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Abstract. Group field theories have recently been shown to admit a 1/N expansion domi-
nated by so-called ‘melonic graphs’, dual to triangulated spheres. In this note, we deepen
the analysis of this melonic sector. We obtain a combinatorial formula for the melonic
amplitudes in terms of a graph polynomial related to a higher-dimensional generalization
of the Kirchhoff tree-matrix theorem. Simple bounds on these amplitudes show the exis-
tence of a phase transition driven by melonic interaction processes. We restrict our study
to the Boulatov–Ooguri models, which describe topological B F theories and are the basis
for the construction of 4-dimensional models of quantum gravity.
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1. Introduction

Group field theory (GFT) is an approach to quantum gravity [1] complement-
ing loop quantum gravity [2,3] and spin foam models [4]. Spin foams dynamically
evolve the quantum states of geometry provided by loop quantum gravity; group
field theory embeds them within a quantum field theoretic framework, in which
spin foam complexes arise as Feynman diagrams [5]. As a result, GFT provides a
workable prescription for the quantum geometrodynamics of states in loop quan-
tum gravity.

This field theoretic language allows for the application of key tools, absent from
the other approaches. Two examples indicative of recent developments are an analy-
sis of GFT renormalization [6–8], and GFT symmetries [9–11], as well as the
development of new approximation schemes, within which to obtain effective cos-
mological dynamics [12]. These occur alongside the construction of interesting
GFT models for 4d gravity [4,13,14].

Concurrently, group field theories are related to theories of random tensors,
known as tensor models [15]. This relationship is somewhat analogous to that
between quantum field theory and quantum mechanics. On the one hand, GFTs
represent an enrichment of tensor models by group theoretic data—these data



1004 ARISTIDE BARATIN ET AL.

are instrumental in providing a link to loop quantum gravity and various dis-
crete gravity path integrals. On the other hand, tensor models form the back-
bone of the GFT formalism [6,7,16]. Ultimately, the fact that both theories gen-
erate sums over cellular complexes, each of which represents a discrete counter-
part to a continuum spacetime, means that similar statistical methods are
applicable.

Such statistical analyses have already achieved remarkable success in explain-
ing the content of these theories. In the broader scheme, they can be best under-
stood as an attempt to realize in higher dimensions those key steps leading to
the quantization of 2d gravity via matrix models [17]. Thus, a 1/N -expansion has
recently been introduced in arbitrary dimensions, dominated by so-called “mel-
onic graphs” having spherical topology [18–21]. For a large class of tensor models,
which include independent identically distributed (i.i.d.) [22,23], dually-weighted
[24], and matter coupled models [25–27], it has been demonstrated that there are
critical values of the coupling constants indicative of a discrete-to-continuum tran-
sition [28]. The existence and properties of such transitions should be investigated
for fully-fledged group field theories, as they are the key to unraveling their non-
perturbative features.

The present note is a step in this direction. It deepens the analysis of the leading
order (or melonic) sector in the 1/N -expansion of GFTs and consists of two main
results:

1. We obtain a combinatorial formula for the melonic amplitudes in terms of
a graph polynomial, by means of a higher-dimensional generalization of the
Kirchhoff tree-matrix theorem. This reduces the evaluation of the amplitude to
a counting problem, which will be a convenient starting point for the explicit
computation of critical exponents.

2. Based on this formula, we obtain simple bounds on the amplitudes, which show
the existence of a critical point where the partition function loses analyticity.

We restrict our attention to Boulatov–Ooguri models [1,29,30] in arbitrary dimen-
sions. These describe topological B F theories and are the basis for the construc-
tion of 4-dimensional models of quantum gravity [13,14].

2. Regularization and 1/N Scaling

We shall consider the colored version of Boulatov–Ooguri group field theories in
any dimension D. Given a compact connected Lie group G,1 the variables are a
collection of D +1 complex tensor fields ϕ� : G×D →C, labeled by the color index
�∈{0, . . . , D}. Each field satisfies a translation invariance under a diagonal action
of the group:

1Typically G =SU(2) or SO(4).
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ϕ�(hg1, . . . hgD)=ϕ�(g1, . . . gD), ∀h ∈ G. (1)

The models considered here are characterized by a “trivial” kinetic term
∑

� |ϕ�|2
connecting each field ϕ� to its complex conjugate ϕ�:

|ϕ�|2 =
∫

G D

D∏

i=1

dgi ϕ�(g1 . . . gD)ϕ�(g1, . . . gD) (2)

and by an interaction term of a specific simplicial type:

Sint (ϕ�, ϕ�)=λ

∫ ∏

i< j

dgi j

D∏

�=0

ϕ�(g�) + c.c. (3)

where λ is a coupling constant. We use the notation g� ≡ (g�(�−1), . . . ,

g�0, g�d , . . . , g�(�+1)) and enforce the identification gi j = g ji . The complex conju-
gate term “c.c.” ensures that the action is real. In the above formula, dgi and dgi j

denote the normalized Haar measure on G.
The form of the kinetic term, along with the symmetry (1), means that the Feyn-

man expansion is implemented with respect to a Gaussian measure dμP (ϕ�, ϕ�)

with covariance P (propagator):

P(g1, . . . gD; g′
1, . . . g′

D)=
∫

G

dh
∏

i

δ(hgi (g
′
i )

−1) (4)

The presence of delta functions in the propagator leads to divergences in the Feyn-
man graph amplitudes. The theory can be regularized by replacing these delta-
functions with heat kernels [31,32] at time τ on G, given by:2

Kτ (g)=
∑

ρ

dρ e−τCρ Trρ[g] , (5)

where Trρ is the trace in the irreducible representation ρ of G, dρ is its dimen-
sion and Cρ is the quadratic Casimir. For G = SU(2), ρ ∈ N/2,dρ = 2ρ + 1 and
Cρ =ρ(ρ +1). We perform the following rescaling of the coupling constant:

λ→λ/N
(dim G)

(D−2)(D−1)
4

τ , (6)

for some scaling function Nτ . This will be specified later to facilitate an interesting
1/N expansion in the τ →0 limit.

2Recall that Kτ is the solution of the heat equation on G:

(∂τ −�)Kτ =0

with initial condition limτ→0 Kτ (g)= δ(g). � is the Laplacian on G.
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Figure 1. An example of a colored graph (with D =3).

The Feynman expansion of the free energy of these models is a weighted sum
over (closed connected) (D +1)-colored graphs3 G (see Figure 1):

Fτ,λλ =
∑

G

(λλ)p

sym(G)
Aτ (G) (7)

where Aτ (G) is the graph amplitude and sym(G) is a symmetry factor associated
to G.

The color information provides such a graph with the structure of a D-dimen-
sional cellular complex4 dual to a D-dimensional simplicial (pseudo)-manifold.

In what follows, we shall specifically consider the 2-complex CG associated to the
graph G comprising of its vertex, edge and face sets.5 These are denoted by V ,
E and F , respectively. For a given orientation of the faces, let ε f e = ±1 or 0 be
the face-edge adjacency matrix of size |F |× |E |; it encodes the edge content of the
faces and their relative orientations. The graph amplitude Aτ (G) takes the form:

Aτ (G)= N
−(dim G)kG
τ

∫ ∏

e∈E
dhe

∏

f ∈F
Km f τ

⎛

⎝
−−→∏
e∈∂ f

he
ε f e

⎞

⎠ (8)

where

kG = (D −2)(D −1)

4
|V| (9)

and m f is the number of edges e ∈∂ f in the boundary of the face f . The appear-
ance of the rescaled times m f τ in (8) is due to the m f iterations of the convolution
property of the heat kernel:

3(D + 1)–colored graphs are (D + 1)-valent bipartite graphs, such that at any given vertex, the
D +1 incident edges are labeled by distinct colors from the set {0,1, . . . , D}.

4The d-cells are defined as maximally connected subgraphs comprising of edges with d fixed
colors.

5These correspond to the 0-, 1- and 2-cells of G, respectively.
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∫

G

dg Kτ (hg)Kτ ′(g−1h′)= Kτ+τ ′(hh′), (10)

in computing the face contribution of the amplitude (8). One can check this prop-
erty directly from (5) using the orthogonality relations for the representation matri-
ces.

Note that the amplitude enjoys a G×|V| symmetry realised at the vertices of G,

he → ks(e) he k−1
t (e), (11)

where s(e), t (e) ∈ V are the source and terminus of the oriented edge e ∈ E and
kv ∈G. One may remove this redundancy by fixing the value of the group elements
along a spanning tree T ⊂E of the graph, say

he =1, ∀e ∈T (12)

in the integrand of (8), while dropping the corresponding integrals. A residual
symmetry at the root of T contributes to a factor equaling the volume of the
group with respect to the (normalized) Haar measure, namely vol(G)= 1. In the
language of lattice gauge theory, the amplitude (8) integrates over discrete G-
connections on CG ; the arguments of the heat kernels are the holonomies around
the faces f ; (11) is the discrete version of gauge invariance.

As shown in [19], the choice

Nτ = (4πτ)−
1
2 (13)

for the scaling function (6) allows one to organize the expansion (7) as:

Fτ,λλ ∼
τ→0

N (dim G)(D−1)
τ F (0)

λλ
, (14)

where the dominant contribution F (0)

λλ
comes from the so-called melonic subset of

the graphs. Given that such graphs have an iterative definition, let us denote by
Mp the set of melonic graphs with 2p vertices. Then:

M1: There is a unique such melonic graph, known as the supermelon, consisting
of two vertices sharing D +1 edges. It is illustrated in Figure 2

Mp: One generates the subset of melonic graphs Mp from the subset Mp−1, by
replacing an edge of a graph from Mp−1 with an instance of the partial sub-
graph, illustrated in Figure 3. This partial subgraph consists of two vertices
sharing D edges and is known as an elementary melon.

As a result, a generic melonic graph consists of elementary melons nested within
elementary melons and so on. Such a graph is drawn in Figure 4.

As a result:6

6For closed melonic graphs with 2p vertices, sym(G)= p.
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Figure 2. The supermelon graph.

Figure 3. The elementary melon of color i to replace an edge of color i .

Figure 4. An example of a melonic graph (with D =3).

F (0)

λλ
=

∑

p∈N

(λλ)p

p

∑

G∈Mp

a(G) (15)

where

a(G)= lim
τ→0

N−(dim G)(D−1)
τ Aτ (G)<+∞ . (16)

In the next section, we analyse some properties of the coefficients a(G) that allow
us to determine the nature of the dominant series F (0)

λλ
as a function of λλ.
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3. Melonic Amplitudes

We want to take the limit τ → 0 in the formula (16). The first step is to use the
standard [33] small-times asymptotics of the heat kernels:7

Kτ (e
X ) ∼

τ→0
(4πτ)−

dim G
2 e− 〈X,X〉

4τ , (17)

to recast the amplitudes Aτ (G) as Gaussian integrals. Here we wrote group ele-
ments as exponentials of Lie algebra elements X ∈g; langle·, ·〉 is the Killing form
on g.

The second step is to evaluate the resulting integrals by Laplace’s method [32].
In the limit τ → 0, the integral occurring in (8) is dominated by flat discrete con-
nections. Since the 2-complex CG is simply connected, the unique flat connection
(after gauge fixing along a tree T ) is the trivial one: he=1,∀e∈E . At the neighbor-
hood of the identity, one can trade the group integrals occurring in (8) by integrals
over Lie algebra elements Xe ∈g. We thus obtain:8

Aτ (G) ∼
τ→0

[
N

2(|F |−kG)
τ
∏

f m f

] dim G
2 ∫ ∏

e∈Ẽ

dXe e− S(Xe)
4τ (18)

Here dXe is the Lebesgue measure on g�R
dim G , the product is over all edges in

Ẽ =E\T , and S(Xe) is the quadratic form given by:

S(Xe)=
∑

f ∈F

1
m f

∑

e,e′∈∂ f \T
ε f eε f e′ 〈Xe, Xe′ 〉 (19)

We consider the symmetric |E | × |E | matrix L = εᵀDmε, where Dm is the diago-
nal matrix with entries (Dm) f f = 1/m f indexed by F , and ε

ᵀ
e f := ε f e is the trans-

pose adjacency matrix. In the terminology of homology, εᵀ is the boundary map
∂2 from faces to edges of the 2-complex CG and L is the second (weighted) Lapla-
cian matrix, with entries:

7More explicitly, there exists an asymptotic expansion for the heat kernel, valid for small τ , the
first term of which is:

Kτ (g) ∼
τ→0

(4πτ)
− dim G

2 e− |g|2
4τ

√
Dvvm(g) ,

where Dvvm(g)=|g|−1/2|det(∂μ∂ν |g|2/2)| is the Van Vleck–Morette determinant [33]. In the small
τ →0 limit, this evaluates to a constant and so does not affect our subsequent analysis. Moreover,
|g| is the geodesic distance of g from the identity of the group evaluated using the bi–invariant met-
ric on the group. Replacing the group element g by its algebra element X gives rise to the Killing
form with the normalization factors quoted in (17).

8We refrained from including a constant Jacobian factor contributed by the change from the
Haar measure on the group to the Lebesgue measure on the algebra.
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Le,e′ =
∑

f

1
m f

(∂2)e f (∂2)
ᵀ
f e′ (20)

We also denote by L̃ the submatrix of L with rows and columns indexed by Ẽ .
Upon Gaussian integration in (18), we obtain:

Aτ (G) ∼
τ→0

⎡

⎣ N
2(|F |−|Ẽ|−kG)
τ

det(L̃)
∏

f m f

⎤

⎦

dim G
2

(21)

The third step is to observe that for melonic graphs:

|E |= |V| (D +1)

2
, |F |= D +|V| D(D −1)

4
(22)

Together with the relation9 |Ẽ |= |E |− |V|+1, it yields:

|F |− |Ẽ |− kG = D −1 (23)

so that the dependance upon Nτ drops in the limit (16). We obtain the following
expression for the melonic amplitudes:

a(G)=
⎡

⎣det(L̃)
∏

f

m f

⎤

⎦

− dim G
2

. (24)

4. Tree Expansion

In this section, we dwell upon the determinant showing up in expression (24) for
the melonic amplitudes. As we shall see, just as the Kirchhoff tree-matrix theorem
expresses the determinant of the first Laplacian ∂1∂

ᵀ
1 of a graph as a sum over

all its spanning trees, one may expand the determinant of the second Laplacian of
a 2-complex over 2-dimensional analogues of trees [34]. Such an expansion shows
that the problem of estimating melonic amplitudes is equivalent to the purely com-
binatorial problem of enumerating such “2-trees”, on which several results exist in
the combinatorics literature [34–36].

The tree expansion formula goes as follows:

det L̃ =
∑

CT∈T2(G)

|H1(CT)|2
∏

f ∈CT

1
m f

(25)

The sum runs over all spanning 2-trees of the 2-complex CG , defined as subcom-
plexes CT ⊂CG containing all edges and all vertices of G and such that the follow-
ing conditions hold:

H2(CT)=0 and |H1(CT)|<∞ (26)

9Recall that a spanning tree T has |V|−1 edges.
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where Hi (CT) denotes the i-th (integral) homology group10 of CT and |Hi | is the
cardinality of Hi . The fact that H1(CT) is a finite group simply says that CT is
simply connected. Intuitively, CT has enough faces to keep all loops of edges con-
tractible, but not too many, so that they do not form higher-dimensional cycles.

The main ingredient to prove the expansion (25) is the Cauchy–Binet identity for
the determinant of square matrices composed of non-square factors. Our matrix L̃
takes the form of a product Aᵀ B, where A, B are matrices with rows and columns
indexed respectively by faces f ∈ F and edges e ∈ Ẽ . The Cauchy–Binet formula
expands the determinant over subsets T⊂F of cardinality |Ẽ |:

det L̃ =
∑

T⊂F
|T|=|Ẽ|

|det ∂2|Ẽ,T|2 det Dm|T (27)

where ∂2|Ẽ,T is the square submatrix of the second boundary map ∂2 with rows
and columns indexed respectively by Ẽ and T, and Dm|T is the submatrix of Dm

with rows and columns indexed by T.
Given T⊂G, we denote by CT the 2-complex having T as face sets and contain-

ing all edges and all vertices of G. Because of the factor |det ∂2|Ẽ,T|, the Cauchy-
Binet sum is actually indexed by those subsets T such that ∂2|Ẽ,T is non-degenerate.
The next step is to show that such subsets are precisely the face sets of 2–trees
CT ∈T2(G).

Doing so requires the machinery of relative homology11. Since the 2-complex CT

contains all edges of G, it contains the gauge-fixing tree T as a 1-dimensional sub-

10We are using the standard cellular homology. Given a cell complex X , we consider the chain
groups Ci (X), namely the free abelian group generated by the i-dimensional faces, and the standard
boundary operators:

∂i : Ci (X)→Ci−1(X)

The i-th homology group is Hi (X)=ker ∂i /im ∂i+1.
11Given a subcomplex A ⊂ X of a cell complex X , we may consider the groups of relative

chains, defined the quotients:

Ci (X, A)=Ci (X)/Ci (A)

of the chain groups. The homology of X relative to A is then the homology of the induced bound-
ary maps:

∂̃i : Ci (X, A)→Ci−1(X, A).

namely:

Hi (X, A)=ker ∂̃i /im∂̃i+1

A fundamental property of the relative homology groups is that they fit into the exact sequence of
groups:

· · ·→ Hn(A)→ Hn(X)→ Hn(X, A)→ Hn−1(A)→·· · (28)
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complex, and we may consider the homology of CT relative to T . ∂2|Ẽ,T is then the
matrix of the induced boundary map, so that its kernel defines the second relative
homology group:

ker ∂2|Ẽ,T = H2(CT,T ) . (29)

Therefore, the matrix is non-degenerate if and only if H2(CT,T )= 0. In virtue of
the property (28), the relative homology group fits into the exact sequence:

0→ H2(CT)→ H2(CT,T )→ H1(T )→·· · (30)

However, T is a tree.12 As a result, H1(T )=0, so (30) implies:

H2(CT,T )� H2(CT) . (31)

Therefore, the Cauchy–Binet sum is indexed by subsets T such that H2(CT) = 0,
which is the first defining property of a 2-tree. The second one arises from a cardi-
nality argument, making use of the Euler–Poincaré identity. Given T⊂F , the Euler
characteristic of the 2-complex CT is given by:

χ(CT)=|V|− |E |+ |T| . (32)

This can also be written as an alternating sum of Betti numbers.13 CT is connected,
so β0(CT)=1; also if H2(CT )=0, then β2(CT )=0. Consequently:

χ(CT)=1−β1(CT). (33)

Considering that |Ẽ |= |E |− |V|+1, equating the above two equalities yields:

|T|− |Ẽ |+β1(CT)=0. (34)

We conclude that when H2(CT) = 0, then |T| = |Ẽ | if and only if β1(CT) = 0, i.e
H1(CT) is finite. This gives the second defining property of a 2-tree.

The last step is to show that |det ∂2|Ẽ,T| = |H1(CT)| for any 2-tree CT ∈ T2(G).
Once again, we shall make use of relative homology. First, since the tree T is
connected and simply connected, the homology group H1(CT) fits into the exact
sequence:

0→ H1(CT)→ H1(CT,T )→0 (35)

which says that H1(CT)� H1(CT,T ). Second, since the complexes CT and T have
the same vertices, the first induced boundary map ∂̃1 is the zero map, i.e ker ∂̃1=

12Since T has no loop, H1(T ) is finite; but as a top-dimensional homology group, it is also
torsion-free, so H1(T )=0.

13χ(CT)=β0(CT)−β1(CT)+β2(CT) .
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Z
|Ẽ|. The first relative homology group is by definition the quotient of this kernel

with the image of the second induced boundary map Z
|T| →Z

|Ẽ|, so we get:

H1(CT,T )�Z
|Ẽ|/∂2|Ẽ,T(Z|T|) (36)

The following lemma brings our argument to a conclusion: Given a matrix M of
size n ×n with integer coefficients and M(Zn) the image of Z

n by the corresponding
linear map, then if M is non-degenerate the quotient group Z

n/M(Zn) is finite and
its cardinality is |det M |.14 Applying this lemma to ∂2|Ẽ,T gives the desired result.

We have thus shown that the identity (27) reproduces the expansion (25). At this
stage we have our first result:

1st Result: The melonic amplitudes a(G) may be expressed as weighted sums over
their spanning 2-trees:

a(G)=
⎡

⎣
∑

CT∈T2(G)

|H1(CT)|2
∏

f /∈CT

m f

⎤

⎦

− dim G
2

. (37)

Let us close this section by looking specifically at the 3-dimensional case, where
the group field theory (3) gives a model for 3-dimensional gravity [29]. Interest-
ingly, in this case, there is a one-to-one correspondence between spanning 2-trees
of CG and spanning trees of lines in the simplicial complex �G dual to CG . More
precisely, via the map between the graph G and its dual simplicial complex �G ,
the face sets T of 2-trees CT in the 2-complex correspond to edge sets Ẽ∗ =E∗ \T ∗
where E∗ is the set of edges of �G and T ∗ is a spanning tree of edges in �G .15

Therefore when D =3, the melonic amplitudes can be written as a sum over span-
ning trees of the dual triangulation. Spanning trees of the dual triangulation also
play a key role for the gauge-fixing of the shift symmetry in 3-dimensional spin
foam gravity [37].

There is a further simplification in the 3-dimensional case. By a (tedious, but
straightforward) recursion on the number of vertices of G, one can prove that every
k × k minor of the boundary map ∂2, where k = rank(∂2), equals 0 or ±1. In par-
ticular the first homology group of any 2-tree is trivial16 and the homology factor

14This can be seen by using the “Schmidt normal form” decomposition of integer matrices: M =
U DV for some U, V ∈GL(Z) (invertible over the integers) and a diagonal matrix D =diag(d1, . . .dn).
U (Zn)=Z

n and V (Zn)=Z
n , so M(Zn)= D(Zn) and the quotient Q =Z

n/M(Zn) is the just the direct
product of all Z/di Z. Therefore |Q|=∏

i |di |= |det D|= |det M |.
15This identification stems from the fact that the second boundary map ∂∗

2 of �G is just the

transpose ∂
ᵀ
2 of the second boundary map in CG . Just as the non-degeneracy of the submatrix

∂2|Ẽ,T with Ẽ =E\T characterizes spanning trees T and 2-trees CT in CG , the non-degeneracy of

∂̃2|Ẽ∗,T∗ characterizes spanning trees T ∗ and 2-trees CT∗ in �G . This shows that spanning 2-trees
in one complex are dual to spanning trees in the other.

16This says that no “torsionful 2-tree” exists for 3-dimensional melonic graphs. It would be
interesting to find a general homological argument for this fact and to see whether it holds true
also in higher dimensions.
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disappears from the expression (37). As a result, the formula for a(G) is in this
case, with G =SU(2):

a3D(G)=
⎡

⎣
∑

T ∗∈T1(�G)

∏

l∈T ∗
m f (l)

⎤

⎦

− 3
2

, (38)

where f (l) denotes the face of CG dual to the link l and T1(�G) denotes the set
of trees in the simplicial complex �G . We recognize the Kirchhoff polynomial for
the (1-skeleton graph of) the simplicial complex.

5. Bounds and Nature of the Series

To show the presence of a phase transition, we now bound the radius of conver-
gence of the series (15). This bounding procedure is divided into three steps:

i: Bounds on |det(∂2|Ẽ,T)|2. The matrix has at most D non-trivial coefficients
per line, which means that the column vectors of ∂2|Ẽ,T have a Euclidean
norm smaller than D. Therefore, by Hadamard’s bound, we conclude that:17

(1≤ )|det(∂2|Ẽ,T)|2 ≤ D|Ẽ| = D(D−1)p+1 . (39)

ii: Bounds on a(Gp). For each 2-tree CT, we can easily bound
∏

f /∈CT
m f by a

geometric series in p (for instance using the arithmetico–geometric inequality):

1 ≤
∏

f /∈CT

m f (40)

≤
⎛

⎝ 1
|F |− |T|

∑

f /∈CT

m f

⎞

⎠

|F |−|T|
(41)

≤
(

D|E |
|F |− |T|

)|F |−|T|
(42)

=
(

D(D +1)p

(D −1)+ (D−1)(D−2)
2 p

)(D−1)+ (D−1)(D−2)
2 p

(43)

≤ k1c1
p (44)

for some constants k1 >0 and c1 >0. Therefore, calling N (Gp) the number of
2-trees in Gp, one has:

(
k1c1

pN (Gp)
)−D

2 ≤a(Gp)≤N (Gp)
− D

2 (45)

iii: Bounds on the series. The number of 2-trees in a melonic graph of order p is
trivially bounded by 2|F | =k3c3

p.18 Therefore, there exists constants k >0 and
c >0 such that:

17For (D +1)-colored graphs: |E |= D+1
2 |V|.

18For a melonic graph: |F |= D(D+1)
4 |V|+ D.
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k
∑

p∈N

Fpcp(λλ̄)p ≤ F (0)

λλ̄
≤

∑

p∈N

Fp(λλ̄)p. (46)

where Fp = 1
(D+1)p+1

(
(D+1)p+1

p

)
is an exact counting of the number of mel-

onic graphs with 2p vertices. As a matter of fact, the upper bound given here
∑

p∈N
Fp(λλ̄)p = F (0)

i.i.d. is the melonic free energy of the i.i.d. tensor model in
D dimensions.

Since F (0)
i.i.d. has a finite radius of convergence, so does the series with coefficients

Fpcpg p, and we can conclude that F (0)

λλ̄
itself has a finite radius of convergence.

Thus, we have our second result:

2nd result: At leading order in the 1/N -expansion, the free energy of topological
group field theories possesses critical behaviour.

Specialising again to three dimensions:

2nd′ result: At leading order in the 1/N -expansion, the free energy of the group
field theory for 3-dimensional quantum gravity possesses critical behaviour.

The present analysis leaves open a number of interesting questions for future
study. In particular, one would like to gather information about the behaviour of
F (0)

λλ̄
close to its critical point, including its critical exponent. Other aspects of the

“tensor track” [16] applied to GFT will include the extension of our results to
non-melonic contributions [38] and the definition of a double scaling limit [39,
40]. Finally, it is most important to extend the analysis to GFT models of 4-
dimensional quantum gravity and to study the existence and properties of anal-
ogous phase transitions. Investigating the physical nature of such transitions will
shed light on the continuum geometric properties of GFTs, and hence also of loop
quantum gravity and its covariant spin foam formulation.
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