
Supplementary Information

Supplementary Figures

Supplementary Figure 1: Bloch sphere. Representation of the Bloch vector |ψok〉 = ζ|0〉+
ξ|k〉 on the Bloch sphere of the Hilbert sub-space spanned by the states |0〉 and |k〉 (where
k ∈ {+,−}).
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Supplementary Tables

Supplementary Table 1: Convention of basis operators. List of full set of nine basis
operators building a suitable basis for the decomposition of the 3D process matrix χ and the
reduced 2D process matrix χ(+−) defined in Supplementary Equation (16).

Em Pauli operator explicit expression matrix normalization
representation factor αm

E1 I+ + I− |+〉〈+|+ |−〉〈−|
(

1 0 0
0 1 0
0 0 0

) √
3/2

E2 σx+− |+〉〈−|+ |−〉〈+|
(

0 1 0
1 0 0
0 0 0

) √
3/2

E3 σy+− −i|+〉〈−|+ i|−〉〈+|
(

0 −i 0
i 0 0
0 0 0

) √
3/2

E4 σz+− |+〉〈+| − |−〉〈−|
(

1 0 0
0 −1 0
0 0 0

) √
3/2

E5 σx+0 |+〉〈0|+ |0〉〈+|
(

0 0 1
0 0 0
1 0 0

) √
3/2

E6 σy+0 −i|+〉〈0|+ i|0〉〈+|
(

0 0 −i
0 0 0
i 0 0

) √
3/2

E7 σx−0 |−〉〈0|+ |0〉〈−|
(

0 0 0
0 0 1
0 1 0

) √
3/2

E8 σy−0 −i|−〉〈0|+ i|0〉〈−|
(

0 0 0
0 0 −i
0 i 0

) √
3/2

E9 I0 |0〉〈0|
(

0 0 0
0 0 0
0 0 1

) √
3
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Supplementary Table 2: Pulse sequence for quantum process tomography. List of
the full set of nine basis states employed for QPT in this work. In the third column EXC means
state initialization into the ms = 0 state by optical pumping via a ∼ 4 µs long pulse of excitation
light). The (τ)ijk signify a microwave i-pulse of length τ on the j to k transition. DET means
projective readout of the ms = 0 population via ∼ 300 ns of excitation light and simultaneous
fluorescence detection.

Ψj explicit expression initialization projective readout

Ψ1 |+〉 EXC + πȳ0+ πy0+ + DET
Ψ2 |−〉 EXC + πȳ0− πy0− + DET
Ψ3 |0〉 EXC DET

Ψ4
1√
2

(|0〉+ |+〉) EXC +
(
π
2

)
ȳ0+

(
π
2

)
y0+

+ DET

Ψ5
1√
2

(|0〉+ i|+〉) EXC +
(
π
2

)
x̄0+

(
π
2

)
x0+

+ DET

Ψ6
1√
2

(|0〉+ |−〉) EXC +
(
π
2

)
ȳ0−

(
π
2

)
y0− + DET

Ψ7
1√
2

(|0〉+ i|−〉) EXC +
(
π
2

)
x̄0−

(
π
2

)
x0− + DET

Ψ8
1√
2

(|+〉+ |−〉) EXC +
(
π
2

)
ȳ0+

+ πȳ0− πy0− +
(
π
2

)
y0+

+ DET

Ψ9
1√
2

(|+〉+ i|−〉) EXC +
(
π
2

)
ȳ0+

+ πx̄0− πx0− +
(
π
2

)
y0+

+ DET

Supplementary Table 3: Microwave pulse convention. Definition of the rotation opera-
tors of the Bloch vector on the respective Hilbert sub-space spanned by either |0〉 and |+〉 or |0〉
and |−〉. The phase factor is acquired starting from the |0〉 state.

MW pulse phase pulse type state transformation pulse type state transformation

sin(ω0±t) (π/2)x0+

( 1 0 −i
0
√

2 0
−i 0 1

)
/
√

2 (π/2)x0−

(√
2 0 0

0 1 −i
0 −i 1

)
/
√

2

sin(ω0±t+ π) (π/2)x̄0+

( 1 0 i
0
√

2 0
i 0 1

)
/
√

2 (π/2)x̄0−

(√
2 0 0

0 1 i
0 i 1

)
/
√

2

sin(ω0±t+ π
2 ) (π/2)y0+

( 1 0 1
0
√

2 0
1 0 1

)
/
√

2 (π/2)y0−

(√
2 0 0

0 1 1
0 1 1

)
/
√

2

sin(ω0±t− π
2 ) (π/2)ȳ0+

( 1 0 −
0
√

2 0
−1 0 1

)
/
√

2 (π/2)ȳ0−

(√
2 0 0

0 1 −1
0 −1 1

)
/
√

2
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Supplementary Notes

Supplementary Note 1: Quantum process tomography

Quantum process tomography provides a means of determining the process matrix of an unknown

quantum process acting on a quantum state [3]. It allows for the determination of the fidelity

with which a specific quantum operation is performed experimentally in comparison to the

theoretical, ideal process. Consider a general initial mixed quantum state

ρin =
∑
k

pk|k〉〈k| (1)

(where the states |k〉 ∈ Hd, 0 ≤ pk ≤ 1 and
∑

k pk = 1). An arbitrary operation E acting on

that state

ρin −→ E(ρin) = ρout (2)

can be described by a quantum process matrix χmn generating the final state

ρout = E(ρin) =
∑
mn

χmnEmρ
inE†n (3)

where {Em} ∈ SU(d) represent a full set of orthogonal basis operators. The fidelity of the quan-

tum process is then given by the overlap between the experimentally performed transformation

E and the theoretically ideal transformation U as

F(E , U) = Tr(χexpχtheo) (4)

with the experimental and theoretical representation of the process matrix χexp and χtheo, re-

spectively [1]. Since we reconstruct the fidelity of an intrinsically fault-tolerant quantum gate by

means of standard QPT based on relatively vulnerable dynamical phase shifts, it is instructive

to normalize the fidelity of the i-th quantum gate Fi obtained over standard QPT with respect

to the fidelity of the QPT operation itself FId (i.e. an “empty” QPT run without quantum

gate). Thus we obtain the relative fidelities

F̃i(E , U) =
Fi
FId

(5)
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as a sensible means for benchmarking the quantum gate performance achieved in this work.

Supplementary Note 2: Theoretical concept of the QPT procedure

Quantum process tomography is performed in d4 runs, in each of which the system has to be

initialized into a (quasi-)pure state |Ψj〉 ∈ {|Ψ1〉, |Ψ2〉, ..., |Ψj〉}, where the d2 states |Ψj〉 are

chosen such that the corresponding density matrices ρj = |Ψj〉〈Ψj | form a basis for the space of

matrices:

ρ =
∑
j

qjρj =
∑
j

qj |Ψj〉〈Ψj | . (6)

Now, for each of the d4 runs the unknown quantum process performs the transformation E on

the full set of basis states ρin
j (j = 1, ..., 9):

ρin
j −→ E(ρin

j ) = ρout . (7)

In order to find an expression for the unknown transformation characterized by the process

matrix χmn we decompose both E(ρin
j ) and Emρ

in
j E
†
n in the chosen state basis ρk = |Ψk〉〈Ψk|:

E(ρin
j ) =

∑
k

λjkρk , (8)

Emρ
in
j E
†
n =

∑
k

βmnjk ρk . (9)

In general, the coefficients λjk and βmnjk are complex. While the βmnjk are to be determined

theoretically on the basis of the formerly defined set of Em and Ψj , the λjk are reconstructed

from experimental results. We can construct the theoretical and experimental λjk by solving

the linear system of equations for the observable

Opj = 〈Ψp|E(ρin
j )|Ψp〉 =

∑
k

λjk〈Ψp|ρk|Ψp〉 =
∑
k

λjk|〈Ψp|Ψk〉|2 (10)
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corresponding to the d2 projective measurements on the complete set of projection bases states

Ψp. Analogously, we can determine the βmnjk by solving the respective linear system of equations

〈Ψp|Emρin
j E
†
n|Ψp〉 =

∑
k

βmnjk 〈Ψp|ρk|Ψp〉 =
∑
k

βmnjk |〈Ψp|Ψk〉|2 . (11)

Combining both Supplementary Equation (8) and Supplementary Equation (9) we obtain

E(ρin
j ) =

∑
mn

χmnEmρ
in
j E
†
n =

∑
mn

χmn
∑
k

βmnjk ρk =
∑
k

λjkρk . (12)

In fact, this relation holds for each ρk separately, so we may write

∑
mn

χmnβ
mn
jk = λjk . (13)

If we now compute for every ρj the components κmnjk as the generalized inverse of βmnjk

∑
mn

χmn
∑
jk

βmnjk κ
pq
jk︸ ︷︷ ︸

= δmpδnq

=
∑
jk

κpqjkλjk (14)

we can find an explicit expression for the process matrix

χmn =
∑
jk

κmnjk λjk (15)

given in the basis of the generators Em, En.

Supplementary Note 3: Theoretical and experimental choice of basis states
and projection operators

For the quantum process tomography the basis operators Ek have to be chosen suitably. In

a minimal setting these ought to be a full set of 8 generators of the SU(3), the so called the

Gell-Mann matrices. These matrices need to be Hermitian, traceless (Tr(Ei) = 0) and satisfy

Tr(EiEj) = 2δij . For the NV− ground state triplet the suggested set is presented in Supplemen-

tary Table 1. Here, we suggest a set of nine generators Em of the U(3), as in this representation
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the 4× 4 process matrix χ(+−) acting only in the Hilbert subspace H2 spanned by the compu-

tational states |+〉 and |−〉 can be immediately extracted from the full 9 × 9 process matrix χ

as

χ(+−) =

(
Tr{χ̂(+−)}

)−1

· χ̂(+−) . (16)

with

χ̂(+−) =
4∑

m,n=1

Tr{|em〉〈en|χmn} · |em〉〈en| (17)

where the |em〉 = (0, 0, ..., δim, ..., 0) ∈ R4 are unit vectors. The operators E2 to E8 are effectively

Pauli operators acting only on a two-dimensional subspace of the total state space. The first and

the ninth generator are chosen as (a suitable linear combination of) sub-space identity operators

I+, I− and I0.

The respective set of proposed basis states Ψj is given in Supplementary Table 2. These

states of the NV− ground state triplet are to be prepared on the basis of microwave Rabi pulses

applied to the |0〉 to |+〉 and the |0〉 to |−〉 transitions inducing rotations of the Bloch vectors on

the two coupled Bloch sub-spheres spanned by the states |0〉 & |+〉 and |0〉 & |−〉, respectively (cf.

Supplementary Figure 1). An initial Bloch vector |ψ〉 is rotated to state |ψ′〉 upon application

of a Rabi pulse R0k following |ψ′〉0k = R0k|ψ〉0k, where |ψ〉0k ∈ H2 = {ζ|0〉 + ξ|k〉 | ζ, ξ ∈ C}.

Here, we want to employ the following convention for dynamic phase shifts induced by resonant

microwave pulses of length τ = β/Ω(t) on either of the |0〉 ↔ |+〉 and the |0〉 ↔ |−〉 transition:

R0+(α, β) =

 cos(β/2) 0 −ie−iα sin(β/2)
0 1 0

−ieiα sin(β/2) 0 cos(β/2)

 (18)

R0−(α, β) =

 1 0 0
0 cos(β/2) −e−iα sin(β/2)
0 eiα sin(β/2) cos(β/2)

 (19)

where β determines the rotation angle and α the rotation axis. An x pulse is considered a

microwave sine pulse, an x̄ pulse has a relative phase shift of α = +π, a y pulse a phase shift of

α = +π
2 , and a ȳ pulse a phase shift of α = −π

2 . Explicit expressions for the rotation matrices of
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the respective pulses are shown in Supplementary Table 3. These sub-space rotation operations

can be conveniently visualized on two coupled sub-space Bloch spheres. Supplementary Figure 1

shows the sub-space Bloch sphere spanned by the states |0〉 and |+〉. Bear in mind that as the

two sub-space Bloch spheres are coupled, global phase factors arising due to rotations on a sub-

space Bloch sphere are not negligible; indeed, they are relative phase factors on the respective

generalized eight-dimensional Bloch sphere comprising both sub-space Bloch spheres.

The corresponding experimental preparation routines for the set of basis states ψj are pro-

posed along with their corresponding projective readout sequences in the third and forth column

of Supplementary Table 2, respectively. In the case of the NV− centre the state initialization

is always performed by optical pumping into the |0〉 state followed by a suitable combination

of microwave π and π
2 pulses. The projective readout follows the reverse scheme projecting the

obtained state ρout back onto the |0〉 basis. This allows for the reconstructed of the decomposi-

tion of ρout in the basis of ρj .

Supplementary Note 4: Maximum likelihood estimation procedure

In order to extract the experimentally obtained process fidelity we fit the experimental data with

a proper theoretical model by means of a maximum likelihood estimation (MLE) procedure. For

this purpose the maximum likelihood function

f(~q) =
∑
j,p

(
〈Ψp|E(ρin

j )|Ψp〉 −
∑
m,n

χmn(~q)〈Ψp|Em|Ψj〉〈Ψj |En|Ψp〉
)2

(20)

− Λ
( ∑
m,n,r

χmn(~q) Tr
(
αmαrαnEmErEn

)
− δr,1

)
is to be minimized, where Λ is a Lagrange multiplier and δr,1 the Kronecker delta. The αm

are normalization factors (see Supplementary Table 1) that allow for an direct extraction of the

process matrix χ(+−) ∈ H2 (defined on the computational state space) from the fitted process
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matrix χ(+−0) ∈ H3 (defined on the total system space) as stated in Supplementary Equa-

tion (16). The first term in Supplementary Equation (20) ensures hermiticity, while the second

term sets the degree of positivity by means of a Lagrange mulitiplier Λ. Trace-preservation of

the process matrix is satisfied per constructionem by the parametrized representation

χ(~q) =
Q†(~q)Q(~q)

Tr{Q†(~q)Q(~q)}
(21)

or element-wise

χmn(~q) =

( ∑
m′,n′

∑
k

δm′,n′(Qkm′)∗Qkn′

)−1

·
(∑

k

(Qkm)∗Qkn

)
(22)

where the compelx valued matrix Q(~q) is a triangular matrix parametrized by a real valued

vector ~q containing d4 − d2 elements. For the present case of d = 3 the Q(~q) matrix can be

written as

Q(~q) =


q1 0 0 0 0 0 0 0 0

q2+iq10 q18 0 0 0 0 0 0 0
q3+iq11 q19+iq26 q33 0 0 0 0 0 0
q4+iq12 q20+iq27 q34+iq40 q46 0 0 0 0 0
q5+iq13 q21+iq28 q35+iq41 q47+iq52 q57 0 0 0 0
q6+iq14 q22+iq29 q36+iq42 q48+iq53 q58+iq62 q66 0 0 0
q7+iq15 q23+iq30 q37+iq43 q49+iq54 q59+iq63 q67+iq70 q73 0 0
q8+iq16 q24+iq31 q38+iq44 q50+iq55 q60+iq64 q68+iq71 q74+iq76 q78 0
q9+iq17 q25+iq32 q39+iq45 q51+iq56 q61+iq65 q69+iq72 q75+iq77 q79+iq80 q81

 (23)

where ~q = (q1, q2, q3, . . . , q81) denotes the set of 81 fit parameters. In principle a suitable set

of start values ~q0 for the iterative fit could be extracted from χ̃exp obtained from the raw

experimental data. Practically, however, in the case of d > 2 the reverse element-wise dependence

of Supplementary Equation (22), i.e. Qkn as a function of the χ̃exp
mn is non-trivial:

Qkn(χ̃exp
mn) =? −→ ~q0. (24)

Once an explicit expression for Supplementary Equation (24) is found we might initialize the

start value set to ~q0 based on χ̃exp
mn. For d = 2 an explicit solution for the start parameter set

~q0(χ̃exp
mn) exists (see [2]). To the best of our knowledge there has not been presented a closed-form

expression for d > 2 in the literature until now. For our present case of d = 3 the relation in
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Supplementary Equation (24) is highly non-trivial to compute. Thus, in this work we chose to

find a start parameter set ~q0 as follows: First, we approximate the experimentally obtained χ̃exp
mn

by a positive definite version of that matrix through substitution of the (anyway small) negative

diagonal entries in the diagonalized form of ~q0(χ̃exp
mn) by suitably small, but positive values) and

subsequently performing a Cholesky decomposition. From the lower unit triangular matrix of

the Cholesky decomposition we can extract a start value set ~q0 for the maximum likelihood

estimation procedure.

Supplementary Note 5: Data Evaluation and error estimation for maximum
likelihood fit of χ and F

Due to the complex relation between the measured data and the final process matrix χ and the

fidelity F the error calculation is non-trivial. Therefore, a Monte Carlo based error estimation

method is employed here. The observables, i.e. the projective readout data from Supplementary

Equation (10) are fitted by Gaussian distributions and the mean value Opj and standard devi-

ation σOpj of each observable fit is extracted. From a normally distributed set of Monte Carlo

sampled observable values we obtain the corresponding distribution for the λjk coefficients and

can extract mean value λjk and standard deviation σλjk for each of the 81 λjk. From a normally

distributed Monte Carlo sampled set of each of the 81 λjk coefficients we obtain a distribution

for the χraw
mn elements and can extract 81 mean values χraw

mn and standard deviations σχraw
mn

as well

as a mean process matrix

χraw =

9∑
m,n=1

Tr{|em〉〈en|χraw
mn} · |em〉〈en| (25)

where the |em〉 = (0, 0, ..., δim, ..., 0) ∈ R9 are unit vectors.

Now the raw data process matrix χraw is subject to the MLE procedure described above

(where the start parameter set is derived from the mean process matrix: χ(~q0(χraw))) delivering
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a fitted process matrix χMLE. Ultimately, the total process fidelity of the i-th gate is computed

with respect to the MLE fitted process matrix χMLE
i as

Fi = Tr(χi
MLEχtheo

i ) (26)

providing a reasonable figure of merit for the achieved performance of the quantum gate of

interest.

In order to obtain an error estimation for this MLE fitted process matrix and the fidelity a

large sample of normally distributed χraw MC
mn with the previously determined standard deviation

σχraw
mn

is subject to the maximum likelihood procedure as well resulting in a non-Gaussian distri-

bution for the χMLE MC
mn . The error of the fidelity was derived from the (in general asymmetric)

distribution of the fidelities computed from the respective Monte Carlo sets χMLE MC. The error

bars given in the main article cover a 68.3% confidence interval around the fidelity values Fi and

have to be seen as an upper bound error estimate, as the Monte Carlo sampled sets of χraw MC
mn

elements were uncorrelated. The obtained fidelity errors are in good agreement with the residua

between the fidelities computed from the unfitted χraw and the fidelity computed from the fitted

χMLE.

In order to remove the fidelity bias originating from the infidelity of the characterizing quan-

tum process tomography itself, the extracted fidelities of the i-th holonomic quantum gate F̃i

were obtained from a normalization of the respective total process fidelity Fi by the fidelity of

the identity gate FID: F̃i = Fi
FID

.
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