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A simulation environment known as the Plasma Control System Simulation Platform (PCSSP), specifically 

designed to support development of the ITER Plasma Control System (PCS), is currently under construction by an 
international team encompassing a cross-section of expertise in simulation and exception handling for plasma 
control. The proposed design addresses the challenging requirements of supporting the PCS design. This paper 
provides an overview of the PCSSP project and a discussion of some of the major features of its design. Plasma 
control for the ITER tokamak will be significantly more challenging than for existing fusion devices. An order of 
magnitude greater performance is needed for some types of control, which together with limited actuator authority, 
implies that optimized individual controllers and nonlinear saturation logic are required. At the same time, 
consequences of control failure are significantly more severe, which implies a conflicting requirement for robust 
control. It also implies a requirement for comprehensive and robust exception handling. Coordinated control of 
multiple competing objectives with significant interactions, together with many shared uses of actuators to control 
multiple variables, implies that highly integrated control logic and shared actuator management will be required. It 
remains a challenge for the integrated technologies to simultaneously address these multiple and often competing 
requirements to be demonstrated on existing fusion devices and adapted for ITER in time to support its operational 
schedule. We describe ways in which the PCSSP will help address these challenges to support design of both the 
ITER PCS itself and the algorithms that will be implemented therein. and at the same time greatly reduce the cost 
of that development. We summarize the current status of the PCSSP design task, including system requirements 
and preliminary design documents already delivered as well as features of the ongoing detailed architectural design.  
The methods being incorporated in the detailed design are based on prior experience with control simulation 
environments in fusion and on standard practices prevalent in development of control-intensive industrial product 
designs. 
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1. Introduction 

The high cost and limited number of discharges 
planned for ITER, as well as the constraints imposed by 
its nuclear mission, imply both minimal time for 
scenario and control tuning and a greater level of 
confidence needed in discharge performance prior to 
execution. The use of simulation for control 
development and verification has been well-established 
in research and commercial applications to support both 
of these requirements [1]. Several operating tokamaks 
have made significant use of simulation tools in the 
development of control algorithms or key components of 
plasma control systems themselves [2-9]. The broad 
success of this approach, both commercially and in the 
fusion community, led to an IO-funded task to develop 
such a simulation tool, known as the Plasma Control 
System Simulation Platform (PCSSP), to aid in 
development and testing of the ITER Plasma Control 
System. The scope of the current project is limited to 
deployment of a demonstration prototype environment 
with selected components. It is envisioned that this 
prototype may be extended in subsequent efforts to 
provide a fully capable control simulation tool to also 

support ITER machine/system design and configuration 
evolution and discharge scenario development, and to 
support plant troubleshooting during operations. 

A draft of requirements and use cases [10] and a 
preliminary architecture definition [11] have been 
delivered and a detailed design addressing a subset of 
these requirements [12] is now being developed. At the 
end of 2013, the design and a prototype implementation 
will be delivered. 

 

2. The vision for PCSSP 
The PCSSP is envisioned as a system of components 

including a computational framework (referred to as a 
Control Simulation Environment, CSE) in which 
multiple simulation modules can be implemented, to 
which external processes can be connected, and which 
can support input and output interfaces for programming 
the simulation and interpreting results. The principal 
goal of ITER PCS development and testing requires a 
simplified PCS connected to a simplified simulated Plant 
(system to be controlled), both implemented within 



	  

PCSSP. Matlab/Simulink has been chosen as the host 
environment. 

PCSSP will provide a number of capabilities that can 
substantially reduce the time and cost of PCS 
development, which can be best understood by outlining 
the steps in this development. 
1. Develop and test ITER PCS architecture, 
2. Develop and test ITER control algorithms, 
3. Implement in realtime code and test, 
4. Deploy in ITER operation. 
It is expected that Step 1 will be performed only once, 
but it may not be fully complete until sometime after 
ITER begins operation. Steps 2–4 will be repeated many 
times during the ITER lifetime as new control 
capabilities are developed and brought on-line.  PCSSP 
is envisioned to play a key role in each step but the last. 

The ITER PCS will incorporate several architectural 
features common in operating devices as well as two 
functions, exception handling (EH) and actuator sharing, 
that require a level of sophistication not yet 
demonstrated. PCSSP provides a method for prototyping 
and evaluating candidate architecture and controller 
solutions with minimal coding effort. In particular, the 
Plant simulation will contain an event generator (EG) 
module that can trigger simulated performance-
challenging plasma and hardware events (known as 
exceptions) during control simulation, to evaluate the 
ability of the EH to handle them [13]. It will also contain 
a model of the Central Interlock System (CIS), which 
can be used to test the interaction of the PCS and CIS in 
responding to events occurring in the Plant [14]. 

Controller development is facilitated through use of 
control design toolboxes available for Matlab and use of 
Simulink for controller implementation, debugging, gain 
tuning, and evaluation of control performance and 
robustness via simulation.  

When satisfied with controller performance 
following the initial design and simulation process, the 
Simulink Embedded Coder can generate real-time 
capable C code versions of the algorithms, to incorporate 
into the PCS. The actual ITER PCS can then be 
connected to the plant simulation to verify both 
performance and correct implementation via closed loop 
simulation. 

 

3. Key use cases and requirements 
The Requirements document [10] details the use 

cases and requirements for the PCSSP, which currently 
focuses on simulation. Almost all expected simulation 
use cases can be summarized by the following sequence 
of actions: 
1. Select a version of PCS to be used (e.g., simulated 

or actual). 
2. Select a version of Plant to use (Fig. 1). 
3. Define PCS configuration data, including the ITER 

pulse schedule. 

4. Define configuration parameters that customize 
plant simulation modules.   

5. Define PCS initial state to begin simulation.  
6. Define Plant initial state to begin simulation. 
7. Connect the PCS and Plant objects (both can be in 

PCSSP or one can be external).  
8. Initiate execution of the simulation.   
9. Monitor the simulation.  
10. Terminate the simulation.  
11. Archive the simulated data.  
12. Analyze the simulated data.  

Variability in choices of components and detailed 
actions depends on the stage of PCS development 
(Fig. 1). The PCS function may be implemented by a 
simulated PCS in the CSE, actual PCS code running on 
simulation (non-realtime) computers, or PCS code 
running on PCS realtime hardware. Algorithm 
development can use the simplified PCSSP Plant, while 
more detailed testing and eventual validation of ITER 
pulse schedules require more accuracy. 

 

 
 

Fig.1 Expected connections of PCS and plant simulators 
for closed-loop simulation. Blue blocks indicate objects 
external to PCSSP. 

 

Since simulations will be used to evaluate 
effectiveness of controllers for ITER, plant models used 
in simulation must be predictive, i.e., responses seen in 
simulation must be reflected in similar responses seen in 
physical plasma operation. To gain this confidence,  
PCSSP will support model validation efforts by 
providing the capability to execute simulations of 
currently operating devices as well as ITER. Equally 
important, simulation execution must be sufficiently fast 
to allow iterative evaluation and tuning of candidate PCS 
algorithms. The need to flexibly replace plant modules 
(e.g., to simulate different devices) and PCS control 
algorithms leads to a requirement for a modular 
architecture that can support such use. 

 

4. Architecture overviews 
The goals summarized in Sec. 2 are fundamentally 

concerned with simulations of interactions between the 
ITER PCS and the ITER plant, so the PCSSP must 
include those two main functional blocks (Fig. 2), input 
processes to manage inputs to the simulation (Simulation 
Input Managers, SIM), an output process to archive and 
display results (Simulation Results Managers, SRM), as 



	  

well as the interfaces between them. Pulse Schedule 
input will be a distinct component within PCS SIM to 
enable replacement by the actual ITER pulse schedule 
when it becomes available. A functional block 
representation in Fig. 2 does not necessarily imply that 
all functions in that block are implemented as a single 
module. 

 

 
 
Fig.2 PCSSP functional block diagram. Major components 
are plant simulator, PCS simulator, SIM, and SRM. PCS and 
plant simulators are in CSE. Either of the PCS or plant blocks 
can be replaced by an external simulation or source of data to 
support use cases shown in Fig. 1. 

 

In the plant, actuator modules simulate actuator 
responses to commands (either for ITER or a currently 
operating tokamak), diagnostic modules simulate 
processes involved in transforming physics quantities to 
real-time measurements, and the Tokamak+Plasma 
module simulates the combined plasma and device 
responses to actuator outputs. The SDN/CIN module 
simulates delays introduced in moving measurement data 
from plant to PCS and commands from PCS to plant. 
SDN = Synchronous Databus Network (commands & 
diagnostic data) and CIN = Central Interlock Network 
(machine protection control data). The EG module(s) 
serve to trigger simulation of user-specified off-normal 
events in plant. 

The PCS simulator will contain multiple 
components, whose description is not completely 
specified and in fact will be defined by development of 
the PCS using PCSSP.  However, it must include a set of 
Control Units, which receive input signals and produce 
output signals to perform specific functions such as 
feedback control, an Exception Handling function that 
detects and produces responses to those off-normal 
events that require triggering a change in control action, 
and a PCS Supervisor function to interpret the Pulse 
Schedule. 

The Event Generator and Exception Handler 
functions are sufficiently large and novel developments 
that they are described in a separate paper [13]. 

The Interlock Control System (ICS) module 
incorporates the CIS and PIS (CIS = Central Interlock 
 

System, an ITER overall protection circuit that responds 
to dangerous events, whose simulation module is 
provided by ITER [14], PIS = Plant Interlock Systems, 
individual plant system, e.g. actuator/diagnostic, 
protection circuits). 

The Simulation Input Managers define all data 
needed to execute a simulation, which includes 
configuration data to customize individual modules or an 
entire simulation. For example, PCS modules will be 
configured from data to support iterative algorithm 
development, plant modules will be configured from 
data (whenever feasible) to model multiple tokamaks, 
and the SDN/CIN module will be configured from data 
to support an evolving definition of signals that travel on 
the ITER SDN [15]. 

The Simulation Results Manager provides methods 
to support user understanding of simulation results, and 
includes data visualization, during and after simulation, 
archiving and restoration of simulated data, and data 
analysis. All data for a simulation are archived as a 
group, identified by label.  This includes data needed to 
restart a simulation at specified times. The SRM must be 
able to read from data archiving systems of operating 
devices as well as of ITER. 

PCSSP does not require that a user make use of the 
SIM and SRM functions, but doing so automates the 
bookkeeping involved with manipulating input and 
output data associated with simulations. For example, if 
SIM functions are used to specify all input, then SIM 
creates a "package" of all inputs that can be 
automatically archived with the simulated data. 

 

5. Status of PCSSP development 
Figure 3 shows a high level view of the Simulink 

implementation of the architecture under development, 
which is not yet final. It shows simulators for the plant 
(top section), PCS (bottom section), and SDN/CIN 
(small block in-between). The high-level plant design 
shown is nearly complete. The PCS represents only a 
candidate design, a version of which is to be delivered as 
part of the current PCSSP task. The PCS development in 
this work will serve as an input to a separate PCS design 
task. In particular, the EH architecture will likely be the 
starting point for the final EH design in the PCS. 
However, the separate PCS design task will determine 
the final PCS architecture, which can then be evaluated 
and eventually converted to realtime implementation 
code using PCSSP. 

The PCSSP design philosophy is to develop custom 
infrastructure only if it makes simulations easier to 
perform. Otherwise, the project relies on capabilities 
provided by Simulink. In the design, tradeoffs must be 
made, e.g., standardizing a data interface methods allows 
more automation of configuration tasks and thereby 
improves ease of use, but reduces flexibility. Some 
methods to improve ease of use can also have the side 
effect of increasing simulation execution time. 

 



	  

 
 

Fig.3 Simulink	  top-‐level	  architecture	  implementation. 
 

To maintain flexibility, PCSSP imposes no 
constraints on internal structure of individual modules.   
However, some standardization is imposed on inter-
module connections to allow modules provided from 
multiple sources to be easily connected and to take 
advantage of capabilities provided by PCSSP. For 
example, it is expected that signal lines connecting 
modules will be standardized to be Simulink bus signals 
(thick lines in Fig. 3). This choice allows individual 
module developers to add outputs to their module 
without becoming inconsistent with users’ previously 
constructed simulations. It also provides a form of self-
documentation of signal line content. 

Data used to configure and initialize simulation 
modules is also standardized to some extent. Although 
data content for each module will be determined by the 
module providers, the data is required to be represented 
by a Matlab data structure with some required fields 
representing data for configuration, initialization, time 
series inputs, and module documentation. The 
documentation field itself has some prescribed content, 
such as descriptions of module input and output signals. 
Use of a single data structure provides a method of 
grouping all data needed to use a module for simulation. 
This helps the user to identify the data needed to prepare 
the module for simulation and makes it easier to develop 
and maintain the methods used by the SRM to archive 
and restore this data. 

Appropriate standardization can also support 
validation.  Identifying system characteristics that can be 
modeled by the same calculations for all devices allows 
the same modules to be used in simulations for existing 
devices and for ITER. The only change typically  
 
 
 
 
 
 

required is in the data used to configure the modules. 
Most plasma models can be represented this way, but 
many plant systems cannot. Methods are being 
developed to manage the modeling and simulation of 
multiple devices so as to exploit commonalities 
whenever available. Figure 4 illustrates the file structure 
that will be used to manage Simulink model files and 
input data for multiple device simulations. 

Methods provided by PCSSP will support 
construction of new simulations using PCSSP-installed 
modules. For example, separate Simulink model files 
containing generic and device-specific modules will be 
provided. Drag-and-drop of a PCSSP-provided module 
will automatically create the data structure needed to set 
up that module. Many of the configuration data fields 
will have default values, but all are modifiable by the 
user. 

 

 
 

Fig.4 File management structure to support multiple device 
simulation. Actual devices supported will depend on IO 
deployment strategies. 

 

PCSSP is required to provide methods for 
connecting with existing detailed simulation codes.  
Combining two or more simulation components into a 
single simulation can use either an integrative approach, 
i.e., all components fully integrated into the same 
environment, or a co-simulation approach, in which 
some of the components execute separately but exchange 
data in such a way as to synchronize the separate 
simulations. Connections between PCS simulations in 
PCSSP and external full Plant simulations such as those 
in Fig. 1 will be made through co-simulation. 
Incorporation of individual external modules in PCSSP 
will be done by embedding the module code in a 
Simulink S-function. 
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