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Abstract. Arctic field studies have indicated that the air tem- associated with diminished snow accumulation at the start
perature, soil moisture and vegetation at a site influence thand end of the snow season. High latitude sites with warmer
quantity of snow accumulated, and that snow accumulatiormean annual growing-season temperatures tended to accu-
can alter growing-season soil moisture and vegetation. Cliimulate more snow, probably due to the greater availability
mate change is predicted to bring about warmer air temperaef water vapor for snow season precipitation at warmer loca-
tures, greater snow accumulation and northward movementsons. Regions with drier soils preceding snow onset tended
of the shrub and tree lines. Understanding the response® accumulate greater quantities of snow, likely because drier
of northern environments to changes in snow and growing-soils freeze faster and more thoroughly than wetter soils. Un-
season land surface characteristics requires: (1) insights intderstanding and continuing to monitor these linkages at the
the present-day linkages between snow and growing-seasaegional scale using the ACE approach can allow insights to
land surface characteristics; and (2) the ability to continuebe gained into the complex response of Arctic ecosystems
to monitor these associations over time across the vast parte climate-driven shifts in air temperature, vegetation, soil
Arctic. The objective of this study was therefore to examine moisture and snow accumulation.

the pan-Arctic (north of 60N) linkages between two tem-
porally distinct data products created from AMSR-E satel-
lite passive microwave observations: GlobSnow snow wa-

ter equivalent (SWE), and NTSG growing-season AMSR-1 Introduction

E Land Parameters (air temperature, soil moisture and veg-

etation transmissivity). Due to the complex and intercon-Interactions between cryospheric, biological and atmo-
nected nature of processes determining snow and growingsPheric components play an important role in the Arctic cli-
season land surface characteristics, these associations weRate systemJerreze and Barry2003, and linkages be-
analyzed using the modern nonparametric technique of alfween snow water equivalent (SWE), soil moisture, air tem-
ternating conditional expectations (ACE), as this approachPerature and the quantity of vegetation determine the car-
does not impose a predefined analytic form. Findings indi-Pon balance of northern regionSitch et al. 2007). North-

cate that regions with lower vegetation transmissivity (more€m field studies have determined that snow accumulation is
biomass) at the start and end of the growing season tend ttfluenced by the snow season climag#fm et al. 1995.
accumulate less snow at the start and end of the snow sesNOW accumulation is also known to be altered by vegeta-
son, possibly due to interception and sublimation. Warmer aition species compositions. Patches of shrubs reduce wind-

temperatures at the start and end of the growing season wefP€€ds, leading to the deposition of windblown snow par-
ticles and an increase in snow accumulation immediately
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downwind Sturm et al, 20013. Regions with greater quan- — similarities in general tendencies of the land surface
tities of evergreen biomass tend to retain less snow due to in- between seasons (e.g. do regions that have greater
terception and sublimatioriPbmeroy et a).2002. Changes guantities of vegetation also tend to have more SWE?)
in snow accumulation have also been found to alter vege- ] ] ] N

tation species composition at an Arctic tundra sitéafiren — whether regions thqt experience certain copdltlons at
etal, 2005, and have been found to result in anomalous soil the end of the growing season tend to receive altered
moisture values over the following growing season in a semi- quantities of SWE (e.g. do areas that tend to be warmer
arid area of Eurasigghinoda2001). Field-scale associations at the end of the growing season tend to accumulate
between snow and growing-season land surface characteris- €SS snow in the early portion of the snow season?)

tics are therefore relatively well understood.

However, due to the scale dependence of many processes,
the spatial heterogeneity of Arctic regions, and the lack of
exhaustive pan-Arctic coverage by ground-based sampling,
understanding the complex response of pan-Arctic environ-
ments to climate change relies on the ability to characterize

land surface properties using remote sensing observations, The modern nonparametric approach of Alternating Con-
and to analyze shifts in the associations between snow angitional Expectations (ACE) was applied to analyze the re-
growing properties at the regional to circumpolar resolution.|ationships between each pair of snow and growing-season
It is therefore important that these land surface characterisyariables from passive microwave observations. As the ACE
tics and their seasonal linkages be well understood as themchnique has not yet been widely used in the biogeosciences,
appear in both field and remote sensing observations. a thorough explanation of the theory behind ACE and the

Analyzing these linkages in remote sensing observationsstrategies used to assess ACE output are provided below.
could also assist in improving model estimates of processes

such as carbon cycling, which respond to snow accumula-

tion as well as growing-season soil moisture, air temperatur@ Alternating conditional expectations (ACE)

and vegetation\Walker et al, 1999 Sullivan et al, 2008 i )
Morgner et al, 1998. Model estimates of these processes 1n€ ACE approach can be used to describe the underlying,
typically rely on remote sensing observations of growing- nonlinear I’(.9|atIOI"IShI.pS that eX|st. between predictor and re-
season land surface characteristics, but do not usually inSPONse variablesB(eiman and Friedmari985 Frank and
clude snow season remote sensing observatiomss(et al, Lanten 1988. Previous work has indicated thqt the'ACE
2013H. Findings regarding the pan-Arctic associations be_te(.:hn'lque can be used to reveal complex relationships that
tween snow and growing-season land surface characteristiciSt in large data sets (e.gel, 2007). _

could therefore have important implications for future efforts A Standard linear regression approach provides a least
to understand and model ecosystem processes and their réquares estimate of the linear rela}t|onsh|p between aresponse
sponses to climate change. yanable ¢) anq one or more predictor v_anable@-Xaccord-

The passive microwave data products analyzed in thidnd to regression coefficients () and an intercepta):
study were created by a consortium of researchers led by the »

Finnish Meteorolt_)glca_l Institute (FM,I) (e.g_quus et al, y =ao+zajx‘,'. 1)
2009 and the University of Montana’s Numerical Terrady- =

namic Simulation Group (NTSG) (e.dones and Kimball

2012 from Advanced Microwave Scanning Radiometer for Techniques such as linear regression and principal compo-
the Earth Observing System (AMSR-E) observations. Thenent analysis (PCA) are based on the assumption that linear
FMI-led research group produced GlobSnow SWE, and theassociations exist between response and predictor variables.
NTSG group produced AMSR-E Land Parameter growing-However, in cases where this assumption is unfounded, ap-
season estimates of air temperature, soil moisture, vegetatioplying a linear regression or PCA approach can lead to erro-
transmissivity and fractional water content. A comprehensiveneous or misleading results, as described\tang and Mur-
summary of these data sets can be found in AppeAdix phy (2004.

The central aim of this study was to analyze linkages be- A nonlinear approach should therefore be applied when-
tween GlobSnow SWE and NTSG AMSR-E Land Parame-ever it is recognized that only a small portion of the vari-
ters air temperature, soil moisture and vegetation transmisance in the response variable can be explained using a linear
sivity for the entire terrestrial region north of 68. The ob-  model. One common approach is to apply nonlinear trans-
jectives were to examine: formations (e.g. polynomial, logarithmic, square root) to the

response or predictor variables in order to linearize their as-
sociation, and to then use the transformed output in a linear
model. However, selecting the best possible transformation

— associations between snow accumulation at the end
of the snow season and land surface variables at the
start of the growing season (e.g. do sites with slower
snowmelt at the end of the snow season tend to have
drier soil moisture at the start of the growing season?)
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for a given data set can be challenging, especially over largealues (e.g.g(y) and fi(x1)) (Frank and Lanteyi1988.

or noisy data sets, and can be complicated by the fact that thBince the ACE technique finds the least squares optimal val-

optimal transformation may not be monotonic or of a stan-ues ofg and f; such that the linear association betwgén)

dard analytic form. ande:1 fj(x;) is maximized, it is crucial that the plots of
The ACE technique uses an iterative method to find thepoint pairs[x;, f;(x;)] and[y, g(y)] be interpreted relative

least squares optimal smoothing functignand f; that lin- to one another.

earize the association betwegfy) and f; (x;):

p 2.1 ACE examples
g =Y fix)), @)
j=1

/ In order to demonstrate how the output from ACE is ana-

where theg and f] functions need not be monotonic or Iyzed, three Simple but detailed examples are prOVided. In
of a standard analytic form. By analyzing the shape of theFigs. 1 and 2, temporal associations are assessed between
point pairs[x;, f;(x;)] and[y, g(y)], insights can be gained two meteorological variables measured at the University of
into the under|ying nonlinear re|ationships betwgeand Waterloo Weather Station in 2000. Example 1 focuses on the
x; (Wang and Murphy2004 Breiman and Friedmar1985 associations between soil temperature and air temperature,

Frank and Lanteri1988. and example 2 describes the associations between baromet-
The optimal smoothing functions and f; are identified ric pressure and precipitation. The relationships between
by minimizing the error function andy can be easily detected without the ACE technique in

Fig. 1 but not Fig.2. In example 3, the first plot of the actual
P 2 ACE results from this paper is interpreted very thoroughly
(g fro...fp)=E [g(y) - ij (Xj):| (3) (Fig. 4a) in order to provide a foundation for interpreting all
J ACE plots shown in this paper.
When both air temperaturec) and soil temperature at
N and 20 cm depth x) are plotted over time (FidL left), examina-
JVIED)?] tion of these plots indicates that soil and air temperatures are
fJQ(Xj) =b;x;, j =1, p, whereb; are coefficients estimated greatest in summer, and that air temperature shows greater
through ordinary least squares regression. A loop is then usediurnal variation than soil temperature in winter. Plotting
to optimize the predictor transformation functigh wherek  soil temperature against air temperaturev. y) indicates
refers to the iteration: that an approximately linear association appears to exist be-
tween these variables at warm air temperatures (5°C).
} _ ) Similarly, point pair output from the ACE algorithm (Fid.

through an iterative two-loop process fprpredictors. The
ACE algorithm uses initial guessef(y) =

right) indicates an approximately positive linear association
between soil temperature and transformed soil temperature

Oncee? fails to decrease, the values 6f(x;) have been [, §(»)], and an approximately logarithmic association be-
selected. The response transformation function is then ~ tween air temperature and transformed air temperature [

optimized in an outer loop using the final valuesfgfc ) f@)]when air temperature is —5°C. o
When analyzed together, the ACE point pair output indi-

£ [Z R _)|y] cates that a positive association exists betvyeen soil and air
Jg 5) temperatures. The steepness of the slope in the plat,of [
f 2 f(x)] appears to diminish at air temperatures aboa8°C,
\/E [E [Zj fi (xj)|y]] and below—5°C. At subzero air temperatures, soil temper-
ature and air temperature become decoupled due to the low
until €2 again fails to decreasB(eiman and Friedman 985 thermal conductivity of the overlying snowpack, and effect
Frank and Lanteril988. Through this algorithm, the opti- which can be observed in plots efandy over time. Sim-
mal transformationg; (x;) andg(y) are identified. ilarly, due to the greater diurnal variability of air tempera-
Proof exists that the ACE algorithm results in convergenceture relative to soil temperature seen in Figeft, observa-
of f; andg to their optimal transformations, which need not tions of peak daily air temperature likely do not correspond
be either of a specific analytic form or monotonBr¢iman  with as substantial of a peak in daily soil temperature. When
and Friedman1985 Frank and Lanteyil988. The result- considered over all values af, the slope off (x) changes
ing output is therefore expressed according to the point pairshape at air temperatures o= —5°C andx =20 °C, and
[x;, f;(x;)] and[y, g(3)], rather than by a specific mathe- is most strongly positive over intermediate valuesxofin
matical form. Visual analysis consists of examining scatterother words, if the data set were to be separated into three
plots of these point pairs, where each plot indicates the origi-bins according to these values, we could expect that the
nal data values (e.g: andx1) relative to their transformed coefficients from the linear regressions would be largest and

£ =E [gk(w DGO
i#]

&) =
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Fig. 1. First example illustrating the application of the ACE algorithm to input data (lefover time,y over time,x vs. y), and the resulting

point pair output (right — toppx, f(x)]; bottom{y, g(y)]).
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Fig. 2. Second example illustrating the application of the ACE algorithm to input diefia«{ x over time,y over time,x vs. y), and the
resulting point pair outputright — topix, f(x)]; bottom{y, g(y)]).

most positive at intermediate values of air temperature, andbarometric pressures, an association which is strongest at the
smallest over the coldest values of air temperature. lowest levels of barometric pressure.

Likewise, the ACE technique can be applied to find asso- These two simple examples were specifically selected
ciations within data sets that are not immediately apparent irsuch that the associations betweeand y could be easily
exploratory plots. When precipitation from a tipping bucket identified with and without ACE (Figl), and such that the
(x) and barometric pressure)(are plotted over time (Fi associations between,[ f (x)] and betweeny, g(y)] could
left), precipitation shows spikes with distinct events whereasbe described as linear (Fig). Conversely, when the ACE
barometric pressure varies with greater frequency. As a reapproach is applied to assess associations in the GlobSnow
sult, no clear similarity is shown in these plots over time, SWE and NTSG AMSR-E Land Parameter data sets, the re-
or when precipitation is plotted against barometric pressurelationships are complex, and nonlinear. Likewise, the shape
Point pair output from the ACE approach (F2gright) in- and strength of associations shown in plot$xaff (x)] and
dicates a negative approximately piece-wise linear associaFy, g(y)] cannot be visually interpreted from plots [of, y].
tion between barometric pressure and its transformed valThe ACE technique therefore provides insights into associa-
ues [, f(x)], and a positive approximately piece-wise lin- tions between: andy that could not be gained through the
ear association between precipitation and its transformed valapplication of techniques that rely on assumptions about the
ues [y, g(»)]. ACE output therefore elucidates the tendency underlying shape of associations.
for greater quantities of precipitation to be received at lower

Biogeosciences, 10, 7578597, 2013 www.biogeosciences.net/10/7575/2013/
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gl Veg Classes

Fig. 3. Pan-Arctic (north of 60): (a) mean 2003-2008 snow season GlobSnow snow water equivalent ($ivE); mean 2003—-2008
NTSG growing-season air temperature (TA), volumetric soil moisture at 2 cm (MV), and vegetation transmissivity at 10.7 GHz (TC10); and
(e) vegetation classes used in this study, as described in Table

In order to demonstrate how plots in this paper were ana-and Fig.4a right are jointly considered, it can be inferred
lyzed, a detailed description is provided here of the article’sthat among all pan-Arctic evergreen sites, those that had rel-
first ACE point pair plot created from pan-Arctic AMSR-E atively greater snow accumulation or more rapid snow on-
derived observations. Figuda shows the shape of the asso- set at the start of the snow season also had colder temper-
ciations between NTSG AMSR-E growing-season air tem-atures at the end of the preceding snow seasons. Similarly,
perature TA and its transformation t(TA) (Fig. 4a left), as among evergreen sites with an average ¥%5°C at the
well as the paired associations between GlobSnow SWE andtart of the snow season, sites which were relatively colder
its transformation t(SWE) (Fig. 4a right) in evergreen forests.at the start of the growing season had more snow accumula-
Examining this figure can provide insights into the shape oftion at the end of the snow season, or underwent more rapid
the associations between growing-season air temperature astiowmelt. When examining the shape of the black lines de-
SWE. Each plot is composed of three lines which indicate thescribing mean annual SWE vs. mean annual t(SWE), a point

shape of these associations over three time periods: of inflection at~115 mm can be clearly seen. A positive as-
sociation between SWE and TA therefore exists over regions
— Mean annual SWE and mean annual TA (black) with mean annual SWE115 mm, and a negative association

between SWE and TA exists over regions with mean annual
réWEgllS mm. All remaining plots in this paper were ex-
amined and analyzed in a similar way, and then discussed in

— End of snow season SWE and start of growing-seaso
TA (red,“spring”)

— End of growing-season TA and start of snow seasoncontext of in situ findings.
SWE (blue, “autumn”)
3 Methodology
When examining plots of TA vs. transformed TA (Fidp
left), it is clear that an approximately linear monotonically GlobSnow SWE and NTSG AMSR-E Land Parameter data
increasing transformation is selected to describe the assocsets were first prepared for analysis and partitioned into veg-
ations between TA and t(TA) over mean annual and autumretation classes. An exploratory analysis was conducted to
time periods. Over spring time periods, an approximately lin-examine the linear spatial relationships between data sets.
ear monotonically increasing function is selected for loca-The modern nonparametric method of Alternating Condi-
tions with warm & 5°C) air temperatures at the start of the tional Expectations (ACE) was then applied to examine the
growing season. Figuréa right shows an inverse, approxi- potentially nonlinear pan-Arctic linkages between SWE and
mately linear association to exist between SWE and t(SWE)rowing-season air temperature, soil moisture and vegetation
in spring and autumn. When the findings from Hig. left transmissivity.

www.biogeosciences.net/10/7575/2013/ Biogeosciences, 10, 752013
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3.1 Data preparation periods consider only one value for each pan-Arctic pixel,
whereas comparisons at the start/end of the snow/growing
Initial data preparation consisted of identifying the start andseasons assess these linkages using each of the annual values
end dates of the snow season and growing seasons indepetalculated between 2003 and 2008. In this way, the general
dently for each 25 km pixel, and for each year (2003—-2008),tendencies of each location can be assessed using the mean
as defined by the NTSG and GlobSnow products. The NTS&003-2008 values, and the potential influences of both typ-
AMSR-E Land Parameters product is available only dur-ical and anomalous snow/growing-season values on the fol-
ing the growing season. Estimates that occur in ice-coveredpwing snow/growing season can be examined.
snow-covered, or precipitating conditions were eliminated
from the data set by the NTSG using AMSR-E 36.5GHz 3.2 Vegetation classes
observations and thi€im et al. (2011) algorithm Jones and

Kimball, 20109. Conversely, the GlobSnow product is avail- As vegetation classes are often used to describe snow and
able only when the ground is frozen and snow is dry. Es-growing-season characteristics of the land surface, associa-

tablished techniques exist for using passive microwave oblions between snow and growing-season variables were ana-
servations to differentiate wet/dry snostiles et al, 1980, lyzed within seven Arctic vegetation classes defined using

and frozen/unfrozen groun@igang and Armstrong2002). two well established cgtegorizations: t'he SYNMARJr@g

In the GlobSnow SWE product, the melt-detection algorithm €t &l- 200§ and the Circumpolar Arctic Vegetation Map
from Takala et al(2009 is applied to help ensure estimates (CAVM) (Walker et al, 2005. As CAVM is only available
are provided only over dry snow. For further information on north O,f the tree I|r.1e, SYNMAP was first uged to classify
the NTSG Land Parameters and GlobSnow satellite passivé'® €ntire pan-Arctic, but was substituted with CAVM cat-
microwave-derived products, please refer to Apperidix egorizations where available. The resulting 67 classes were

Observations from the NTSG Land Parameters productthe” reorganized into seven vegetation classes shown in Ta-
were only used during the period of time when the groundP!€ 1. Each 25km pixelin the NTSG AMSR-E Land Param-

was unfrozen and snow-free according to both the NTsceter and GlobSnow data sets was then classified according

and GlobSnow products. Conversely, the GlobSnow obserl0 its fractional vegetation class from the upsampled CAVM-

vations of SWE were only used for the period of time when SYNMAP classification. i ) ,

the ground was frozen and dry snow was present, rangin% In order for the analysis to proceed, it was important to
from the date in autumn when SWAEOmm was first ob-  1rst ensure that the af_orementloned vejgetapon clas_ses rep-
served up until the date in spring when the last observatiof €S€nt distinct populations of SWE, soil moisture, air tem-
of SWE > 0 mm was recorded. The dates for the start and end?€rature and vegetation transmissivity, and that the inter-

of the growing and snow seasons were determined indeperﬁ”nual variability of each land surface characteristic was

dently for each satellite-derived product, for each year, an®Mall enough that mean 2003-2008 values could be ana-
for each individual pixel. Across the pan-Arctic region, and lyzed. The heterogeneity of distributions of AMSR-E derived

over all years, the snow season from GlobSnow and groW_variables was assessed between years and between vegeta-

ing season from NTSG AMSR-E Land Parameters represerii©n classes using Levene’s tesegeng 1960). Levene's test
temporally distinct, non-overlapping time periods. was selected because_ it provides an assessment of the de-
After the start and end dates of the snow and growing sea?/ation of an observation from a group mean, is robust to
sons were identified, mean values could be calculated foPOn-normality, and has been used for a variety of scientific
each pixel over three time periods. Mean (2003—-2008) val-2Pplications, including environmental sciencésatswirth
ues for the snow and growing-season parameters were fir&t @l» 2009. Findings indicated that heterogene|t5y of vari-
separately calculated for each variable. Then, in order to de@"¢€S existed across vegetation Claspesa(ue< 10— ) (Ta-
termine mean values for each parameter at the start and erfd€ 2, and that homogeneity of variances existed between
of the snow/growing seasons, a thirty-day range was selecte$€@'S (0.5= p value <0.99). Analysis could therefore pro-
as a temporal averaging window. Thirty days was selecte®ed Py aggregating mean 2003-2008 values, and by assess-

because this represents a time period over which vegetatiot?d linkages separately for each vegetation class. Regions
snow, soil moisture and snow all generally tend to undergoVhich were identified by the NTSG AMSR-E Land Parame-

seasonal changes at the start/end of the snow/growing seff" Product as having 50% fractional cover of open water,
sons over many Arctic and boreal sit@/¢son et a].2003 or which were identified as permanent snow, ice or water by
Serreze and Barny2005 Bonan 2002. An identical time the CAVM/SYNMAP classes, were masked out from analy-

window was selected for all pan-Arctic pixels in order to al- S'S-
low pan-Arctic comparisons to be made.

Mean values for the start/end of the snow/growing seasons
were calculated separately for each pixel and for each year,
using the start and end dates for each season, as previously
described. ACE comparisons over mean (2003—2008) time
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Fig. 6. a—c:Associations between satellite estimates of vegetation transmissivity at 10.7 GHz (TC10) and SWE over seven vegetation classes,
and three time periods: mean 2003—-2008 (black), before and after snowmelt (red), and preceding and following snow onset (blue). Each plot
indicates the point pairs [TC1@(TC10)] and [SWE(SWE)] identified using the ACE technique for all forest vegetation clagbes.
Associations between satellite estimates of vegetation transmissivity at 10.7 GHz (TC10) and SWE over seven vegetation classes, and thre:
time periods: mean 2003—-2008 (black), before and after snowmelt (red), and preceding and following snow onset (blue). Each plot indicates
the point pairs [TC10;(TC10)] and [SWE¢(SWE)] identified using the ACE technique for all non-forest vegetation classes.
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Table 1. Aggregation of forest SYNMAP and CAVM vegetation classes into a categorization that divides the pan-Arctic into seven broad
vegetation classes: evergreen forest (EVGRN), deciduous forest (DECDS), mixed forest containing shrubs or grasses (MFRST), shrub-
dominated region (SHRUB), graminoid tundra (GRMTD), shrub tundra (SRBTD), barren vegetated region (BARRN). Regions of water or
permanent snow and ice (MASKD) are excluded from the analysis.

Veg class  Source Description

EVGRN  SYNMAP Trees needle evergreen; trees broad evergreen; trees mixed evergreen

DECDS SYNMAP Trees needle deciduous; trees needle mixed; trees broad deciduous;
Trees broad mixed; trees mixed deciduous; trees mixed mixed

MFRST SYNMAP Trees and shrubs; trees and grasses; trees and crops; crops

SHRUBS SYNMAP Shrubs; shrubs and crops

SRBTD SYNMAP  Shrubs and barren

SRBTD CAVM Prostrate dwarf-shrub, herb tundra; erect dwarf-shrub tundra;
Low-shrub tundra

GRMTD SYNMAP Grasses; grasses and crops

GRMTD CAVM Rush/grass, forb, cryptogam tundra; graminoid, prostrate dwarf-shrub,
forb tundra;
Prostrate/hemiprostrate dwarf-shrub tundra; nontussock sedge,
dwarf-shrub, moss tundra; tussock-sedge, dwarf-shrub, moss tundra

BARRN SYNMAP Grasses and barren; barren

BARRN CAVM Cryptogam, herb barren; cryptogam barren complex (bedrock);
Sedge/grass, moss wetland; sedge, moss, dwarf-shrub wetland;
Sedge, moss, low-shrub wetland; noncarbonate mountain complex;
Carbonate mountain complex

MASKD  SYNMAP Urban; Snow and ice

MASKD CAVM Nunatak complex; glaciers; water; lagoon

Table 2.Results from Levene's test examining homogeneity of vari- 1971). Soil moisture and snow water equivalent show greater
ances of all variables within seven vegetation classes (Tabénd spatial variability due to topographic, meteorological, atmo-

a class containing permanent snow and ice which is masked frongpheric, and land surface influenc&allaghan et a).2011;
analysis (MASKD). These variables are air temperature (TA), volu- ggrreze and Barn2005.

metric soil moisture (MV), vegetation transmissivity at 10.7 GHz

; Greater values of SWE occur in regions where more snow-
(TC10), and snow water equivalent (SWE). Adl values are<

fall occurs, where windblown snow is accumulated, or where

-5
107 snowmelt during the snow season is less frequent or less sub-
A MV TC10 SWE stfintial. Ideally, the;e contributions to SWE could be par-
titioned so that the linkages between growing-season vari-
EVGRN 252 1.06x1073 4.26 x103 898 ables with snowfall, snowmelt and windblown snow depo-
DECDS 192 9.25¢10°% 376x1073 556 sition could be analyzed. However, current estimates of pre-
MFRST 177 835x10*% 323x10°3 620 cipitation are presently unreliable at high latitudes, especially
SHRUB 246 8.27x107% 476x10°% 675 during the snow season, and the amount of snow must there-

GRMTD 577 6.71x107% 1.13x1072 790
SRBTD 473 4.90x107% 1.03 x10°2 437
BARRN 6.21 6.67x10°% 1.20x1072 327
MASKD 6.52 5.56x1074 8.71x10°3 279

fore be examined in terms of SWE alone. It is important
to note that mean values of SWE at the start and end of
the snow season are thus indicative of both accumulation
as well as the speed of snow onset/melt. At the start and
Test statistic  48.4 24.5 67.1 22.3 end of the snow season, mean values of SWE are greater
at sites where snowmelt and snow accumulation occur more
rapidly, as these have fewer days with low reported values
3.3 Exploratory analysis of SWE. Similarly, low values of SWE at the start or end of

the snow season are indicative of less snow accumulation,
A brief exploratory analysis of mean values for each variableOr slower snow onset or melt. Although a brief exploratory
over the 2003-2008 time period (Figa—f) indicated that ~analysis was conducted of all variables at the start/end of the
growing-season air temperature and vegetation opacity disSnow/growing seasons, associations between these variables
play a latitudinal gradient, with cooler temperatures and lesscould not be discerned visually. The ACE technique instead
vegetation at high latitudes, likely due to the temperature deProvides insights into the shapes of these associations, and
pendence of Arctic vegetatiorlare 1968 Ritchie and Harg
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how they vary according to the time period and vegetationwith mean values of SWE occurring after the first observa-

class over which they are examined. tion of dry snow on frozen ground after the end of the grow-
ing season. These time periods are referred to as “mean”,
3.4 Preliminary regression analysis “spring” and “autumn”, respectively, throughout the paper.

For a thorough description of study limitations, please refer
Preliminary regression analysis consisted of applying linearto AppendixB. All ACE analysis was conducted in R)(
regression and principal component analysis (PCA) to aswusing the acepack librangpector et a).2013.
sess the possibility of linear relationships between snow and
growing-season values. However, it is likely that the assump- ] ]
tion of linearity cannot be fulfilled, and in addition, appli- 4 Results and Discussion
cation of the Shapiro-Wilk test’Agostino and Stephens - , .
1986 indicated that the soil moisture and air temperatureF'nd'ngs. from the ACE analys_|s of assomatlons.between
data sets had non-normal distributions at high latituges ( SWE ar temperature, Solil ".]O'St”re and vegetatlop tran;-
values < 0.01). Linear regression and PCA therefore do not Missivity are presented and discussed below in relation to in

represent suitable techniques for examining associations pSitu observations. The results have been divided into separate

tween the GlobSnow SWE and NTSG land surface Varialblesections according to the growing-season values associated

data sets, but the findings from these approaches are of inv_vith SWE, with subsections corresponding to different time

terest because PCA and linear regression are widely used t%eriods. .E"’}Ch Seg“"” contains tables showing the strength
examine environmental linkages. The derive®ifrom clas- of associations K* value) of ACE transformed SWE and

sical single and multiple linear regressions (Tablg along groyvmglg-seasfon val_ues ('I;ag\]/ivélé, an(? plots_ indicating thle
with the multiple linear regression of SWE vs. factor scores2Ptimal transformations o and growing-season vajues

obtained from the principal component analysis (PCA) of airgccorgcijng tg the se(\gjn vegetation classes (Mgsc,4d-g,
temperature (TA), volumetric soil moisture (MV), and vege- a—C,50-g,6a-c andsd—g).

tation canopy transmissivity (TC) (TabA2) indicated that .

the linear associations between SWE and growing—seasoﬁ'1 Air temperature and SWE

variables were very weak or non-existent. _At tundra sites, a positive, nonlinear association exists be-
_Convgrsely, a multlvarlatezACE analysis of these assOCiyyeen mean annual SWE and mean growing-season air tem-
ations yielded much greatét“ values for every vegetation heraryres such that sites which tend to be slightly warmer
class and time period relative to the linear regression (Taeng to accumulate more snow than cooler sites. Yet, sites
ble B1), while a univariate ACE analysis indicated highly that tend to be warmer at the start and end of the growing

S|gn|f|c§mt (p value < 1_0 ) pairwise associations for all season tend to contain less snow during initial snow onset
vegetation classes, variables and time periods. Moreover, thg, 4 final snowmelt each year

p values of all coefficients in multivariate ACE analysis were

also highly statistically significant. As a result, we can con-4.1.1 North of the treeline, greater mean annual SWE
clude that there exists no collinearities in the nonparametri- with warmer growing seasons

cally transformed growing-season variables when these are

transformed to linearize their associations with transformedThe associations between mean 2003-2008 SWE and
values of SWE. The findings from this stage of preliminary growing-season air temperature at tundra sites are nonlin-
regression analysis strongly support the employment of thesar. As a result, findings from the linear regression approach
nonparametric ACE technique to explore the nonlinear assoindicate weaker associations at tundra Sit& £ 0.04—

ciations within this data set. 0.20) (TableAl) than detected by the ACE transforma-
tions (R? = 0.20-0.38) (Tabl®1). The associations between
3.5 ACE growing-season air temperature and SWE are weaker over

forested regions, likely due to seasonal discrepancies in the
The ACE approach was applied to determine the strength anthean growing season and mean snow season air temper-
directionality of the associations between SWE and growing-atures Qverland et al. 1997 Rigor et al, 2000 Adams
season values for each vegetation class and time period sept al, 200Q Serreze and Barr2005. The following analysis
arately. Associations between these data sets could therefotherefore focuses mainly on the associations observed north
be examined despite their lack of temporal overlap by com-of the treeline, although all plots can be found in Fidg-c
paring: (1) mean growing season with snow season valuesand4d-—g.
(2) mean values of SWE over the last thirty preceding the on- Examinations of Figde—g indicate sharp, positive trans-
set of snowmelt with mean land surface values over the firsformations applied to low values of SWE (75 mm). Like-
thirty days with a snow-free and unfrozen land surface fol- wise, these plots show that the positive association between
lowing snowmelt; and (3) mean land surface variables overair temperature and SWE at these locations exists for sites
the last thirty days of the growing season before snow onsetvith a mean annual growing-season temperature d9°C.
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Analysis of the ACE transformations provides an important exist between SWE and soil moisture in spring and autumn
source of information for understanding these linkages. Arc-(Figs.5a—c andsd—g) which has also been observed in situ.
tic tundra regions are characterized by very cold tempera-

tures during the snow season that limit the availability of wa-4.2.1 Mean annual SWE and soil moisture

ter vapor and the rate of precipitatioBqnan 2002 Serreze

and Barry 2009, thereby resulting in diminished accumu- The relationships between mean annual SWE and soil mois-
lation of snow, and it is likely that the influence of dimin- ture are weak, nonlinear, and vary according to vegetation
ished water vapor explains the association between SWE andass over which they are examined. Seasonal differences
growing-season air temperature. Analysis of the ACE transdin precipitation patternsSerreze and Baryy2005, as well
formations therefore indicates that in tundra regions withas confounding factors such as soil freeze patterns, vegeta-
< 75 mm of SWE and mean growing-season air temperaturetion (Hardy et al, 200% Johnsson and Lundii991), ponds

of 0-10°C, sites that tend to have slightly warmer air tem- (French and Binley2004), topography Burt and Butcher
peratures will likely tend to accumulate greater quantities 0f1985 and soil type Janowicz et a).2003 Williams and Rat-

SWE. setter 1999 are likely to limit the strength of the associa-
tions between SWE and soil moisture, and limit the extent
4.1.2 Warmer spring/autumn temperatures and less to which these associations can be regionally generalized.
SWE Nevertheless, the ACE transformations indicate that positive

associations exist between mean annual SWE and soil mois-

ACE analvsis indicated that weak. approximately linear aS_ture in forested and barren regions that accumulate little snow
Y » apb y (SWE <90 mm) and have low soil moisture:(0.17). Sim-

sociations exist between warmer air temperatures and dimin: ., - . _
; ilarly, a positive association between soil moisture and SWE
ished SWE at the start and end of the snow season (Bdble . s :

. is observed over shrub-dominated regions for all values of
Regions that tended to be warmer at the start and end of th . . . .

WE and soil moisture, and over mixed forest regions accu-
snow season therefore tended to have less SWE at the start | ..
and end of the snow season, or more gradual snow onset grwulatmg less than 100 mm of SWE.
melt ' 9 The influence of very low SWE{ 100 mm) has been stud-

L . ied in situ at barrenAyr tal, 2010 and hardw: r
The associations between autumn SWE and air temper-ed st a .ba evyres eta, 010 and hardwoodkardy
) et al, 200]) sites. Findings indicated that snow removal at the
ature were found to be weaker over tundra regions (ACE . > .
hardwood site resulted in greater soil heat loss, and therefore

R?=0.06-0.10) than forested regions (ACE2=0.14— . ) AR
. increased the proportion of ice in soil. As a result, snowmelt
0.25). As forest soils have been observed to be warmer and ., = : . .
infiltration and soil moisture were reduced in plots where

to freeze more gradually than tundra soils at the start of the e .
) L snow was removedHardy et al, 2007). Similarly, experi-
snow seasorRouse 1984 Smith et al, 1998, it is likely that ) . .
) . ; mental manipulation of snow accumulation at a polar desert
the influence of antecedent growing-season air temperatures _. . o
. ndicated that sites where greater quantities of snow were ac-
on the capacity of a dry snowpack to develop at the start o

: . cumulated tended to have greater levels of soil moisture dur-
the snow season would be stronger over regions without per:- : . . .
mafrost. ing the following growing seasons relative to palred control
sites @Qyres et al, 2010. In the previously described experi-
mental plots simulating low snow conditions, the barren site
4.2 Soil moisture and SWE accumulated 10-50 mm of SWE and the hardwood site accu-
mulated 80—-100 mm of SWE. As a result, these studies indi-
The ACE transformed associations between mean annualated that diminished SWE led to diminished soil moisture in
SWE and mean growing-season soil moisture are wealbarren and hardwood plots with 100 mm of SWE. There-
across all vegetation classes (0.02-0.09) (T&dlpdue to  fore, although theR? values from this study indicate that
the large number of confounding factors affecting the asso-a weak and nonlinear association exists between SWE and
ciation between soil moisture and SWE. The results mustsoil moisture across all vegetation classes, the ACE approach
therefore be interpreted with caution. However, althoughhas elucidated similar thresholds and linkages as those which
the associations between mean annual values are generalyave been recorded in situ.
weak and nonlinear, a positive association exists between The ACE approach also indicated that a greater mean an-
mean annual SWE and soil moisture at sites with very lownual SWE is associated with greater soil moisture across
SWE (<90mm) and low soil moisture<0.17). The ob- all values observed over shrub-dominated regions, and at
served thresholds correspond with thresholds observed itow (< 0.15) levels of soil moisture in evergreen forests and
situ. When considered over the start/end of the snow/growinggraminoid tundra. Similarly, in a study conducted at the re-
seasons, the associations are relatively weak across all vegional scale, anomalies in maximum annual snow depth and
etation classes (0.02—0.17). Despite challenges in elucidasoil moisture were found to be associated in a semiarid re-
ing these associations due to confounding factors, it is ingion of Eurasia north of the Caspian-Aral se&hifoda
teresting to note that a weak inverse association appears t#0017). This region has maximum annual values<c150 mm
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of SWE, and is classified as evergreen and deciduous for- Likewise, in spring, an inverse association between soil
est in the present study. In years where snow accumulatiomoisture and SWE was observed over evergreen, shrub, tun-
tended to be greater, snowmelt onset was found to occur latetra and barren regions with low<(.1) soil moisture. The
and larger values of soil moisture were observed during theportion of snowmelt that infiltrates into the soil surface re-
following growing season. The finding byhinoda(2001) lies on the rate of snowmelt, soil water, soil frost and soil
that SWE and soil moisture tend to be associated over semidrainage ardy et al, 2001, Johnsson and Lundiri991).

arid evergreen regions is therefore consistent with findingsAn inverse association therefore exists between seasonal in-
from this study, which indicate positive associations betweerfiltration and soil moisture levels during snowmeth@o and
mean annual SWE and soil moisture at sites that tend to reGray, 1999. The soil frost and soil drainage patterns at the
ceive less mean annual SWE and tend to have low soil moisend of the snow season can also be influenced by the lev-

ture. els of soil moisture observed prior to soil surface freezing
at the start of the snow seasddafdy et al, 2001, Suzuki
4.2.2 SWE and soil moisture in spring and autumn et al, 2006. Soils which are drier at the start of the snow

season freeze more deeply than wetter soils and also thaw

The associations between soil moisture and SWE are weakut more graduallyWillis et al., 1961). Furthermore, soils
when examined over thirty-day time periods in spring (ACE with frozen upper layers have diminished infiltration due to
R?=0.02-0.17) and autumn (ACE? =0.06-0.12). Just as the influence of ice on reducing soil pore size and permeabil-
with the associations between mean annual SWE and soity (Zhao and Grayl999. Therefore, since drier soils tend to
moisture, the presence of multiple confounding factors adreeze faster and more deeply than wet soils, more opportu-
well as the temporal gap between liquid and solid precip-nity exists for snow accumulation to occur at the start and end
itation mean that the associations found from this analysiof the snow season over dry soils because melt is less likely
are weak and must be interpreted cautiously. At mixed for-to occur. Soils which are more thoroughly frozen through-
est and deciduous sites, ACE transformations indicates thatut the snow season are likely to receive less infiltration of
a positive association exists between spring soil moisture angnowmelt, and are therefore likely to be drier at the start of
SWE at sites with low € 75 mm) snow accumulation. Sim- the growing season. It is interesting to note that the output
ilarly, results from a snow depth manipulation experimentfrom the ACE analysis appears to agree with these field-scale
conducted in a hardwood forest indicated diminished soilfindings. However, the associations observed using the ACE
moisture following snowmelt in a hardwood forest with very technique are weak due to the strength and number of con-
low snow accumulationHardy et al, 2001). founding factors. Further analysis will be required using dif-

The associations between SWE and soil moisture oveferent data sets to gain a better understanding of these link-
remaining vegetation classes and time periods are slightlyages.
more complex. Although snow accounts for a large portion
of annual precipitation, little of the moisture released through4.3 Vegetation transmissivity and SWE
snowmelt in the Arctic is retained by soiMllis et al., 1961)
due to rapid snowmelt, runoff and outfloiHgrdy et al, Mean annual SWE and vegetation transmissivity generally
2002, Johnsson and Lundin991). For example, in a study have a negative association north of the tree line, indicat-
at the Imnaviat Creek Arctic headwater, snow accumula-ing greater SWE accumulation in regions with greater sur-
tion in spring accounted for 28—40 % of annual precipitation, face roughness or aboveground biomass (Fgsc andsd—
only 10-19 % of the liquid water arising from snowmelt was g). Conversely, the association between SWE and vegeta-
stored in the active layekK@ne et al. 1991). Regions with  tion transmissivity in forested regions tends to be positive,
greater accumulation of snow tend to contribute a larger persuch that SWE accumulation is limited in areas with greater
centage of snowmelt to runoffi(illis et al., 1961, Staple  aboveground biomass. At the start and end of the snow sea-
et al, 1960. It is therefore less likely that a positive asso- son, vegetation transmissivity is positively associated with
ciation would be observed between SWE and soil moistureSWE, which indicates more rapid melt or less snow accumu-
in spring and autumn in areas underlain by permafrost. lation at the start and end of the snow season in regions with

An inverse relationship is observed to exist between soilmore vegetation.
moisture at the end of the growing season, and the accumu-
lation of SWE at the start of the snow season for all veg-4.3.1 Mean annual SWE and vegetation transmissivity
etation classes (Fig&a—c and5d-g). Soil freezing occurs
more slowly over wet soils than dry soils due to the influenceThe association between mean annual SWE and mean veg-
of moisture on soil heat capacityMllis et al., 1961, Hardy  etation transmissivity (2003—-2008) varies according to the
et al, 2001). As snow can only accumulate over cool soil predominant land cover, as well as the quantity of SWE re-
surfaces, it is reasonable that soils which cool more rapidlyceived. In Arctic regions north of the tree line with a mean
at the start of the snow season may undergo greater net sno8WE accumulation ok 75 mm, an inverse association exists
accumulation after freezing than warmer, wetter soils. between vegetation transmissivity and SWE, indicating that
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locations with slightly more vegetation lost less snow to sub-Gelfan et al. 2004, since coniferous trees intercept snow-
limation than regions with less vegetation. Shrub-dominatedall, and have been observed to allow 20-50 % of precipita-
regions north of the tree line have often been observed to tragion to evaporate or sublimateindberg and Halldir§2007).
snow more readily than regions which are more sparsely vegHowever, although coniferous stands with dense crowns limit
etated Pomeroy et a).1997 Sturm et al. 20013 b; Liston snow accumulation, sparser evergreen forests can encourage
and Sturm 2002 Essery and Pomerp2004. Shrubs have snow depositionGhurch 1933. Based on the findings from
greater snow-holding capacity then graminoid or barren vegthe ACE analysis, it appears that the effects of evergreen
etation since shrubs reduce near-ground wind speeds, therelfgrests on limiting snow accumulation are strongest at lower
allowing greater deposition and less loss due to sublimatiorSWE (< 115 mm) sites, whereas at higher SWAELL5 mm)
(Essery and Pomerp2004 Sturm et al. 20013 Fitzgibbon  sites, a slightly positive association appears to exist between
and Dunne1979. From the ACE analysis, it appears that vegetation biomass and SWE. This could be due to the effect
this influence is strongest over regions with less SWE. Dueof dense boreal forest cover, which causes SWE to be un-
to the nonlinearity of the association between mean annuatlerestimated from satellite passive microwave observations.
SWE and vegetation transmissivity over tundra and barrerHowever, it is also reasonable that wind redistribution would
sites, the ACE transformation is useful since it identifies thebe a dominant process when availability of fresh snow is
shape of this associatioRf = 0.19-0.29) whereas a linear great, but that sublimation, interception and melt would be
regression approach would only have indicated that a weaklominant processes when snow accumulation is limited. It
linear association exists between variabl$£ 0.06-0.15).  is also interesting to note in this context that over deciduous
The association between vegetation cover and SWE mayorests, vegetation biomass and SWE are inversely associated
also be due in part to the influence of local precipitation onover all levels of SWE.
vegetation species compositions, which has previously been Assessment of these associations over mixed forest and
observed over the Brooks Range of Alaskatbyans et al.  shrub classes indicates that the associations between SWE
(1989. In northern regions, the health and productivity of and vegetation transmissivity are intermediate between those
vegetation can be compromised by very cold air, low soil observed over tundra regions, and forested regions. Like-
temperatures and rain-on-snow events. Snow has been olwrise, as the vegetation classes represent fractional portions
served to provide vegetation with insulation from cold soil of 25 km pixels according to the CAVM-SYNMAP-derived
temperatures, and protection from dehydration, frost damagelassification, both the mixed forest and shrub classes contain
and high winds \(ardle 1968 Tranquillini, 1964. There-  a mixture of forest and non-forest vegetation. Over mixed
fore, where snow accumulation is more substantial and reforested regions, vegetation biomass and SWE are positively
mains on the ground for a longer time in spring, higher NDVI associated over areas with lower SWE76 mm), just as
values have been observe@rippa et al. 2005, which in- observed as a result of shrub cover over tundra regions. In
dicate greater health or quantity of aboveground biomasshrubland areas containing large quantities of biomass and
(Jensen2007). SWE, vegetation biomass and SWE are inversely associ-
Areas that tend to lose less snow through sublimation,ated. Conversely, in shrublands with diminished vegetation
and accumulate more snow through windblown depositionbiomass, regions with greater biomass have greater SWE.
also tend to accumulate greater quantities of windblown or-Further field investigations would be required to better eluci-
ganic materials throughout the snow seasdfalker et al, date these drivers and clarify the dependence of these associ-
2001, and undergo greater rates of organic matter decomations on the stated thresholds.
position throughout the snow season since they have warmer
soil temperaturedNowinski et al, 2010. Both of the afore-  4.3.2 In spring and autumn, slower snowmelt in areas
mentioned influences can lead to nutrient rich conditions in with more vegetation
regions receiving greater accumulation of snow, which can
create growing-season conditions that are conducive to planAcross all vegetation classes, positive associations of mod-
growth. It is therefore possible that greater quantities of snowerate strength exist between the mean values of SWE over
and vegetation tend to be collocated in Arctic regions due tathe last thirty days of the snow season and the mean val-
the influence of snow on encouraging plant growth, and theues of vegetation transmissivity over the first thirty days of
influence of vegetation on encouraging snow accumulationthe growing season (ACR? = 0.19-0.31). The presence of
Spatial variability may therefore also play a role in this asso-this association indicates that regions with greater quantities
ciation, as high Arctic regions both accumulate small quanti-of vegetation or greater surface roughness tend to contain
ties of snow and contain little aboveground biomass. a lower mean quantity of snow over the last thirty days of the
The ACE analysis indicates that snow accumulation at lowsnow season. This association is approximately linear across
SWE (< 115 mm) evergreen forest sites is maximized whenall vegetation classes (Figga—c andsd—g).
less vegetation is presenk{ = 0.10). Likewise, field stud- Field studies have largely indicated that snow depletion
ies have found that snow accumulation is greater in clearin forested regions occurs more gradually in regions with
ings than coniferous forest&6lding and Swansqri986 greater quantities of vegetation. The rates of snowmelt in
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boreal and taiga forests have been observed to diminisended to accumulate more snow at the start of the snow sea-
with increasing canopy densityP¢meroy and Dion1996 son. Likewise, in situ observations have indicated more rapid
Pomeroy et al.1997 Metcalfe and Buttle 1998 Gelfan  and thorough freezing of soils which were dry at the start of
et al, 2009. This effect is due to the influence of the for- the snow seasom\(illis et al., 1961), which could allow snow
est canopy on limiting shortwave radiation received by snow,to accumulate more easily over cooler soils.
and its effect on slowing wind speeds, thereby limiting fluxes In forested regions, sites that tend to accumulate less snow
of latent and sensible hed#létcalfe and Buttle1998. also tend to have greater canopy density, as indicated by di-
When examining vegetation transmissivity over the lastminished vegetation transmissivity. Field studies have indi-
thirty days of the growing season against SWE over the firstcated that snow accumulation in heavily forested areas is
thirty days of the snow season, a positive, approximately lin-limited due to canopy interception and sublimati@h(rch
ear association of moderate strength can be identified for all933 Pomeroy et a) 2002. ACE analysis also indicated that
sites south of the tree line (ACE? =0.17-0.30). Forested within forested regions accumulatirg90 mm of SWE, sites
sites containing greater quantities of aboveground biomaswith greater SWE tended to also have greater soil moisture,
therefore tend to accumulate less snow over the first thirtyan observation similar to the in situ findings biardy et al.
days following the date of initial snowfall than sites with (2001).
less biomass. Field studies have indicated that interception In Arctic tundra regions with lower<€ 75 mm) SWE, more
and sublimation by dense canopies diminish snow accumusnow is accumulated at sites with warmer growing-season
lation (Pomeroy et a).1999 2002 Lundberg and Halldin  temperatures and greater biomass or surface roughness, as
200)). The observed associations between SWE and vegetandicated by diminished values of vegetation transmissivity.
tion biomass over tundra and barren regions appear weak brctic regions with warmer annual air temperatures have
positive. However, to date, field studies have focused mainlygreater moisture availability for snow season precipitation
on characterizing the influence of vegetation on mean an{Serreze and Barn2005, and snow is preferentially accu-
nual snow accumulation, and on the magnitude and timing ofmulated in regions with greater vegetation or surface rough-
snowmelt. A better understanding of these interactions couldhess Walker et al, 2007). Over dry (< 0.1 soil moisture)
therefore be acquired through in situ observations of the efArctic areas, sites that have more snow at the end of the snow
fects of vegetation compositions on distributions of snow atseason tend to have wetter soils at the start of the growing
the start of the snow season. season. Arctic regions that have more snow for the last thirty
days of the snow season also tend to have have cooler tem-
peratures at the start of the growing season, likely due to the
5 Conclusions rapid snowmelt undergone by cold, high latitude sites-(
nan 2002.
The Alternating Conditional Expectation (ACE) approachre- Recent circumpolar predictions indicate that climate
vealed nonlinear associations between passive microwaveshange may diminish the annual duration of snow cover and
derived snow water equivalent, and growing-season air temincrease maximum annual SWEdllaghan et al2011), and
perature, soil moisture and vegetation transmissivity. Al-that high latitude warming and altered snow season length
though the drivers of snow accumulation vary according tocan affect Arctic vegetation phenology and species composi-
the scale at which they are examin&beroy et a).2002), tion (Arft et al., 1999 Walker et al, 1999. As the ACE tech-
and uncertainty exists in passive microwave estimates of th@ique has uncovered linkages between snow and growing-
Arctic land surface due to its heterogeneity and high lakeseason land surface variables that bear great similarity to as-
fraction Quguay et al.2005 Rees et a.2006 Green etal.  sociations observed in situ, this also suggests that climate-
2012, it is interesting to note the similarity existing between driven changes in soil moisture, vegetation composition and
the linkages, thresholds and associations found in situ andir temperature may both influence, and be influenced by,
through ACE analysis of passive microwave observations (ashifts in the timing and accumulation of snow.
25 km resolution). We therefore suggest that continued monitoring of Arctic
Across all vegetation classes, sites with more abovegrounécosystems at the field scale be accompanied by applications
biomass at the start and end of the growing season tendf the ACE technique to monitor linkages between satellite
to have lower mean values of SWE over the first and lastpassive microwave observations of snow and growing-season
thirty days of the snow season. Field studies have found thatariables. We also suggest that snow and growing-season re-
snowmelt occurs more gradually over barren or graminoidmote sensing observations be included in models estimates
tundra regions with more vegetation due to shading andf NEE (e.g. Luus et al, 20133), since the linkages be-
slowed wind speedsMetcalfe and Buttle1998, and that tween snow/growing-season land surface characteristics vary
snow accumulation is diminished over forested regions withaccording to the time period and vegetation class over which
greater canopy density due to interception and sublimatiorthey are examined.
(Pomeroy et al.2002. The ACE technique also indicated
that sites with drier soils at the end of the growing season
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Appendix A GlobSnow, optimizes agreement between measured and sim-
ulated brightness temperature using forward simulation of

Data: GlobSnow SWE and NTSG AMSR-E Land different grain sizes.

Parameters GlobSnow SWE estimates (in mm) are calculated us-

ing AMSR-E 18.7 and 36.5 GHz data as well as meteoro-

The products compared in this study are derived from grid-logical data. Meteorological stations provide estimates of
ded Level 2A brightness temperature from the Advanced Mi-snow depth, which are filtered to remove spurious values
crowave Scanning Radiometer for the Earth Observing Sysand are then kriged between statiofiakala et al. 2011).
tem (AMSR-E). AMSR-E is a multichannel satellite pas- In the GlobSnow algorithm, regions with thin snowpacks,
sive microwave radiometer collecting observations at 6.925snowmelt or wet snow are masked out, as wet snow acts as
10.65, 18.7, 23.8 36.5 and 89.0 GHkafvanishi et al.2003. a microwave emitterArmstrong and Brodzik2001). Snow
Passive microwave observations rely on estimates of migrain size is estimated through an inversion of AMSR-E ob-
crowave radiance, which increases proportionally with tem-servations using the Helsinki University of Technology snow
perature and emissivity of a surface. Brightness temperaturenicrowave emission modeP(lliainen et al. 1999. Snow
(Th), the variable of observation by passive microwave in- water equivalent is then calculated from snow depth through
struments, is a function of the product of kinetic tempera-knowledge of snow density. Single fixed variables are used
ture (Tx) and emissivity €): Tp = Txe. Tp iS equivalent to  to estimate snowpack, soil and forest characteristics. Surface
the physical temperature of a blackbody= 1) (Jones etal.  roughness and soil moisture are assumed to have the same
20109. value across the entire pan-Arctic, and forest cover effects are

AMSR-E T}, has been used previously to estimate snowremoved using vegetation transmissivity collected in winter
water equivalentielly, 2009, vegetation and soil moisture (Pulliainen 20086.
(Njoku and Chan2009. These approaches have continued GlobSnow SWE has been validated for several northern
improving in accuracy and global coverage, culminating insites, and was found to have a root mean squared error
the recent release of the AMSR-E derived data sets analyze(RMSE) of 33 mm Luojus et al, 2009. GlobSnow SWE has
in this study: NTSG land parameters Bgnes and Kim- been found to outperform other SWE algorithms, especially
ball (2012 and GlobSnow SWE by.uojus et al.(2009. over>100 mm snowpackd (1ojus et al, 2010 Takala et al.
The following subsections describe the methodologies ap2011, Hancock et al.2013. Overall, GlobSnow SWE has
plied by the Finnish Meteorological Institute (FMI)-led con- been found to perform well at estimating values of SWE up
sortium and the University of Montana’s Numerical Terra- to 150 mm. Thicker snowpacks act as a source of emission
dynamic Simulation Group (NTSG) to calculate GlobSnow rather than a scattering medium, which leads to SWE being
SWE and land surface variables, respectively. All data areunderestimatedTgkala et al.2011). Over Canadian tundra
calculated from AMSR-E brightness temperature observartegions, this threshold has been observed at 130 Benk¢
tions acquired at 6.9, 10.7, 18.7, 23.8, 36.5 and 89.0 GHzen et al.2010. It is also important to note that passive mi-
twice daily with native resolutions varying inversely with crowave retrievals of SWE are only reliable ovefl5 mm
frequency from 5km to 60 kmJpnes and Kimball20103. snowpacks$olberg et al.2010, as thin snowpacks are dif-
NTSG and GlobSnow both use NSIDC Level 2A AMSR-E ficult to detect. Similarly, although specific modifications are
data, which resamples each frequency’s native resolution teanade to the GlobSnow SWE algorithm to enable accuracy
that of the 6.9 GHz frequency. The resulting product is avail-over forested regions, the amount of SWE recorded over
able on a 25 km km EASE-Gridd6hcroft and Wentz22003 densely forested regions can be underestimataki(a et al.
Knowles et al.2010. GlobSnow snow water equivalent uses 2011). GlobSnow estimates of SWE are therefore considered
18.7 and 36.5 GHz frequency dataipjus et al, 2009. Both most reliable over the 15-150 mm range in forested regions
the GlobSnow and AMSR-E air temperature data sets havevithout dense canopy cover, and over the 15-130 mm range
been validated against in situ and AIRS/AMSU observations,over tundra regions.
respectively Jones et a]2010d. Analysis in this study made
use of AMSR-E land surface variables version J@fsand A2 NTSG air temperature (growing season)
Kimball, 2012 and version 0.9.1 of GlobSnow SWEL(ojus

et al, 2009. The central goal in the creation of the NTSG land surface
variable data set was to gain accurate estimates of minimum
Al GlobSnow snow water equivalent (winter season) and maximum air temperature (in Kelvin) at a height of 2m

using AMSR-E observations. The accuracy of NTSG air tem-
The snow depth and quantity of snow can be estimated fronperature estimates was improved by quantifying and remov-
passive microwave observations as a linear function of theéng the influence of vegetation, soil moisture and atmospheric
difference between brightness temperatures at two frequenwater vapor on brightness temperature. Vegetation transmis-
cies, such as 18 GHz and GHz with horizontal polarizationsivity and soil moisture variables were therefore extracted
(Chang et al.1987. A new data set used for SWE estimates, through this process¢nes and KimbalR0109.

Biogeosciences, 10, 7578597, 2013 www.biogeosciences.net/10/7575/2013/



K. A. Luus et al.: ACE analysis of pan-Arctic linkages 7591

Minimum air temperature is calculated according to morn-also influence the surface roughness and scatteNijakq(
ing retrievals, and maximum air temperature is calculated acand Chan2005 Jensen2007). The optical depth of vegeta-
cording to late afternoon retrievals. Both estimates carefullytion can thus be defined according to the height of the attenu-
account for the effects of vegetation, soil moisture, fractionalating layer £op) and the extinction with heighk(z) in m—1)
cover of open water on land, and atmospheric water vapor(Jones et al20109:
The complete details regarding calculations of air tempera-
ture can be found idones et al(2010d. Air temperatures
from meteorological stations were used for calibration (2707 = k(z)dz.
stations) and validation (273 stations) of resulting products, 0

with these stations being assigned randomly. Comparisong,er 4 vegetated region with a single species and relatively

indicated root mean squared error (RMSE) values of 3.5K¢qnstant surface roughness, the attenuating influence of veg-
between AMSR-E derived temperature and meteorologlcabtaﬁon, or vegetation optical depth)( can be estimated as

data. Larger errors were observed in regions with sparse vegy |inear function of canopy water contemtif kgm2) us-
etation, higher elevations and higher fractional cover of OPeNing a species-specific parameth):(r = b x g (Jackson and
water on land. Non-desert regions had RMSE values bet\Nee@,Nei", 1990). A similar description is used byones et al.

1 and 3.5K, which shows better accuracy than previous ap»010g to define the optical depth of northern hemispheric
proaches that had relied on carefully selected meteorologyegetation as a function of water content using a parameter
ical stations Jones et al.20109. For the purpose of this , that expresses both the influences of roughness fadtprs (

project, daily air temperature was calculated as the daily avynq 100k angleq), as well as frequency and angular impacts
erage of maximum and minimum temperatures reported by, canopy extinctioni(in m2kg—1):

Jones et ali20104d.

Ztop

(A1)

Tt=ag=>bhg segd). (A2)

A3 NTSG soil moisture (growing season) Vegetation transmissivity to passive microwave radiatign (

The emissivity of soils depends largely on its dielectric prop- \Clzget;g“e;f’f;fg 32 ;T;fgeigir?;c?};ygsett:;m c‘i?;:;?nrlr;art of

erties. The real part of the dielectric constant increases as.”> . ) . L .
. : : . Sivity is calculated iteratively from a combination of inverted
a function of soil moisture content. As a result, wetter soils

have a diminished emissivity relative to drier soiljgku analytical expressions using AMSR-E inputs, emissivity and

s Kong 107, Passive microwave obseriaions are most %52 1460 ones 1 (20100, Sepaate versne
sensitive to subsurface soil moisture at logy3 GHz) fre- 9 Yy P

quencies, and at these low frequencies, the influences of Veql_smg inputs from the 6.9, 10.7 and 18.7 GHz channels. There

: . S s a great deal of similarity between these observations, and
etation and surface roughness is also limitéoku and o onlv the 10.7 GHz channel | ed in this analvsis. iust a
Kong, 1977 Njoku and Chan2005. S0 only LNz IS used in this analysis, just as

The NTSG soil moisture product therefore relies primar- in Njoku and Char(2003,

I on th owest AVSRL€ reguency 6 9GHo) o gnerate COMDEISOT 1 1 ot iy Hoderse Fesoloten
estimates of surface<(2 cm) soil moisture Jones and Kim- ging >p

ball, 20103. Soil moisture is expressed as a dimension-freedex’ normalized difference vegetation index (NDVI) and en-

value ranging between 0—1. Soil moisture was found to behanced vegetation index yielded correlations of up to 0.9

correlated with precipitation at meteorological stations in the(‘]ones etal2011). As the aforementioned MODIS products

Northern Hemisphere (0.2 r < 0.8) Jones and Kimball are typically used to (_estlmate .the vegetation health or quan-
20100). tity of aboveground biomass, it seems reasonable to assume

that vegetation transmissivity likewise provides a relatively

A4 NTSG vegetation transmissivity (growing season) reliable estimate of the quantity of aboveground biomass.

Vegetation acts as an attenuating layer that diminishes th@ppendix B

transmissivity of passive microwave radiation. The vegeta-

tion water content alters the dielectric properties of the land-|_jmitations

scape, such that there exists diminished emissivity over re-

gions with greater vegetation water contedackson and The AMSR-E derived products analyzed in this study are all
O'Neill, 1990. Furthermore, the vegetation canopy layers established products that have been individually validated, as
influence scatteringJbnes and Kimball20103, generally ~ summarized in AppendiA. However, the retrieval of accu-
resulting in increased scattering and diminished transmisrate estimates of land surface properties from satellite passive
sivity over regions that have greater biomass, although themicrowave observations remains an area of ongoing scien-
canopy structure (stem geometry, leaf orientation, angle distific progress, and uncertainties therefore exist in these esti-
tributions, spatial distribution, etc.) and type of vegetation mates. Presently, GlobSnow passive microwave retrievals of
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Table Al. RZ values from the linear regressions of SWE and air temperature (TA), SWE and volumetric soil moisture (MV), and of SWE
and vegetation transmissivity at 10.7 GHz (TC). Comparisons of SWE and growing-season observations were conducted by comparing mear
annual 2003-2008 values (mean), and by examining associations between SWE at the end of the snow season with growing-season variable
at the start of the growing season (spring), and between growing-season variables at the end of the growing season with SWE at the start o
the snow season (autumm)? values in single linear regression that correspond tosalue > 0.01 are marked with an asterisk.

Var  Time EVGRN DECDS MFRST SHRUB GRMTD SRBTD BARRN

TA Annual  0.00 0.01 0.00 0.02 0.11 0.04 0.20
TA Spring 0.06 0.01 0.13 0.14 0.16 0.14 0.10
TA Autumn  0.13 0.12 0.22 0.13 0.06 0.10 0.06
MV Annual  0.02 0.01 0.01 0.02 0.010 0.02 0%00
MV Spring 0.01 0.00 0.00 0.00 0.00* 0.00* 0.00
MV Autumn 0.05 0.06 0.01 0.01 0.00 0.00 0.00
TC Annual  0.05 0.02 0.02 0.17 0.06 0.05 0.15
TC Spring 0.20 0.11 0.23 0.28 0.20 0.19 0.18
TC Autumn  0.16 0.28 0.22 0.16 0.02 0.06 0.03
(TA, Annual 0.09 0.07 0.07 0.23 0.15 0.07 0.26
MV,  Spring 0.01 0.01 0.00 0.01 0.08 0.06 0.14
TC) Autumn 0.13 0.11 0.08 0.12 0.04 0.02 0.08

Table A2. R? values from the multiple linear regression of SWE vs. factor scores obtained from the principal component analysis (PCA)
of TA, MV, and TC. The retained principal components (PC) are determined based on the proportion of explained variance, i.e. only PC
accounting for> 10 % of the total variance are included.

Time EVGRN DECDS MFRST SHRUB GRMTD SRBTD BARRN

Annual  0.03 0.05 0.07 0.10 0.11 0.07 0.24
Spring 0.01 0.01 0.00 0.01 0.08 0.06 0.14
Autumn  0.13 0.11 0.08 0.12 0.04 0.02 0.08

SWE are considered reliable over the 15-150 mm range innsight into the exact processes determining land surface
forested regions, and from 15 to 130 mm in tundra regionsproperties, an assessment of similarities in coarse resolution
SWE tends to be underestimated over thicker snowpackg25 km) passive microwave-derived estimates of the land sur-
Analysis of the shape of the associations between SWE anthce cannot reveal specific processes. All results presented
growing-season variables therefore focuses primarily on val-are therefore discussed in relation to existing literature on in
ues of SWE within these ranges. Furthermore, although theitu processes. Similarities are often found between the as-
growing-season data sets have been found to perform reasomeciations derived from ACE and observed in situ; in these
ably well, there inevitably exist uncertainties in these datacases, it is likely that the same mechanisms and processes
sets. The approach employed in this study takes into accourtdbserved at the field scale are dominating regional scale land
the fact that these uncertainties exist, and therefore only comsurface conditions. However, it is beyond the scope of this
pares relative values which are averaged over given time peapproach to provide definitive conclusions on regional scale
riods. For example, it is not assumed that estimates of SWEprocesses.
are highly accurate over very thick snowpacks, but that areas Finally, the relationships observed through the ACE anal-
with greater mean reported values of SWE will, in fact, tend ysis could be applied to generate estimates within the 2003—
to have more snow accumulation than regions with smaller2008 time period. However, since these ecological linkages
mean reported values of SWE. may be altered under changing climate regimes, the ACE-
The strength of conclusions drawn from the ACE approachderived empirical relationships cannot be used to predict
is limited due to uncertainties in passive microwave estimateguture behaviour. Numerous studies have applied process-
of land surface properties, and due to the inherently weak asbased models to predict the response of high-latitude regions
sociations existing between snow and growing-season lantb climate change, and this remains an important area of re-
surface properties as a result of numerous confounding facsearch. The ACE technique could, however, be applied to
tors (e.g. soil type, vegetation species composition, rainfallmonitor the strength and directionality of ecological link-
permafrost). Furthermore, although field studies can reveahges in order to shed light on the response of northern
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Table B1. R? values of ACE transformed SWE and ACE transformed air temperature (TA), volumetric soil moisture (MV) and vegetation
canopy transmissivity (TC). Linkages are indicated using observations collected over three non-overlapping time periods of the snow and
growing seasons. Associations are therefore indicated between mean annual values of SWE and growing-season values, and between me
SWE 30 days prior to snowmelt and growing-season values 30 days following full snowmelt (Spring), and vice versa (Autumn). In the
multivariaée case, thg values of all coefficients are statistically significant. Alvalues corresponding to the pair-wise ACE transformations

are< 107>

Var  Time EVGRN DECDS MFRST SHRUB GRMTD SRBTD BARRN

TA Annual  0.08 0.04 0.06 0.04 0.33 0.20 0.38
TA Spring 0.09 0.04 0.15 0.16 0.17 0.15 0.12
TA Autumn  0.16 0.14 0.25 0.17 0.07 0.10 0.06
MV Annual  0.05 0.07 0.05 0.05 0.03 0.02 0.09
MV Spring 0.04 0.02 0.03 0.17 0.08 0.06 0.05
MV Autumn 0.06 0.12 0.10 0.08 0.09 0.06 0.07
TC Annual  0.10 0.03 0.12 0.26 0.25 0.19 0.29
TC Spring 0.22 0.19 0.24 0.31 0.21 0.22 0.19
TC Autumn  0.17 0.30 0.27 0.19 0.04 0.09 0.06
(TA, Annual 0.20 0.33 0.13 0.34 0.37 0.29 0.47
MV,  Spring 0.07 0.14 0.02 0.06 0.17 0.11 0.19
TC) Autumn 0.16 0.13 0.11 0.17 0.10 0.07 0.12

environments to ongoing changes in snow and growing- of the international tundra experiment, Ecol. Monogr., 69, 4,
season conditions. The role fulfilled by the analysis pre- 491-511, doit0.2307/26572271999.

sented in this paper therefore fills a gap in literature, but isArmstrong, R. and Brodzik, M.: Recent Northern Hemisphere
in no way a replacement for ongoing improvements in pas- SnNOW extent: a comparison of data derived from visible and mi-
sive microwave-derived estimates of land surface properties, crowave satellite sensors, Geophys. Res. Lett, 28, 19, 3673~

PP S L . 3676, d0i10.1029/2000GL01255@001.
in situ investigations of processes, or predictions of how cli Ashcroft, P. and Wentz, .. AMSR-E/Aqua L2A Global Swath
mate change may affect Arctic regions.

Spatially-Resampled Brightness Temperatures (Tb) V001, dig-
ital media, National Snow and Ice Data Center, Boulder, CO,
2003.
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