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The well-known BTZ black hole solution of (2þ 1) Einstein’s gravity, in the presence of a cosmological
constant, is treated both at the classical and quantum level. Classically, the imposition of the two manifest
local Killing fields of the BTZ geometry at the level of the full action results in a minisuperspace constraint
action with the radial coordinate playing the role of the independent dynamical variable. The Noether
symmetries of this reduced action are then shown to completely determine the classical solution space,
without any further need to solve the dynamical equations of motion. At a quantum mechanical level, all the
admissible sets of the quantum counterparts of the generators of the above-mentioned symmetries are
utilized as supplementary conditions acting on the wave function. These additional restrictions, in
conjunction with the Wheeler-DeWitt equation, help to determine (up to constants) the wave function
which is then treated semiclassically, in the sense of Bohm. The ensuing spacetimes are either identical to
the classical geometry, thus exhibiting a good correlation of the corresponding quantization to the classical
theory, or are less symmetric but contain the classical topological constants M, J as locally essential.
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I. INTRODUCTION

Due to its simplicity, three-dimensional Einstein gravity
is widely considered as an interesting model to explore
many aspects of General Relativity. At the classical level, it
is known that any vacuum solution of Einstein’s equations
represents a flat spacetime ([1,2]), while the existence of a
cosmological constant (again in the absence of matter)
leads to other maximally symmetric solutions, i.e. de Sitter
or anti–de Sitter manifolds [3]. However, the study of
three-dimensional geometry proved to be highly nontrivial
with the discovery of the BTZ black hole [4]. The latter
emerges in the case of pure gravity and under the presence
of a negative cosmological constant −l2, i.e. the action
describing the system assumes the form

A ¼
Z ffiffiffiffiffiffi

−g
p ðRþ 2l2Þd3x: ð1:1Þ

Since then many aspects of the properties of the BTZ
spacetime have been explored [5–8], but it is its canonical
quantum description that motivates the present work.
Other methods have also been presented in the literature,

regarding the quantization of 2þ 1 geometries. These,
mainly focus on solving the constraints and using them to
derive a Hamiltonian description in a reduced form that
results in a system of finite degrees of freedom [9–12].

In this paper we study the classical and quantum descrip-
tion of the BTZ geometry in a different perspective: At the
classical level we are led to a finite-dimensional system by
imposing on a general three-dimensional line element
the two manifest local isometries of the BTZ black hole
(∂t and ∂ϕ), and then inserting the resulting reduced metric
in the action (1.1); the result is a minisuperspace model in
which a 2þ 1 decomposition in the direction of the radial
component r is considered. This method was firstly
exhibited in the case of four-dimensional static, spherically
symmetric spacetimes in [13] and [14]. A study of the
Noether symmetries of the reduced Lagrangian leads to
enough integrals of motion so that the BTZ metric is
acquired without any need to solve the dynamical equations
of motion and thus identify parts of the anti–de Sitter
maximal manifold. At the quantum level, we proceed with
the canonical quantization of the model; except of the
quantum quadratic constraint we use the quantum ana-
logues of the existing Noether symmetries for the reduced
system by imposing them on the wave function as
eigenoperators.
Due to the reparametrization invariance under arbitrary

changes of the radial coordinate [r ¼ fð~rÞ], there is a
nontrivial problem for finding the maximum number of
conserved quantities: In the theory of regular systems the
infinitesimal criterion for the determination of Noether
symmetries reads £ξL ¼ dF

dt where L is the Lagrangian and
F an arbitrary function of the configuration space variables
and the dynamical parameter [15]. However, since minis-
uperspace Lagrangians are singular in nature, one has to
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modify the aforementioned criterion in order to acquire all
the possible Noether symmetries generated by the con-
figuration space vector ξ [16] (for specific examples see
[17–19]). In short, the required change is that the action of
the generator ξ on the Lagrangian does not have to be
strictly zero (or equal to a total derivative), but it suffices to
be equal to a multiple of the constraint. Thus, for a
minisuperspace Lagrangian of the form

L ¼ 1

2N
GαβðqÞqαqβ − NVðqÞ; ð1:2Þ

the criterion reads £ξL ¼ ωðqÞ ∂L
∂N, with ωðqÞ allowed to be

any arbitrary function. In [16] it was proven that the ξ’s that
satisfy this condition are given by

£αξðVGαβÞ ¼ 0; ð1:3Þ

i.e. they are Killing fields of the scaled minisupermetric
Gαβ≔VGαβ. More over one can also use the homothecy
of the scaled minisuperspace (£αhðVGαβÞ ¼ VGαβ) to
construct a rehonomic integral of motion.
With the help of Dirac’s theory for constrained systems

[20–22], one can be led to a Hamiltonian description and
proceed with the quantization of the particular system. In
phase space, the Noether charges defined by the ξ’s
obtained by (1.3), become quantities linear in the momenta.
In the usual scenario of quantum cosmology one proceeds
with the quantization of the system by demanding that the
action of the constraint operators being zero on the wave
function. But, in the case where Noether charges are
present, one can use them to define linear Hermitian
eigenoperators that can be enforced as supplementary
conditions on the wave function. Thus, simplifying the
procedure and also uniquely (up to a constant phase)
defining the wave function.
The structure of the paper is as follows: In Sec. II we

construct the corresponding minisuperspace action, calcu-
late the symmetry generators and derive the classical BTZ
solution with the help of the integrals of motion. In the next
section we proceed with the canonical quantization of the
system and we derive a wave function for each case of
possible sets of observables. In Sec. IV, we use Bohm’s
semiclassical analysis [23], applied on the previously found
wave functions and derive the corresponding semiclassical
spacetime manifolds. Finally, we conclude our analysis,
summing our results in the discussion.

II. CLASSICAL TREATMENT

A. Derivation of the general form of the line element

We require that the metric of a (2þ 1)-dimensional
spacetime with an assigned coordinate system ðt; r;ϕÞ
admits the following Killing vector fields:

X1 ¼
∂
∂t and X2 ¼

∂
∂ϕ :

The ensuing stationary and axisymmetric line element is of
the generic form

ds2 ¼ gijðrÞdxidxj; ð2:1Þ

where i; j ¼ 0; 1; 2 and fx0; x1; x2g ¼ ft; r;ϕg. In order to
further simplify the line element (2.1), we exploit the
remaining freedom in changing coordinates in a way that
does not introduce t, ϕ in the metric components. In this
spirit, inserting the following coordinate transformation

t⟼ ~t ¼ t −
Z

g01g22 − g02g12
g202 − g00g22

dr;

r⟼ ~r ¼ r;

ϕ⟼ ~ϕ ¼ ϕ −
Z

g00g12 − g01g02
g202 − g00g22

dr;

(where it is assumed that g02ðrÞ2 − g00ðrÞg22ðrÞ ≠ 0), the
finally reduced metric inferred from (2.1) assumes the form

~gij ¼

0
B@

g00ðrÞ 0 g02ðrÞ
0 ~g11ðrÞ 0

g02ðrÞ 0 g22ðrÞ

1
CA; ð2:2Þ

with ~g11ðrÞ ¼ g11 þ g00g212þg22g201−2g01g02g12
g2
02
−g00g22

. Note that the

metric (2.2) guarantees that the spacetime described by
it is invariant under simultaneous reflections of the time and
angular coordinate, i.e. ð~t; ~ϕÞ ↦ ð−~t;− ~ϕÞ.
In order to bring (2.2) into a form suitable for our

purposes, we choose

g00ðrÞ ¼ −aðrÞ2; g02ðrÞ ¼ cðrÞ;

g22ðrÞ ¼ bðrÞ2; ~g11ðrÞ ¼
nðrÞ2

4Λ2ðaðrÞ2bðrÞ2 þ cðrÞ2Þ ;

where nðrÞ stands for nðrÞ2 ¼ 4Λ2ðg11ðg202 − g00g22Þþ
g00g212 þ g22g201 − 2g01g02g12Þ and Λ is the cosmological
constant. In this parametrization the line element (2.1) in
the coordinate system ð~t; r; ~ϕÞ assumes the form

ds2 ¼ −aðrÞ2d~t2 þ nðrÞ2
4Λ2ðaðrÞ2bðrÞ2 þ cðrÞ2Þ dr

2

þ 2cðrÞd~td ~ϕþ bðrÞ2d ~ϕ2: ð2:3Þ

The above parametrization has been chosen for several
reasons: it simplifies considerable the canonical formu-
lation and makes the potential of the ensuing quadratic
constraint constant with respect to aðrÞ, bðrÞ and cðrÞ. An
immediate implication of the latter is that, as rigorously
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shown in [17] and easily seen from (1.3), the conformal
Killing fields that generate the Noether symmetries reduce
to Killing fields.

B. Lagrangian and Noether (conditional) symmetries

According to the discussion in Sec. II A, the stationary,
axisymmetric line element (2.3) is taken as the starting point,
where the~aredropped for the sakeof simplicity. Sincewe are
working in a ð2þ 1Þ decomposition along the r coordinate
[13], where spacetime is foliated by r (instead of t) hyper-
surfaces, the field nðrÞ plays the role of the r-lapse function
and the fields aðrÞ; bðrÞ; cðrÞ are the r-dynamical variables.
Notice that the r-lapse function is already reparametrized,
i.e. ~g11ðrÞ ¼ nðrÞ=2Λða2b2 þ c2Þ1=2, in a way that makes
the potential of the quadratic constraint constant with
respect to the dependent dynamical variables.
The action for ð2þ 1Þ-dimensional geometries with a

general cosmological constant is (1.1). For simplicity we
consider Λ ¼ l2 (which means that in our analysis the BTZ
black hole emerges for Λ > 0), thus the aforementioned
action takes the form

A ¼
Z ffiffiffiffiffiffi

−g
p ðRþ 2ΛÞd3x; ð2:4Þ

with Λ > 0. The action (2.4) applied to the geometries (2.3)
reduces to

A ¼
Z

Lða; b; c; a0; b0; c0; nÞdr

with Lagrangian

L ¼ Λ
n
ð4aba0b0 þ c02Þ þ n; ð2:5Þ

where the 0 denotes differentiation with respect to the radial
coordinate r. The Lagrangian (2.5) belongs to a particular
form of singular Lagrangians: L ¼ 1

2nGμνq0μq0ν þ nVðqÞ
with qμ ¼ ða; b; cÞ, a minisupermetric of the form

Gμν ¼ 2Λ

0
B@

0 2ab 0

2ab 0 0

0 0 1

1
CA ð2:6Þ

and a constant (as desired) potential VðqÞ ¼ 1. It can be
easily shown that the Euler-Lagrange equations of (2.5) are
identical to Einstein’s field equations Rμν − 1

2
gμνR ¼ Λgμν,

resulting from the extremization of the action (2.4) and
evaluated on the metric (2.3).
Let us now turn attention to the conditional symmetries

of (2.5). It has been shown in [17] that, in the specific lapse
reparametrization we employ in order to force the potential
to depend only on the lapse, the generators of the condi-
tional symmetries are the Killing vector fields of the

minisupermetric (2.6).This metric describes a flat,
Lorentzian manifold, thus admitting a six-dimensional
isometry group of motions. By a straightforward calcu-
lation it can be confirmed that the infinitesimal condition
LξGμν ¼ 0 is satisfied by the following six generators:

ξ1 ¼ ∂c; ξ2 ¼
c
2b

∂b −
a2

2
∂c; ξ3 ¼ −

c
a
∂a þ b2∂c;

ξ4 ¼
1

2b
∂b; ξ5 ¼ −a∂a þ b∂b; ξ6 ¼

1

a
∂a: ð2:7Þ

The above fields satisfy a Lie algebra ½ξK; ξL� ¼ CM
KLξM

of which we present only the nonzero structure constants:

C4
12¼C6

31¼C1
26¼C1

43¼−C4
21¼−C6

13¼−C1
62¼−C1

34¼1;

C2
25¼C3

53¼C4
45¼C6

56¼−C2
52¼−C3

35¼−C4
54¼−C6

65¼2;

C5
32¼−C5

23¼
1

2
: ð2:8Þ

In addition, (2.6) admits a homothetic vector field that
satisfies the condition LhGμν ¼ Gμν:

h ¼ b
2
∂b þ

c
2
∂c: ð2:9Þ

C. Hamiltonian formulation and the solution space

We now develop the Hamiltonian formulation of the
geometries (2.3) and derive the classical solution space by
algebraic means. Following [21,22] we first define the r-
conjugate momenta

πn ¼
∂L
∂n0 ¼ 0; ð2:10aÞ

πa ¼
∂L
∂a0 ¼

4Λabb0

n
; ð2:10bÞ

πb ¼
∂L
∂b0 ¼

4Λaba0

n
; ð2:10cÞ

πc ¼
∂L
∂c0 ¼

2Λc0

n
; ð2:10dÞ

where πn is a first class primary constraint. Invoking
the Legendre transformation for (2.5), we arrive at the
Hamiltonian

H ¼ nHþ unπn;

where the functions un are Lagrangian multipliers and

H ¼ πaπb
4Λab

þ π2c
4Λ

− 1; ð2:11Þ

which, in view of the need for preservation of the primary
constraint πn during the evolution, i.e. πn0 ¼ fπn; Hg ≈ 0,
leads to the first-class secondary constraint H ≈ 0.
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According to [17], each one of the Killing vector fields
contracted with the nonvanishing conjugate momenta
(2.10), i.e. QI≔ξμIπμ, corresponds, on the phase space,
to a linear integral of motion:

Q1 ¼ πc; Q2 ¼
c
2b

πb−
a2

2
πc; Q3¼−

c
a
πaþb2πc;

Q4 ¼
1

2b
πb; Q5 ¼−aπaþbπb; Q6 ¼

1

a
πa: ð2:12Þ

The phase space quantities (2.12) form a Poisson algebra
fQK;QLg ¼ CM

KLQM with structure constants given by
(2.8). The Poisson brackets of (2.12) with the Hamiltonian
H are strongly vanishing, i.e. fQI;Hg ¼ 0, guaranteeing
that the six quantities (2.12) are constants of motion:

QI ¼ κI: ð2:13Þ
In addition, from the quadratic constraint (2.11) and (2.12),
one can easily read off the first Casimir invariant of the
algebra formed by (2.12), namely

QC ¼ Hþ 1 ¼ Q2
1

4Λ
þQ4Q6

2Λ
: ð2:14Þ

One observes that in this parametrization of the constant
potential, QC is the kinetic part of the Hamiltonian. An
appropriate combination of the phase space quantities QI
leads to the second Casimir invariant

QC ¼ 2Q2Q6 þ 2Q3Q4 −Q1Q5; ð2:15Þ
which vanishes identically when the quantities QI are
expressed via (2.12) in terms of the conjugate momenta.
Let us define now the phase space quantity corresponding to
the homothetic vector field (2.9):

Qh ¼
bπb
2

þ cπc
2

; ð2:16Þ

whose Poisson bracket with the Hamiltonian H reads

fQh;Hg ¼ H þ n ≈ n;

in view of the vanishing of the quadratic constraint (2.11) on
the constraint surface. The latter result implies that dQh

dr ¼ n,
which as it has been shown in [16] by integration over r
becomes a rheonomic integral of the form

Qh −
Z

ndr ¼ const: ð2:17Þ

In the rest of this section, we will show that (2.12)
together with (2.17) and the Casimir invariants (2.14)–
(2.15) are enough to determine the entire classical solution
space of the geometries (2.3). The integrals of motion
(2.12), (2.17), and (2.14)–(2.15) become constants on the
solution space; thus, the following relations readily follow,

QI ¼ κI; I ¼ 1;…; 6; ð2:18aÞ

Qh −
Z
ndr ¼ ch; ð2:18bÞ

4Λ ¼ κ21 þ 2κ4κ6; ð2:18cÞ

0 ¼ 2κ2κ6 þ 2κ3κ4 − κ1κ5; ð2:18dÞ

where κI; ch are constants; in the derivation of the last
relations it was taken into account that H ¼ 0 on the
solution space and that QC ¼ 0. Let us first solve alge-
braically the five first (I ¼ 1;…; 5) equations of (2.18a)
together with (2.18b) for a; a0; c; c0; n, and

R
ndr:

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κ2ð2κ4b2 − κ5Þ
κ1κ5 − 2κ3κ4

s
; ð2:19aÞ

a0 ¼ 2κ4bb0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2κ2
ð2κ4b2 − κ5Þðκ1κ5 − 2κ3κ4Þ

s
; ð2:19bÞ

c ¼ 2κ2ðκ3 − κ1b2Þ
2κ3κ4 − κ1κ5

; ð2:19cÞ

c0 ¼ 4κ1κ2bb0

κ1κ5 − 2κ3κ4
; ð2:19dÞ

Z
ndr ¼ b2ðκ21κ2 þ κ1κ4κ5 − 2κ3κ

2
4Þ − κ1ðκ2κ3 þ κ5κ7Þ þ 2κ3κ4κ7

κ1κ5 − 2κ3κ4
; ð2:19eÞ

n ¼ 8κ2Λbb0

κ1κ5 − 2κ3κ4
; ð2:19fÞ
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where b remains an arbitrary function of r. It can be easily
checked that the consistency conditions for the fields a and
c (a0 ¼ da

dr and c0 ¼ dc
dr) are identically satisfied in view of

(2.19a)–(2.19b) and (2.19c)–(2.19d), respectively. The
consistency condition for n (n ¼ d

dr

R
ndr), on the other

hand, requires

−κ2ðκ21 − 4ΛÞ þ κ4ð2κ3κ4 − κ1κ5Þ ¼ 0;

which, in view of (2.18c) and (2.18d), is identically
satisfied. To complete our consistency check, we substitute
(2.19) into the equation Q6 ¼ κ6 that has not been used in
the above derivation; the result reads

2κ2κ6 þ 2κ3κ4 − κ1κ5 ¼ 0;

which is identically satisfied by virtue of (2.18d). Now, it is
an easy task to verify that (2.19) together with (2.18c) and
(2.18d) solve Einstein’s field equationsRμν− 1

2
gμνR¼Λgμν.

It is obvious from the discussion above that on the
solution space there are six constants available and two
equations, i.e. (2.18c)–(2.18d), constraining them; thus, we
can specify freely four of them. The following choice of the
constants κI [that respects both conditions (2.18c)–(2.18d)]

κ1 ¼ d; κ2 ¼
1

8
ð−d2J þ 4dM − 4JΛÞ; κ3 ¼ J;

κ4 ¼
1

4
ðd2 − 4ΛÞ; κ5 ¼ dJ − 2M; κ6 ¼ −2;

ð2:20Þ

accompanied by a redefinition of the angular coordinate
ϕ ↦ ϕ̄ ¼ ϕ − d

2
t brings the line element (2.3) into the form

ds2 ¼ ðM − Λb2Þdt2 þ 4b2b02

J2 − 4Mb2 þ 4Λb4
dr2

þ Jdtdϕþ b2dϕ2 ð2:21Þ

which, when b is chosen as bðrÞ ¼ r, exactly reproduces
the BTZ metric originally introduced in [4]:

ds2 ¼ ðM − Λr2Þdt2 þ
�
−M þ Λr2 þ J2

4r2

�−1
dr2

þ Jdtdϕþ r2dϕ2: ð2:22Þ

From (2.22) it is obvious that d is a nonessential constant
and can, since it is additively absorbed, be set to zero
in order to simplify the expressions of the constants κI .
Thus, by setting d ¼ 0 the constants (2.20) considerably
simplify to

κ1 ¼ 0; κ2 ¼
JΛ
2

; κ3 ¼ J;

κ4 ¼ −Λ; κ5 ¼ −2M; κ6 ¼ −2: ð2:23Þ

Notice that by using the above choice of constants one can
bring (2.3) into the form (2.22) directly without redefining
the ϕ coordinate.

III. CANONICAL QUANTIZATION USING
NOETHER SYMMETRIES

A. General considerations

Here, we will quantize the classical system described
in Sec. II according to Dirac’s canonical quantization
procedure [21] supplemented by the condition that the
wave function must be an eigenfunction of the quantum
analogs of the generators of the Noether symmetries (2.12).
The method has been extensively described in [17] and
applied to the quantization of the Schwarzshild [17] and
Reissner-Nordström [18] black holes. Below, we give a
brief overview of the method described in [17].
As usual, in the Schrödinger representation the classical

dynamical variables become operators

q̂α≔qα and π̂α≔− iℏ
∂
∂qα ;

where qα ¼ fa; b; c; ng. (In the following we assume that
ℏ ¼ 1.) The above operators obey the canonical commu-
tation relations ½q̂α; π̂β� ¼ iδαβ. Following Dirac’s proposal
[21] we demand the quantum analogs of the first-class
constraints (2.10a) and (2.11) to annihilate the wave
function, namely

π̂nΨða;b;c;nÞ ¼−i
∂
∂nΨða;b;c;nÞ ¼ 0⇒Ψ¼Ψða;b;cÞ;

ĤΨ¼ ðQ̂C− 1ÞΨ¼ 0;

where the former condition guarantees that the wave
function is lapse-independent and the latter is the unit
eigenvalue problem for the Casimir invariant (2.14). The
quantum analog of the Casimir invariant QC in the
above expression is given as the most general scalar
quadratic Hermitian (under an arbitrary measure μ)
operator [17]

Q̂C ¼ −
1

2μ
∂αðμGαβ∂βÞ; ð3:1Þ

a choice by which the latter of the above conditions
becomes

ĤΨ ¼
�
−

1

2μ
∂αðμGαβ∂βÞ − 1

�
Ψ ¼ 0: ð3:2Þ

In a similar fashion, we define the quantum analogs of the
integrals of motion (2.12) as the most general linear
Hermitian (under the same measure μ) operators
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Q̂I≔ −
i
2μ

ðμξαI ∂α þ ∂αμξ
α
I Þ: ð3:3Þ

In [17], it has been proven that linear operators of the form
(3.3) satisfy the same algebra as their classical counterparts
QI , i.e.

½Q̂K; Q̂L� ¼ iCM
KLQ̂M; ð3:4Þ

where the structure constants CM
KL are given by (2.8). Now,

we can form an eigenvalue problem for each one of the
linear operators (3.3)

Q̂IΨ ¼ −
i
2μ

ðμξαI ∂α þ ∂αμξ
α
I ÞΨ ¼ κIΨ; ð3:5Þ

where κI are the eigenvalues of the operators Q̂I. For
several reasons, see [17], a natural geometric choice of the
measure reads

μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detGαβ

q
¼ 4

ffiffiffiffiffiffiffiffi
2Λ3

p
ab: ð3:6Þ

It was shown in [24] and [17] that (3.5) together with the
quantum algebra of the operators Q̂I impose certain
restrictions on which of the linear operators Q̂I can be
simultaneously applied on the wave function. This selec-
tion rule is given by the integrability condition

CM
KLκM ¼ 0: ð3:7Þ

In addition, the number of essential constants of the
underlying geometry provide a lower bound on the number
of linear operators that must be used to define eigenvalue
equations simultaneously on the wave function; in our case
the relevant constants involved are two: the massM and the
angular momentum J of the black hole.
At this point a clarification concerning the nature

of M, J is pertinent: their origin, as explained in [5],
can be traced to identifications of parts of the maximal
AdS(3) manifold. In that global (topological) sense they are
essential for characterizing the BTZ spacetime. However,
locally they can be absorbed by appropriate coordinate
transformations—see [25] for the infinitesimal criterion
and Appendix A for the actual construction of the trans-
formation. We make this distinction since, as we will see
later, in the semiclassical approximation M and J become
also locally essential.
In the following, we will say that the operators Q̂I

satisfying simultaneously the above selection rule form an
admissible subalgebra of the full quantum algebra (3.4),
otherwise we will say that they form a nonadmissible
subalgebra. Let us now exemplify the use of the selection
rule (3.7). First, consider the three-dimensional subalgebra
fQ̂1; Q̂2; Q̂3g. Observing (2.8) the condition (3.7) for each
combination of operators gives

CM
12κM ¼ C4

12κ4 ¼ κ4 ¼ 0;

CM
13κM ¼ C6

13κ6 ¼ −κ6 ¼ 0;

CM
23κM ¼ C5

23κ5 ¼ −
1

2
κ5 ¼ 0;

thus, if one wants the subalgebra fQ̂1; Q̂2; Q̂3g to satisfy
(3.7) one must set κ4 ¼ κ5 ¼ κ6 ¼ 0, a condition that
cannot be met in view of (2.20) as κ6 ¼ −2. Therefore,
fQ̂1; Q̂2; Q̂3g is a nonadmissible subalgebra. Next, con-
sider the three-dimensional subalgebra fQ̂1; Q̂4; Q̂6g. A
similar computation results in

CM
14κM ¼ 0; CM

16κM ¼ 0; CM
46κM ¼ 0;

which are identically satisfied because of the vanishing of
all the structure constants involved. Thus, fQ̂1; Q̂4; Q̂6g is
an admissible subalgebra. Below, we list all the admissible
subalgebras we are going to subsequently consider.
Admissible subalgebras:
(i) Three-dimensional subalgebras:

fQ̂1; Q̂4; Q̂6g ð3:8Þ

(ii) Two-dimensional subalgebras:
fQ̂1; Q̂5g; ð3:9aÞ
fQ̂2; Q̂4g; ð3:9bÞ
fQ̂3; Q̂6g: ð3:9cÞ

Summarizing, the system of differential equations (3.2),
(3.5) will be solved ([for the choice of measure (3.6)] for
each one of the admissible subalgebras (3.8)–(3.9c).

B. The three-dimensional subalgebra fQ̂1;Q̂4;Q̂6g
Let us start with the three-dimensional subalgebra (3.8).

There are three conditional symmetries, for each one of
which an eigenvalue problem of the form (3.5) must be
defined. For the choice of measure (3.6) and the Killing
vector fields (2.7) these eigenvalue problems read

κ1Ψþ i∂cΨ ¼ 0; ð3:10aÞ

κ4Ψþ i
2b

∂bΨ ¼ 0; ð3:10bÞ

κ6Ψþ i
a
∂aΨ ¼ 0: ð3:10cÞ

In addition, we have to solve the quadratic constaint (3.2)

1

4Λ
∂ccΨþ 1

4abΛ
∂abΨþΨ ¼ 0: ð3:11Þ

Integrating successively from (3.10a) to (3.10c), one
obtains the general solution

Ψ ¼ c0e
1
2
iðκ6a2þ2κ4b2þ2κ1cÞ; ð3:12Þ
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where c0 is an arbitrary constant. Inserting the latter
expression into (3.11) we get κ21 þ 2κ4κ6 − 4Λ ¼ 0, which
is identically satisfied in view of (2.18c).

C. The two-dimensional subalgebra fQ̂1;Q̂5g
Next, let us consider the two-dimensional subalgebra

(3.9a). The two conditional symmetries dictate the follow-
ing two eigenvalue problems

κ1Ψþ i∂cΨ ¼ 0; ð3:13aÞ

κ5Ψ − ia∂aΨþ ib∂bΨ ¼ 0; ð3:13bÞ

which restrict the form of the wave function to

Ψða; b; cÞ ¼ a−iκ5eiκ1cψðabÞ;

where ψ is an arbitrary function of ab. The Hamiltonian
constraint (3.11) further restricts the solution to its final
form

Ψ ¼
�
b
a

�
i
κ5
2

eiκ1c
�
c1Jiκ5

2

�
−iab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ21 − 4Λ

q �

þ c2Y iκ5
2

�
−iab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ21 − 4Λ

q ��
; ð3:14Þ

where c1; c2 are arbitrary constants and JνðzÞ and YνðzÞ are
the Bessel functions of the first and second kind,
respectively.

D. The two-dimensional subalgebra fQ̂2;Q̂4g
The eigenvalue problems of the form (3.5) for the two-

dimensional subalgebra (3.9b) read

κ2Ψþ ic
2b

∂bΨ −
ia2

2
∂cΨ ¼ 0; ð3:15aÞ

κ4Ψþ i
2b

∂bΨ ¼ 0; ð3:15bÞ

which bring the wave function into the form

Ψ ¼ ψðaÞe
iðκ4a2b2þκ4c

2−2κ2cÞ
a2 ;

where ψ is an arbitrary function of a. The Hamiltonian
constraint (3.11) specifies the function ψ and leads to the
general solution

Ψ ¼ c0
a
e
iða4Λþκ2

4
a2b2þκ2

4
c2−2κ2κ4cþκ2

2
Þ

κ4a
2 ; ð3:16Þ

where c0 is an arbitrary constant.

E. The two-dimensional subalgebra fQ̂3;Q̂6g
Finally, wewill consider the two-dimensional subalgebra

(3.9c). The two eigenvalue problems read

κ3Ψþ ib2∂cΨ −
ic
a
∂aΨ ¼ 0; ð3:17aÞ

κ6Ψþ i
a
∂aΨ ¼ 0: ð3:17bÞ

The two differential equations above allow the solution

Ψ ¼ ψðbÞe
iðκ6a2b2þκ6c

2þ2κ3cÞ
2b2

for an arbitrary function ψðbÞ. Taking into account the
quadratic constraint (3.11) one arrives at the general
solution

Ψ ¼ c0
b
e
iðκ2

6
a2b2þ4Λb4þκ2

6
c2þ2κ3κ6cþκ2

3
Þ

2κ6b
2 ; ð3:18Þ

where c0 is an arbitrary constant.

IV. SEMICLASSICAL ANALYSIS

A. General considerations

To make a connection between the quantum solutions
(3.12), (3.14), (3.16), and (3.18) of the various admissible
subalgebras and the classical solution space (2.22), we
develop here a semiclassical analysis of these quantum
results in the spirit of [18] following the original Bohmian
approximation [23].
We start by defining the general form of the wave

function

Ψða; b; cÞ ¼ Ωða; b; cÞeiSða;b;cÞ; ð4:1Þ

where Ωða; b; cÞ and Sða; b; cÞ are the amplitude and the
phase of the wave function, respectively. Inserting (4.1) into
the Hamiltonian constraint (3.11) and taking the imaginary
part, one arrives at the continuity equation

1

2Λ

�
1

2ab
ð∂aS∂bΩþ ∂bS∂aΩþΩ∂abSÞ

þ ∂cS∂cΩþ Ω
2
∂ccS

�
¼ 0: ð4:2Þ

The real part reads

∂aS∂bS
4Λab

þ ∂cS∂cS
4Λ

− 1 − V ¼ 0; ð4:3Þ

where we define the quantum potential (its name will be
shortly justified)
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V ¼ 1

4ΛΩ

�∂abΩ
ab

þ ∂ccΩ
�
: ð4:4Þ

Notice that for a vanishing quantum potential (4.3) resem-
bles the Hamiltonian constraint (2.11); in that case, a direct
inspection of their elements leads to the identification
fπa; πb; πcg ¼ f∂aS; ∂bS; ∂cSg, which when expressed,
through (2.10b)–(2.10d), in terms of the variables of the
configuration space provide us with the following semi-
classical equations of motion

∂aS −
4abb0Λ

n
¼ 0;

∂bS −
4aa0bΛ

n
¼ 0;

∂cS −
2c0Λ
n

¼ 0: ð4:5Þ

From the discussion above one expects that when the
quantum potential vanishes, V ¼ 0, the semiclassical equa-
tion (4.5) must reproduce the classical solution (2.22).
Otherwise, when V ≠ 0, the solution of the semiclassical
equations must differ from the classical one because of
quantum effects introduced by the quantum potential.

B. The three-dimensional subalgebra fQ̂1;Q̂4;Q̂6g
Let us start with the wave function (3.12), Ψ ¼

c0e
1
2
iðκ6a2þ2κ4b2þ2κ1cÞ, of the three-dimensional subalgebra

(3.8). Inserting the numerical values (2.23) of the κI’s
corresponding to the classical solution space, the above
wave function reduces to

Ψ ¼ c0e
1
2
ið−2a2−2b2ΛÞ:

A direct comparison of the latter with (4.1) leads to the
identification

Ω ¼ c0; S ¼ 1

2
ð−2a2 − 2b2ΛÞ; ð4:6Þ

which satisfy the continuity equation (4.2) and lead to a
vanishing quantum potential V ¼ 0. Thus, it is expected
that the solution to the following semiclassical equations of
motion

2abb0

r
− 2a ¼ 0; ð4:7aÞ

2aa0b
r

− 2Λb ¼ 0; ð4:7bÞ
c0

r
¼ 0 ð4:7cÞ

will reproduce the classical solution (2.22). Notice that in
the derivation of (4.7) we chose

nðrÞ ¼ −2Λr: ð4:8Þ

The above gauge fixing of the lapse function is compatible
with its expression (2.19f) on the solution space and, in
addition, also satisfies the Hamiltonian constraint. Thus, our
choice of the lapse (4.8) does not lead to inconsistencies.
Now, we will solve the system (4.7). The last of the

equation (4.7c) leads to

cðrÞ ¼ c1: ð4:9Þ
The other two can also be directly integrated

aðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λr2 þ c2

q
; ð4:10aÞ

bðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c3

q
: ð4:10bÞ

By choosing the constants appearing in the solutions
above as fc1;c2;c3g¼fJ

2
;−M;0g, one exactly reproduces

(as expected) the classical solution (2.22).

C. The two-dimensional subalgebra fQ̂1;Q̂5g
Let us now move to the solution (3.14) of the two-

dimensional subalgebra (3.9a). After substitution of the
numerical values (2.23), the corresponding wave function
looks like

Ψ ¼ aiMb−iM½c1J−iMð2ab
ffiffiffiffi
Λ

p
Þ þ c2Y−iMð2ab

ffiffiffiffi
Λ

p
Þ�:

ð4:11Þ

Because of the appearance of the Bessel functions in the
above wave function we cannot decisively conclude about
the form of its amplitude and phase. To bring (4.11) into the
form (4.1) we have to study its behavior for large and small
values of r separately.

1. Asymptotic behavior for large values of r

Notice that the asymptotic behavior of the dynamical
fields (2.22) is aðrÞ ∼ r; bðrÞ ∼ r; cðrÞ ∼ J

2
; thus, the argu-

ments of the Bessel functions in (4.11) in the limit of large r
are also large. The behavior of the Bessel functions for
large values of its arguments is the following [26]

JνðzÞ ∼
ffiffiffiffiffi
2

πz

r
cos

�
1

4
ð−2πνþ 4z − πÞ

�
;

YνðzÞ ∼
ffiffiffiffiffi
2

πz

r
sin

�
1

4
ð−2πνþ 4z − πÞ

�
:

Now, inserting the above asymptotic expressions of the
Bessel functions into (4.11) one gets

Ψ ∼
a−

1
2
þiMb−

1
2
−iMffiffiffi

π
p

Λ1=4

�
c1 cos

�
1

4
ð8ab

ffiffiffiffi
Λ

p
þ 2iπM − πÞ

�

þc2 sin

�
1

4
ð8ab

ffiffiffiffi
Λ

p
þ 2iπM − πÞ

��
: ð4:12Þ
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Notice that the simple choice of the constants c2 ¼ �ic1
brings the expression in the square brackets into an
exponential form; thus, we arrive at the final form of the
wave function in the asymptotic limit

Ψ ∼ c3a−
1
2b−

1
2ei½M lnðabÞ�2ab

ffiffiffi
Λ

p �; ð4:13Þ

where c3 is a complex constant. From (4.13) one can easily
read the amplitude and the phase, namely

Ω ¼ a−
1
2b−

1
2; S ¼ M ln

�
a
b

�
� 2ab

ffiffiffiffi
Λ

p
; ð4:14Þ

which satisfy the continuity equation but, unlike the
previous case, give rise to a nonzero quantum potential

V ¼ 1

16a2b2Λ
: ð4:15Þ

Thus, we expect that the solution to the semiclassical
equations of motion

2abb0

r
þM

a
� 2

ffiffiffiffi
Λ

p
b ¼ 0; ð4:16aÞ

2aa0b
r

� 2
ffiffiffiffi
Λ

p
a −

M
b
¼ 0; ð4:16bÞ

c0

r
¼ 0 ð4:16cÞ

will differ from the classical solution (2.22). Notice that
here we chose the same gauge (4.8) for the lapse function.
As before (4.16c) can be readily integrated

cðrÞ ¼ c1: ð4:17Þ

An appropriate combination of the other two equations
gives

aðrÞ ¼ �
ffiffiffiffi
Λ

p
r2

b
;

where an integration constant has been set to zero. Inserting
the last expression into (4.16a) and integrating one obtains

bðrÞ ¼ c2re
M

4Λr2 ; ð4:18Þ

which leads immediately to

aðrÞ ¼ � r
ffiffiffiffi
Λ

p

c2
e−

M
4Λr2 : ð4:19Þ

Choosing appropriately the constants appearing in the
solution above, i.e. fc1; c2g ¼ fJ

2
; 1g, we can exactly

recover the classical solution (2.22) in the limit r → ∞:

aðrÞ2 ∼ r2; bðrÞ2 ∼ r2; cðrÞ ∼ J
2
. The ensuing line element

assumes the form

ds2 ¼ −Λr2e−
M

2Λr2dt2 þ 4r2

J2 þ 4Λr4
dr2 þ Jdtdϕ

þ r2e
M

2Λr2dϕ2: ð4:20Þ

Note that the� sign in (4.19), which originates in the choice
c2 ¼ �ic1, does not affect the final semiclassical line
element, since the latter contains aðrÞ2. This is a spacetime
with much less symmetry than the classical geometry: it
admits only the manifest Killing fields ∂t and ∂ϕ, which do
not change their character of being time-like and space-like

respectively for any value of r > 0 (gμνX
μ
1X

ν
1 ¼ −Λr2e−

M
2Λr2

and gμνX
μ
2X

ν
2 ¼ Λr2e−

M
2Λr2). Concerning the constants

appearing in (4.20), all three of them are locally essential
as it can seen by the fact that the relevant infinitesimal
criterion (A1) (see [25]) admits no solution for any of
Λ, M and J.
It is also worth mentioning that according to the form of

the quantum potential (4.15), the quantum effects intro-
duced by it must fade away as we approach r → ∞, while
for smaller (but still large) values of r the quantum effects
must get stronger. That is exactly the behavior we observe
for the above solution (4.20), where the quantum effects
caused by the nonvanishing of the quantum potential must
be responsible for the appearance of the r dependent term in
the Ricci Scalar corresponding to (4.20) R ¼ −6Λ − M2

2Λr4,
while RBTZ ¼ −6Λ.

2. Behavior close to the origin r ¼ 0

Let us now see how is the wave function (4.11) behaving
near the origin r ¼ 0. In view of (2.22) the dynamical
fields in the limit of small r’s behave like aðrÞ ∼M;
bðrÞ ∼ r; cðrÞ ∼ J

2
; thus, likewise the arguments of the

Bessel functions in (4.11) are also small close to the origin.
By inserting into (4.11) the expression of the Bessel
functions for small arguments [26]

JνðzÞ ∼
2−ν

Γðνþ 1Þ z
ν; YνðzÞ ∼ −

2νΓðνÞ
π

z−ν;

where Γ is the gamma function, one obtains

Ψ ∼
c1Λ−iM

2

Γð1 − iMÞ b
−2iM −

c2Λ
iM
2 Γð−iMÞ
π

a2iM;

which after a re-definition of the constants reduces to

Ψ ∼ c3ða2iM þ b−2iMÞ;

where c3 is a complex constant. Now, using the relation
yix ¼ cosðx ln yÞ þ i sinðx ln yÞ and some trigonometric
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identities, one can bring the above expression into the
explicitly exponential form

Ψ ∼ 2c3 cos ðM lnðabÞÞeiM lnðabÞ: ð4:21Þ
Comparing with (4.1), the amplitude and the phase of the
wave function (4.21) follow

Ω ¼ cos ðM lnðabÞÞ; S ¼ M ln

�
a
b

�
; ð4:22Þ

which as expected satisfies the continuity equation and
leads to the nonvanishing potential

V ¼ −
M2

4a2b2Λ
: ð4:23Þ

The semiclassical equations of motion (4.5) read

2abb0

r
þM

a
¼ 0; ð4:24aÞ

2aa0b
r

−
M
b
¼ 0; ð4:24bÞ

c0

r
¼ 0; ð4:24cÞ

where the gauge (4.8) was again used. Integration of
(4.24c) yields

cðrÞ ¼ c1: ð4:25Þ
An appropriate combination of the other two equations
leads to the condition

aðrÞ ¼ 1

bðrÞ ;

where an integration constant was set to unity as it does not
change the geometry of the resulting line element. Inserting
the above condition into (4.24b), one can solve for bðrÞ and
arrive (after setting the integration constant to unity) at

bðrÞ ¼ e−
1
4
Mr2 ; ð4:26Þ

which readily leads to the form of aðrÞ:
aðrÞ ¼ e

1
4
Mr2 : ð4:27Þ

Setting c1 ¼ J
2
in (4.25), the resulting line element for the

solution (4.25)–(4.27) reads

ds2 ¼ −eMr2
2 dt2 þ 4r2

J2 þ 4
dr2 þ Jdtdϕþ e−

Mr2
2 dϕ2:

ð4:28Þ
This line element represents a homogeneous spacetime,
admitting the three Killing fields X1 ¼ ∂t, X2 ¼ ∂ϕ and

X3 ¼ −Mt∂t þ 2
r ∂r þMϕ∂ϕ, with X1, X2 being time-

like and space-like respectively, for any value of r
(gμνX

μ
1X

ν
1 ¼ −eMr2

2 and gμνX
μ
2X

ν
2 ¼ e

Mr2
2 ). Notice that, since

there is no classical curvature singularity, we would expect
the semiclassical geometry to share the same property;
indeed, for the above metric, there is no central singularity
at r ¼ 0. An interesting observation is that, as earlier
mentioned, both M and J appearing in the metric are
now also locally essential constants; the Ricci scalar is
R ¼ −M2

2
and the Kretchmann scalar is RijklRijkl¼

−1
4
ð2J2−3ÞM4.

D. The two-dimensional subalgebra fQ̂2;Q̂4g
We will continue our semiclassical study with the wave

function (3.16) of the two-dimensional subalgebra (3.9b).
After substituting the numerical values (2.23) into (3.16)
the wave function reduces to

Ψ ¼ c0
a
eið−

ΛðJ−2cÞ2
4a2

−a2−b2ΛÞ;

which is already in exponential form; therefore, one can
define

Ω ¼ c0
a
; S ¼ −

ΛðJ − 2cÞ2
4a2

− a2 − b2Λ: ð4:29Þ

The above amplitude and phase satisfy the continuity
equation, result to a vanishing quantum potential V ¼ 0,
and lead to the semiclassical equations of motion

2abb0

r
−
2JΛc
a3

þ 2Λc2

a3
þ J2Λ

2a3
− 2a ¼ 0; ð4:30aÞ

2aa0b
r

− 2Λb ¼ 0; ð4:30bÞ

2Λc
a2

−
JΛ
a2

−
c0

r
¼ 0; ð4:30cÞ

where the condition (4.8) was again used. Equation (4.30b)
can be directly integrated

aðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λr2 þ c1

q
: ð4:31Þ

Now, inserting (4.31) into (4.30c) one gets

cðrÞ ¼ J
2
; ð4:32Þ

where an integration constant was set to zero. Finally, by
substituting the expressions (4.31)–(4.32) into (4.30b) and
integrating, one arrives at the solution

bðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

q
: ð4:33Þ
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By choosing the constants that appear in the derivation
above as fc1; c2g ¼ f−M; 0g, the solution (4.31)–(4.33),
as expected because of the vanishing of the quantum
potential, reproduces the classical solution (2.22).

E. The two-dimensional subalgebra fQ̂3;Q̂6g
Let us conclude the semiclassical analysis with the

subalgebra (3.9c). The corresponding quantum solution
(3.18), after the substitution of the numerical values (2.23),
reduces to the wave function

Ψ ¼ c0
b
eið−a

2−b2Λ−c2

b2
þcJ

b2
− J2

4b2
Þ;

which is already in the form of (4.1); thus, the amplitude
and the phase readily follow

Ω ¼ c0
b
; S ¼ −a2 − b2Λ −

c2

b2
þ cJ

b2
−

J2

4b2
: ð4:34Þ

In view of (4.34) the continuity equation is identically
satisfied, the quantum potential (4.4) is trivial, and the
equations of motion (4.5) in the gauge (4.8) read

2abb0

r
− 2a ¼ 0; ð4:35aÞ

2aa0b
r

−
2Jc
b3

þ 2c2

b3
þ J2

2b3
− 2Λb ¼ 0; ð4:35bÞ

2c
b2

−
J
b2

−
c0

r
¼ 0: ð4:35cÞ

Obviously, Eq. (4.35a) can be directly integrated, yielding

bðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c1

q
: ð4:36Þ

Insertion of the above result into (4.35c) and integrating
one obtains

cðrÞ ¼ J
2
; ð4:37Þ

where, as before, an integration constant was set to zero.
Finally, taking into account the expressions for bðrÞ and
cðrÞ, the last remaining equation (4.35b) of the above
system admits the solution

aðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λr2 þ c2

q
: ð4:38Þ

An appropriate choice of the integration constants
appearing above, i.e. fc1; c2g ¼ f0;−Mg, identifies the
solution (4.36)–(4.38) with the classical solution space
given in (2.22).

V. DISCUSSION

In the present work the method of canonical quantization
has been implemented for the BTZ geometry. The pro-
cedure begins at the classical level with the construction of
a “proper” minisuperspace description. Accordingly, a
Lagrangian function that describes a system dynamically
equivalent to that of the Einstein field equations of 2+1
gravity in the presence of a cosmological constant must be
derived.
The resulting Lagrangian is of course singular, thus one

has to take into account the modified infinitesimal criterion
(1.3) in order to acquire all the variational symmetries of the
action. To simplify the procedure, we chose to work in the
constant potential parametrization. In this parametrization
the ξ’s of (1.3) become Killing fields of the corresponding
minisupermetric, which is three-dimensional, flat and
exhibits a homothecy. The six Killing fields and the
homothetic field are linked to six autonomous (2.12) and
a rehonomic (2.16) integrals of motion, respectively. In
phase space we use these seven conserved quantities, not
only to derive the BTZ solution algebraically, but also to
read off the two Casimir invariants of the six-dimensional
algebra spanned by the QI’s.
The adoption of the constant potential parametrization

becomes imperative at the quantum level. There the non-
identically zero Casimir invariant is manifested as the
kinetic part of the Hamiltonian. Hence, the Wheeler-
DeWitt operator becomes compatible with any choice of
the eigenoperators Q̂I that satisfy the integrability con-
ditions (3.7). There exist four independent maximal
Abelian subalgebras of the Q̂I’s that lead to an equal
number of different wave functions that also satisfy the
constraint ĤΨ ¼ 0, one for each set of “measurable”
quantities.
Using Bohm’s approximation for the derivation of

quantum trajectories, one can assign to each wave function
a corresponding semiclassical geometry. Our analysis
shows that for the subalgebras (3.8), (3.9b), and (3.9c)
the corresponding geometries are identical to the classical
one due to the fact that the quantum potential is zero. A
possible explanation of this result follows from the par-
ticular lapse parametrization we are using here, which
identifies the kinetic part of the quantum quadratic con-
straint with the Casimir invariant of the algebra of the
charges (see the relevant section in [18] for a complete
discussion). However, the simultaneous measurement of
Q1 and Q5 leads to quantum corrections at both limits
r → þ∞ and r → 0: In the asymptotic limit, one obtains a
semiclassical geometry that is asymptotically AdS
(R ¼ −6Λ − M2

2Λr4), which is in accordance with the classical
geometry, where R ¼ −6Λ. The existence of a curvature
singularity at r ¼ 0, in this semiclassical approximation, is
not alarming since the region of validity of the solution
rests in the range of large values of r. In the vicinity of the
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origin, r → 0, the semiclassical geometry (4.28) is
obtained. A quick inspection of the line element (4.28)
indicates that the aforementioned “macroscopic singular-
ity” does not exist anymore. Moreover, this homogeneous
semiclassical spacetime is characterized by two essential
constants, i.e. M and J. The latter can be interpreted as an
indication that at small scales the contribution of the mass
and of the angular momentum exceeds by far the corre-
sponding contribution of the cosmological constant Λ.

APPENDIX A: LOCAL ELIMINATION
OF CONSTANTS

In [25], the following infinitesimal criterion that deter-
mines whether a particular constant (say λ) that appears in a
spacetime metric gμν is not essential has been presented:

£αξgμν þ ∂λgμν ¼ 0: ðA1Þ

One can interpret (A1) as stating that the change in form of
the given metric, induced by the vector ξ (through moving
along its integral curves), is counterbalanced by the change
induced on it through an infinitesimal displacement of λ. In
this spirit, whenever this set of coupled first order PDEs
admits a solution ξ, the coordinate transformation linked to
its integral lines can be used for the elimination of the
corresponding constant λ.
For the case of the BTZ metric (2.22) the corresponding

relations are

£αξMgμν þ ∂Mgμν ¼ 0 ðA2aÞ

£ξJ gμν þ ∂Jgμν ¼ 0 ðA2bÞ

and can be readily solved to give

ξM ¼ Mt−ϕJ
2J2Λ−2M2

∂tþ
J2−2Mr2

4J2Λr−4M2r
∂rþ

ϕM−JΛt
2J2Λ−2M2

∂ϕ

ðA3aÞ

ξJ ¼
ϕM − JΛt
2J2Λ− 2M2

∂t −
JM − 2JΛr2

4J2Λr− 4M2r
∂r þ

ΛðMt−ϕJÞ
2J2Λ− 2M2

∂ϕ:

ðA3bÞ

These fields have a vanishing Lie bracket, if viewed as
fields in a space spanned by t, r, ϕ,M and J, by considering
the trivial addition of ∂M and ∂J in (A3a) and (A3b),
respectively. We can therefore try to find their common
invariant functions, the number of which is expected (in
view of the linear independence of ξM and ξJ) to be
5 − 2 ¼ 3. Indeed a straightforward calculation reveals that
an appropriate set is

f1ðt; r;ϕ;M; JÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J

ffiffiffiffi
Λ

p
þM

q
ðϕþ

ffiffiffiffi
Λ

p
tÞ ðA4aÞ

f2ðt; r;ϕ;M; JÞ ¼ M − 2Λr2

2Λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − J2Λ

p ðA4bÞ

f3ðt; r;ϕ;M; JÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛðM − J

ffiffiffiffi
Λ

p
Þ

q
ðϕ −

ffiffiffiffi
Λ

p
tÞ: ðA4cÞ

One can easily check that (A4) satisfy ξμM∂μfi þ ∂Mfi ¼ 0
and ξμJ∂μfi þ ∂Jfi ¼ 0 for i ¼ 1; 2; 3. By considering the
fi’s as the new set of variables, say τ ¼ f1, ρ ¼ f2 and
θ ¼ f3, we can calculate the transformation from the old
variables to the new ðt; r;ϕÞ⟶ðτ; ρ; θÞ:

t ¼ τ

2
ffiffiffiffi
Λ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J

ffiffiffiffi
Λ

p þM
p −

θ

2Λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M − J

ffiffiffiffi
Λ

pp ðA5aÞ

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M
2Λ

− ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − J2Λ

pr
ðA5bÞ

ϕ ¼ 1

2

�
τffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J
ffiffiffiffi
Λ

p þM
p þ θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΛðM − J
ffiffiffiffi
Λ

p Þ
q �

: ðA5cÞ

The Jacobian matrix of the transformation is

Jμν ¼

0
BBBBB@

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ

p
JþM

p ffiffiffi
Λ

p 0 − 1

2
ffiffiffi
Λ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM−J

ffiffiffi
Λ

p ÞΛ
p

0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−J2Λ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
Λ −4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−J2Λ

p
ρ

p 0

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ

p
JþM

p 0 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM−J

ffiffiffi
Λ

p
ÞΛ

p

1
CCCCCA

ðA6Þ

having a nonzero determinant J ¼ − 1

2
ffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛðM−2Λρ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−J2Λ

p
Þ

p .

The metric gκλ in the new variables reads

~gμν ≔ gκλJκμJλν ¼

0
B@

1
4Λ 0 − ρ

2
ffiffiffi
Λ

p

0 Λ
4Λ2ρ2−1 0

− ρ
2
ffiffiffi
Λ

p 0 1
4Λ2

1
CA ðA7Þ

and is thus brought into a form free of M and J, with Λ
appearing as the sole essential constant. Needless to say
that, either in the original coordinates or in the final, an
equation analogous to (A2) concerning Λ admits no
solution. The same applies for M, J appearing in the
semiclassical solution (4.28).
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