
Wendelstein 7-X’s CoDaStation
A modular application for scientific data acquisition

T. Bluhma,∗, P. Heimannb, Ch. Henniga, G. Kühnera, H. Kroissb, J. Kroma, H. Laquaa, M. Lewerentza,

J. Maierb, H. Riemanna, J. Schachta, A. Springa, A. Wernera, M. Zilkerb

aMax-Planck-Institut für Plasmaphysik, Euratom Association, Teilinstitut Greifswald, 17491 Greifswald, Germany

bMax-Planck-Institut für Plasmaphysik, Euratom Association, 85748 Garching, Germany

Abstract

The Control and Data Acquisition Station (short: Co-
DaStation) is a modular application for continuous data
acquisition. It is based on the idea of abstract signal
sources and signal sinks that are connected to a sig-
nal processing network. The structure of this network
is defined by a configuration description and the be-
havior is controlled by a control system. Due to the
well-defined interface definitions for signal processing
units, configuration sources and control systems it is
possible to use various implementations of these com-
ponents and easily switch between them. This means
less effort on environment changes which is especially
important for experiment sites with operation times of
several years and even decades. Furthermore, it provides
room for tests using mock-up implementations and so
an improved testability and stability.

The CoDaStation will be an integral part of the con-
trol and data acquisition system of Wendelstein 7-X.
However, the modular design allows the integration into
very different scientific environments.

1 Introduction

The major goal of Wendelstein 7-X is to demonstrate
continuous plasma operation with experiment durations
up to 30 minutes. Although only pulses up to a length

∗Corresponding author, E-Mail: torsten.bluhm@ipp.mpg.de

of 40s are planned during the first operation phase all in-
volved components have to be prepared for steady state
operation right from the beginning. Amongst others,
this implies challenging requirements for the data ac-
quisition system [1, 2].

1.1 Non-functional Requirements

The expected overall data rate of the attached diagnos-
tic systems will be about 15 Gbyte/s. Because of the
continuous operation mode it is necessary to stream all
acquired data directly to a central archive and monitor-
ing system for immediate inspection and processing.

Furthermore, the impact of failure rates increases dra-
matically in the continuous operation case. After entire
completion of Wendelstein 7-X there will be roughly 100
data acquisition systems that have to deliver data reli-
ably for approximately 1000 seconds of plasma opera-
tion. In this scenario an apparently moderate failure rate
of 1 failure per 10000s cumulative discharge duration
already means that about 10 data acquisition systems
will presumably fail during one experiment. Because
this is unacceptable the Wendelstein 7-X CoDaC group
aims to assure a high reliability of the data acquisition
systems by providing extensive testing and supervision
possibilities of the corresponding hardware and software.

Finally, Wendelstein 7-X plans to provide feedback
control loops for sophisticated control scenarios during
steady state experiments. The input data used for these
control loops must be provided by the data acquisition
system in a deterministic way. As a consequence it must

1



be possible to provide data reliably in predictable inter-
vals.

1.2 Functional Requirements

On full operation of Wendelstein 7-X a high number
of different diagnostics must be integrated which partly
use very different acquisition technologies. In order to
be able to create a coherent view on the experiment it
is necessary to abstract from the concrete technologies
and map them to a small set of common interfaces. This
does not only apply to the data acquisition functions but
also to the integration into the central control system
of Wendelstein 7-X. Every diagnostic component must
be able to participate in the segment sequence control
which means react to corresponding commands as well
as provide state information.

The continuous operation mode also requires every
acquired value to be addressable by an absolute times-
tamp. To make these timestamps comparable between
different data acquisition systems they have to be syn-
chronized to a central time system [3, 4].

1.3 CoDaStation History

In order to meet the described requirements Wendel-
stein 7-X provides a special software called Control and
Data Acquisition Station (short: CoDaStation). This
software has already been used for several years for dif-
ferent prototype installations like WEGA for example
[5]. Because of the experiences made with these proto-
types a complete redesign of the CoDaStation has been
done. The following chapters will describe the basic
architecture of this new version.1

2 Basic Concepts

The general idea of the CoDaStation is to combine sev-
eral signal sources and signal sinks to a signal process-
ing network. Signals are time-variable functions of data
samples of different kind. In the context of the Co-
DaStation a data sample may be a scalar value (e.g. a

1A few aspects of the architecture will be illustrated with dia-
grams. These diagrams use the FMC notation [6, 7].

voltage measurement) or a set of values that are closely
related (e.g. the pixels of a video image).

The core of the CoDaStation software is a generic
framework that solely provides the necessary infrastruc-
ture to acquire and process signals. Additionally, it de-
fines a fixed interface that is used to extend the Co-
DaStation with actual business functions like retrieval
of data samples from data acquisition devices, archiv-
ing of acquired data to persistent storage systems and
provision of control and configuration interfaces.

3 Signal Processing

3.1 Buffers

Signals are processed inside the CoDaStation in the form
of Buffers. Buffers are containers for the values of one
or more signal chunks where a chunk is a finite number
of consecutive samples. All signals contained in a buffer
must have been acquired using a common sample clock.
This means that samples with the same index inside a
buffer are assumed to be acquired simultaneously.

3.2 Signal Providers and Consumers

Signal sources and sinks are represented by Signal
Providers and Signal Consumers. Signal Providers pro-
duce Buffers and Signal Consumers take Buffers for
further processing.

There are different scenarios where Signal Providers
and Signal Consumers are used. Sources for samples of
Signal Providers may be such as:

• any kind of sensor that converts analog signals to
digital values (ADCs, cameras, ...)

• time measurement devices, counters, etc.

• network sockets that receive data samples via Eth-
ernet from a remote source

• pieces of software that simulate or process samples

Examples for Signal Consumers are:

• digital to analog converters (DACs) of different
types

2



• network sockets that are used to send data via Eth-
ernet to remote sinks

• pieces of software that process samples

• pieces of software that store samples in a specific
format

Signal Providers and Signal Consumers are basically
data input and output interfaces for third party com-
ponents that acquire or process signals.

3.3 Routers

Signal Providers are connected to Signal Consumers by
so-called Routers. Similar to common network routers
that route network packets from a sender to a receiver
Routers retrieve Buffers from one Signal Provider and
transfer them to one or more Signal Consumers. Un-
like network routers the information about sender and
receiver as well as the routing path is statically defined
and not part of the transferred Buffer.

The transfer steps are executed in a loop as long as
the acquisition task is active. The number of samples to
be transferred in one cycle is a configurable parameter
allowing the number of cycles per second to be cus-
tomized. When no samples can be retrieved from the
source the Router will block until a timeout is reached.

3.4 Routing Jobs

Routers may act synchronously or asynchronously. This
is defined by Routing Jobs. A Routing Job is a task
that executes one or more Routers synchronously. Mul-
tiple Routing Jobs are executed asynchronously (Fig.
1). The default behavior is to run each Router in a sep-
arate Routing Job so that all Routers will be executed
asynchronously. This will usually result in the maximum
performance. However, there are cases where the exe-
cution of Routers has to be more deterministic. For
example the feedback control loops mentioned in chap-
ter 1.1 require all Routers to be executed in a limited
time period. In this case all Routers have to be run
synchronously in one Routing Job each having a defined
timeout.

R
o
u

tin
g

 J
o

b
 2

R
o

u
ti
n

g
 J

o
b

 1

Router 1 Router 2

R
o

u
ti
n
g

 J
o

b Router 1

Router 2

(a) (b)

Figure 1: Asynchronous (a) vs. synchronous (b) control
flow

3.5 Time Groups

As stated during discussion of the requirements all ac-
quired samples have to be addressable by synchronized
timestamps. Hence, the data acquisition system has
to assure that the synchronized time information is at-
tached to every acquired data signal. If that did not
already happen outside of the CoDaStation (e.g. in
customized devices) a separate time measurement must
be added to the actual data acquisition. The time and
data measurements must use a common sample clock
and are combined to a common measurement by so
called Time Groups.

Time Groups contain one Signal Consumer for the
time measurement and one or more Signal Consumers
for acquired data signals. Incoming Buffers from the dif-
ferent sources are checked for consistency (equal num-
ber of samples) and merged to a common Buffer. The
merged Buffers are made available by a Signal Provider.

4 Control

4.1 Properties

The state of CoDaStation components is defined by
Properties. Properties are sets of key-value pairs that

3



define the parameters of a specific component. The
keys are always character sequences (which may be in-
terpreted as numbers) whereas the values may be of any
type. The component using the property values is re-
sponsible for checking the correct type and interpreting
the content.

4.2 Controllables

Controllables retrieve Properties from the CoDaStation
and translate them into component-specific actions. An
action may be something like writing to a register of a
device or execution of a software method. Furthermore,
it provides status information (e.g. health status, fill
level of internal buffers or similar). Like Signal Providers
and Signal Consumers Controllables are input and out-
put interfaces for the control specific part of third party
components.

4.3 Station States

A Station State is basically an aggregation of Proper-
ties with references to corresponding Controllables. It
is used to define the overall state of the CoDaStation
at a given point in time. Station States do not have to
be complete. If property sets or single property entries
are omitted from the state definition the corresponding
Controllable simply keeps its current state.

4.4 Controller

Controllers are the interface for external control systems
to issue control commands. The main task is to select
the current state from a pre-defined set of Station States
(Fig. figure 2). The external control system can define
the behavior of a CoDaStation over time by executing a
sequence of Station States and observing the returned
state information. Additionally, the Controller is used
for maintenance tasks like reset or shutdown.

This mechanism reflects the ideas of the segment
sequence control concept of Wendelstein 7-X [3] and
of course a corresponding Controller has been imple-
mented. Every data acquisition system based on the
CoDaStation will automatically be able to participate
in the control system of Wendelstein 7-X. However, the
integration into alternative control systems (e.g. for

laboratory setups or test environments) is still possible
by simply replacing the Controller component.

Controllable

Pool

Controller Controllable
R

StationState

PropertiesProperties
Index

Figure 2: Control components

5 Modularization

5.1 AddOns

To make the CoDaStation modular a plug-in concept
has been developed that is based on the strategy pat-
tern [8]. These plug-ins are called AddOns. An Ad-
dOn is basically a package that extends the CoDaSta-
tion with new features (Fig. figure 3). It provides a
set of predefined methods to inspect and retrieve these
features.

In order to realize a toolbox-like modularization mech-
anism AddOns are designed to have only a few weak
dependencies to the CoDaStation. These dependencies
are defined as a fixed software interface. Hence, the
CoDaStation does not have to know anything specific
about the AddOns it uses. It will still work even if no
AddOn is available but it will possibly not be able to pro-
vide specific functionalities. The AddOn on the other
hand does not rely on changes of the CoDaStation other
than changes of the interface definitions. This strong
modularization concept permits extensive test scenarios
on both sides of the interface.

5.2 Resources

Every AddOn provides the functionality of one Resource.
A Resource may be a device or some service. Some
examples are:

4



• a data acquisition device

• a manipulator or other active device

• a signal processing framework

• a web service

Multiple instances of a Resource may exist. For example
a Resource might provide the functionality of a device
of a certain type but multiple devices of this type are
installed.

5.3 Features

The functions of a Resource are provided as Features.
A Feature can be a Controllable, a Signal Provider or
a Signal Consumer. The list of supported Features is
open for extension. Other Features may be provided
as soon as they are included in the AddOn interface
definition.

AddOn

Resource

Controllable

SignalProvider

Controllable

R

Signal 

Provider

Signal 

Consumer

R

Configurator

R

Controller
R

Router Router

R

Figure 3: AddOn-centric view of the CoDaStation

6 Configuration

6.1 Configuration

In order to make the CoDaStation execute a specific
task the required Resources and Features as well as the

allowed Station States have to be configured. In dif-
ferent environments the way in which the configuration
is provided may also be different. Therefore, a soft-
ware interface has been defined to pass configurations
in different formats to the CoDaStation.

The Configuration interface describes a specific setup
of a CoDaStation. The setup includes:

• all used resources and features

• static properties that do not change at runtime (for
example device identifications)

• the static setup of the signal processing network by
specification of

– Routers with corresponding Signal Providers
and Signal Consumers

– Routing Jobs and attached Routers

• the allowed Station States

6.2 Configurator

To retrieve Configurations and interpret specific for-
mats the Configurator is used. It reads a Configuration
from a given source and initializes Resources, Features,
Routers and Routing Jobs accordingly (Fig. figure 4).
The configuration source may be a database, a file or
even an interactive application. Again, this supports
test scenarios due to the possibility to create simple
file-based test configuration sources for example.

In the same way like Configurations the Configurator
reads and interprets Station States from the configu-
ration source. The retrieved Station States are stored
into an internal pool in the memory of the CoDaStation
for later use. Which Station States exactly are read
from the configuration source is defined as part of the
Configuration.

7 Supervision

7.1 Supervisor

When many CoDaStations are running at an experiment
site supervision becomes an important point. The Co-
DaStation provides a Supervisor interface based on the

5



Configuration Store

ConfigurationConfiguration

Configurator

Resource
Resource

Resource
Routing JobR

R

RouterRouter

Feature

Station State

Pool

Figure 4: Configuration

observer pattern [8]. Aside from the status information
that can be retrieved via the Controller interface other
internal components of the CoDaStation can directly
request information from the Supervisor or register and
get notified on specific events. Typical examples for
information provided by the Supervisor are:

• the error state of a Resource

• the fill-level of an internal buffer of a Resource

• the throughput of a Router

Using this supervision mechanism the CoDaStation can
be diagnosed more easily and errors can be detected in
a short time or even prevented.

7.2 Remote Supervision

Special Supervisor clients are used to make supervision
information available from remote via network connec-
tions. The current Java-based CoDaStation implemen-
tation provides a JMX interface [9] to connect to the
CoDaStation remotely and request status information.
Because JMX is a widely used protocol this interface
can easily be integrated into common monitoring frame-
works like Nagios for example [10]. Thus, even a high
number of CoDaStations can be observed centrally.

8 Testability

As mentioned before a reliable data acquisition system
requires extensive testing possibilities. Because of its

well-defined interfaces a lot of the CoDaStation com-
ponents can be replaced by mockups. This allows an
easy integration into test environments.

For tests of the basic CoDaStation functions a simula-
tor Resource has been implemented that provides a Sig-
nalProvider mockup. It calculates simple configurable
data signals in software (e.g. sine or sawtooth func-
tions) and so allows system independent tests of the
basic CoDaStation software.

9 State and Future Work

The implementation of the described architecture for
Wendelstein 7-X is in progress. The basic functions
are available and several essential AddOns are already
provided (time measurement devices, analog to digital
converters, data collecting resources using network in-
terfaces). Currently tests concerning the reliability and
performance of the implemented software components
are done.

With Wendelstein 7-X nearing completion additional
data acquisition devices will have to be implemented
and a scalable deployment strategy for the CoDaStation
software has to be defined.

References

[1] P Heimann, S Heinzel, Ch Hennig, H Kühntopf,
H Kroiss, G Kühner, J Maier, J Reetz, M Zilker,
Status report on the development of the data ac-
quisition system of Wendelstein7-X, Fusion Engi-
neering and Design, Volume 71, Issues 1–4, June
2004

[2] Jörg Schacht, Heike Laqua, Marc Lewerentz, Ina
Müller, Steffen Pingel, Anett Spring, Andreas
Wölk, Overview and status of the control system
of WENDELSTEIN 7-X, Fusion Engineering and
Design, Volume 82, Issues 5–14, October 2007

[3] Jörg Schacht, Helmut Niedermeyer, Heike Laqua,
Anett Spring, Ina Müller, Steffen Pingel, Andreas
Wölk, Tasks and structure of the WENDELSTEIN
7-X control system, Fusion Engineering and De-
sign, Volume 81, Issues 15–17, July 2006

6



[4] Jörg Schacht, Helmut Niedermeyer, Christian
Wiencke, Jens Hildebrandt, Andreas Wassatsch,
A trigger–time–event system for the W7-X experi-
ment, Fusion Engineering and Design, Volume 60,
Issue 3, June 2002

[5] Marc Lewerentz, Dieter Aßmus, Torsten Bluhm,
Stefan Heinrich, Christine Hennig, Uwe Herbst,
Christiane Meyer, Eric Köster, Ina Müller, Heike
Laqua, Matthias Otte, Steffen Pingel, Jürgen
Sachtleben, Jörg Schacht, Anett Spring, Andreas
Wölk, First experiences with the new W7-X like
control system at the WEGA stellarator, Fusion
Engineering and Design, Volume 84, Issues 7–11,
June 2009

[6] Knöpfel, A., Gröne, B. and Tabeling, P. (2005).
Fundamental Modeling Concepts: Effective com-
munication of IT systems. Chichester Hoboken,
NJ: J. Wiley & Sons.

[7] Fundamental Modeling Concepts
http://www.fmc-modeling.org

[8] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. 1995. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-
Wesley Longman Publishing Co., Inc., Boston,
MA, USA.

[9] Java Management Extensions (JMX)
http://www.oracle.com/technetwork/java/
javase/tech/javamanagement-140525.html

[10] Nagios Infrastructure Monitoring
http://www.nagios.org

7

http://www.fmc-modeling.org
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.nagios.org

	Introduction
	Non-functional Requirements
	Functional Requirements
	CoDaStation History

	Basic Concepts
	Signal Processing
	Buffers
	Signal Providers and Consumers
	Routers
	Routing Jobs
	Time Groups

	Control
	Properties
	Controllables
	Station States
	Controller

	Modularization
	AddOns
	Resources
	Features

	Configuration
	Configuration
	Configurator

	Supervision
	Supervisor
	Remote Supervision

	Testability
	State and Future Work

