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Room temperature high-fidelity holonomic
single-qubit gate on a solid-state spin
Silvia Arroyo-Camejo1, Andrii Lazariev2, Stefan W. Hell1 & Gopalakrishnan Balasubramanian2

At its most fundamental level, circuit-based quantum computation relies on the application of

controlled phase shift operations on quantum registers. While these operations are generally

compromised by noise and imperfections, quantum gates based on geometric phase shifts

can provide intrinsically fault-tolerant quantum computing. Here we demonstrate the high-

fidelity realization of a recently proposed fast (non-adiabatic) and universal (non-Abelian)

holonomic single-qubit gate, using an individual solid-state spin qubit under ambient con-

ditions. This fault-tolerant quantum gate provides an elegant means for achieving the fidelity

threshold indispensable for implementing quantum error correction protocols. Since we

employ a spin qubit associated with a nitrogen-vacancy colour centre in diamond, this system

is based on integrable and scalable hardware exhibiting strong analogy to current silicon

technology. This quantum gate realization is a promising step towards viable, fault-tolerant

quantum computing under ambient conditions.
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Q
uantum gates based on geometric phase shifts1 are a
promising resource for intrinsically fault-tolerant
quantum computing2. While initial proposals for

geometric quantum computing2 based on non-Abelian,
adiabatic holonomies3 entailed slow gate speeds and were thus
prone to decoherence, fast schemes4 employing Abelian, non-
adiabatic phases5 lacked computational universality. Recently, a
scheme for non-adiabatic, non-Abelian holonomic quantum
computation has been proposed6. While the non-Abelian
nature of this gate provides computational universality2,7, the
fact that it is non-adiabatic allows for fast quantum gate
operation, high clock frequencies and thus intrinsic protection
against decoherence. The superior robustness of this quantum
gate against decay, dephasing and parametric imperfections (as
for example absolute and relative detuning and pulse errors) has
been confirmed analytically and by comprehensive numerical
simulations6,8. Originally, the proposal for this holonomic
quantum gate6 was given for a three-level L-type system, where
the computational basis states are the mutually uncoupled two
lower states, while the upper state acts as an ancilla and remains
unpopulated before and after the gate operation. A single-qubit
gate based on this scheme6 was recently demonstrated on a
transmon qubit9, but this approach is limited to cryogenic
temperatures; another holonomic quantum computing realization
on a room temperature liquid nuclear magnetic resonance
system10 is fundamentally challenged by difficulties to initialize
nuclear magnetic resonance systems into pure states.

Here we demonstrate a high-fidelity realization of this
holonomic single-qubit gate using an individual solid-state spin
qubit under ambient conditions. By selecting the electron spin of
a nitrogen-vacancy (NV) centre in diamond to create holonomic
quantum gates at room temperature, we choose a quantum
computing architecture that is based on integrable11 and
scalable12 solid-state hardware exhibiting strong analogy to
current state-of-the-art silicon technology. In our
demonstration we achieve close to perfect process fidelities that
comply with the error threshold requirement for the
implementation of certain fault-tolerant quantum computing
protocols13. This realization is a promising step towards viable
quantum computing at room temperature.

Results
NV centre in diamond. The negatively charged NV centre in
diamond holds great promise for quantum sensing14–16 and
quantum information applications17,18. NV electron spins stand
out as potential room temperature qubits, because they can be
manipulated on the nanosecond time scale19 while featuring
coherence times of milliseconds under ambient conditions20.
Both initialization21,22 and read-out18 of the NV electron spin, as
well as dynamic single-qubit gates23 and dynamic entanglement
generation of two coupled NV centres24 have been demonstrated.
First implementations of quantum algorithms were reported
recently25. As the NV centre fulfils the DiVincenzo criteria for
quantum computers remarkably well, the realization of an NV
centre based quantum computer ultimately depends on the
achievable fidelities of elementary quantum gates. While quantum
error correction codes have been proposed26, they will be
applicable only if the fidelity of each elementary gate exceeds a
certain threshold. Reaching this threshold13, (single gate error
rates are predicted to range between 10� 6 and 10� 2) requires
resorting to a hardware that is intrinsically fault-tolerant. To this
end, hardware based on geometric phases and decoherence-free
subspaces are particularly promising. For negligible hyperfine
coupling and strain, the Hamiltonian of the ground state triplet of
the NV centre

H=‘ ¼ DS2
z � geB � S

is defined by the zero-field splitting D¼ 2p� 2.87 GHz and the
Zeeman splitting with the external magnetic field B, electron
gyromagnetic ratio ge and the electron spin S. The NV electron
spin forms a V-type three-level scheme (cf. Fig. 1c) made up of
the ms¼ 0 and ms¼±1 levels (denoted by |0S, |þS and |�S
in the following). At an external magnetic field of |B|E404 G, the
transitions |0S2|þS at o0þ ¼ 2p� 4.003 GHz and |0S2
|�S at o0� ¼ 2p� 1.738 GHz can be driven coherently by
microwave radiation at frequencies oþ ¼o0þ þ dþ and
o� ¼o0� þ d� , respectively. Figure 1b displays the NV level
scheme indicating the optical transitions used for spin initialization
and readout along with the applied microwave field transitions.

Holonomic single-qubit quantum gate. The holonomic quan-
tum gate6 is defined on a three-dimensional Hilbert space H3.
The computational basis states, here |þS and |�S, span a two-
dimensional subspace H2 of that total space. The holonomic
quantum gate is carried out by a transformation of the subspace
H2 along a smooth, closed loop C:[0,T]3t/H2(t), such that
H2(0)¼H2(T) (see illustration in Fig. 2a). For the duration of the
holonomic transformation, the |0S state acts as an idle ancilla
that stays unoccupied before and after the quantum gate acts. In
the rotating frame the NV interaction Hamiltonian reads

Hint tð Þ ¼ ‘O tð Þ
2
ðgþ 0j ihþ jþ g� 0j ih � jþ h:c:Þ;

where the holonomic transformation is carried out through the
application of two resonant (dþ ¼ d� ¼ 0) controlled microwave
pulses simultaneously driving the |0S2 |þS and |0S2 |�S
spin transitions with Rabi frequencies O(t)gþ and O(t)g� ,
respectively and featuring a joint pulse envelope O(t). To provide
a cyclic state evolution, the transformation needs to satisfyR T

0 O tð Þdt ¼ 2p and the Rabi weights gþ and g� need to be
properly normalized: |gþ |þ |g� |¼ 1. To ensure the parallel
transport condition for a purely geometric evolution
/ck|Hint|cjS¼ djk the ratio of the Rabi frequencies gþ

g�
has to

be kept constant. In this case the dressed system undergoes a Rabi
oscillation between the bright state bj i ¼ � g�þ þj i� g�� �j iÞ
and the excited state |eS¼ |0S, whereas the dark state
|dS¼ � g� |þSþ gþ |�S) is decoupled from the dynamics.
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Figure 1 | NV centre geometry and level structure. (a) Illustration of the

unit cell of diamond including an NV colour centre. Spin projections

ms¼0,±1 are defined with respect to the NV symmetry axis. (b) Energy

levels of the triplet (left) and singlet states (right) of the NV centre and the

applied excitation (EXC) and microwave (MW) fields and the detected

fluorescence (FLUO). (c) Three-level V-scheme of the NV ground state

triplet employed for the realization of the single-qubit holonomic

quantum gate.
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In compliance with the aforementioned conditions, the
characteristic structure of the Hamiltonian Hint(t) gives rise to a
nontrivial topology of the subspace H2 in the total space H3 and
drives the holonomic transformation of the computational states

U þ �ð Þ ¼
cos y e� if sin y

eif sin y � cos y

� �
;

where the Rabi frequency weights can be parameterized by two
angles y and f as gþ ¼ eif sin(y/2) and g� ¼ � cos(y/2). Hence,
the complex valued Rabi frequency ratio gþ /g� determines the
kind of quantum gate by choosing a specific set of y and f
defining a characteristic path C(y, f) on the Grassmannian
manifold (3;2). In Table 1, we list the respective parameter sets (y,
f, gþg� ) defining some elementary single-qubit quantum gates:
the Pauli-X (bit flip gate), Pauli-Y (bitþ phase flip gate), Pauli-Z
(phase flip gate) and the Hadamard gate. We determine the
fidelity of the conducted holonomic quantum gates by
performing standard quantum process tomography (QPT)27.
Figure 3 displays the real parts of the experimentally achieved
quantum gate process matrices (coloured bars; imaginary parts
are smaller than the respective errors) versus the ideal quantum
gates (hollow frame bars). For all three Pauli gates and the
Hadamard gate, we achieved total process fidelities around
F¼ 0.98 (see Table 2) when we apply standard QPT. Note that
the QPT, that is, the state preparation before and projective
readout after the quantum gate, represents the major part of the
experimental sequence (see Fig. 2b). As it is performed through

microwave-induced dynamical phase shifts, the QPT is more
prone to noise, parameter imperfection and decoherence effects
than our holonomic quantum gate. Since the QPT is not part of
the quantum gate, it is instructive to assess the corrected fidelities
~Fi ¼ Fi=FId of the i-th holonomic quantum gate after gauging
with the fidelity FId of a QPT executed without quantum gate
(that is, with that of the identity operation). Thereby, we obtain
fidelities of the holonomic quantum gates around ~F ¼ 1:00 (see
Table 2), thus entering the fidelity regime where advanced
quantum error correction techniques can become efficacious.
Note, that the fidelities reported here were achieved without any
of the commonly used post-selection28 which, if applied, could
increase the fidelity of the demonstrated holonomic quantum
gates even further.

Discussion
Altogether, we showed that NV centre electron spins in diamond
enable the realization of high-fidelity, non-adiabatic, non-Abelian
holonomic single-qubit gates at room temperature. Acting on the
NV electron spin, this quantum gate is directly compatible with
recently developed techniques employing coupling to proximal
nuclear spins (such as those provided by 13C nuclei or the NV’s
own 14N/15N spin), for example, for temporary qubit storage
(quantum memory). However, contrary to other demonstrations
employing the NV electron spin primarily as a mediator for the
control of randomly distributed proximal nuclear spin qubits, our
technique allows for the controlled design of a truly engineered

Table 1 | Theoretical and experimental parameter settings.

Quantum gate Symbolic operator Evolution operator Uþ� Loop parameter / Loop parameter h Rabi weight cþ Rabi weight c�

Identity Iþ þ I�
1 0
0 1

� �
— — — —

Pauli-X sx
�

0 1
1 0

� �
p � p/2 1=

ffiffiffi
2
p

1=
ffiffiffi
2
p

Pauli-Y sy
�

0 � i
i 0

� �
� p/2 p/2 � i=

ffiffiffi
2
p

� 1=
ffiffiffi
2
p

Pauli-Z sz
�

1 0
0 � 1

� �
0 p 1 0

Hadamard
ðsx
� þsz

� Þffiffi
2
p 1 1

1 � 1

� �
=
ffiffiffi
2
p

0 �p/4 � cos(p/8) � sin(p/8)

Each elementary holonomic single-qubit gate is defined by a characteristic loop C(y,f) on the Grassmannian manifold (3;2) parametrized by sets of y and f.
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Figure 2 | Concept for the realization of an NV-based holonomic single-qubit gate. (a) Schematic representation of the total Hilbert space and a

projected Hilbert space P therein defined through a projective map p:H/P by means of the local U(2) fibre bundle. Driving the system on a suitable loop

C (red curve) on this U(2) fibre bundle of nontrivial topology gives rise to a holonomy. Here, this holonomy is employed for the generation of a relative

phase for quantum computation applications. (b) Experimental sequence for the quantum process tomography (QPT): First the NV state is initialized by a

green laser pulse (EXC) to state |0S. In the following first part of the QPT microwave pulses (MW) tuned to oþ and o� prepare the spin into one of the

nine QPT states |cjS. After application of the holonomic quantum gate (HQG), the second part of the QPT project the NV state onto one of the nine

measurement bases |cjS by means of microwave pulses (MW). State selective detection concludes the sequence composed of simultaneous application of

a green laser pulse (EXC) and signal and reference windows detection (DET). Due to the different numbers and types of pulses necessary for the 81

preparation and readout combinations of the QPT, the durations of the QPT blocks 1 and 2 vary for each QPT measurement.
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quantum computing architecture based on NV electron spins as
computational nodes and employing the built-in NV nitrogen
nucleus as a quantum memory.

For universal holonomic quantum computation, the single-
qubit gate presented here needs to be combined with a holonomic
two-qubit gate. To this end, it is straightforward to consider two
electron spins of a pair of adjacent NV centres that are coupled by
magnetic dipole–dipole interaction. The far-field optical addres-
sing and readout of individual NV spins could be achieved using
the diffraction-unlimited resolution provided by stimulated
emission depletion microscopy29, which is our long-term vision.
In combination with optimal control techniques30 such a
universal set of holonomic quantum gates can allow for a truly
scalable and fault-tolerant quantum computation architecture
based on room temperature solid-state hardware. Moreover, the
demonstrated robust high-fidelity holonomic phase gates could
be employed for other challenging spin manipulation applications
to enhance high-fidelity dynamical decoupling protocols or to
allow for robust high-sensitivity quantum sensing.

Methods
Electron spin manipulation. The gate was realized on a naturally occurring NV
centre in synthetically grown, electronic grade diamond. For spin initialization and
fluorescence readout, the NV centres were optically addressed by a 532 nm con-
tinuous wave laser via a home-build confocal microscope. The microwave pulses
were synthesized by a Tektronix AWG 7122C, amplified and coupled into a
microwave strip line spanned across the diamond sample. Typically the Rabi
frequencies were around 6 MHz. The external magnetic field was applied through a
permanent magnet and aligned to be parallel to the NV axis to an angle deviation

of o2�. The lifetimes of the |þS and |�S states with respect to the |0S were
both T1¼ (5±1) ms, while the coherence times of the |þS and |�S states with
respect to the |0S state were both T�2 ¼ ð7 � 1:0Þ ms. By applying a magnetic
field of |B|E404 G, we tuned the NV system near the triplet excited state level
anti-crossing, providing us with a polarization of the 14N nuclear spin into the
mI¼ þ 1 hyperfine state.

Quantum process tomography. For the evaluation of the experimentally
achieved quantum gates, we conducted standard QPT27. An arbitrary operation E
acting on an initial state rin and generating the final state rout can be described
by a quantum process matrix wmn in terms of a quantum dynamical map
rout ¼ E rinð Þ ¼

P
mn wmnEmrinEyn , where the EmASU(d) represent a full set of

orthogonal basis operators (here, the Gell-Mann operators as the generators of the
SU(3)). The fidelity of the quantum process is then given by the overlap between
the experimental and theoretical representation of the process matrix wexp and
wtheo, respectively: F¼ tr(wexp � wtheo). Here, the QPT is performed in 81 runs,
in each of which the system has to be initialized into one of nine (quasi-)pure
states |cjSA(|c1S, |c2S,y, |c9S), where the |cjS are chosen such that the
corresponding density matrices rj¼ |cjS/cj| form a basis set for the space of
matrices: r¼

P
jqj|cjS/cj|. The reconstructed process matrix wmn was fitted by

means of a maximum-likelihood estimation procedure assuming the process
matrix to be completely positive and not trace increasing (for details see
Supplementary Notes 1–5).
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