B

b b p∫ ∫∑ ∑ ∏Φ ϕ ϕ λ ϕ= +
∈ ∈ ∈




  ( )S g g g g g g g g[d ] ( ) ( , ) ( ) [d ] { } ( ), (28)v
v

vSUB 1 1 2 2 ¯
¯

¯

SUB SUB

⎡⎣ ⎤⎦

where b b∪=   ( , ).

– The expectation value of an arbitrary product of observables takes the form:

m
mb b b b

m M

m b

b B∫ ∑Φ Φ Φ λ= =Φ

δ

−
−

∈

=⊔ =

 ( { } )O O O O
C

A... [ ]... [ ] e
1

( )
; . (29)S

MF GFT
SUB

( )

l l

i
l

i

1 1
SUB

SUB

1

SUB

⎡⎣ ⎤⎦

Remark 3.13 (higher-dimensional interpretation). In thismulti-field setting, one has lost the natural
connection between a class ofmodels and a particular value ofD, the dimension of the reconstructed space–
time.Without doubt, it is difficult to identify precisely generalized classes of spin foammolecules, such that
the reconstruction of aD-complex is always possible (and unique). In this non-simplicial setting, the
restriction to coloured structures is not available (to the best of our knowledge).Moreover, the set of gluing
rules that one would need to specify at the outset growswith the generality of the boundary graphs and spin
foam atoms.

Remark 3.14 (Three-dimensional example). Let us consider a particularmulti-fieldGFTmodel and attempt to
provide it with a three-dimensional interpretation:

– It is based on unlabelled n-patches, with ⩽ ⩽n L3 :

P p= ⩽ ⩽{ }n L: 3 . (30)nSUB

Then, the groupfield pϕ
n
could be viewed as representing an two-dimensional n-gon.

– Adistinguished class of trace observables is indexed byB Pσ= ( )SUB SUB and theymay be interpreted as
surfaces composed of polygons (as we have already stressed, reconstructing these surfaces is a subtle topic and
extra informationmust be put in by hand). As a specific example, consider the following trace observable:

b p p b p p p p p∫ϕ ϕ ϕ ϕ ϕ ϕ ϕ= O g g g g g g g, [d ] ( ) ( ) ( ) ( ) ( ) ( ), (31)1 2 3 4 53 4 4 3 3 3 3

⎡⎣ ⎤⎦
where

b = − − − − − − − − ( )g g g g g g g g g g g g g g g g g( ) , , , , , , , . (32)12 21
1

23 32
1

34 43
1

14 41
1

15 51
1

25 52
1

35 53
1

45 54
1

As illustrated infigure 20, one could associate a pyramidwith a square base to the graphb. In this case, the spin
foam atom is simply a 3-ball.

– An action functional of the type given in (28), alongwith the partition function (29) generate spin foam
molecules thatmay be interpreted as three-dimensional objects composed of such building blocks.

Remark 3.15 (groupfield setΦ).GFTmodels based upon (in)finite subsetsΦ Φ⊂SUB probe only subsets
B B⊂SUB andM M⊂SUB and thus, only subsets of the LQG states and spin foamdynamics. One could
consider examining amodel based on all ofΦ and all of. In thismanner, onewould probe all ofB andM, as
onemight expect in the traditional LQG context.
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The resulting construction, however, is likely to remain at a formal level. In fact, themulti-fieldGFT
realization depends upon infinitelymany fields and, in order to have non-trivial dynamics for eachfield,
infinitelymany interaction terms. This likely renders anyfield theoretic analysis rather impracticable.

Having said that, with appropriate choices for kinetic and interaction kernels, themulti-field GFT based
uponΦ and generates series probing all the spin foammolecules ofM, weighted by amplitudes
coinciding with the KKL extension of the EPRL quantum gravitymodel and propagating LQG states on
graphs inB.

To the extent that GFTs are currently analytically tractable, one ismotivated to repackage the structures
generated above and devise a class of GFTmodels that encode the quantumdynamics of arbitrary LQG states,
while remainingmore practically useful. Thismeansmanaging to encode arbitrary boundary graphs using a
single or at least a (small) finite number ofGFTfields and interactions. The key to achieving this result, whichwe
now illustrate, lies in the use of labelled structures.

3.5.Duallyweighted groupfield theories
This section focusses on the labelled structuresC

∼
n,S,B͠n,S, A͠n,S and M M⊂−n n,S DW ,S. The reason is that while

thefirst three sets of building blocks are finite, the set of dually-weightedmoleculesM −n,S DW is rich enough to
encode all ofM.Moreover, this translates to aGFT, based on afinite number offields and interactions, that
generates sets of spin foammolecules large enough to propagate arbitrary LQG states.

3.5.1. Labelled simplicial GFT
Utilizing the labelled simplicial structures P͠n,B͠n,S and A͠n,S to generate spin foammoleculesMn,S is a simple
generalization of the simplicialmodel presented in section 3.3 :

– The set of group fields is indexed by the set of labelled n-patches:

p P p
pΦ ϕ ϕ= ⟶͠ ∼ ∼ ×∼ ∼͠
∼ { } G, where : . (33)

n

Note that this is afinite set offields: PΦ∣ ∣ = ∣ ∣ =͠ ͠ 2n
n. Also, p∣ ∣ =∼ n.

– The set of trace observables is indexed by the set of labelled n-regular, loopless graphsB͠n,L :

b
B

b b p∫ ∏Φ ϕ= =͠ ͠ ∼∼ ∼

∈

∼ ∼ ∼ ∼͠ 


{ } ( )O O g g g, where [d ] { } ( ), (34)v
v

v¯
¯

¯
⎡⎣ ⎤⎦

where b
∼∼ implicitly depends on the edge labels drawn from real virtual{ , }.

– The set of vertex interactions is indexed by labelled simplicial n-graphsB͠n,S. Since these are all based on the
complete graph over +n 1vertices, one can utilize the vertex labelling seen in equation (23) :

b b p∫ ∏λ ϕ∼∼

=

+
∼ ∼ ∼ ( )g g g[d ] ( ) . (35)

j

n

j
1

1

This is afinite set of interactions: B∣ ∣ =͠ +( )2n,S
n 1

2 .

Figure 20.The pyramid graphb, the associated spin foam atoma bα= ( ) andfinally the pyramid 3-cell constructed around it.
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Of course, the set of interaction terms can be extended to those indexed byB Pσ=͠ ͠( )n n,L , and one should
probably expect them to be generated during the renormalization process. However, the point is that the
small setB͠n,S is rich enough to generate spin foammolecules that could provide non-trivial correlations for

all ofB͠n,L, and so is awell-chosenminimalmodel to take at the outset.
Again, using the bijection in proposition 2.8, the interaction terms can be interpreted as generating spin foam
atomsa bα= ∼∼ ( ).

– The kinetic term is responsible for the bonding of patches just as in the unlabeled case (18) :

p p p p∫ ϕ ϕ =͠ ͠ ͠∼ ∼
∼ ∼ ∼ ∼  ( )g g g g g g g g g

1

2
[d ] ( ) ( , ) ( ), where ( , ) , . (36)v v1 1 2 2 1 2 ¯ ¯1 2

– Then, the class of labelled simplicial GFTs is defined via :

∫ Φ= ͠ Φ
−

− ∼Z e (37)S
S GFT

⎡⎣ ⎤⎦

with:

p P

p p p

b B

b b p∫ ∫∑ ∑ ∏Φ ϕ ϕ λ ϕ= +͠ ͠∼ ∼ ∼∼

∈ ∈ =

+

∼
∼ ∼

∼
∼ ∼ ∼ ∼

͠ ͠
  ( )S g g g g g g g g

1

2
[d ] ( ) ( , ) ( ) [d ] ( ) (38)

j

n

j1 1 2 2
1

1

n n,S

⎡⎣ ⎤⎦

– trace observables can be estimated perturbatively, generating series of the type:

 m
m

b b b b

m M

m b

b B

∫
∑

Φ Φ Φ

λ

=

=

͠ ͠ ͠

͠
͠

∼ ∼ ∼ ∼ Φ

δ

−
−

∈

=⊔

∼ ∼ ∼ ∼

∼

∼

∼

͠

͠

͠

∼

=



( { } )( )
( )

O O
Z

O O

C
A

...
1

... e

1
; . (39)

S
S GFTl l

n

i
l

i

n

1 1

,S

1

,S

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

Remark 3.16 (reducibility).As pointed out in remark 2.36, not all molecules in Mn,S reduce to a

molecule in M. It is rather the dually-weighted subset  M M⊂−n n,S DW ,S that possesses this property. As
a result, one needs a mechanism at the GFT level that isolates this subset. This mechanism is known as
dual-weighting.

3.5.2. Dually-weighted GFT
It emerges that employing a simple technique at the field theory level allows one to extract directly the subclass of
structures M M⊂−n n,S DW ,S. This technique, dubbed dual-weighting in the thematrixmodel literature, assigns

parameterizedweights to the vertices of the spin foamatomsa A∈∼ ͠
n,S and, through the bondingmechanism,

of the spin foammolecules m M∈͠ n,S
11. Theseweights can be tuned so that only virtual interior/boundary

vertices in with precisely two virtual faces/one virtual face incident survive. This is precisely the condition
pinpointing the configurations inM −n,S DW.

The dual-weightingmechanismbegins by enlarging the elementary data set fromG to × G , where
= M{0, 1,..., }. The integerM can be regarded as a free parameter of the theory. Since these data sets are

associated to edges of both patches and boundary graphs, they permit a new encoding of the edge labels
real virtual{ , }. The real label is encoded as the zero element ∈ 0 , while the virtual label is encoded by the non-
zero elements ∈ −m {0}.

– This in turn allows one to repackage the2n
fields pϕ∼∼ (p P∈∼ ͠

n,S) into a singlefield

ϕ × ⟶ G: ( ) (40)n

11
The dual-weightingmoniker stems from the fact that in 2d these vertices are in one-to-one correspondence with the vertices of the dual

topological structure. In that context, these parameterizedweights can be interpreted as coupling parameters for dual vertices.
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based on the unique unlabelled n-patch p P∈n n,S. This stems from the fact that these patches have the same

combinatorics, differing only in the choice of labels real virtual{ , } assigned to their edges.

– In principle, the trace observables are indexed once again by labelled, n-regular, loopless graphsb B∈∼ ͠
n,L.

Encoding the labelling as above, one can re-index observables by unlabelled, n-regular, loopless graphsBn,L :

b
B

b b p∫ ∑ ∏Φ Φ ϕ= =
∈

 


{ } ( )O O g g m g m[ ] , where [ ] [d ] { ; } ( ; ), (41)
m

v v

v
v v

[ ]
¯ ¯

¯
¯ ¯

n,L

where the combinatorial non-locality extends to the variables. In effect, the observable bO incorporates all
b∣ ∣2 labelled observables with support on that graphical structure. However, combinatorial non-locality, in

conjunctionwith this novel label-encoding, places a restriction on b  g m({ ; } )v v¯ ¯ . To detail this, one uses the
same indexing of vertices and edges as in (23) with an extra label a( ) to numbermulti-edges. A simple
illustration for a bisected edge between two vertices ∈ i j, looks like:

Then the graphb dictates that the boundary kernel has the form:

b = − ( ){ }g m g g m({ ; } ) ; . (42)v v ij a ji a v¯ ¯ ( ) ( )
1

¯

For labelled boundary graphs, both edges ij(a) and ji(a) aremarked by the same label real virtual{ , } (see
remark 2.29). This translates to the restriction that b = g m({ ; } ) 0v v¯ ¯ when =m 0ij a( ) , ∈ −m {0}ji a( ) or
vice versa. Alternatively, b ≠ g m({ ; } ) 0v v¯ ¯ onlywhen both = =m m0ij a ji a( ) ( ) or both

∈ −m m, {0}ij a ji a( ) ( ) .

– The
+( )2

n 1
2 interaction terms are indexed by labelled simplicial graphsb B∈∼ ͠

n,S. Aswith the boundary kernels,
onemay re-encode the labelling in terms of the newdata set. As a result, one can capture all the interaction
terms using the unique unlabelled, n-regular, loopless graphb B∈ n,S :

b∫ ∑ ∏λ ϕ
=

+

 ( )g g m g m[d ] ( ; ) ; , (43)
m

j

n

j j[ ]
1

1

where (analogously to (23)) :

b = <− ( ){ }g m g g m i j( ; ) ; , with , (44)ij ji v
1

¯

and themarkers ∈ +i j n, {1,..., 1} index the +n 1vertices b⊂ and thus the patches ofb.Meanwhile, the
pair ij (with ≠j i) indexes the edge joining the vertex i to the bisecting vertex ij( ). Combinatorial non-locality
imposes an analogous constraint on this interaction kernel.
Just as for labelled simplicial GFTs, the set of interaction terms could be extended to those indexed by
B Pσ= ( )n n,L ,S , while still invoking the dual weightingmechanism. In terms of labelled structures, this

means that one could isolate M M⊂−n n,L DW ,L.

– The kinetic term takes the form:

∫ ∑ϕ ϕg g m g g m m g m
1

2
[d ] ( ; ) ( , ; , ) ( ; ), (45)

m[ ]
1 1 1 2 1 2 2 2

where:

= ( )g g m m g g m m( , ; , ) , ; , . (46)v v v v1 2 1 2 ¯ ¯ ¯ ¯1 2 1 2

Since the kinetic term is responsible for the bonding of the patches and bonding respects labelling, then
≠ 0 onlywhen both = =m m0v v v v¯ ˆ ¯ ˆ1 2

or both ∈ −m m, {0}v v v v¯ ˆ ¯ ˆ1 2
.

Before stating the class of dually-weighted GFTs, we specify the precise form of the -sector of
the various kernels. We shall leave the G-sector unspecified for the moment, dealing with specific
cases in section 4.
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Definition 3.17 (dual-weightingmatrix).The dual-weightingmatrix sequence, >{ }M M 0, is a sequence of
invertiblematrices (whereM denotes the size ofM) which satisfy the condition12:

δ=
→∞

( )lim tr . (51)
M

M
k

k,2⎜ ⎟⎛
⎝

⎞
⎠

In the remainder we suppress the indexM in the dual-weightingmatrices.

Remark 3.18 (dual-weightingmechanism).The implementation of the dual-weightingmechanism places
certain restrictions on the kinetic, interaction and boundary kernels:

– The kinetic kernel takes the form:

= −  g g m m g g m m m m( , ; , ) ( , ; , ) ( , ), (52)1 2 1 2 1 2 1 2
1

1 2

where is constant across ∈ −m m, {0}j j1 2 , for each ∈j n{1,..., }. In other words, only depends on
whether the edges are real or virtual.Meanwhile, factorizes across the edges:

∏= =
=

 m m d d( , ) , with
1 0
0

. (53)
j

n

m m1 2

1

,j j1 2
⎜ ⎟
⎛
⎝

⎞
⎠

The condition on means that the value it attains only depends onwhether the edges are real or virtual. The
zero entries in thed-matrix are themanifestation of non-mixing of real and virtual edges. The dual-weighting
matrix is the truly significant player, as it will be responsible for restricting the spin foammolecules in the
large-M limit.

– The interaction kernel takes the form:

b b ∏= = =     ( )g m g m m m i i( ; ) ( ; ) ( ), where ( ) and 1 0
0

. (54)
ij

m m

( )

,ij ji

 is theM × M identitymatrix and the function only depends onwhether the edges are real or virtual.

– Meanwhile, the boundary kernels take the similar form:

b b ∏= =      g m g m m m i({ ; } ) ({ ; } ) ({ } ), where ({ } ) (55)v v v v v v

ij a

m m¯ ¯ ¯ ¯ ¯ ¯

( )( )

,ij a ji a( ) ( )

andonly depends onwhether the edges are real or virtual.

Of course, in trueGFT style, one could shift the dual-weightingmatrix to the interaction kernels, that is,
swapping for in the interaction kernel, while simultaneously swapping for in the kinetic kernel.

12
The trace invariant information containedwithin anM×Mmatrix can be characterized in a number of ways, perhapsmost familiarly

through itsM eigenvalues, which arise as the roots of the characteristic equation χ = t( ) 0, where:

χ = −  t t( ) det( ). (47)

However, a less succinct way to package this information is in the traces ofmatrix powers: tr ( )k , where ⩽ ⩽k M0 . To see this, notice that
one can rewrite the characteristic polynomial as:

∑χ = − ∧ ∧ =

− ⋯

− ⋯
⋮ ⋮ ⋮ ⋮

⋯

⋯

=

−

− − −

− −

 


 

  
   

 ( )
( )

( ) ( ) ( )
( ) ( ) ( )

t t
k

k

k

( ) ( 1) tr , where
1

!

tr ( ) 1 0 0

tr tr ( ) 2 0

tr tr tr 1

tr tr tr tr ( )

. (48)
k

M
k M k k k

k k k

k k k

0

2

1 2 3

1 2

The eigenvalues are determined in terms of the traces and vice versa. In the large-M limit, it is clear therefore that onemay impose an infinite
number of conditions on thematrix traces.For concreteness, let us consider as a specific sequence { }M the diagonalmatrices

δ= −
′

−
′( ) M( 1)M

mm

m
mm

1 2 . These fulfill the conditions equation (51) since for odd k

= − ⟶−
→∞

( ) Mtr 0 (49)M
k k

M

2⎜ ⎟⎛
⎝

⎞
⎠

and for even k

=( ) Mtr (50)M
k k1 2⎜ ⎟⎛

⎝
⎞
⎠

which equals one for k=2 and tends to zero in the large-M limit for >k 2. Formore uses of the dual-weightingmechanism see [47] and
references therein.
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Accordingly, in this realization, the boundary kernels should also contain the dual-weightingmatrix to ensure
the correct propagation of virtual edges.

Now, back to the definition of the dually-weightedGFTs:

– Then, the class of dually-weightedGFTs is defined via :

∫ Φ= Φ
−

−Z e (56)S
DW GFT

[ ]

with:

b

∫

∫

∑

∑ ∏

Φ ϕ ϕ

λ ϕ

=

+
=

+



 ( )

S g g m g g m m g m

g g m g m

[ ]
1

2
[d ] ( ; ) ( , ; , ) ( ; )

[d ] ( ; ) ; . (57)

m

m
j

n

j j

[ ]
1 1 1 2 1 2 2 2

[ ]
1

1

– A trace observable can be estimated perturbatively, generating series of the type:

m

b b b b

m M

m b

m

∫
∑

Φ Φ Φ

λ

=

=

Φ

δ

− −

−

∈

=⊔ =

O O
Z

O O

A

...
1

[ ]... [ ] e

( ; ). (58)

S

C

DW GFT DW GFT

[ ]

( )

1

( )

l l

n

i
l

i

1 1

,S

1

As has been stated repeatedly, these series are in principle catalogued by labelled simplicial n-molecules
m M∈͠ n,S. However, the label-dependence13 permits the collation and repackaging of the amplitudes

attached to the various labellings of each unlabelled simplicial n-moleculem M∈ n,S. In the large-M, as one
can see in amoment, the label information plays an important role andmust bemade explicit oncemore.

Proposition 3.19 (large-M limit). In the large-M limit of theDW-GFT, the observable expectation values possess
perturbative expansions in terms of simplicial n-molecules within the dually-weighted subclassM −n,S DW (remark
2.37)


mb b

m M

m b

m
∑ λ= ͠

δ

→∞ −
∈

=⊔

∼ ∼

∼
͠

͠

͠
−

=

( )

( )

( )
O O Alim ... ; . (59)

M CDW GFT

1
l

n

i
l

i

1

,S DW

1

Proof.According to the definition of the amplitudes m λA ( ; ), withm M∈ n,S, in the perturbative sum (58), the

dual-weighting part of the amplitude factorizes across the vertices ∈ v̂ and for each vertex, denoted by Av̂, it
takes one of two values:

∏ 
( )

v

v

1 for ˆ real.

tr for ˆ virtual. (60)
vv¯ ˆ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

More precisely, the amplitude m λA ( ; ) contains contributions from all the labelled counterparts m͠ ofm. In such
a counterpart, if v̂ is real, then the dual-weighting amplitude is unity, while if v̂ is virtual, the contribution is the
trace of a power of,with one-factor for each edge vv( ¯ ˆ) incident at v̂. Due to the dual-weighting property
(51), the second contribution vanishes in the limit ⟶∞M unless there are precisely two/one edge(s) incident
at this internal/boundary vertex v̂. This is exactly the defining property ofM −n,S DW (remark 2.37). □

Remark 3.20 (molecular interpretation). proposition 3.19 allows one to recast the perturbative series generated
by theDW-GFT in the large-M limit as a series catalogued bymore genericmolecules. This follows directly from
the reduction accomplished by the projectionmap M MΠ ⟶− −:n n,S DW ,S DW (remark 2.42). From

proposition 2.43,Π −n,S DW does not cover thewhole ofM, but only a subset M MΠ′ = − −( )n n,S DW ,S DW . The

13
For example, one could tweak the coupling constants to dependmore sensitively on the reality/virtuality of the various edges of the

bisected graph. In that case, onewould really have to catalogue the sum explicitly in terms of the elements ofMn,S.
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perturbative series can indeed be rewritten as a sumover spin foammolecules:

m
mb b

m M M

m b

∑ λ=

δ π

→∞ −
∈ ′⊂

=⊔

∼ ∼

∼
= − ( )

O O
C

Alim ...
1

( )
( ; ). (61)

M eff
eff

DW GFT

( )

l

i
l

n i

1

1 ,S DW

Having said that, note that every collection of boundary graphs drawn fromB can be evolvedwithin this
−DW GFT. Should onewish to include a larger set of effectivemolecules fromM, this could be easily obtained

by incorporation ofmore interaction termswith support onB Pσ= ( )n n,L ,S .
In the quantumgravity context, thismeans thatDW-GFTs are effectively GFTs describing physical inner

products and correlations of various quantumgravity states with support on arbitrary graphs, which are
estimated using perturbative series catalogued by spin foammolecules of themost general combinatorics.

Remark 3.21 (3d example revisited). Let us look again at the scenario of remark 3.14. From the dually-weighted
viewpoint:

– The interpretation is three-dimensional, thus one should take n=3, with afieldϕ × ⟶ G: ( )3 .

– The pyramid observable detailed in (31) has, among its realizations in the dually-weightedmodel, the
following one based on the graphb, illustrated infigure 21 (see the corresponding atom, figure 11) and
composed out of sixfields:

b b∫ ∑ϕ ϕ ϕ ϕ ϕ ϕ ϕ= O g g m g m g m g m g m g m g m[ ] [d ] ( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; ). (62)
m[ ] 1 1 2 2 3 3 4 4 5 5 6 6

Where:

b = − − − − − − − − − (g m g g g g g g g g g g g g g g g g g g m m

m m m m m m m m m m m m m m m m

( ; ) , , , , , , , , ; , ,

, , , , , , , , , , , , , , , ). (63)

12 21
1

23 32
1

34 43
1

14 41
1

15 51
1

25 52
1

36 63
1

46 64
1

56 65
1

12 21

23 32 34 43 14 41 15 51 25 52 36 63 46 64 56 65

This packages together a number of observables, depending on the labels. The observable of interest is
precisely the configurationwhere the labelsm56 andm65 are non-zero (indicating a virtual edge), while the
rest are zero (indicating real edges). Upon reduction of this virtual edge, one arrives at a graph inM with one
4-valent patch and four 3-valent patches just as in (31).One has represented the square base of the observable
(31) in terms of two triangles in the dually-weightedmodel.

Remark 3.22 (extensions).The dual-weightingmechanism can be applied to other classes ofmodels:

– The construction aboveworks for arbitrary valence n, and can clearly be extended tomultiple GFTfields, if so
wished. Inmodels forD-dimensional gravity, wewould like the valence of the graphs associated to quantum
states to beD, as in simplicialmodels, and for the same reasons. One should note, however, that in even
dimensionsD, only effective nodes of even valency are then obtained after the dynamical contraction of
virtual links.We have already noticed this combinatorial restriction in the previous section (proposition
2.32). If onewants to generate graphs of truly arbitrary valence, using the samemechanism, one can easily do
so by incorporating a single odd-valent field species, endowedwith aD-dimensional interpretation. Again,
this doubling offields does not change the general features of the construction.

– Also, notice that the coloured extension of theGFT formalism can be directly applied to the dually-weighted
model, provided the valence n is chosen to be the space–time dimensionD. This can be done, as we have seen,
either by choosing also a simplicial GFT interaction, which brings one back to the standard simplicial setting,
or by choosing asGFT interactions only the tensor invariant ones. The result of doing so is, in both cases, a set
of GFT Feynmandiagrams dual to combinatorial complexes whose full homological structure can be
reconstructed from the colour information.

Remark 3.23 (model building).The choice of groupfield determines that the kinematical state space of the
theory is populated by quantum states with support on arbitrary n-valent labelled graphs. The dual-weighting
mechanism is the part of the dynamics that ensures that those states are evolved by spin foammolecules that
reduce properly to arbitrary spin foammolecules. The precise choice ofGFT action, incorporating the dual-
weightingmechanism, is then amatter ofmodel building. In particular, depending on the choice of interaction
kernels, some classes of graphs, present in the kinematical Hilbert space, can be suppressed dynamically.

– Therefore, one possible criterion formodel building stems from thewish to suppress or enhance specific
combinatorial structures. Conversely, onemaywant to start from the simplest set of GFT interactions that

31

New J. Phys. 17 (2015) 023042 DOriti et al



ensures that all kinematical states participate to the quantumdynamics.We have proven that simplicial spin
foam atoms, in the context of the dually-weighted theories, satisfy this criterion.

– Another criterion thatmight determine the choice ofGFT interaction combinatorics emerges from the
correspondence between the interaction kernels and thematrix elements of a canonical LQGprojector
operator in the Fock representation, emphasized in [21]. Prescribing the latter implies a choice for the former.
In general though, one should expect there to be infinitelymany non-trivialmatrix elements,meaning
infinitelymanyGFTinteraction kernels, unless these are restricted by very strong symmetry requirements. As
a result, the real quest centres on pinpointing the subsets of interactions that are physically relevant at different
scales, in particular, to define the theory in some deepUVor IR regime. In other words, the problembecomes
that ofGFT renormalization [29–34]. In fact, one should expect that the renormalization group flowwill
select afinite set of GFT interactions to define a renormalizable GFTmodel.Moreover, this dictates which
new terms are relevant for the quantumdynamics at different scales. In turn, this prescribes a renormalizable
LQGdynamics.

To sumup this section, we have defined a class of GFTs admitting boundary states with higher-valent, node
structure. Rather than increasing the number offields and interactions, we have extended the data set of the
usual simplicial GFT.Utilizing these extra arguments to invoke a dual-weightingmatrix, in a limit of the theory,
we acquire the effective dynamical content of arbitrary spin foams and boundary states.

4. Spin foammodels

The previous section explored the space ofGFTs, concentrating on the development of a class whose
perturbative expansionswere effectively catalogued by general spin foammolecules. Fromour point of view, the
next important step is to demonstrate that such dually-weightedmodels are compatible with quantum
gravitational dynamics, in particular, spin foamquantumgravitymodels.

There is a class of gravitational spin foammodels in four-dimensions (D=4) in the framework of simplicial
moleculesMD,S, of which the EPRL [10, 11, 48], the Freidel–Krasnov [12] and the Baratin–Oriti [13]models are
members.Moreover, all thesemodels permit an extension to arbitrary spin foammoleculesM [39], whichwe
call KKL-extension in the case of the EPRLmodel.

In this section, we shallfirst review gravitational spin foammodels, in their generalized context , giving
explicit details of the EPRLmodel.We shall show that amulti-fieldGFT straightforwardly assigns these
amplitudes in the perturbative expansion.We shall then define a dually-weightedGFTmodel that assigns the
same as effective amplitudes in the large-M limit.

4.1. Four-dimensional spin foamquantumgravity

Definition 4.1 (spin foammodel).A spin foammodel is a quantum theory defined by a partition function of the
following form:

m m
m M

m

∑=

δ
∈
=∅

Z W A( ) ( ), (64)sf

( )

where:

Figure 21.The graphb composed of six unlabelled 3-patches.
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– M is the set of spin foammolecules fromdefinition 2.18, or one of its subsets;

– mA ( ) is the spin foam amplitude associated by themodel tom; and

– mW ( ) is the spin foammeasure factor that weightsm in the sumover suchmolecules.

Remark 4.2.The distinction between mW ( ) and mA ( )might appear quite arbitrary. However, they are
distinguished to highlight the fact that within the spin foam formalism, while derivations for certain amplitudes
mA ( ) can be given, onemust prescribe mW ( )by hand. As onemight expect, group field theory provides a

complete prescription for both mA ( ) and mW ( ).

Remark 4.3. In the operator spin foam formalism [42, 43], the spin foam amplitude is specified by the sets of
variables and operators that it associates to the components (vertices, edges, faces) ofm. Here, those components
may be identified through combinations of the various vertices ∈ v , ∈ v̄ , ∈ v̂ , where 

m ∪ ∪=   
(remark 2.19). The variables are often drawn from some group-related structures, namely, group/algebra
elements or group representations. Sets of variables and operators are denoted byL andO, respectively, while
individual variables and operators are denoted byl ando.

Remark 4.4 (gravitational spin foammodel).A gravitational spin foammodel is a spin foammodel related to the
Holst–Plebanski action, that is, it includes some quantumversion of the simplicity constraint. An interesting
feature at this stage is their locality property. They are local in the sense that the amplitude associated to a spin
foammoleculem factorizes into operators associated to each of the vertices in m , which depend only on the
labels attached to ‘nearby’ components,more precisely, components that contain a given vertex of m . Explicitly:


m o L o L o L

L
∑ ∏ ∏ ∏=

∈ ∈ ∈  
( ) ( ) ( )A ( ) . (65)

v

v v

v

v v

v

v v

ˆ

ˆ ˆ

¯

¯ ¯

As stated above, we shall focus on a particular four-dimensional gravitational spin foammodel: the EPRLmodel
[10, 11, 48] and its KKL-extension.Oncemore, we emphasize that the same construction, including the
combinatorial generalization, applies to the other spin foammodels as well.

Remark 4.5 (variables). In the group representation, the relevant variables are the group elements ∈g Gvvv¯ ˆ ,
=G SO(4), where m∈ vvv( ¯ ˆ) is a face of themoleculem. It is convenient to identify certain subsets of variables:

L

L

L

m

m

∩

≡ = ⋃ ∈

≡ = ⋃ ∈

≡ =




{ }

{ }

( )

( )

g g vvv

g g vvv

g g g

: ¯ ˆ ,

: ¯ ˆ ,

. (66)

v v
v v

vvv

v v
v v

vvv

vv vv v v

¯, ˆ
¯ ˆ

¯ ¯
, ˆ

¯ ˆ

¯ ¯ ¯

The operators are functions of these group elements. For the EPRLmodel in the group element realization, only
the edge and vertex operators are non-trivial, that is,O O O∪= v v̄.

Consider a vertex ∈ v̄ that arises in themolecule after the bonding of two patches p p p≅ ≡1 2 and denote
the two edges in incident at v̄ by v v( ¯)1 and v v( ¯)2 . The operator associated to v̄, which is usually called the edge
operator in the spin foam literature, is defined as follows:

Definition 4.6 (edge operator).TheEPRL edge operator associated to v̄ is:

o p

p

∫ ∏ ∑≡ =
= ∈

∈
− −

×


 ( ) ( )
( )

g g g h h g h h g( ) , d d tr , (67)v v v v v v
G

v v v v

e vv
J J v vv v v J N v v v vv¯ ¯ ¯ ¯

2
¯ ¯

¯ ˆ
¯ ˆ ¯

1
, ¯ ¯ ˆ

1

v
v v1 2 1 2

ˆ
ˆ 1 1 ˆ 0 2 2

⎡
⎣⎢

⎤
⎦⎥

where:

– p is the boundary patch associated to the vertex v̄ (itmay contain loops);

–  is the set of γ-simple representations ofg s s s= = ≅ ×+ −G o u uLie( ) (4) (2) (2) :

g= ∈ = = ∈γ
γ+ −

−
+ ±

−

+
 { }( )J J j j jIrrep( ) : , with and 2 . (68)

j

j

1

1
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– J N, is the gauge-covariant simplicity operator:

∫
∫

γ

γ
=

⃗ ⃗ ⃗ ⃗ ⃗ >

⃗ ⃗ ⃗ ⃗ ⃗ <

+ − + −

+ − + −







d n j n j n j n j n

d n j n j n j n j n

d , ( 1),

d , ( 1),
(69)J N

J

J

,
N

N

2

2

⎧
⎨
⎪⎪

⎩
⎪⎪

where = + ++ −d j j(2 1)(2 1)J ,∣ ⃗〉±j n are su (2) coherent states14, N
2 is the unit two-sphere in the three-

dimensional hypersurface perpendicular to the 4-vectorN and =N (1, 0, 0, 0)0 .

Remark 4.7.Note that the edge operator factorizes across the edges of the intermediary patch p.Moreover, these
factors are independent of the edge being part of a loop. It is alsoworth elaborating on the gauge-covariance of
the simplicity operator, since this is not usually emphasized in the literature. The operatorJ N, transforms as:

=▹
− h h , (71)J h N J N, ,

1

where ∈h SO(4) and ▹h N denotes the rotated 4-vector.

Definition 4.8 (vertex operator).Consider a vertex ∈ v . The EPRL vertex operator associated to v is:

o b

b

∏ δ= =
∈

 ( )
( ) ( )

g g g g( ) ( ) , , (72)v v v
v v v v

vv v vv v
¯ , ˆ , ¯ , ˆ

¯ ˆ ¯ ˆ

1 2

1 2

whereb b b=  ( , ) is the bisected boundary graph associated to the spin foam atom inm containing v.
Notice that this is just the vertex operator of a BF spin foammodel. This confirms the general fact that the

ingredients of a spin foam amplitudes can be freely shifted from vertex to edges, corresponding to a parallel shift
from interaction to kinetic term in the corresponding group field theory formulation.

Remark 4.9 (EPRL spin foamamplitude).These operator kernels are the constitutents of the EPRL spin foam
amplitudes. Their convolution, guided by the connectivity of the spin foammoleculem, to which they are
assigned, produces the amplitude mA ( ) for thatmolecule :

m o o∫ ∏ ∏=
∈ ∈ 

A g g g( ) [d ] ( ) ( ). (73)
v

v v
v

v v
¯

¯ ¯

Remark 4.10.Adirect quantum gravity interpretation follows after attaching a four-dimensional reference
frame to each vertex v, v̄ and v̂. Then, one thinks of eachhvv̄ as the parallel transportmatrix from v to v̄, while the
gvvv¯ ˆ are the parallel transportmatrices from v̄ to v̂ before explicit bonding of the spin foam atoms; hence, the v-
dependence arises. The ordered product of elementshvv̄ arising in faces containing v̂, constitutes a holonomy
representation of the curvature tensor. The group elements transport pre-geometric quantities, which are
encoded in the elements of the representationmodules labelled by Jv̂. At the vertices v̄, simplicity constraints are
applied to these elements (via the operatorJ N, ), to ensure the propagation of a geometric subset of
information.

Remark 4.11.The advantages of the strand diagram realization comes to the fore at this juncture, since the edges
and vertex operators factorize over the strands, namely:

∑=
∈

− −


( ) ( )g g h h g h h gp , ; , tr , (74)v vv v vv v v v v

J

J v vv v v J N v v v vv¯ ˆ ¯ ˆ ¯ ¯ ¯ ˆ ¯
1

, ¯ ¯ ˆ
1

v

v v v1 2 1 2

ˆ

ˆ 1 1 ˆ ¯ 2 2

δ=( ) ( )g g g gv , , . (75)vv v vv v vv v vv v¯ ˆ ¯ ˆ ¯ ˆ ¯ ˆ1 2 1 2

Remark 4.12. Since the edge operator is not a projector, in order to have the functional formof the kinetic
kernel, one should explicitly invert the propagator: p p= −  1.We do not engage in this task for two reasons: (i)
the kinetic operator is of secondary interest to the propagator, since the propagator determines the Feynman
amplitudes; (ii) within afield theory approach, one can transfer the simplicity constraints from the propagator
to the the interaction kernels, leaving a projective propagator thatmay be directly incorporated as the kinetic
kernel.

14
su (2) coherent states are defined as:

⃗ =jn n jj , (70)

where∣ 〉jj is the highest weight state in the irrep j of su (2) and σ= ⃗ ⃗ ∈n exp n( · ) SU(2),σ ⃗ are the generators of su (2).
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Thus, we have sufficient information already to lay out amulti-fieldGFT for theKKL-extension of the
EPRLmodel.

Definition 4.13 (multi-field EPRLGFT).Amulti-fieldEPRL group field theory is defined by a partition function
of the form:

∫ Φ= Φ
−

− −Z [d ] e , (76)S
MF EPRL

[ ]MF EPRL

where:

p P

p p p

b B

b b p∫ ∫∑ ∑ ∏Φ ϕ ϕ λ ϕ= +−
∈ ∈ ∈

 ( ) ( ) ( )S g g g g g g g g[ ] [d ] , [d ] ( ) ( ). (77)v v v v v v v v v
v

vMF EPRL ¯ ¯ ¯ ¯
¯

¯1 1 2 2

4.2.Dually-weighted EPRL GFT
At this point, we have at our disposal all the tools necessary to incorporate the EPRLmodel within theDW-
GFT formalism. In the following, we shall deal exclusively with 4-regular simplicial structuresB4,S,A4,S and
M4,S, as well as their labelled counterparts.

Definition 4.14 (dually-weighted variables).The dually-weighted EPRL variables are:

– the group elements ∈ =g G SO(4)vvv¯ ˆ , where m∈ vvv( ¯ ˆ) ;

– the dual-weighting indices ∈m M{0, 1,..., }vvv¯ ˆ , where m∈ vvv( ¯ ˆ) ;

With the distinction of real and virtual structures comes the responsibility of designing amplitudes that
assign the correct effective amplitude to the underlying real spin foammolecule. To this end, we shallfirst state
the operators and later show their efficacy.

Definition 4.15 (dually-weighted edge operator).The dually-weightedEPRL edge operator is:

o = ( )g m g g m m( , ) , ; , , (78)v v v v v v v v v v v¯ ¯ ¯ ¯ ¯ ¯ ¯1 2 1 2

where:

p

∫ ∏=

+

= ∈
( ) ( )

( )
( )

g g m m h h g g h h m m

g g h h m m

p d

p d

, ; , d d , ; , ( , )

, ; , ( , ) , (79)

v v v v v v v v v v v v

e vv
v vv v vv v v v v v vv v vv

v vv v vv v v v v v vv v vv

¯ ¯ ¯ ¯ ¯ ¯

¯ ˆ
real ¯ ˆ ¯ ˆ ¯ ¯ real ¯ ˆ ¯ ˆ

virtual ¯ ˆ ¯ ˆ ¯ ¯ virtual ¯ ˆ ¯ ˆ

1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2

⎡
⎣⎢

⎤
⎦⎥

and:

– p p= 4, the unique unlabelled 4-patch;

– the gravitational factors are:

∑=
∈

− −
 ( ) ( )g g h h g h h gp , ; , tr , (80)v vv v vv v v v v J J v vv v v J N v v v vvreal ¯ ˆ ¯ ˆ ¯ ¯ ¯ ˆ ¯

1
, ¯ ¯ ˆ

1

v
v v1 2 1 2

ˆ
ˆ 1 1 ˆ 0 2 2

δ δ= − −( ) ( ) ( )g g h h g h h gp , ; , , (81)v vv v vv v v v v v vv v v v v v vvvirtual ¯ ˆ ¯ ˆ ¯ ¯ ¯ ˆ ¯
1

¯ ¯ ˆ
1

1 2 1 2 1 1 2 2

– the dual-weighting factors are:

= = ( )( )d d1 0
0 0

0 0
0

. (82)real virtual

Remark 4.16.Notice that dual-weighting factors satisfy = +d d dreal virtual. The real and virtual labels encode
the conditions of the dual-weightingmechanismoutlined in remark 3.18.Moreover, the real gravitational factor
coincides with the originalp from equation (74). Thereby, the virtual strand factor decouples the information
assigned to the edge in one atom, from that assignedwith the other.

Definition 4.17 (dually-weighted vertex operator).Consider a bulk vertex v. The dually-weighted EPRL vertex
operator is:
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o b= g m g m( ; ) ( , ), (83)v v v v v

whereb is the unique unlabelled 4-simplicial bisected boundary graph and:

b

m

∏= +
∈
⊃


 ( ) ( )g m g g m m g g m mv i v i( , ) , ( , ) , ( , ) . (84)v v

f

f v

vv v vv v vv v vv v vv v vv v vv v vv vreal ¯ ˆ ¯ ˆ real ¯ ˆ ¯ ˆ virtual ¯ ˆ ¯ ˆ virtual ¯ ˆ ¯ ˆ
1 2 1 2 1 2 1 2

⎡
⎣⎢

⎤
⎦⎥

The factors are:

δ= =( ) ( ) ( )g g g g g gv v, , , , (85)vv v vv v vv v vv v vv v vv vreal ¯ ˆ ¯ ˆ virtual ¯ ˆ ¯ ˆ ¯ ˆ ¯ ˆ1 2 1 2 1 2

and:

= = ( )( )i i1 0
0 0

0 0
0

. (86)real virtual

Definition 4.18 (dually-weighted EPRLGFT).A dually-weighted EPRL group field theory is defined by a
partition function of the form:

∫ Φ=−
− Φ−Z [d ]e (87)S

DW EPRL
DW EPRL[ ]

where:

b

∫

∫

∑

∑ ∏

Φ ϕ ϕ

λ ϕ

=

+

−

=

+



 ( )

S g g m g g m m g m

g g m g m

[ ]
1

2
[d ] ( ; ) ( , ; , ) ( ; )

[d ] ( ; ) ; . (88)

m

m j

n

j j

DW EPRL

[ ]
1 1 1 2 1 2 2 2

[ ] 1

1

Now, it is time to confirm that these operator assignments lead to the correct effective amplitude.

Proposition 4.19. In the large-M limit, the effective amplitude assigned by the dually-weighted EPRL model to the
underlying real spin foammolecule coincides with that of the original EPRL model.

Proof.Utilizing proposition 3.19, in the large-M limit, the contributingmolecules are restricted to those, for
which their virtual vertices 

m∈ ⊂ v̂ lie in precisely four virtual faces m∈ f . The amplitude is then:

m o o∫ ∑∏ ∏=
∈ ∈ 

A g g m g m( ) [d ] ( ; ) ( ; ). (89)
m v

v v v

v

v v v

[ ] ¯

¯ ¯ ¯

Then, the key calculation examines the effect of integrating out the variables associated to components in the
neighbourhood of this vertex v̂.More precisely, the amplitude assigned by the dually-weighted EPRLmodel to a
molecule containing such a vertex has the following factors:

( ) ( )
( ) ( )

g g g g h h

g g g g h h

v p

v p

, , ; ,

, , ; , , (90)

v v v v v v v v v v v v v v v v

v v v v v v v v v v v v v v v v

virtual ¯ ˆ ¯ ˆ virtual ¯ ˆ ¯ ˆ ¯ ¯

virtual ¯ ˆ ¯ ˆ virtual ¯ ˆ ¯ ˆ ¯ ¯

1 12 1 21 1 12 2 12 1 12 2 12

2 12 2 21 1 21 2 21 1 21 2 21

where the configuration is illustrated infigure 22.
Manipulating the amplitude, onemay simplify the factors in (90) by integratingwith respect to the elements

the set gv̂ :

∫ δ δ= − −( ) ( )g h h h hd [Expression(90)] . (91)v v v v v v v v vˆ ¯ ¯
1

¯ ¯
1

1 12 1 21 2 12 2 21

This integration can be completed since the elements in gv̂ only occurwithin the four factors (90). Now, one is
free to use these two δ-functions to integrate out the variableshv v̄1 21

andhv v̄2 21
, setting =h hv v v v¯ ¯1 21 1 12

and

=h hv v v v¯ ¯2 21 2 12
in the remaining factors within (89) to arrive at EPRL amplitude assigned to thatmolecule

obtained fromm bymolecular reduction along the virtual structure.We illustrate the reduction infigure 22. □

Remark 4.20 (imposing greater simplicity).Another tempting proposal is to impose the simplicity constraints
on both real and virtual structures. Themotivation is that, assuming a polyhedral interpretation is available, the
polyhedra corresponding to the states of themodel will nowbe decomposed into geometric simplices, the
geometricity of each being ensured by the imposition of the simplicity constraints. In theDW-GFT above, this

36

New J. Phys. 17 (2015) 023042 DOriti et al



amounts to altering the propagator (79), using:

∑= =
∈

− −


( ) ( ) ( )g g h h g g h h g h h gp p, ; , , ; , tr . (92)v vv v vv v v v v v vv v vv v v v v

J

J v vv v v J N v v v vvvirtual ¯ ˆ ¯ ˆ ¯ ¯ real ¯ ˆ ¯ ˆ ¯ ¯ ¯ ˆ ¯
1

, ¯ ¯ ˆ
1

v

v v1 2 1 2 1 2 1 2

ˆ

ˆ 1 1 ˆ 0 2 2

This defines, a priori, a different-spin foammodel, with an expected higher degree of geometricity. Amotivation
for this change stems from the logic that polytopes that are constructed fromgeometric simplices are likely to be
more physically viable than polytopes constructed from simplices that are only partially geometric (in the sense
that the simplicity constraints are not imposed on some of their virtual sub-facets).

Of course, it is worth clarifying that the resultingmodel can be interpreted in two equivalent ways:

– The perturbative series are catalogued bymolecules inM4,S. In the large-M limit, the survivingmolecules are

again those ofM −4,S DW.Within thismodel, reduction does not lead to effective amplitudes that coincide
with those assigned by the EPRLmodel to generic spin foammolecules.

– The perturbative series are catalogued bymolecules inM4,S. Due to the coincidence of the strand factors in
(92), the dual-weighting part of the amplitude factorizes completely from the gravitational part, as well as
over the vertices v̂ :

∏ ∏= = 
( ) ( )

dtr 1 tr , (93)
vv vv¯ ˆ ¯ ˆ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

where the product is over those edges vv( ¯ ˆ) incident at v̂. Thus, one get the original simplicial EPRLmodel,
with a slightmodification of theweights by a factor (93) for each vertex v̂.

5. Conclusions

Themain purpose of this work has been to show that it is possible to defineGFTs compatible with LQG in its full
combinatorial generality, that is for quantum states defined on arbitrary boundary graphs, in particular with
vertices of arbitrary valence.

In order to set the ground for ourGFT construction, we gave a precise and exhaustive classification of the
combinatorial structures entering both group field theories and spin foammodels, alongwith their associated
boundaries. To this endwe used a physicochemical dictionary, with spin foammolecules obtained as bondings
of atomswhich are in one-to-one correspondence with these general boundary graphs. In particular, we believe
that our classification complements, but also clarifies and completes the one in [39], which formed the basis for
thefirst combinatorial generalization of spin foammodels.Moreover, our spin foammolecules turn out to be
combinatorial two-complexes in the precise sense of abstract polyhedral complexes, settling the question of
determining the kind of spin foam complexes a theory should be based onwhen in an abstract, non-embedded
context. (This is at least a starting point, given that considerations about physical symmetriesmay require extra
data to encodeD-dimensional topologies).We argued that these are the relevant combinatorial objects, in terms
of which themost general GFTs and spin foammodels are defined.

With the ground properly set, it is straightforward to define a generalization of thewell known simplicial
GFTusing arbitrary atoms.We presented explicitly how this can be obtained by amulti-fieldGFT. Since it is

Figure 22. Integrating out a virtual face.
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extremely difficult to turn such a formally definedfield theory, with a potentially infinite number offields, into
an analyticallymanageable one, with the elaboration of concrete calculations and physical insights, we argued
that there is need for an alternative.

Indeed, we introduced dually-weightedGFTs, which generate arbitrary structures, at the expense of a slight
modification of the easiest simplicial GFT. Therefore, they are as controllable as the latter. The definition ofDW-
GFT has been basedfirstly on the combinatorial possibility: (i) to decompose arbitrary boundary graphs into
simplicial ones—this permits their realizationwith single group field; and furthermore (ii) to decompose
arbitrary spin foam atoms andmolecules into simplicial atoms that correspond to a simplicial GFT interaction.
These facts were proven in the combinatorics section in every detail.

Secondly, DW-GFT is based on the possibility to implement such a definition at the dynamical level. To this
end, we provided an example of a useful application of tensormodel techniques to LQG.We realized a dynamical
mechanism for this decomposition of spin foammolecules in terms of a dual-weighting on a simplicial GFT.
The effect is that in the large-M limit only thosemolecules (still built from labelled, simplicial atoms) that can be
canonically reduced to arbitrary spin foammolecules survive. In this way, theDW-GFT gives rise to an effective
perturbative series over arbitrarymolecules with the corresponding generalized spin foam amplitudes as
dynamical quantumweights.

Finally, we showed that in both cases the implementation of the dynamics of gravitational spin foammodels,
generalized to arbitrary complexes, is possible.While the implementation along the lines we illustrate is generic,
we provided as an explicit example the spin foamoperators in the case of the EPRL amplitude, thus obtaining a
dually weightedGFTwhose Feynman amplitudesmatch theKKL spin foam amplitudes.Moreover, we have
given also amodification of the samemodel, resulting from a better justified imposition of geometricity
conditions, as suggested by our dually-weighted construction.

There are several tasks onemight wish to tackle, on the basis of our results.
Concerning the geometry of gravitationalmodels, the obviousfirst issue is the implementation of simplicity

constraints.We showed that their implementation in the knownmodels can be straightforwardly applied to the
GFTs generating, directly or effectively, arbitrary spin foammolecules. This is in the same spirit as [39].
However, knownmodels are all derived fromarguments resting on the classical geometry of simplices. A spin
foamatomwith arbitrary combinatorics, on the other hand, corresponds rather to a polytope. Taking themore
general combinatorics of LQG in earnest, it follows that a version of the simplicity constraints related to the
classical geometry of polytopes is needed.Of course, one is then left to deal with the independentmatter of
quantizing any such geometricity constraints.

The topological structure of arbitrarymolecules should also be consideredmore carefully. From the
simplicial case, it is well known that the good behaviour of a spin foammodel of quantum gravitymay rest upon
the spin foammolecules possessing an extension to a fullD-dimensional topological structure. This is important
for the definition of a differential structure [49] and geometric quantities such as curvature, the control of
divergences [29–37], as well as for diffeomorphism symmetry [50–54]. Afirst question is therefore how these
issues translate to the case of polyhedral complexes. A straightforward solution to the issuemight be to pass over
to colouredGFTs, which generate simplicial pseudo-D-manifolds. Aswe have shown, theDW-GFT can be
based on the colouredmodel without obstacle, and such formalismwill then generate effectively all
combinatorialD-complexes in terms of their triangulations. Still, onemaywant an encoding of the topology of
generalD-complexes directly at the level of generalized two-complexes, and this remains an interesting open
problem.

Besides these conceptual issues, themost important task is surely the investigation of the field theoretic
properties ofDW-GFT. Among them, onewould like to understand the large-N [24, 38, 55–59] and double
scaling [60] limits of our (coloured)DW-GFT and how it compares to theGFT theorywithout dual-weighting.
This would extend the results obtained in the context of tensormodels. Next, themost important question is
probably renormalizability. Asmentioned, there is no obstacle preventing the extension of theDW-GFT from
simplicial interactions to a sumover tensor invariant or bubble interactions. Investigating the renormalizability
of suchmodels can therefore be carried out using the same techniques already applied in theGFT literature
[29–37].

Lastly, utilizing a recently proposed strategy based uponGFT condensates [61–66], one can extract effective
cosmological dynamics directly from the fundamental GFT formulation. One should expect that amodification
of the combinatorial structures entering themicroscopic dynamics would percolate directly to such effective
macroscopic dynamics. Thismay lead to interestingmodification and could give an alternative way, alongside
renormalization analysis, to check the physical relevance and necessity of generalizing the combinatorics of
fundamental quantum gravity states and histories.
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AppendixA. Polyhedral complexes

The Feynman diagrams generated byGFTs are abstract combinatorial objects. It is therefore appropriate and
necessary to relate them to abstract combinatorial categories instead of the piecewise linear category. In this
appendixwewill provide the definition for combinatorial complexes and show that spin foammolecules are a
certain subclass of these.

A generalization of the notion offinite abstract simplicial n-complex, briefly reviewed in (A.1), tofinite
abstract polyhedral n-complex is necessary to account for diagrams ofmore general GFTs. Providing such a
definition (A.3) based on the notion of abstract polytopes (A.2) and proving the relationwith spin foam
molecules (A.4) is themain goal of this appendix.

To be clear, the goal is not to show that diagrams in anyGFT are dual to some polyhedral n-complexwhich is
certainly not true in general. The aim is rather to identify the diagrams themselves, that is spin foammolecules
and their subclasses (section 2), as polyhedral two-complexes (A.4). Then one could further specify subclasses of
polyhedral two-complexes which allow for an extension to higher n-complexes or for dual complexes of a
certain type.

A.1. Finite abstract simplicial complexes
To remind the reader onwhat ismeant by a combinatorial complex and for the sake of a self-contained appendix
we provide thewell knowndefinitions [67] for the simplicial case in this section.

DefinitionA.1 (combinatorial simplicial complex).A finite abstract simplicial complex sim is a collection
(multiset) of ordered subsets σ of a set of vertices = v v v{ , ,..., }N(0)

sim
1 2 0 such that

(C1) for everyσ ∈  sim andσ σ′ ⊂ alsoσ′ ∈  sim.

Such aσ σ′ ⊂ is called a (boundary) face of σ. All subsets of cardinality +p 1 are called p-simplicesσ ∈ p p( )
sim

and the dimension n of sim is defined as themaximal cardinality of simplices in sim. Thus = ⋃ =− p
n

p
sim

1 ( )
sim15.

and it is also referred to as a simplicial n-complex.

RemarkA.2 (intersection property). For piecewise linear cell complexes [4] a second defining property is that
all intersections of cells (simplices in this case) are again part of the complex, in the language of :sim

(C2) ifσ σ′ ∈ , sim, then ∩σ σ′ ∈  sim.

In the case of abstract simplicial complexes (C2) follows trivially since such intersections are subsets and thus
boundary faces which are in sim due to property (C1).

A special class of interest are complexes which are pseudo-manifolds. For this the definition common in the
context of simplicial complexes in the topological sense [68] extends directly to the combinatorial context
(where again cells are simplices)[41] :

DefinitionA.3 (simplicial pseudo-manifold).Afinite abstract simplicial n-complex sim is a (finite abstract
simplicial) n-dimensional pseudo-manifold if it has the following three properties: It is

(M1) dimensional homogeneous (also referred to as pure) : for each cell in the complex there is a n-cell in the
complexwhich it is a face of.

(M2) strongly connected : Any two n-cells can be joined by a chain of n-cells inwhich each pair of neighbouring
cells has a common n-1-face.

15
Every non-emptysim contains the empty set which is considered as the unique (−1)-simplex, thus = ∅ ≠ ∅− { }( 1)

sim .
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(M3) non-branching : Eachn-1-cell is face of atmost two n-cells. In the latter case the n-1-cell and all its faces
are called boundary faces of the complex16. If there are no boundary faces the complex is called a closed
pseudo-manifold.

The natural ansatz for a generalization from simplicial to polyhedral is to consider a complex built from
collections of abstract polytopes instead of simplices. This poses a twofold challenge. An abstract p-simplex
defined by an ordered set of its +p 1vertices implies at the same time subsimplices given by all its subsets. For an
abstract polytope the subcell structure has to be specified in a different way. There is a well known alternative way
in terms of a partially ordered set (poset) [67] :

DefinitionA.4 (poset representation). For afinite abstract simplicial complex sim the face poset ( )sim is the
poset whose elements consist of all nonempty simplices of sim andwhose partial order relation is the inclusion
relation on the set of simplices.

It will turn out in the following that this is the appropriate conceptual framework to extend from simplicial
to polyhedral.

A.2. Abstract polytopes
Fortunately there exists a combinatorial definition of abstract polytopes [69, 70] :

DefinitionA.5.An abstract n-polytope, i.e. an abstract polytope offinite dimension ⩾ −n 1, is a poset <P( , )
obeying the properties (P0)–(P3) below. Elements ofP are called faces. Totally ordered subsets (called chains)
have length p if they contain exactly +p 1 faces. If they aremaximal they are referred to as flags ofP. Then the
first two defining properties are

(P0) P contains a least and a greatest face, denoted −f 1 and fn.

(P1) Each flag has length +n 1 (which defines the dimension).

For the statement of the second twodefining properties a fewmore definitions are needed. The section of two
faces f g, ofP is defined as

= ∈ ⩽ ⩽f g h h P f h g: { , }. (94)

Each section ofP is itself a poset obeying the first two properties, with an appropriate dimension (it turns out that
it is even an abstract polytope ifP is). Thus, identifying each face fwith the section over the least face ≡ −F f f 1

each face can be attributed a dimension aswell. Faces different from −f 1 and fn are called proper faces ofP. As
usual one calls 0-faces vertices and 1-faces edges.

A poset P of dimension nwith properties (P0) and (P1) is defined to be connected if either ⩽n 1, or ⩾n 2
and for any two proper faces f g, ofP there is afinite sequence of proper faces = … =−f h h h h g, , , ,k k0 1 1 ofP
such that −hi 1 and hi are incident for = …i k1, , . In this context incidencemeans that ⩽−h hp p1 or ⩾−h hp p1 .

Furthermore P is called strongly connected if each section ofP (including itself) is connected.
With this we can state the remaining two defining properties:

(P2) P is strongly connected.

(P3) All one-dimensional sections ofP are diamond-shaped; that is for every = … −p n0, 1, 1, if f and g are
incident faces of P of dimension −p 1 and +p 1, then there are exactly two p-faces h ofP such that
< <f h g .

RemarkA.6 (Lowdimensional polytopes).Up to =n 2 there is a verymanageable amount of abstract
polytopes:

• Every 0-polytope is a single vertex, having the form = ∅P v{ , }with∅ < v .

• Because of (P3), every 1-polytope consists of a single edge, = ∅P v v e{ , , , }1 2 with∅ < < =v e i, 1, 2i

• Every finite 2-polytope is a polygon [69] of the form shown infigure 23.17.

16
The notion of boundary face defined in this way applies to any combinatorial complex, not necessarily fulfilling (M3).

17
There is only one infinite 2-polytope [69].
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RemarkA.7 (Hasse diagrams).Agoodway to visualize posetsP areHasse diagrams (graphs drawn on the plane
where vertices represent the elements ofP and and edges the transitivity reduced ordering relations, i.e. there is
an edge for every two faces <f g inP for which there is no h inP such that < <f h g which goes upwards from f
to g). In particular, since posetsP obeying (P0) and (P1) are graded posets = ⋃ =−P Pp

n
p1 ( ) , a canonical way to

draw theHasse diagram iswith all elements of eachPi on the same height in the plane (figure 23).

RemarkA.8 (vertex representation).The face set of a graded poset = ⋃ =−P Pp
n

p1 ( ) (if countable) can be
represented by a collection of (ordered) sets in analogy to abstract simplicial complexes in the followingway:
Vertices are labelled in an arbitrary way by natural numbers, = …P v v{ , , }(0) 1 2 . Then, every face f is represented
by the ordered set v v( , ,...)i i1 2

consisting of all vertices ⩽v fi j

18. In particular, the least face −f 1 is represented by
∅.

Obviously, the representation in terms of vertices of the face poset of a simplicial complex is just the
simplicial complex itself. For a polytope, the crucial difference to a simplex is that its p-face sets are not
necessarily of cardinality +p 1, and in particular (C1) does not hold.

RemarkA.9 (duality).Anice property of abstract polytopes is that they have a natural dualization byflipping
around the partial order. Thefinite graded structure, connectedness and diamond shape of 1-sections guarantee
that the dual poset is in fact an abstract polytope aswell [69]. In terms ofHasse diagrams the dual polytope is
represented by the same graph but read frombottomup to top instead of from top down to bottom (figure 24).

A.3. Abstract polyhedral complexes
It is nowpossible to define polyhedral complexes as collections of abstract polytopes in the same spirit as
simplicial complexes are collections of simplices. To the best of our knowledge, this has not been considered in
the literature so far. Technically, the essential difference between simplicial and polyhedral is the defining
condition (C1)which guarantees that the cells are indeed simplices carrying the full structure of subsimplices.
While these are just subsets of vertex sets there, for polytopes the subcell structure has to be spelled out explicitly
in terms of the partial order relation.

DefinitionA.10 (Combinatorial polyhedral complex).An abstract polyhedral complexpoly is a poset which

(P0’) contains a least face, denoted −f 1, and

(C1’) for every element ∈ f poly the section = −F f f 1 is an abstract polytope.

RemarkA.11 (properties of polyhedral complexes).A few comments on the so defined complexes are in order:

(1)Even though there is no single greatest face in an abstract polyhedral complex  ,poly it is a graded poset

= ⋃ =−
∞P Pp p1 due to the grading of the polytopes it consists of. Ifpoly isfinite there are polytopes of a

maximal dimension n and = n
poly poly can be called an abstract polytope n-complex.

(2)Therefore a representation of the partial ordering in terms ofHasse diagrams is possible.

Figure 23.Hasse diagramof the n-polygon (left) and of the pyramid (right) in a representation of faces in terms of vertices (remark
A.8).

18
Note again that different facesmight have the same vertex set, which is the reasonwhy this representation is a collection, i.e. amultiset. To

distinguish explicitly an extra label is needed.
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(3)Condition (C1’) implies that all faces of a polytope ⊂ F poly are again polytopes in ,poly just because this is
true for any abstract polytope (definitionA.5).

(4)For the same reason the intersection property (C2) is true, i.e. that for any two faces ∈ f g, poly their

intersection as polytopes is again a polytope in ,poly ∩ ⊂− − f f g f1 1
poly .

(5)From the above properties it is obvious that the face poset  ( )n
sim of a simplicial n-complex is an abstract

polytope n-complex. Again one can represent the faces of a polyhedral complex by vertex sets as described in

remark A.8. For ( )n
sim this gives back the originaln

sim (up to vertex relabeling).

Now the conditions defining pseudo-manifolds can be directly applied to polyhedral complexes, where cells
are now the polytopes:

DefinitionA.12 (polyhedral pseudo-manifold).An abstract polyhedral n-complex sim is an abstract
polyhedral n-dimensional pseudo-manifold if it has the properties (M1–M3) of definitionA.3.

In fact, themanifold conditions (M1–M3) are implied by the polytope conditions (P1–P3). Showing this is
the crucial part of the following consequence:

PropositionA.13. Every abstract n-polytope P is an (abstract polyhedral) n-dimensional pseudo-manifold. The
boundary∂P is a closed (n-1)-dimensional pseudo-manifold.

Proof. LetP be an abstract n-polytope. For <n 2 the proposition is trivial. Therefore let ⩾n 2 in the following.
Thefirst part is rather straightforward: obviously, P is an abstract polyhedral n-complex. Since = −P f fn 1 is the
single n-polytope inP (because of P0) and thus contains all other polytopes inP, (M1) and (M2) follow trivially.
In particular, all n-1-polytopes = ∈−F f f P1 are faces only of this single n-polytope and hence are boundary
cells ofP, proving (M3). ThusP is a pseudo-manifoldwith boundary∂ = −P P f{ }n .

Since∂P still consist of polytopes (C1’) as sections over the unique least face ∈ ∂−f P1 (P0’) which are of
maximal dimension −n 1, it follows immediately that∂P is a polyhedral n-1-complex.

The proof, that∂P is further a closed pseudo-manifold, ismore illuminating. To this end the properties
(M1–M3) for∂P will be shown to follow from the defining properties ofP, (P1–P3).

(M1): let ∈ ∂f P be an arbitrary face of dimension ⩽ ⩽ −p n0 1. Since also ∈f P and thus < <−f f fn1 it

follows (P1) that there is a chain of length n inP and hence a chain of length −n 1 in∂P containing f.
Hence there is also an n-1-face gwith <f g .

(M2): the notion of strong connectedness in (M2) ismuchweaker that in (P2). In fact, (M2) already follows
from connectedness in the poset sense: since P is strongly connected (P2) it is also connected. This
implies in particular that for = −p n 1every two p-faces have afinite sequence of p-faces incident along
− = −p n1 2 dimensional faces.

(M3): finally from (P3) it follows that in particular for every n-2 -face ∈f P the section f fn is diamond

shaped; that is, there are exactly two n-1-faces in Pwhich f is a face of.

Figure 24.Hasse diagramof the dual of the pyramid infigure 23which is itself a pyramid.Moreover this labeling corresponds to the
pyramid vertex infigure 20.

42

New J. Phys. 17 (2015) 023042 DOriti et al



Thus,∂P is a closed pseudo-manifold. □

A.4. Structure of spin foammolecules
Now the stage is set to analyse the structure of spin foammolecules, that is what kind of combinatorial
complexes they are. Defined as bonding of atoms consisting of triples of vertices, obviously they are simplicial
two-complexes. But since these triangular faces are only wedges of actual larger faces they turn out to be
simplicial subdivisions of polyhedral complexes and generalizations thereof.

In any case, with the understanding of themanifold conditions (M1–M3) it is clear that spin foammolecules
are homogeneous of dimension two (M1) and obviously strongly connected (M2). But since they are intended
to capture a higher dimensional structure of >D 2, in all interesting cases of spin foam atoms they are
branching.

In this sectionwe discuss these statements in detail.

PropositionA.14 (spin foammolecules). Spin foammolecules are homogeneous, strongly connected simplicial
two-complexes.

Proof. Letm Mm m m= ∈  ( , , ) be a spin foammolecule. By definition (2.18), its vertex set comeswith a

graded, tripartite structure 
m ∪ ∪=    and every face m∈ f is defined by a triple of vertices
= ∈ × ×  f v v v( , ¯, ˆ) . Furthermore, according to definition 2.6, for m= ∈ f v v v( , ¯, ˆ) every pair of

vertices is an edge in str, concluding the proof of the defining condition (C1) of simplicial complexes.
By the same definition 2.6, for every vertex m∈ v there is a face m∈ f such that ∈v f , proving

homogeneity (M1). Finally, in (M2) holds since in an atom every pair of triangles is strongly connected and the
bonding transfers this property to thewholemolecule. Thusm is a homogeneous and strongly connected
simplicial complex. □

Nevertheless, spin foammolecules are usually regarded as somethingmore general than simplicial
complexes. Indeed one can consider our definition of themolecules as a triangulation ofmore general
complexes. This can bemade precise in the followingway: a simplicial subdivision19 of polyhedral complexes
can be defined exactly the sameway as done in the case of simplicial complexes [67], by defining vertices for
every face and simplices for every chain, effectively subdividing all polytopes into simplices. Including
boundaries we introduce onemodification to the standard definition, identifying the subdividing vertices of
each boundary n-1-cell with the subdividing vertex of the single n-cell it is a face of:

DefinitionA.15 (simplicial subdivision).The simplicial subdivision of an abstract polyhedral n-complexpoly is
the simplicial complex

Δ = > > > ∈ ∼ ⩾ { }{ }f f f f f f f t: , ,..., ... , , 1 .t t i
poly

1 2 1 2
poly

Here ∈ f g, poly are equivalent, ∼f g , if and only if either f= g or ∈ −f n( 1)
poly and ∈ g n( )

poly is the unique n-cell
such that <f g .

RemarkA.16. Spin foammolecules have a very similar structure: Vertices ∈ v̂ correspond to faces and
vertices ∈ v̄ to edges, Therefore they can be regarded as simplicial subdivisions of some two-dimensional
objects. To determine their structurewe define for amoleculem Mm m m= ∈  ( , , ) with 

m ∪ ∪=   
the inverse to the subdivision, m m m m∪ ∪ ∪= ∅   { } (0) (1) (2), in the followingway:

– m
m∪= δ  :(0) is the set of bulk vertices and of boundary graph vertices on the boundary ofm,

m m∩=δ δ   .

– m ∪=  :(1) int ext, that is internal edges, either between bulk vertices or a bulk and one boundary vertex in ,

m m∪= ∃ ∈ ⊂ ∈ ∈ δ    { }{ } { }( ) ( ) ( ) ( )v v v v v v v v v v v, ¯ : ¯ , , ¯ , ¯ , ¯int 1 2 1 2

and boundary edges between two boundary vertices in
19

Even in the combinatorial topology context this is often called barycentric subdivision [67], even though there is no notion of centre in the
abstract setting. For this reason, and to highlight that it is a subdivision into simplices, we prefer to call it ‘simplicial subdivision’.

43

New J. Phys. 17 (2015) 023042 DOriti et al




m= ∃ ∈ ∈  { }( ) ( ) ( )v v v v v v v¯ , ¯ ˆ : ¯ ˆ , ¯ , ˆ .ext 1 2 1 2

One can show that indeed the latter are edges on the boundary according to (M3). The internal edges are in
one-to-one correspondence to the vertices in .

– m m
m∩= ⋃ ∣ ∈∈ ∈  { }f v: ( ) ˆf v f(2) (0) : ˆ is the set of unions of all triangles sharing a bisection point ∈ v̂ .

These are either of the form …v v v( , , , )k1 2 for k vertices ∈ vi or, if they contain a boundary edge
∈ v v( ¯ , ¯ )1 2 ext, of the form …v v v v v( ¯ , ¯ , , , , )k1 2 1 2 . Due to the definition of bondings (remark 2.19) these are

the only two possibilities.

As this is a vertex representation, a partial ordering is given by the inclusion relations between cells in m .
It is then straightforward to show that mmΔ = .

PropositionA.17 (Loopless spin foammolecules). Loopless spin foammolecules without self-bondings are
simplicial subdivisions of homogenous, strongly connected polyhedral two-complexes.

Proof. Letm M∈ and consider m m m m∪ ∪ ∪= ∅   { } (0) (1) (2). Trivially∅ is the least face and elements of
m

m∪= δ  (0) and m(1) are polytopes, being respectively vertices and edges build from those vertices. For the

proof that m is a polyhedral 2-complex, it remains to show that the elements of m(2), togetherwith their subsets

in m , are polygons.
Let m∈v̂ and m

m∩= ⋃ ∈ ∈ f fv f v fˆ (0) : ˆ the corresponding face in m(2). Consider first the case inwhich there

is exactly one bulk vertex ∈v V part of that face, ∈v fv̂. Then, since there are no self-bondings inm, the face has

the form m ∩ ∪ = v v v v v v v v v( , ¯ , ˆ) ( , ¯ , ˆ) ( , ¯ , ¯ )(0) 1 2 1 2 for m∈ δv v¯ , ¯1 2
20. All the two-element subsets are edges in

m(1), thus the section ∅fv̂ is a polytope in m . One can then showby induction that every bonding taking v̂ into

account effectively adds another ∈ vi to fv̂ and edges of the so defined polygon are still in
m(1). Finally, itmay

then, for ∩∣ ∣ >f 1v̂ occur that v̄1 and v̄2 are bonded to each other and thus are not part of fv̂ anymore. But still

the section m∅ ⊂ fv̂ . This concludes the proof of (C1’) and of m being a polyhedral complex.

Finally, homogeneity and strong connectedness of m are directly induced bym having these properties as a
simplicial complex (proposition A.14). □

RemarkA.18. From the proof of proposition A.17 it is clear that spin foammolecules, in their full generality,
have to be described by an extension of the polytope concept which includes loops. Loops occur in self-bondings
of atoms aswell as for patches of boundary graphswith loops, leading to faces with only one boundary edge.
Both cases can be easily included in a definition of generalized polytopes by loosening (P3), allowing two or one p-
faces in sections of p+1with p-1 faces.

One can then prove that spin foammoleculesM are simplicial subdivisions of generalized polyhedral
complexes.We are not presenting the details for this here because it is rather straightforward.Moreover, there
are good reasons to prefer polyhedral n-complexes to generalized polyhedral n-complexes from a quantum
gravity perspective:While the formermight have a higher dimensional extension to pseudo-D-manifolds
( >D n), this is not expected for the latter. It has already been shown in the simplicial (n-regular) case that, with
the same extension, the loops in self-bondings lead to degeneracies such that there is no interpretation as
pseudo-D-manifolds [41].

In aGFT it is rather straightforward to implement the property that no self-bondings occur in the generation
of complexes. A complex field, togetherwith interaction terms as functionals of either thefield or its complex
conjugate are enough to generate bipartite graphs. In that case, no atom can be bonded to itself in the complexes
generated by theGFT. From this perspective, genuine polyhedral complexes are indeed the only combinatorial
objects occurring.
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