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Current gravitational-wave detectors rely on the use of Michelson interferometers. One crucial limitation
of their sensitivity is the thermal noise of their optical components. Thus, for example, fluctuational
deformations of the mirror surface are probed by a laser beam being reflected from the mirrors at normal
incidence. Thermal noise models are well evolved for that case but mainly restricted to single reflections.
In this work, we present the effect of two consecutive reflections under a non-normal incidence onto mirror
thermal noise. This situation is inherent to detectors using a geometrical folding scheme such as GEO 600.
We revise in detail the conventional direct noise analysis scheme to the situation of non-normal incidence
allowing for a modified weighting function of mirror fluctuations. An application of these results to the
GEO 600 folding mirror for Brownian, thermoelastic, and thermorefractive noise yields an increase of
displacement noise amplitude by 20% for most noise processes. The amplitude of thermoelastic substrate
noise is increased by a factor of 4 due to the modified weighting function. Thus, the consideration of the
correct weighting scheme can drastically alter the noise predictions and demands special care in any
thermal noise design process.
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I. INTRODUCTION

The direct detection of gravitational waves is among
the most demanding physical challenges of our time. The
ambitious goal of a detection calls for an instrument able to
resolve relative length changes in the order of 10−21 [1].
Interferometric detectors using a Michelson scheme have
proven their potential to reach this accuracy in looking
for tiny phase differences in their arms. Among them are
LIGO [2], Virgo [3], and GEO 600 [4]. While the first two
use arm cavities to increase the effect of a gravitational
wave onto the detector output, the latter one uses simply
folded arms combined with signal recycling [5] in order to
achieve a comparable sensitivity.
To reach the sensitivities desired in a gravitational-wave

detector, any kind of noise has to be carefully reduced.
Thermal noise in particular forms a severe limitation for the
detector sensitivity in the most sensitive frequency band
from 50 Hz to 2 kHz. In current detectors, the most severe
thermal noise process is found in Brownian noise [6]

emerging due to the thermal motion of the atoms. This
leads to a slight deformation of the mirror surfaces
changing the arm length, resulting in a signal indistinguish-
able from the passage of a gravitational wave. If a resonant
arm cavity is used in a detector, the phase shift due to a
gravitational wave is increased as the light performs an
increased number of round trips. At the same time, the
effect of a deformed cavity mirror on the laser light is also
increased by the number of round trips. For this reason, the
noise level of detectors using arm cavities is dominated by
the noise of the cavity mirrors. Further, these cavity mirrors
are operated at normal incidence.
Using simply folded arms, the situation differs for

GEO 600 depicted in Fig. 1. Here, the end test mass
(ETM) is probed only once under normal incidence, while
the foldingmirror (FM) is probed twice, once from the beam
entering the arm and once from the beam reflected by the end
test mass. Because of the spatial separation of the beams in
the interferometer (IFO) arm, the incidence on the folding
mirror is not normal. Furthermore, the beam splitter is also
probed twice in an interferometric gravitational-wave detec-
tor. These two beams cause a standing wave in the beam
splitter. Benthem and Levin [7] showed that this standing
wave enters the noise calculation of the beam splitter.
In analogy to this idea, the purpose of this paper is to

investigate the thermal noise arising from the folding
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mirror. Here, the two incoming beams build up a stripelike
intensity pattern suggesting a modification in the noise
analysis and a potential change in thermal noise. After
repeating the conventional direct approach of noise calcu-
lation in Sec. II, we present a qualitative and quantitative
justification of a modified noise analysis in Sec. III.
Following that, the effects on Brownian, thermoelastic
(TE), and thermorefractive (TR) noise for the coating
and the substrate are investigated in Sec. IV. Finally, the
resulting noise expressions for a striped readout are applied
to the GEO 600 geometry and compared to the conven-
tional noise values in Sec. V.

II. DIRECT NOISE ANALYSIS

Within this work, we use the direct noise analysis
proposed by Levin [8,9]. This scheme consists of three
steps and is illustrated for Brownian substrate noise in the
following. First, the detailed effect of a noisy variable onto
the detector’s readout has to be evaluated. In this regard,
the interferometric detection scheme is sensitive to a phase
noise of the light leaving the arm. For the case of Brownian
substrate noise, the deformation of the substrate causes
such a change in the wavefront of the reflected light.
Gillespie and Raab [10] obtained the averaged phase
change Δφ due to this effect as

Δφ ¼ 4π

λ
×
Z

fðx; yÞvzðx; yÞdxdy; ð1Þ

where λ is the wavelength. The surface deformations vz are
averaged in the x-y plane via the weighting function

fðx; yÞ ¼ 1

πr20
exp

�
−
x2 þ y2

r20

�
; ð2Þ

representing the intensity distribution of a laser beam with
radius r0. The phase change Δφ can be calculated to an

effective homogeneous displacement v̄z causing the same
effect. This displacement reads

v̄z ¼
λ

4π
× Δφ ¼

Z
fðx; yÞvzðx; yÞdxdy: ð3Þ

In a second step, a virtual harmonic force has to be
applied to the substrate’s surface mimicking the weighting
distribution fðx; yÞ. This is represented by a virtual
pressure on the test mass surface of

pðx; yÞ ¼ F0fðx; yÞ cosðωtÞ: ð4Þ

Here, ω determines the frequency at which the spectral
noise power is to be calculated, and F0 represents an
arbitrary amplitude. With respect to this virtual load, the
dissipated power has to be calculated. In our case of
Brownian noise, dissipation arises from structural loss in
the substrate and is given by the total elastic energy density
in the substrate wmax and the mechanical loss ϕ via

Pdiss ¼ ω

Z
ϕðx; y; zÞwmaxðx; y; zÞdV; ð5Þ

where the integration is performed over the substrate
volume.
Finally, in a third step, the displacement noise power

density can be calculated with

SzðωÞ ¼
8kBT0

ω2

Pdiss

F2
0

; ð6Þ

where kB refers to Boltzmann’s constant and T0 to the
temperature.
The direct approach of thermal noise calculation is

similar for TE noise. Here, the thermoelastic damping,
i.e., a heat flow between regions being expanded and
compressed due to the virtual load, represents the dissipa-
tion process [11]. In the case of TR noise, instead of a
virtual pressure, a virtual entropy enters the test mass,
and in analogy to TE noise, the heat flow within the test
mass determines the dissipation and, consequently, the TR
noise level [9].

III. WEIGHTING SCHEME FOR
A FOLDING MIRROR

A reliable thermal noise prediction for a folding mirror
is preceded by a detailed knowledge of its interaction with
the laser beam. As shown in the last section, the direct noise
analysis for a simple end test mass exhibiting only a single
reflection calls for a virtual load characterized by a
Gaussian distribution. Thus, the intensity of the incoming
light seems to determine the correct weighting factor
fðx; yÞ for a noise analysis.

LASER

BS FM

ETM

FM

ETM

FIG. 1 (color online). Core optics of GEO 600 as a prototype of
a gravitational-wave detector with folded arms. Here, the folding
mirror is probed twice by the laser light.
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Adapting this rule for the end test mass to the case of a
folding mirror calls for the determination of the intensity
at the folding mirror surface due to the two incoming
waves. Introducing the coordinate system shown in Fig. 2
and assuming plane waves E1 and E2 (both of amplitude Ê)
approaching the folding mirror, this intensity reads

Eðy; zÞ ¼ Êeið−kyyþkzzÞ þ ÊeiðkyyþkzzÞ; ð7Þ

¼ 2Êeikzz cosðkyyÞ; ð8Þ

Iðy; z ¼ 0Þ ¼ 4Îcos2
�
k0y sin

�
γ

2

��
; ð9Þ

¼ 2Î

�
1þ cos

�
2k0y sin

�
γ

2

���
: ð10Þ

Here, Î represents the intensity of a single plane wave,
k0 ¼ 2π=λ represents the vacuum wave number of the laser
light with the wavelength λ, and γ represents the angle
between the two light paths in the arm.
In the subsequent analysis, the Gaussian beam profile

has to be considered instead of a plane wave. Such a
treatment demands for a spatial distribution of the term Î
following the laser beam intensity. The observed intensity
pattern on the folding mirror surface in GEO 600 is
presented in Fig. 3 and confirms the theoretical prediction.
Thus, the intensity-based approach results in a striped read
out; deformations at the bright stripes are sensed the most,
while any deformation at a dark spot has no effect on the
reflected light.
But there exists a second approach to this problem. It

relies on the assumption that light entering the arm (beam
E1) and light leaving the arm (beam E2) are independently
reflected by the folding mirror. In GEO 600, the travel time
of light in the arm (τ ¼ 2L=c ≈ 4 μs) is much shorter than
the periodic times of its detection band. Thus, the noise
imprinted to the reflected light is likely to be correlated for
both reflections at the folding mirror leading to a total noise
amplitude being twice as large as for a single reflection. In
this picture, noise in the interferometer output is caused by

any deformation at the folding mirror surface independ-
ently from its position.
At first sight, both approaches seem reasonable but

clearly rule out each other. Therefore, in the following
parts of this section, we have a closer look into these two
models to discover the correct one.

A. Huygen’s principle

A first check is performed by applying Huygen’s
principle, and for that reason, can be assumed to be quite
fundamental. The principle is summarized by two steps.
First, an incoming wave excites spherical waves called
wavelets at every point on its wavefront. Second, the sum
of all wavelets gives the new wavefront of the propagated
wave. These two rules allow the construction of the wave
reflected by the folding mirror in our case. In Fig. 4,
Huygen’s principle is applied to a small deformation of the
folding mirror surface (referred to as bump). For the
following considerations, we assume this bump to possess
a dimension being small compared to the intensity period at
the folding mirror surface. Further, its height is assumed to
be small compared to the laser wavelength.
Applying Huygen’s principle to the case of the folding

mirror, we begin our discussion at the incoming beam E1

from the beam splitter. At the folding mirror, this wave
excites mainly wavelets at the undisturbed surface leading
to a perfectly reflected plane wave. Only at the bump,
roughly speaking, one wavelet is excited being out of
phase with the reflected light. This will lead to a very small
phase change of the reflected light compared to a perfect
reflection. As the deformed area is assumed to be small, no
significant amount of energy is scattered out of the reflected
light. Thus, in this section, we neglect scattered light and
only consider the reflected light in the zeroth order. After

z

y

E1 E2

/2

FM

FIG. 2 (color online). Geometric path of the laser beams at the
folding mirror surface. Here, we present the incoming light beams
E1 and E2 as well as the coordinate system used for further
calculations.

FIG. 3 (color online). Photograph of the intensity pattern at the
folding mirror surface in GEO 600. The stripe pattern is clearly
visible on top of the Gaussian intensity profile. The stripe period
agrees with the theoretical prediction of Λ ¼ 2.55 mm. For a
better visibility, the intensity of the image has been inverted.
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traveling the long way to the end test mass, we can treat the
reflected light to be a perfect plane wave again. This plane
wave is then reflected at the end test mass and approaches
the folding mirror a second time (as beam E2). Here, again,
mainly a perfectly reflected plane wave is excited. But,
again, one wavelet at the deformation shows a different
behavior.
Let us assume that the bump is situated at an intensity

minimum of the stripe pattern formed by the incoming light
(E1 and E2) for the undisturbed case. Even in the disturbed
case, the bump will remain in an intensity minimum as the
phase change of the plane wave due to the deformation is
negligibly small. Clearly, then, at this point, both plane
waves E1 and E2 are out of phase by 180°. Consequently,
also, both wavelets excited by the bump show this phase
delay and interfere destructively. For this reason, no
influence of the bump is expected for the laser light leaving
the arm. The situation changes if the bump is situated at an
intensity maximum. Then, the two wavelets excited by the
bump interfere constructively leading to a maximized
signal at the output.
Consequently, Huygen’s principle clearly predicts a

position-dependent model. In our case, this confirms a
weighting by intensity and contradicts the model of
independent reflections.

B. Scattering approach

In a second, more quantitative approach, we discuss
the effect of a sinusoidal deformation grating of the folding
mirror surface. Here, the deformation solely shows a
nonvanishing component along the z direction, following

vzðyÞ ¼ v̂ sinðKyÞ; ð11Þ

where v̂ represents the deformation amplitude and K ¼
2π=Λ the wave number of the grating with its spatial

period Λ. As in the case of GEO 600, the incidence is
nearly normal (γ ≪ 1); this surface deformation can be
treated as a phase grating exhibiting the following transfer
function:

gðyÞ ¼ exp ½ik0v̂ sinðKyÞ�: ð12Þ

Introducing Δ≡ k0v̂ and assuming a small deformation
amplitude Δ ≪ 1, the transmitted light of such a phase
grating can be approximated as

Et ¼ gðyÞEi ≈
�
1þ Δ

2
eiKy −

Δ
2
e−iKy

�
Ei: ð13Þ

Here, Ei depicts the incoming electric field, and the terms
in brackets can be identified as emerging diffraction orders
caused by the grating. The first term describes the unper-
turbed beam, while the second and third terms represent the
first diffraction orders showing a linear amplitude depend-
ence from the deformation amplitude. In our case, we have
to cover a reflection grating. This can be approximated by a
single transmission through the phase grating, the reflection
at the folding mirror coating stack, and a second trans-
mission through the grating. Thus, Eq. (13) remains valid
with the replacement Δ → 2Δ.
Understanding the process of a single reflection on a

periodically deformed mirror forms the basis for the
noise estimate of a complete IFO arm. We are especially
interested in the impact of scattering onto the phase of
the light reflected from the arm. In the following, we focus
on a linear noise response, i.e., taking all light paths with a
single scattering into a nonzero diffraction order of the
surface grating into account.
These paths are illustrated in Fig. 5. Note that the

scattered beams only remain within the IFO if the diffracted
light coincides with the reflected beam, leading to the
relation

K ¼ 2ky ¼ 2k0 sin ðγ=2Þ: ð14Þ

This relation shows that only a grating with the same period
as the intensity field from Eq. (10) leads to a noise effect
in the detector. One can interpret this fact as a first
confirmation of the intensity-based readout model.
In a mathematical description of this process, we con-

struct the optical field at the beam splitter as

Eout ¼ eik0L0ðΔþ ei2k0L − Δei4k0LÞeik0L0Ein: ð15Þ
Here, the distance between the beam splitter and the folding
mirror is given by L0, while the length of the folded arm
(FM to ETM) is given by L. The first term in brackets
originates from the directly backscattered light [Fig. 5(b)],
the second term from the unperturbed process [Fig. 5(a)],
and the third term from the doubly revolving beam
[Fig. 5(c)]. Equation (15) can also be discussed in analogy

I

y

FM

FIG. 4. Sketch of a folding mirror surface deformation to
explain its effect on the reflected light using Huygen’s principle.
The diagram on top shows the intensity distribution at the folding
mirror surface. Along the y axis, the deformation is assumed to be
small compared to the intensity period along the folding mirror
surface and located at minimum intensity. Also, its height is
assumed to be small compared to the wavelength.
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to a weakly coupled cavity. There in the leading order,
the same three light paths exist: a first one directly reflected
at the input mirror (without any round trip), a second one
showing a single round trip, and a third path exhibiting two
round trips in the cavity.
Simplifying Eq. (15) yields

Eout ¼ ei2k0ðL0þLÞ½1 − 2iΔ sinð2k0LÞ�Ein: ð16Þ

At first glance, it seems counterintuitive that the phase of
the reflected light depends on the length of the folded
arm. But a change in arm length L does affect the intensity
pattern at the folding mirror surface. At the same time, the
surface deformations stay constant as defined in Eq. (11).
Consequently, the deformation moves with respect to the
intensity pattern and for that reason undergoes a periodic
variation following sinð2k0LÞ. Below in our calculations,
we consider the maximum impact on the reflected light’s
phase, i.e., replacing the sine term by 1. This is justified by
the fact that one can always find a surface deformation
leading to this maximum signal. Thus, the phase of the
reflected light reads

Δφ ¼ arg

�
Eout

Ein

�
≈ −2Δ ¼ −2k0v̂: ð17Þ

The last equation gives the foundation of Levin’s noise
analysis as it links the effect of a surface deformation to a
phase change in the light leaving the arm. A homogeneous
deformation of the folding mirror surface by v̂ is probed by
the light from the beam splitter and by the light from the
end test mass resulting in a total phase shift of 4k0v̂. It
tells us that a sinusoidal deformation with amplitude v̂
shows half the effect on the reflected light’s phase com-
pared to a homogeneous surface deformation of the same
amplitude v̂.
Summarizing the previous considerations, we find that

the laser light reflected from the folded arm is only
sensitive to a homogeneous deformation or a spatial
grating with wave number K ≈ k0γ. In the above result,
the approximation of small tilting angles γ has been used.
The diffracted orders of gratings with another spatial
frequency will be scattered out of the beam path and
consequently do not cause a signal on the detector
output. Thus, the averaged readout variable in terms of
an effective displacement follows from Eq. (3) using a
weighting function of

fFMðx; yÞ ¼ C exp

�
−
x2 þ y2

r20

�
½1þ cosðksyÞ�; ð18Þ

where the wave number of the grating ks ¼ 2π=Λ ≈ k0γ
and a constant C have been introduced. For calculational
reasons, the sine function has been replaced by a cosine
function being equivalent to a length change of the arm.
The effect of this replacement will be negligibly small
for our case of interest, i.e., small stripes compared to
the beam radius. In this case, we also find that the
averaged displacement of a homogeneous deformation is
twice as high as for the sinusoidal deformation of the
surface in agreement with the previous considerations.
Thus, the presented scatter approach demands the
application of an intensity weighted probe force.

IV. THERMAL NOISE CALCULATION

In the last section, it turned out that in a direct noise
analysis scheme following Levin [8] an intensity
weighted probe load has to be applied to the folding
mirror. This load type differs from the conventional
model for a single incidence on a mirror. For that
reason, we want to derive and discuss the deviations
from the conventional models in this section. Within this
calculation, we restrict ourselves to an analysis of
Brownian, TE, and TR noise. As the folding mirror
represents a fully reflective component, we only con-
sider TR noise in the coating. For the sake of simplicity,
we do not perform a thermo-optic noise analysis as a
coherent modelling of TE and TR noise. Rather, we
treat both mechanisms independently.

ETM

FM

(a)

ETM

FM

(b)

ETM

FM

y

z

(c)

FIG. 5 (color online). Scatter paths of first order due to a surface
grating at the folding mirror. In (a), the unperturbed light path is
shown with simple reflections at the folding mirror. Case (b)
represents the direct backscatter of the incoming light in the
negative diffraction order. This light does not enter the folded arm
at all. In (c), the light is reflected at the folding mirror and the
ETM and scattered back into the folded arm at its second
approach to the folding mirror. This scatter path uses the positive
diffraction order and shows a double round trip in the folded arm.
The sum of all these paths adds up to the total optical field
reflected from the IFO arm in first order.
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A. Probing load

For an analysis of Brownian and TE noise, a virtual force
has to be applied to the folding mirror surface. This force
results from the averaging to a total effective displacement
v̄z using

v̄z ¼
Z

fFMðx; yÞvzðx; yÞdxdy; ð19Þ

using the weighting function fFMðx; yÞ given in Eq. (18). In
this expression, near to normal incidence has been assumed
as otherwise an elliptical beam shape has to be taken into
account. A homogeneous deformation vzðx; yÞ ¼ v0 should
result in the same value for the effective displacement
v̄z ¼ v0 and thus determines C from Eq. (18) as

C ¼ 1

πr20

1

e−k
2
sr20=4 þ 1

: ð20Þ

In this work, we focus on the limit of small stripe periods
compared to the laser beam radius (ksr0 ≫ 1), which is
clearly valid for GEO 600 (see Table I). This fact leads to a
simplification of C and finally to a virtual pressure of

pðx; yÞ ¼ F0

πr20
exp

�
−
x2 þ y2

r20

�
½1þ cosðksyÞ�; ð21Þ

which has to be applied to the folding mirror surface.

B. Brownian coating noise

We choose Brownian coating noise to intuitively illus-
trate a noise increase due to a striped readout. In our
simplified model, the coating is assumed to be linearly
coupled only to the substrate and not to its neighboring
coating regions. These conditions can be modeled by

dividing the coating into little domains. Each domain is
separately coupled to the substrate and modelled as a
spring. This geometry is presented in Fig. 6. In a first step,
we calculate the energy stored in the springs representing
the energy stored in the coating for a homogeneous load.
Considering N sections with a total force F0, we find

Ehom ¼ N
ðF0=NÞ2

2S
; ð22Þ

with S representing the spring constant of a single spring.
To model an inhomogeneous load scheme, we only apply
forces to every second domain. Thus, the force on each
loaded domain is doubled, but the number of loaded
domains is halved. The energy in the coating then reads

Estripe ¼
N
2

ð2F0=NÞ2
2S

¼ 2Ehom; ð23Þ

leading to a doubled amount of energy stored in the coating.
This result would also cause a doubling of the noise power
density. A final and more realistic approach has been done
for a sinusoidal load distribution. Without showing the
calculations for this case, an energy increase of 50%
compared to the homogeneous case has been observed.
A detailed analytical calculation of Brownian coating

noise is presented in Appendix E. This approach assuming
a half-space substrate totally confirms our rough model and
exactly shows an increase by 50% in coating energy and
thus in Brownian coating noise power due to the emergence
of stripes. Thus, for a semi-infinite substrate and a striped
readout, Brownian coating noise reads

TABLE I. Geometrical and optical properties of GEO 600’s
folding mirror. The number of dielectric λ=4 layer pairs has been
estimated by the measured transmittance of ≃10 ppm.

Substrate
Diameter 2R 18 cm
Height H 10 cm
Temperature T0 300 K
Material Fused silica

Coating
# of λ=4 layers
Tantala 20
Silica 20

Laser beam
Radius w ¼ ffiffiffi

2
p

r0 25 mm
Wavelength λ 1064 nm
Stripe period Λ 2.55 mm
Folding angle γ 0.42 mrad

F/N

(a) homogeneous load

2F/N

(b) striped load

FIG. 6 (color online). Model system of a coating layer on top of
a substrate. In this model, no interaction within the layer and a
linear coupling to the substrate is assumed. In scheme (a), the
coating is probed by a homogeneous readout, while in (b), a
striped readout is illustrated.
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SBr;coat ¼
3

2
SðconvÞBr;coat; ð24Þ

where the conventional term follows the result of
Harry et al. [12].
Further, a finite element analysis has been performed to

estimate the change due to the finite size of substrates. For
the geometry of GEO 600’s substrate, this revealed reduced
noise levels with small corrections below 10%.

C. Brownian substrate noise

To take a striped readout into account in the noise power
density of Brownian substrate noise, one can introduce a
correction function G:

SBr;sub ¼ G

�
ksr0ffiffiffi
2

p
�
SðconvÞBr;sub: ð25Þ

Here, the conventional term for the half-space is given by
the work of Bondu, Hello, and Vinet [13]. In the limit of
small stripes compared to the laser beam, the correction
factor reads

GðbÞ ¼ 1þ 2e−3b
2=8I0ðb2=8Þ þ

1

2
e−b

2

þ 1

2
e−b

2=2I0ðb2=2Þ; ð26Þ

where I0 represents the modified Bessel function of the
first kind. For a sketch of derivation of this expression, see
Appendix A. Using GEO 600 parameters reveals a value of
b ≈ 45, leading to a correction factor of GðbÞ ≈ 1.0063.
Thus, with an increase of 0.3% in the noise amplitude, the
effect of stripes on Brownian substrate noise is negligibly
small in GEO 600.

D. Thermoelastic substrate noise

In the direct calculation of TE noise, the virtually applied
surface load leads to a volume dilatation in the substrate.
Consequently, heat is produced in these dilated regions, and
a heat flow sets in representing the dissipative process. In
contrast to the conventional Gaussian load, a striped
readout reduces the separation between dilated and non-
dilated regions. The heat flow between these regions is
increased, suggesting also an increased TE noise. This
effect has been analytically investigated for Laguerre–
Gauss modes of higher order by Vinet [14]. Thus, also
in our case, the evaluation of TE substrate noise might be
drastically increased, demanding a careful examination.
A detailed analysis of this problem is presented in

Appendix B. With the assumptions of small stripes
compared to the laser beam (ksr0 ≫ 1) and a small heat
propagation length compared to the beam radius
[κ=ðρCpωÞ ≪ r0], we find a noise spectrum:

STE;sub ¼
8ffiffiffiffiffiffi
2π

p κα2ð1þ σÞ2
ρ2C2

p

kBT2
0

r30

1

ω2

�
1þ ksr0ffiffiffiffiffiffi

2π
p

�
: ð27Þ

Here, the first term coincides with the conventional solution
by Braginsky et al. [11], while the second term is due to the
stripe’s influence and, especially for small stripe periods,
can be significantly larger than the conventional term. An
estimate of the maximum noise enhancement at 100 Hz is
presented below. As Eq. (27) is only valid for small thermal
path lengths (k2sa2 ≪ ω), a maximum value of

ks ¼
ffiffiffiffiffi
ω

a2

r
≈ 27.3 × 103 m−1 ð28Þ

is obtained. The above value corresponds to a stripe period
of 230 μm. Inserting this number into the noise term due to
stripes as given in Eq. (27) reveals a maximum increase in
TE noise power by a factor of ∼200.
Using the more profound Eq. (B15) from Appendix B,

the influence of the stripe period Λ on the TE substrate
noise is illustrated in Fig. 7. In GEO 600, the stripe period
Λ ¼ 2.55 mm is rather large. This leads to a 1=ω decrease
of the TE noise amplitude above 2 Hz and justifies the use
of Eq. (27) as an approximation toward high frequencies.
At low frequencies, the approximation of an adiabatic heat
flow between the stripes is violated, resulting in a constant
TE noise level. At even lower frequencies, the TE noise
amplitude passes over to the conventional curve, showing
again a 1=ω dependency.

FIG. 7 (color online). Thermoelastic noise amplitude for a
striped readout and different stripe periods Λ. In analogy to
substrate TR noise in a beam splitter [7], a region of constant
noise emerges at low frequencies. Its cutoff frequency increases
by decreasing the stripe period. The dashed red curve marks the
conventional noise contribution. It has to be independently added
to the stripe noise level to obtain the total TE noise. For relatively
large stripe periods, a significant increase in noise can be found
within the typical frequency band of gravitational-wave detectors.
At high frequencies, the 1=ω2 dependence from Eq. (27) is
visible.
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E. Thermoelastic coating noise

Besides the substrate, also the coating introduces TE
noise. In a direct noise analysis, the virtual force results in a
volume dilatation of the coating. Via thermal expansion,
this leads to the emergence of heat sources in the coating. In
our analysis, we model these heat sources to be infinitely
thin. Thus, any heat flow within the coating is neglected. In
GEO 600, the thermal path length in the substrate (fused
silica) is small compared to the stripe period, and the stripe
period is small compared to the beam radius. These
assumptions lead to a TE coating noise of

STE;coat ¼
ffiffiffi
2

p

π

α̂2Y2
cM2ffiffiffiffiffiffiffiffiffiffiffi

κρCp
p kBT2

0

H2

r20

1ffiffiffiffi
ω

p
�
1þ 1

2

�
; ð29Þ

where α̂ is the difference in the coefficient of thermal
expansion between the coating and the substrate and H the
coating thickness. M contains the elastic properties of the
coating and the substrate via

M ¼ 1

1 − σc

�
−
1þ σc
Yc

þ 1þ σ

Y
ð2σ − 1Þ

�
; ð30Þ

where Y and σ represent the substrate’s Young’s modulus
and Poisson ratio, respectively, while the index c refers to
the respective coating properties. A detailed derivation of
TE coating noise is given in Appendix C. The first term in
brackets of Eq. (29) marks the solution of the conventional
case coinciding with the former result of Braginsky and
Vyatchanin [15]. The second term represents the increase
due to the striped readout. There, an increase by 50% in
noise power due to the change to the striped readout pattern
is visible.
The presented expression for a single coating layer can

be adapted to a high reflective multilayer coating by
independently adding the heat sources in the heat equation
[see Eq. (B1)]. Consequently, the terms αMH have to be
added for every single layer, and finally this sum has to be
inserted into Eq. (29). This approach remains valid for
small stacks as long as the thermal path length in the
coating is larger than the coating height.
In GEO 600 at 10 kHz the thermal path length

approaches the thickness of the coating stack. Then, also,
a heat flow within the layers probing their thermal proper-
ties has to be taken into account. As this has not been done
in our analysis, the results above frequencies of 1 kHz are
brave extrapolations and should be handled with care. The
same arguments remain valid for the TR coating noise
presented in the next subsection.

F. Thermorefractive coating noise

Thermorefractive noise is caused by temperature fluc-
tuations in the coating and an accompanying change in
refractive index n mediated by the thermo-optic coefficient

β ¼ dn=dT. For a thick classical λ=4 stack and a homo-
geneous temperature distribution, an effective coefficient
βeff can be obtained [16,17] as

βeff ≡ n2LBH þ n2HBL

4ðn2H − n2LÞ
: ð31Þ

In the equation above, the indices L and H refer to the
low and high index material, respectively. For the pure TR
effect, Bi is given by the thermo-optic coefficients βi of
each layer.
Further, the considered temperature change leads to a

variation in the geometrical height of the coating layers and
enters the reflection characteristics of the stack. This effect
has not been considered in the TE coating noise calculation
and has to be added to the TR coating noise. Following the
suggestion by Fejer et al. [18], this is realized by replacing
the coefficient Bi by

Bi ¼ βi þ niᾱi; ð32Þ
with

ᾱi ≡ 1þ σi
1 − σi

αi; ð33Þ

using Poisson ratio σ, the coefficient of linear thermal
expansion α, and the indices i ¼ L, H.
A detailed calculation sketched in Appendix D gives the

spectral noise density of TR coating noise. In the approxi-
mation of a stripe period large compared to the thermal path
length, it yields

STR;coat ¼
ffiffiffi
2

p

π

β2effffiffiffiffiffiffiffiffiffiffiffi
κρCp

p kBT2
0

λ2

r20

1ffiffiffiffi
ω

p
�
1þ 1

2

�
; ð34Þ

using the laser wavelength λ. Again, the first term in
brackets represents the original result, while the second
term emerges from the stripe readout.

V. NOISE RESULTS FOR THE FOLDING
MIRROR OF GEO 600

In this section, all the presented noise formulas are
applied to the folding mirror of GEO 600. Its geometrical
and optical properties are summarized in Table I. Further,
the material parameters underlying the numerical results are
presented in Table II.
With this information, we first check the assumptions

made in the derivation of the noise equations. The first
assumption was on the laser beam being large compared to
the stripe pattern’s period. In an analytical way, it reads

k2sr20 ≈ 1900 ≫ 1 ð35Þ

and is well fulfilled for GEO 600. Especially for TE and TR
noise, several assumptions on the thermal path length are
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needed. At an exemplary frequency of 100 Hz we obtain for
fused silica

rth ¼
ffiffiffiffiffi
a2

ω

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
κ

ρCpω

r
¼ 37 μm: ð36Þ

For the conventional results, it is assumed that the beam
radius is large compared to the thermal path length.
Mathematically, we obtain�

rth
6

r0

�
4

≈ 2.5 × 10−8 ≪ 1; ð37Þ

promising the reliability of the approximation. A helpful
approximation of the final result for coating TE and TR
noise uses the assumption of a thermal path length being
small compared to the stripe period. Even this most
restrictive approximation is justified in GEO 600 via�

rth
2π

Λ

�
2

≈ 6.9 × 10−5 ≪ 1: ð38Þ

The results of the noise analysis for GEO 600’s folding
mirror are presented in Fig. 8, where they are compared to
the conventional theory without stripes. For the conven-
tional estimate, we used Ref. [23] for substrate TE and
Brownian noise and Ref. [24] for coating Brownian noise.
All of these references include the effects due to a finite
substrate size. Further, for coating TE (Ref. [15]) and
coating TR (Ref. [16]) noise, we used models not consid-
ering a finite-sized substrate but a half-space. This is
motivated by the fact that the error in coating noise due
to the substrate’s finite size is moderately low for the
geometry of GEO 600 mirrors (see Ref. [24]).
In the conventional case, the Brownian coating noise

dominates the noise spectrum followed by Brownian
substrate noise for which the amplitude is roughly half
as large. At frequencies above 1 kHz TE coating noise can
become important. But taking the coherent effect of TE

and TR coating noise into account [17,25] reduces their
total noise level.
Turning to the striped case, an increase in the noise

amplitude by 22% for most noise processes has been
found. Among them is also coating Brownian noise that
still dominates the mirror’s noise. In contrast, substrate
Brownian noise stays the same as in the conventional case.
This has been analytically confirmed for the half-space, but
finite element calculations also confirmed this result for
GEO 600’s finite geometry. Further, substrate TE noise is
strongly increased by roughly a factor of 4. This would lead
to a strong influence at frequencies below 3 Hz; however,
this frequency range is not crucial for GEO 600’s detection
band. Summing up, the total noise amplitude is increased
by a 22% in GEO 600’s detection band if the striped
readout is taken into account.
In a final effort, the resulting noise by GEO 600’s folding

mirror is to be compared to the measured sensitivity curve

TABLE II. Material properties of GEO 600’s substrate and coating materials at 300 K. Except where noted, the parameters have been
taken from Ref. [18]. Because of a lack of better knowledge, most of the silica coating properties are adopted from the bulk fused silica.
The mechanical loss of the fused silica substrate is oriented on measured values. Thus, in this work, we do not use an extrapolation to
bulk losses as proposed by Penn et al. [19].

Fused silica (substrate) Silica (coating) Tantala

Young’s modulus Y [GPa] 72 72 140
Poisson ratio σ 0.17 0.17 0.23
Mass density ρ [kgm−3] 2200 2200 6850
Mechanical loss ϕ 1 × 10−8 5 × 10−5 [20] 2.4 × 10−4 [21]

Specific heat Cp [J kg−1 K−1] 746 746 306
Thermal conductivity κ [Wm−1 K−1] 1.38 0.5 [22] 0.6 [22]
Thermal expansion α [K−1] 5.1 × 10−7 5.1 × 10−7 3.6 × 10−6

Refractive index n 1.45 [7] 1.45 2.03
Thermo-optic coefficient β [K−1] 8.5 × 10−6 [7] 8.5 × 10−6 14 × 10−6 [17]

FIG. 8 (color online). Displacement noise of GEO 600’s
folding mirror. The diagram shows the noise levels for the striped
configuration as opaque lines. For comparison, the results of the
conventional case have been added as transparent curves. Further,
the substrate contributions are solid lines, while the coating
contributions appear dashed.
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in terms of the gravitational wave strain h. For this purpose,
we have to compare the effect of a gravitational wave of
amplitude hwith the effect of a folding mirror displacement
Δz to the output of the interferometer. For a simple
Michelson interferometer, a gravitational wave of ampli-
tude h leads to a phase shift of [1]

Δφ ¼ 4π

λ
hLtot; ð39Þ

between the arms. Here, the unfolded arm length, i.e.,
Ltot ¼ 2L ¼ 1200 m for GEO 600, has to be inserted.
Further, a homogeneous displacement Δz of the surface
of one of the folding mirrors leads to a phase change

Δφ ¼ 4π

λ
2Δz: ð40Þ

The additional factor of 2 arises due to the occurrence of
two reflections on the folding mirror. This doubling of the
noise amplitude represents a full correlation of the defor-
mations between the two reflections at the folding mirror.
In GEO 600, this correlation is justified as the travel time of
light in GEO 600’s arm is short compared to the interesting
frequencies in the detector. Using Eqs. (39) and (40), a
conversion from Δz to h is obtainable implying a calcula-
tional rule for the GW strain noise density as

ShðωÞ ¼
8

L2
tot
SzðωÞ: ð41Þ

In the above expression, an additional factor of 2 has been
included resulting from the folding mirror of the second
arm. This second folding mirror also produces noise being
uncorrelated with respect to the first folding mirror and thus
is simply to be added in terms of noise power. The resulting
spectrum in terms of noise amplitude is presented in Fig. 9.

A comparison to the measured sensitivity reveals that the
folding mirror thermal noise is at least a factor of 10 below
the measured data. Consequently, the current sensitivity is
not limited by thermal noise of the folding mirror even
taking the effect of a striped readout into account.
Within this work, the intensity pattern has been assumed

to show a constant spatial distribution. A closer inves-
tigation of GEO 600’s locking scheme actually reveals that
the intensity on the folding mirror surface is moving over
the sample surface. This effect corresponds to the motion
of the folding mirror for which the position is not controlled
in the locking scheme of GEO 600. By a direct inspection
of the folding mirror, this motion is experimentally
observed (see Fig. 3). Its amplitude turns out to be well
below five stripe periods at the folding mirror surface.
Further, it occurs at the folding mirror fundamental
pendulum mode near 1 Hz.
As this frequency turns out to be well below the desired

detection band, we did not consider this effect in our
analysis. Further, a translational motion of the readout
variable represents a transient load case and is not included
in the current direct approach of the fluctuation-dissipation
theorem. For this reason, we leave the necessary imple-
mentation of nonstationarity and the calculation of detailed
results for future work.

VI. CONCLUSION

In the field of gravitational-wave detection, thermal
noise analyses are mainly restricted to single reflections
of a laser beam on a mirror at normal incidence. In this
work, we covered the case of GEO 600’s folding mirror
that is probed twice and away from normal incidence. Two
possible ways of noise evaluation have been discussed,
and the weighting by the intensity profile has been
identified to be correct. In this sense, our work agrees
with the idea behind the noise calculation in the beam
splitter by Benthem and Levin [7]. Nevertheless, a general
theorem combining the intensity pattern and the readout
profile for a noise analysis is still missing. This would be
helpful for future noise estimates not only in the field of
gravitational-wave detection. It would further confirm the
application of an intensity weighted load in a direct noise
calculation scheme. Such a scheme is widely used in the
calculation of thermal noise in whispering gallery reso-
nators [27,28] to obtain a limit on their frequency stability.
As our work expands the validity of an intensity weighting
to the case of a folding mirror, it strengthens its validity.
We worked out the noise expression considering the

striped readout scheme for GEO 600. An evaluation of the
noise terms revealed that the measured noise in GEO 600 is
well above the predicted thermal noise. Thus, the current
sensitivity is not limited by the folding mirror thermal
noise. But, especially, TE substrate noise shows a large
dependency of the stripe period. It is thus suited to adjust
the TE noise level without changing the sample in a direct

FIG. 9. Thermal strain noise Sh of the folding mirror in
GEO 600 compared to the measured sensitivity curve. The latter
has been taken from Ref. [26]. Thermal noise of the folding
mirror is not to limit the current sensitivity of GEO 600.
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noise measurement. This method will increase the reliabil-
ity of such a measurement.
Recently, the use of folded cavities was proposed by

Ballmer and Ottaway [29]. It promises a reduction of coating
Brownian noise as the limiting thermal noise contribution in
current detectors. For this approach, a single beam is
repeatedly reflected on the same mirror but on spatially
separated spots of each mirror. Such a scheme leads to an
effective increase of the probed mirror surface promising the
mentioned noise reduction. Our results also affect this idea at
least for a standing wave configuration. The emergence of a
striped readout pattern will thus decrease the possible benefit
in detector sensitivity using folded cavities.
Finally, in this work, we omitted to investigate the effect

of stripes on the thermal noise of GEO 600’s beam splitter.
As GEO 600 does not exhibit arm resonators, the beam
splitter noise in contrast to other detectors is not suppressed
at the output. Thus, a detailed investigation of the beam
splitter noise also in terms of stripes remains an interesting
topic for future work.
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APPENDIX A: BROWNIAN SUBSTRATE NOISE

In the direct application of the fluctuation-dissipation
theorem, the elastic reaction of the substrate on the surface
load,

pðx;yÞ¼F0cosðωtÞ
πr20

exp

�
−
x2þy2

r20

�
½1þcosðksyÞ�; ðA1Þ

has to be revealed. The dissipated power in this case is
caused by structural damping in the substrate and follows

Pdiss ¼ ωϕE, where ϕ represents the mechanical loss of
the substrate and E the maximum elastic energy stored in
the substrate. The main part of this appendix is on the
calculation of the elastic energy stored in the substrate.
In our calculation, we focus on the response of a semi-

infinite test mass, thus neglecting all deviations due to a
finite geometry. For this assumption, the deformation in
the test mass is applicable by a Green’s function approach
(see. Ref. [30]). For the case of a pure surface load along
the z direction, it reads

vxðx; y; zÞ ¼
1þ σ

2πY

×
Z

dx0dy0ðx − x0Þ
�
z
r3

−
1 − 2σ

rðrþ zÞ
�
fzðx0; y0Þ;

ðA2Þ

vyðx; y; zÞ ¼
1þ σ

2πY

×
Z

dx0dy0ðy − y0Þ
�
z
r3

−
1 − 2σ

rðrþ zÞ
�
fzðx0; y0Þ;

ðA3Þ

vzðx; y; zÞ ¼
1þ σ

2πY

Z
dx0dy0

�
z2

r3
þ 2ð1 − σÞ

r

�
fzðx0; y0Þ;

ðA4Þ
where r2 ≡ ðx − x0Þ2 þ ðy − y0Þ2 þ z2, Y represents
Young’s modulus, and σ represents Poisson’s ratio of the
elastic half space.
The elastic energy stored in the substrate equals the work

that is done by the surface load on the deformation of the
surface. As only the z component of stress σzz ¼ p ¼ fz is
different from zero, this energy reads

E ¼ 1

2

Z
dxdypðx; yÞvzðx; y; z ¼ 0Þ: ðA5Þ

We start our analysis with the surface deformation vz by
specializing Eq. (A4) to z ¼ 0:

vzðx; y; 0Þ ¼
ð1 − σÞ2

πY
1

ð2πÞ2
Z

dkxdkyΦðkx; kyÞeiðkxxþkyyÞ

×
Z

dx0dy0
ei½kxðx0−xÞþkyðy0−yÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x0Þ2 þ ðy − y0Þ2

p : ðA6Þ

Here, the two-dimensional Fourier transform of p ¼ fz has
been introduced as

Φðkx; kyÞ≡
Z

dxdypðx; yÞe−iðkxxþkyyÞ: ðA7Þ

Performing the integration on x0 and y0 in polar coordinates,
we arrive at
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vzðx; y; 0Þ ¼
ð1 − σÞ2

πY
1

2π

Z
dkxdky

1

k⊥
Φðkx; kyÞeiðkxxþkyyÞ;

ðA8Þ
where k⊥ is definded as k⊥ ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
. Inserting Eq. (A8)

into Eq. (A5) and performing the integration on x and y
results in

E ¼ F2
0

4π3r20

ð1 − σÞ2
Y

Z
dkxdky

1

k⊥
πr20 ×

�
e−k

2
xr20=4

×

�
e−k

2
yr20=4 þ 1

2
e−ðkyþksÞ2r20=4 þ 1

2
e−ðky−ksÞ2r20=4

��
2

:

ðA9Þ

Introducing polar coordinates and performing the angular
integration by applying the relationZ

2π

0

ex cosφdφ ¼ 2πI0ðxÞ ðA10Þ

yields

E ¼ F2
0

2π

ð1 − σÞ2
Y

Z
dk⊥

×

�
e−k

2⊥r20=2 þ 2I0

�
ksk⊥r20

2

�
e−ð2k2⊥þk2sÞr20=4

þ 1

2
½1þ I0ðksk⊥r20Þ�e−ðk

2⊥þk2sÞr20=2
�
; ðA11Þ

with I0ðxÞ representing the modified Bessel function of
the first kind. Replacing k⊥r0=

ffiffiffi
2

p
→ a and ksr0=

ffiffiffi
2

p
→ b

and using

Z
∞

0

I0ðcxÞe−x2dx ¼
ffiffiffi
π

p
2

ec
2=8I0

�
c2

8

�
; ðA12Þ

the integration on a finally yields

E ¼ F2
0

2
ffiffiffiffiffiffi
2π

p 1 − σ2

Yr0
× GðbÞ; ðA13Þ

with GðbÞ as given in Eq. (26) and the prefactor coinciding
with the conventional theory for a half-space by Bondu,
Hello, and Vinet [13]. Thus, the function GðbÞ actually
represents the correction factor for the power noise spectrum
of substrate Brownian noise considering a striped probe.

APPENDIX B: THERMOELASTIC
SUBSTRATE NOISE

In the direct approach of noise calculation, the TE noise
is closely connected to TE damping. The virtual force
applied to the substrate causes volume dilatations, which in
turn lead to the introduction of heat into parts of the

substrate. Then, the heat flow between these parts can be
interpreted as the loss process. To correctly describe these
losses, one has to start at the elastic problem. Then, the
volume dilatation Θ≡ uxx þ uyy þ uzz, with the strain
tensor uij, has to be inserted into the heat equation

∂tu − a2Δu ¼ −∂t
αYT0

ρCpð1 − 2σÞΘðx; y; zÞ; ðB1Þ

with temperature u, heat capacityCp, mean temperature T0,
mass density ρ, thermal conductivity κ, and heat conduc-
tivity a2 ¼ κ=ðρCpÞ. Finally, the rate of energy loss follows

Pdiss ¼
�Z

V

κ

T0

ð∇uÞ2dxdydz
	
; ðB2Þ

where the angle brackets account for a temporal average.
Starting at the applied force, we use Eqs. (A2), (A3),

and (A4) to compute the dilatation as

Θðx; y; zÞ ¼ uxx þ uyy þ uzz

¼ 1þ σ

2πY

Z
dx0dy0

2z
r3

ð2σ − 1Þfzðx0; y0Þ: ðB3Þ

In the same procedure as for Brownian substrate noise, we
replace fz by its Fourier transform Φðkx; kyÞ:

Θðx;y;zÞ ¼ ð1þ σÞð2σ− 1Þ
πY

z
Z

dkxdky
ð2πÞ2 Φðkx;kyÞeiðkxxþkyyÞ

×
Z

dx0dy0
ei½kxðx0−xÞþkyðy0−yÞ�

½ðx− x0Þ2þðy− y0Þ2þ z2�f3=2g :

ðB4Þ

The integration on x0 and y0 is performed in polar
coordinates, leading to

Θðx; y; zÞ ¼ ð1þ σÞð2σ − 1Þ
2π2Y

z
jzj e

−k⊥jzj

×
Z

dkxdkyeiðkxxþkyyÞΦðkx; kyÞ; ðB5Þ

where again k⊥ equals
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
. For the sake of a simple

calculation scheme, we symmetrically continue Θ to
positive z values. The remaining z dependence in the
exponential term is then transformed into Fourier space,
yielding

Θðx; y; zÞ ¼ ð1þ σÞð2σ − 1Þ
4π3Y

Z
dkxdkydkz

× eiðkxxþkyyþkzzÞ 2k⊥
k2⊥ þ k2z

Φðkx; kyÞ: ðB6Þ
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From this, we immediately read the Fourier transform
of Θ as

Θðkx; ky; kzÞ ¼
2ð2σ − 1Þð1þ σÞ

Y
2k⊥

k2⊥ þ k2z
Φðkx; kyÞ:

ðB7Þ

In the next step, the heat equation [Eq. (B1)] has to
be solved for the given dilatation. For this purpose, it is
transformed into the Fourier space reading

iωuðkÞ þ a2k2uðkÞ ¼ −iωAΘðkÞ; ðB8Þ

where the variables ðkx; ky; kzÞ are combined into k and the
constant A equals αYT0=½ρCpð1 − 2σÞ�. In this calculation,
the Fourier transforms are defined on the full space.
Further, the boundary conditions at the substrate surface,
i.e., vanishing heat flow, have to be satisfied. For this
purpose, mirror loads have to be applied being heat sources
in our case. In a former step, Θ has been chosen as an even
function in z already ensuring a vanishing heat flow at the
boundary.
We also have to take this point into account for the

evaluation of the dissipated power using Eq. (B2). Here, an
integration over all space is performed, and a subsequent
division by a factor of 2 normalizes the result to the half-
space. Furthermore, also, the temporal averaging introdu-
ces a division by 2 due to the harmonic loading. Finally, we
arrive at

Pdiss ¼
κ

4T0

1

ð2πÞ3
Z
R3

dkk2juðkÞj2: ðB9Þ

Inserting Eqs. (B7) and (B8) into this expression yields

Pdiss ≈
4κT0α

2ð1þ σÞ2
ρ2C2

p

Z
R3

dk
ð2πÞ3

k2⊥
k2

ω2Φ2ðkx; kyÞ
ω2 þ a4k4

:

ðB10Þ

Taking the approximation of small stripe periods
(ksr0 ≫ 1) into account, all terms expð−k2sr20Þ can be
neglected in Φ2ðkx; kyÞ, leading to

Φ2ðkx; kyÞ ¼ F2
0e

−k2xr20=2
�
e−k

2
yr20=2

þ 1

4

�
e−ðkyþksÞ2r20=2 þ e−ðky−ksÞ2r20=2

��
: ðB11Þ

Examiningeach terminsquarebrackets individually, starting
with the first one, we find the result for a conventional
Gaussian beam coinciding with the work of Braginsky,
Gorodetsky, and Vyatchanin [11]. Repeating their result
gives the first, coventional part of dissipation,

Pð1Þ
diss ¼

4κT0α
2ð1þ σÞ2
ρ2C2

p

F2
0

ð2πÞ2
� ffiffiffiffi

ω
p
a

�
3

ℐðbÞ; ðB12Þ

where b is defined as ωr20=ð2a2Þ and

ℐðbÞ≡
Z

1

−1
dq

Z
∞

0

dyð1 − q2Þ y2

1þ y4
e−ð1−q2Þy2b: ðB13Þ

The second term in square brackets of Eq. (B11) is
caused by the stripe pattern and increases the conventional
noise value. Performing the integration on ky of this part,
we assume that the exponentials are falling so strongly that
outside the exponent ky can be replaced by the stripe’s wave
number ks. This approximation is especially fulfilled if the
factor a2=ω representing the thermal path length is small
compared to the beam radius r0. In the same way, the
integration on kx is performed, yielding

Pð2Þ
diss ¼

κT0α
2ð1þ σÞ2
ρ2C2

p
F2
0

1

2π2
ks
r20

×
Z
R3

d

�
kz
ks

�
1

1þ k2z
k2s

1

1þ a4k4s
ω2 ð1þ k2z

k2s
Þ2
: ðB14Þ

This last integral is solved as

Pð2Þ
diss ¼

1

2π

κα2ð1þ σÞ2
ρ2C2

p

ks
r20

T0F2
0 ×

�
1 −

ffiffiffiffiffiffiffiffiffiffiffi
1þ ζ

p ffiffiffi
2

p
ζ

�
; ðB15Þ

where ζ is defined as

ζ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2

a4k4s

s
: ðB16Þ

The interesting case for GEO 600 can be found in the
limit of a thermal path length being small compared to the
stripe period (k2sa2=ω ≪ 1). In this limit, ζ becomes very
large, leading to the following simplification of Eq. (B15):

Pð2Þ
diss ≃ 1

2π

κα2ð1þ σÞ2
ρ2C2

p

ks
r20

T0F2
0: ðB17Þ

APPENDIX C: THERMOELASTIC
COATING NOISE

In typical test masses, the coating stack is small
compared to the substrate dimensions. Thus, the response
of the mirror on the virtual load is nearly fully determined
by the substrate. In the following, we use this substrate
response to obtain the elastic fields in the coating via
transition conditions applying the idea of Harry et al. [12].
For TE coating noise, only the heat insertion due to the
dilatation of the coating is taken into account in the thermal

THERMAL NOISE OF FOLDING MIRRORS PHYSICAL REVIEW D 90, 042001 (2014)

042001-13



analysis, i.e., the calculation of the dissipated power. In
the following, we apply this heat as a thin surface load
neglecting the coating thickness. Further, only the heat flow
in the substrate is considered. This simplification can lead
to a deviation from the correct result, especially at high
frequencies and for thick coatings. Nevertheless, this model
is used here due to its analytical clarity and serves as an
exemplary system to determine the effect of stripes on this
kind of noise.
Again, we start at the deformation of the surface of the

half-space given in Eqs. (A2), (A3), and (A4). From these
quantities, one can calculate the following sum of strain
components:

uxx þ uyy ¼
1þ σ

2πY

Z
dx0dy0fzðx0; y0Þ

z
r5
½r2ð2σ − 2Þ þ 3z2�:

ðC1Þ
Using the same technique as presented for TE substrate
noise (see Appendix B), we find

uxx þ uyy ¼
1þ σ

ð2πÞ2Y ×
Z

dkxdkyeiðkxxþkyyÞΦðkx; kyÞ

× e−k⊥jzj
�
ð2σ − 2Þ z

jzj þ
z
jzj ð1þ k⊥jzjÞ

�
ðC2Þ

by using the two-dimensional Fourier transform Φðkx; kyÞ
of the virtual load fzðx0; y0Þ. Compared to Eq. (B5),
the second summand originates from the 1=r5 term
of Eq. (C1).
With the above result, we can obtain an expression for

the volume dilatation in the coating Θc as the crucial term
for heat sources in the coating. This term is defined by the
trace of the strain tensor in the coating

Θc ¼ uxx;c þ uyy;c þ uzz;c: ðC3Þ

Because of the transition conditions, the components uxx,
uyy, and σzz are steady at the substrate-coating boundary.
Using the basic equations of elasticity [30] for the isotropic
coating, uzz;c can be replaced by the steady components,
yielding

Θcðz ¼ 0Þ ¼ 1 − 2σc
1 − σc

�
1þ σc
Yc

σzz þ ðuxx þ uyyÞ
�
; ðC4Þ

where Yc and σc represent Young’s modulus and Poisson’s
ratio for the coating layer. In the last equations, all elastic
field components of the coating have been replaced by
the fields at the substrate’s surface due to the transition
conditions. As we assume the probing force acting at the
coating-air surface, the coating’s stress component σzz is
given by the virtual load fz. But the elastic solution of
Landau and Lifshitz [30] is valid for a half-space lying in
the positive z axis. As the stress is defined with respect to

the surface normal (pointing along the negative z direction),
a minus sign has to be introduced, leading to

Θcðz ¼ 0Þ ¼ 1

ð2πÞ2
Z

dkxdkyΦðkx; kyÞeiðkxxþkyyÞ

×
1 − 2σc
1 − σc

�
−
1þ σc
Yc

þ 1þ σ

Y
ð2σ − 1Þ

�
:

ðC5Þ

Assuming a small height H of the coating layer, the z
dependence on Θc is modelled as a delta distribution
Θcðx; y; zÞ ¼ Θcðx; y; 0ÞHδðzÞ. The three-dimensional
Fourier transform of Θc then reads

Θcðkx; ky; kzÞ ¼ HΦðkx; kyÞð1 − 2σcÞM; ðC6Þ

with M defined as

M ≡ 1

1 − σc

�
−
1þ σc
Yc

þ 1þ σ

Y
ð2σ − 1Þ

�
: ðC7Þ

Please note that M simplifies to −2ð1þ σÞ=Y for the
case of identical substrate and coating materials (Y ¼ Yc
and σ ¼ σc).
In analogy to Appendix B, the heat equation is solved

in the Fourier space. The only modification occurs in the
consideration of mirror heat sources. As, again, the whole
space is considered, the surface loads at the boundary have
simply to be doubled in their amplitude. Using Eq. (B2), we
end up at a dissipated power of

Pdiss ¼
κα2Y2

cM2H2T0

ð2πÞ3ρ2C2
p

Z
R3

dk
k2

1þ a4

ω2 k4
Φ2ðkx; kyÞ: ðC8Þ

In the following, we use the approximation of Φ2ðkx; kyÞ
for small stripe periods presented in Eq. (B11). Performing
the same approximative integration on kx and ky as in
Appendix B, i.e., for thermal path lengths small compared
to the beam radius, one finds for the first term in brackets:

Pð1Þ
diss ¼

ffiffiffi
2

p

8π

α2Y2
cM2H2T0

r20
ffiffiffiffiffiffiffiffiffiffiffi
κρCp

p F2
0ω

3=2: ðC9Þ

Specialized to substrate and coating materials exhibiting
identical elastic properties, this expression coincides with
the result of Braginsky and Vyatchanin [15] for a conven-
tional Gaussian beam.
The effect due to stripes shows up in the remaining terms

of Φ2 in Eq. (C8). Performing the same integration scheme
on kx and ky as in Appendix B leads to
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Pð2Þ
diss ¼

κα2Y2
cM2H2T0

16π2r20ρ
2C2

p
F2
0

× k3s

Z
R
d
�
kz
ks

� 2 ×
h
1þ



kz
ks

�
2
i

1þ a4

ω2 k4s
h
1þ



kz
ks

�
2
i
2
: ðC10Þ

Solving this integral yields

Pð2Þ
diss ¼

α2Y2
cM2H2T0

8πr20κks
ω2F2

0 ×

ffiffiffiffiffiffiffiffiffiffiffi
1þ ζ

2ζ2

s
; ðC11Þ

with

ζ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2

a4k4s

s
: ðC12Þ

For the thermal path length small compared to the stripe
period (a4=ω2 ≪ 1=k4s), the result is well approximated by

Pð2Þ
diss ≈

ffiffiffi
2

p

16π

α2Y2
cM2H2T0

r20
ffiffiffiffiffiffiffiffiffiffiffi
κρCp

p F2
0ω

3=2: ðC13Þ

In this limit, no dependence on the stripe period is
observed. Such a behavior is well understood through
rough qualitative considerations. We begin this argument
by looking at a sphere exhibiting the thermal path length
as diameter. Such a sphere is illustrated in Fig. 10. Within
this sphere, no significant temperature gradient can build
up, and thus its temperature can be treated to be homo-
geneous. Consequently, a significant temperature fluc-
tuation can only happen outside this sphere. Using a
basic equation of thermodynamics, the temperature fluc-
tuation of this sphere is given by its volume and follows

ðΔTsÞ2 ¼
kBT2

ρCpV
≃ kBT2

ρCpr3th
: ðC14Þ

By means of the coefficient of thermal expansion α, this
temperature change leads to a deformation of the substrate
surface of

Δzs ≃ αrthΔTs; ðC15Þ

due to a single sphere. Here, we focus on the TE noise of
the coating. With its thickness H, the coating is assumed to
be smaller than the thermal path length. Thus, the defor-
mation due to temperature fluctuations in the coating is
restricted to a heightH, leading to the replacement rth → H
in Eq. (C15).
Finally, the surface deformation caused by temperature

fluctuations within the coating can be averaged by the
independent effect of N such spheres. As the thickness of
the coatingH is assumed to be small compared to the radius

of the spheres rth, their number is given by a segmentation
of the substrate surface on the beam spot. This approach
yields N ≃ r20=r

2
th. The sum of N independent but equally

distributed noise sources is then given by

Δz ¼ Δzsffiffiffiffi
N

p ≃ αH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT2

ωκρCpr20

s
: ðC16Þ

This simple estimate shows the same dependencies as the
exact result given in Eq. (29) with only a slight deviation in
the prefactor.

APPENDIX D: THERMOREFRACTIVE
COATING NOISE

In this work, we are mainly interested in the TR coating
noise of highly reflective multilayer coatings. Further, we
assume that the coating is thin compared to its thermal path
length. Then, one can assume the whole layer stack to show
the same temperature. A fluctuation is then only produced
by a homogeneous temperature change of the whole
structure. Following the direct noise calculation scheme
for TR noise [9], the phase change in the reflected light due
to a temperature change ΔT is to be considered. Following
Refs. [16,17] for a typical quarter-wavelength geometry
exhibiting more than six layer pairs, this phase change
reads

Δφ ≈
4π

λ
× βeffλΔT; ðD1Þ

where βeff is defined in Eq. (31).

2r0

H

rth

FIG. 10 (color online). Sketch for a qualitative explanation of
TE coating noise for the limiting case of small thermal path
lengths rth. In this approach, the sample is divided into spheres
showing a radius of the thermal path length rth. Within them, the
temperature is nearly constant, and temperature fluctuations in
two spheres are nearly independent. This scheme allows the
correct derivation of the thermal noise level with respect to
general dependencies on physical parameters.
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In the second step, a virtual heat source is to be
introduced into the coating. Assuming an infinitely thin
heat source in the z direction, we are only interested in the
total integral of this heat source along the z direction. This
heat term follows

qðx; yÞ ¼ βeffλT0 × pðx; yÞeiωt; ðD2Þ

where p represents the probing force at the coating. The
temperature field due to this heat term is governed by the
heat equation

∂tu − a2Δu ¼ ∂tq
ρCp

: ðD3Þ

This equation exhibits the close analogy to the calculation
of TE substrate noise. By examing Eqs. (B1) and (C7), the
only modification is found in the replacement

αYcHM → βeffλ ðD4Þ

to adapt TE coating noise to the case of TR coating noise.
With this rule, the dissipated power follows

Pdiss ¼
κ

T0

Z
R3

dk
ð2πÞ3 k

2
ω2

ω2 þ a4k4
β2effλ

2T2
0

ρ2C2
p

Φ2ðkx; kyÞ;

ðD5Þ

with Φðkx; kyÞ representing the Fourier transform of
pðx; yÞ. From this point, the same considerations as in
Appendix C hold leading to the result of the conventional
case of

Pð1Þ
diss ¼

ffiffiffi
2

p

8π

β2effλ
2T0

r20
ffiffiffiffiffiffiffiffiffiffiffi
κρCp

p F2
0ω

3=2: ðD6Þ

The additional contribution due to the striped probe pattern
follows in the same way as

Pð2Þ
diss ¼

β2effλ
2T0

8πr20κks
ω2F2

0 ×

ffiffiffiffiffiffiffiffiffiffiffi
1þ ζ

2ζ2

s
; ðD7Þ

where ζ is given in Eq. (C12). In the case of a thermal path
length small compared to the stripe period, this expression
can be further simplified to

Pð2Þ
diss ¼

ffiffiffi
2

p

16π

β2effλ
2T0

r20
ffiffiffiffiffiffiffiffiffiffiffi
κρCp

p F2
0ω

3=2; ðD8Þ

again being independent from the stripe period.

APPENDIX E: BROWNIAN COATING NOISE

Using the model of structural damping for Brownian
noise, the dissipated power can be calculated with the help
of the strain energy amplitude Emax in the coating via

Pdiss ¼ ωϕEmax; ðE1Þ

where ϕ represents the mechanical loss of the coating
material. Thus, in the following, we calculate the strain
energy in a coating layer on top of an elastic half-space.
Again, due to the small coating thickness, we use the
substrate solution to the external force neglecting the
coating. The coating elastic fields are then derived via
transition conditions. In the following, we divide the strain
energy density w ¼ wn þ wsh into normal (wn) and shear
(wsh) contributions via

wn ¼
1

2
ðuxxσxx þ uyyσyy þ uzzσzzÞ ðE2Þ

wsh ¼ uxyσxy þ uxzσxz þ uyzσyz: ðE3Þ

To obtain the coating energy, the elastic fields of the
coating have to be inserted into the terms above. For a
direct application of the substrate solution, the equations of
elasticity are used to rephrase the coating energy in terms of
fields being continuous at the boundary. For the normal
energy, this expression reads

wn ¼
ð1þ σcÞð1 − 2σcÞ

2Ycð1 − σcÞ
σ2zz þ

Yc

4

ðuxx þ uyyÞ2
1 − σc

þ Yc

4

ðuxx − uyyÞ2
1þ σc

: ðE4Þ

As the virtual force is exclusively acting along the z
direction, the stress components σxz and σyz have to vanish
at the coating air boundary. Because of the small coating
thickness, they also vanish in the whole coating.
Consequently, the shear energy simplifies to

wsh ¼
Yc

1þ σc
u2xy: ðE5Þ

The total elastic energy of the coating is obtained by an
integration of w on the coating volume. Because of the
small coating thickness H, the elastic fields in the coating
are assumed to be constant along the z axis, yielding

Emax ¼
Z

H

0

wdxdydz ¼ H
Z

wdxdy: ðE6Þ

Thus, in the following, we present the integrations on the
four combinations of elastic fields in w.
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1st integral, ∝ σ2zz The term on σzz is easily calculated
directly:

Z
dxdyσ2zz ¼

Z
dxdy

F2
0

π2r40
e−2ðx2þy2Þ=r2

0 ½1þ cosðksyÞ�2

≈
F2
0

π2r20

πr20
2

�
1þ 0þ 1

2

�
¼ 3

4

F2
0

πr20
: ðE7Þ

Here, again, the approximation of small stripe periods
k2sr20 ≫ 1 has been used, and respective exponential terms
have been neglected. The first term in brackets corresponds
to the conventional case, while the last two occur due to the
striped readout exhibiting an increase of 50%.
2nd integral, ∝ ðuxx þ uyyÞ2 Inspecting Eq. (C2) at

z ¼ 0 easily yields the two-dimensional Fourier spectrum
of uxx þ uyy as

uxx þ uyy ¼ −
ð1þ σÞð1 − 2σÞ

Y
Φðkx; kyÞ: ðE8Þ

Using Parseval’s theorem, the desired integral on x and y
can be expressed by the Fourier transform as

Z
dxdyðuxx þ uyyÞ2 ¼

1

ð2πÞ2
Z

dkxdkyðuxx þ uyyÞ2

ðE9Þ

¼ ð1þ σÞ2ð1 − 2σÞ2
ð2πYÞ2

Z
dkxdkyΦ2ðkx; kyÞ: ðE10Þ

Inserting Φ2ðkx; kyÞ from Eq. (B11) yields

Z
dxdyðuxx þ uyyÞ2 ¼

3

4

F2
0

πr20

ð1þ σÞ2ð1 − 2σÞ2
Y2

: ðE11Þ

In analogy to the σzz term, the conventional case gives a
prefactor of 1=2, and the striped readout introduces an
additional increase by 50%.
3rd integral, ∝ u2xy Beginning with the formal solution

for the shear strain and using Eqs. (A2) and (A3) yields

uxy ¼
1

2
ð∂yvx þ ∂xvyÞ

¼ 1þ σ

2πY

Z
dx0dy0ðx − x0Þðy − y0Þfzðx0; y0Þ

×

�
−
3z
r5

þ 1 − 2σ

r2ðzþ rÞ2 þ
1 − 2σ

r3ðzþ rÞ
�
: ðE12Þ

Evaluating this expression at the surface, i.e., at
z ¼ 0, largely simplifies the equation. Further, introducing
the Fourier transform of fz and two variable transforms
(x0 − x → x0 and y0 − y → y0), we find the Fourier trans-
form uxyðkx; kyÞ as

uxyðkx; kyÞ ¼
ð1 − 2σÞð1þ σÞ

πY
Φðkx; kyÞ

×
Z

dx0dy0x0y0
eiðkxx0þkyy0Þ

ðx02 þ y02Þ2 : ðE13Þ

Introducing polar coordinates (ρ, φ) changes the integral to

Z
dρdφρ

ρ2 sinð2φÞ
2ρ4

eik⊥ρ cosðφ−φkÞ; ðE14Þ

with k⊥ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
and tanφk ≡ ky=kx. The integration

on φ is solved with the help of the following integrals:

Z
2π

0

dφeia cosφ cosð2φÞ ¼ −2πJ2ðjajÞ; ðE15Þ

Z
2π

0

dφeia cosφ sinð2φÞ ¼ 0: ðE16Þ

Performing the coordinate transform φ − φk → φ
and using the addition theorem for the sine function on
Eq. (E14) finally yields

−π sinð2φkÞ
Z

∞

0

dρ
1

ρ
J2ðjk⊥ρjÞ ¼ −

π

2
sinð2φkÞ: ðE17Þ

Inserting the Fourier transform of uxy into Parseval’s
theorem gives the desired integral. Using the relation
sinð2 arctan xÞ ¼ 2x=ð1þ x2Þ gives
Z

dxdyu2xy¼
ð1þσÞ2ð1−2σÞ2

ð2πYÞ2
Z

dkxdky
k2xk2yΦ2ðkx;kyÞ
ðk2xþk2yÞ2

:

ðE18Þ

Inserting the first term of Φ2 from Eq. (B11), the conven-
tional term is evaluated via polar coordinates as

Z
dxdyu2xyjð1Þ ¼

1

16

F2
0

πr20

ð1þ σÞ2ð1 − 2σÞ2
Y2

: ðE19Þ

Considering the remaining two terms of Eq. (B11) yields
the effect with respect to the striped readout. The integrals
on kx and ky from Eq. (E18) are performed in polar
coordinates and yield

F2
0

Z
dk⊥dφk⊥

sin2ð2φÞ
4

e−k
2⊥r20=2

e−k
2
sr20=2

4

× ðek⊥ksr20 sinφ þ e−k⊥ksr
2
0
sinφÞ: ðE20Þ

Integrating on φ and subsequently on k⊥ yields
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π
k2sr20 − 3

k4sr60
þ π

e−k
2
sr20=2

2
ð6þ k2sr20Þ: ðE21Þ

For the approximation of small stripe periods ksr0 ≫ 1
in leading order, we find

Z
dxdyu2xyjð2Þ ≈

1

4

1

k2sr20

F2
0

πr20

ð1þ σÞ2ð1 − 2σÞ2
Y2

: ðE22Þ

Thus, the contribution of the striped readout is of higher
order in ksr0 than the conventional term. For the approxi-
mation of a small stripe period ksr0 ≫ 1, the effect of the
modified readout is negligibly small for this third integral.
4th integral ∝ ðuxx − uyyÞ2 This last term can be solved

by the same methods as presented for the third integral with
minor modifications. For this reason, we only state the
main results here. Using the basic elastic equations of the
half-space and the Fourier calculus, we find the following
expression for the integral:

Z
dxdyðuxx − uyyÞ2 ¼

ð1þ σÞ2ð1− 2σÞ2
ð2πYÞ2

×
Z

dkxdky

�
k2x − k2y
k2x þ k2y

�
2

Φ2ðkx; kyÞ:

ðE23Þ

The conventional part then reads

Z
dxdyðuxx − uyyÞ2jð1Þ ¼

1

4

F2
0

πr20

ð1þ σÞ2ð1 − 2σÞ2
Y2

:

ðE24Þ

In contrast to the third integral, the nonconventional
contribution enters the result in the approximation of small
stripe periods. In this approximation, the fourth integral
reads

Z
dxdyðuxx − uyyÞ2jð2Þ ¼

1

4

F2
0

πr20

ð1þ σÞ2ð1 − 2σÞ2
Y2

;

ðE25Þ

showing an increase by 100% compared to the conven-
tional case.

Inserting the above four integrals into the expression for
the strain energy density allows the evaluation of the energy
stored in the coating, the dissipated power, and finally the
Brownian coating noise. For the conventional case, we find
a total coating energy of

Emax ¼
HF2

0

4πr20

�
1

Yc

ð1þ σcÞð1 − 2σcÞ
1 − σc

þ Yc

Y2

ð1þ σÞ2ð1 − 2σÞ2
1 − σ2c

�
; ðE26Þ

revealing a complete coincidence with the conventional
result of Harry et al. [12]. Further, the change in coating
energy due to a change to the striped readout has been
evaluated in the approximation of small stripe periods
(ksr0 ≫ 1). Here, we find an increase of the energy
stored in the coating by 50% independent from any
coating or substrate parameters. Thus, the simple intuitive
model from Sec. IV B is fully validated by the above
analytical solution.
In the above calculation, only the term on σzz does not

depend on the substrate properties. Thus, considering finite
substrate sizes, this contribution is expected to be unaltered
in contrast to the remaining three terms. This assumption
has been successfully observed in a finite element analysis.
Further, the effect of finite test masses has been validated to
produce a slightly reduced noise increase by only 45% for
tantala and 49% for silica at the GEO 600 geometry. It
confirms our theory and shows deviations due to finite size
effects to be negligibly small in GEO 600.

APPENDIX F: DEFINITION OF
FOURIER TRANSFORM

For many steps in the above derivations, the Fourier
transform is crucial. To facilitate the confirmability of these
calculations, we shortly sketch our definition of the Fourier
transform. Within this work, a function uðr; tÞ and its
Fourier transform uðk; tÞ is given by

uðk;ωÞ ¼
Z

uðr; tÞe−iðωtþkrÞdrdt; ðF1Þ

uðr; tÞ ¼ 1

ð2πÞ4
Z

uðk;ωÞeiðωtþkrÞdkdω: ðF2Þ
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