
author’s	 email:	 walker@fusion.gat.com	

A Simulation Environment for ITER PCS Development
M.L. Walkera, G. Ambrosinob, G. de Tommasib, D.A. Humphreysa, M. Matteic, G. Neud, G. Rauppd,

W. Treuttererd, and A. Wintera

aGeneral Atomics, P.O. Box 85608, San Diego, California 92186-5608, USA
b CREATE/Università di Napoli Federcico II, Napoli, Italy

 cSeconda Università di Napoli, Napoli, Italy
dMax-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85748 Garching, Germany

 d ITER Organization, Route de Vinon-sur-Verdon, 13115, St. Paul-lez-Durance, France.

A simulation environment known as the Plasma Control System Simulation Platform (PCSSP), specifically

designed to support development of the ITER Plasma Control System (PCS), is currently under construction by an
international team encompassing a cross-section of expertise in simulation and exception handling for plasma
control. The proposed design addresses the challenging requirements of supporting the PCS design. This paper
provides an overview of the PCSSP project and a discussion of some of the major features of its design. Plasma
control for the ITER tokamak will be significantly more challenging than for existing fusion devices. An order of
magnitude greater performance is needed for some types of control, which together with limited actuator authority,
implies that optimized individual controllers and nonlinear saturation logic are required. At the same time,
consequences of control failure are significantly more severe, which implies a conflicting requirement for robust
control. It also implies a requirement for comprehensive and robust exception handling. Coordinated control of
multiple competing objectives with significant interactions, together with many shared uses of actuators to control
multiple variables, implies that highly integrated control logic and shared actuator management will be required. It
remains a challenge for the integrated technologies to simultaneously address these multiple and often competing
requirements to be demonstrated on existing fusion devices and adapted for ITER in time to support its operational
schedule. We describe ways in which the PCSSP will help address these challenges to support design of both the
ITER PCS itself and the algorithms that will be implemented therein. and at the same time greatly reduce the cost
of that development. We summarize the current status of the PCSSP design task, including system requirements
and preliminary design documents already delivered as well as features of the ongoing detailed architectural design.
The methods being incorporated in the detailed design are based on prior experience with control simulation
environments in fusion and on standard practices prevalent in development of control-intensive industrial product
designs.

Keywords: plasma control system, simulation, architecture

1. Introduction

The high cost and limited number of discharges
planned for ITER, as well as the constraints imposed by
its nuclear mission, imply both minimal time for
scenario and control tuning and a greater level of
confidence needed in discharge performance prior to
execution. The use of simulation for control
development and verification has been well-established
in research and commercial applications to support both
of these requirements [1]. Several operating tokamaks
have made significant use of simulation tools in the
development of control algorithms or key components of
plasma control systems themselves [2-9]. The broad
success of this approach, both commercially and in the
fusion community, led to an IO-funded task to develop
such a simulation tool, known as the Plasma Control
System Simulation Platform (PCSSP), to aid in
development and testing of the ITER Plasma Control
System. The scope of the current project is limited to
deployment of a demonstration prototype environment
with selected components. It is envisioned that this
prototype may be extended in subsequent efforts to
provide a fully capable control simulation tool to also

support ITER machine/system design and configuration
evolution and discharge scenario development, and to
support plant troubleshooting during operations.

A draft of requirements and use cases [10] and a
preliminary architecture definition [11] have been
delivered and a detailed design addressing a subset of
these requirements [12] is now being developed. At the
end of 2013, the design and a prototype implementation
will be delivered.

2. The vision for PCSSP
The PCSSP is envisioned as a system of components

including a computational framework (referred to as a
Control Simulation Environment, CSE) in which
multiple simulation modules can be implemented, to
which external processes can be connected, and which
can support input and output interfaces for programming
the simulation and interpreting results. The principal
goal of ITER PCS development and testing requires a
simplified PCS connected to a simplified simulated Plant
(system to be controlled), both implemented within

	

PCSSP. Matlab/Simulink has been chosen as the host
environment.

PCSSP will provide a number of capabilities that can
substantially reduce the time and cost of PCS
development, which can be best understood by outlining
the steps in this development.
1. Develop and test ITER PCS architecture,
2. Develop and test ITER control algorithms,
3. Implement in realtime code and test,
4. Deploy in ITER operation.
It is expected that Step 1 will be performed only once,
but it may not be fully complete until sometime after
ITER begins operation. Steps 2–4 will be repeated many
times during the ITER lifetime as new control
capabilities are developed and brought on-line. PCSSP
is envisioned to play a key role in each step but the last.

The ITER PCS will incorporate several architectural
features common in operating devices as well as two
functions, exception handling (EH) and actuator sharing,
that require a level of sophistication not yet
demonstrated. PCSSP provides a method for prototyping
and evaluating candidate architecture and controller
solutions with minimal coding effort. In particular, the
Plant simulation will contain an event generator (EG)
module that can trigger simulated performance-
challenging plasma and hardware events (known as
exceptions) during control simulation, to evaluate the
ability of the EH to handle them [13]. It will also contain
a model of the Central Interlock System (CIS), which
can be used to test the interaction of the PCS and CIS in
responding to events occurring in the Plant [14].

Controller development is facilitated through use of
control design toolboxes available for Matlab and use of
Simulink for controller implementation, debugging, gain
tuning, and evaluation of control performance and
robustness via simulation.

When satisfied with controller performance
following the initial design and simulation process, the
Simulink Embedded Coder can generate real-time
capable C code versions of the algorithms, to incorporate
into the PCS. The actual ITER PCS can then be
connected to the plant simulation to verify both
performance and correct implementation via closed loop
simulation.

3. Key use cases and requirements
The Requirements document [10] details the use

cases and requirements for the PCSSP, which currently
focuses on simulation. Almost all expected simulation
use cases can be summarized by the following sequence
of actions:
1. Select a version of PCS to be used (e.g., simulated

or actual).
2. Select a version of Plant to use (Fig. 1).
3. Define PCS configuration data, including the ITER

pulse schedule.

4. Define configuration parameters that customize
plant simulation modules.

5. Define PCS initial state to begin simulation.
6. Define Plant initial state to begin simulation.
7. Connect the PCS and Plant objects (both can be in

PCSSP or one can be external).
8. Initiate execution of the simulation.
9. Monitor the simulation.
10. Terminate the simulation.
11. Archive the simulated data.
12. Analyze the simulated data.

Variability in choices of components and detailed
actions depends on the stage of PCS development
(Fig. 1). The PCS function may be implemented by a
simulated PCS in the CSE, actual PCS code running on
simulation (non-realtime) computers, or PCS code
running on PCS realtime hardware. Algorithm
development can use the simplified PCSSP Plant, while
more detailed testing and eventual validation of ITER
pulse schedules require more accuracy.

Fig.1 Expected connections of PCS and plant simulators
for closed-loop simulation. Blue blocks indicate objects
external to PCSSP.

Since simulations will be used to evaluate
effectiveness of controllers for ITER, plant models used
in simulation must be predictive, i.e., responses seen in
simulation must be reflected in similar responses seen in
physical plasma operation. To gain this confidence,
PCSSP will support model validation efforts by
providing the capability to execute simulations of
currently operating devices as well as ITER. Equally
important, simulation execution must be sufficiently fast
to allow iterative evaluation and tuning of candidate PCS
algorithms. The need to flexibly replace plant modules
(e.g., to simulate different devices) and PCS control
algorithms leads to a requirement for a modular
architecture that can support such use.

4. Architecture overviews
The goals summarized in Sec. 2 are fundamentally

concerned with simulations of interactions between the
ITER PCS and the ITER plant, so the PCSSP must
include those two main functional blocks (Fig. 2), input
processes to manage inputs to the simulation (Simulation
Input Managers, SIM), an output process to archive and
display results (Simulation Results Managers, SRM), as

	

well as the interfaces between them. Pulse Schedule
input will be a distinct component within PCS SIM to
enable replacement by the actual ITER pulse schedule
when it becomes available. A functional block
representation in Fig. 2 does not necessarily imply that
all functions in that block are implemented as a single
module.

Fig.2 PCSSP functional block diagram. Major components
are plant simulator, PCS simulator, SIM, and SRM. PCS and
plant simulators are in CSE. Either of the PCS or plant blocks
can be replaced by an external simulation or source of data to
support use cases shown in Fig. 1.

In the plant, actuator modules simulate actuator
responses to commands (either for ITER or a currently
operating tokamak), diagnostic modules simulate
processes involved in transforming physics quantities to
real-time measurements, and the Tokamak+Plasma
module simulates the combined plasma and device
responses to actuator outputs. The SDN/CIN module
simulates delays introduced in moving measurement data
from plant to PCS and commands from PCS to plant.
SDN = Synchronous Databus Network (commands &
diagnostic data) and CIN = Central Interlock Network
(machine protection control data). The EG module(s)
serve to trigger simulation of user-specified off-normal
events in plant.

The PCS simulator will contain multiple
components, whose description is not completely
specified and in fact will be defined by development of
the PCS using PCSSP. However, it must include a set of
Control Units, which receive input signals and produce
output signals to perform specific functions such as
feedback control, an Exception Handling function that
detects and produces responses to those off-normal
events that require triggering a change in control action,
and a PCS Supervisor function to interpret the Pulse
Schedule.

The Event Generator and Exception Handler
functions are sufficiently large and novel developments
that they are described in a separate paper [13].

The Interlock Control System (ICS) module
incorporates the CIS and PIS (CIS = Central Interlock

System, an ITER overall protection circuit that responds
to dangerous events, whose simulation module is
provided by ITER [14], PIS = Plant Interlock Systems,
individual plant system, e.g. actuator/diagnostic,
protection circuits).

The Simulation Input Managers define all data
needed to execute a simulation, which includes
configuration data to customize individual modules or an
entire simulation. For example, PCS modules will be
configured from data to support iterative algorithm
development, plant modules will be configured from
data (whenever feasible) to model multiple tokamaks,
and the SDN/CIN module will be configured from data
to support an evolving definition of signals that travel on
the ITER SDN [15].

The Simulation Results Manager provides methods
to support user understanding of simulation results, and
includes data visualization, during and after simulation,
archiving and restoration of simulated data, and data
analysis. All data for a simulation are archived as a
group, identified by label. This includes data needed to
restart a simulation at specified times. The SRM must be
able to read from data archiving systems of operating
devices as well as of ITER.

PCSSP does not require that a user make use of the
SIM and SRM functions, but doing so automates the
bookkeeping involved with manipulating input and
output data associated with simulations. For example, if
SIM functions are used to specify all input, then SIM
creates a "package" of all inputs that can be
automatically archived with the simulated data.

5. Status of PCSSP development
Figure 3 shows a high level view of the Simulink

implementation of the architecture under development,
which is not yet final. It shows simulators for the plant
(top section), PCS (bottom section), and SDN/CIN
(small block in-between). The high-level plant design
shown is nearly complete. The PCS represents only a
candidate design, a version of which is to be delivered as
part of the current PCSSP task. The PCS development in
this work will serve as an input to a separate PCS design
task. In particular, the EH architecture will likely be the
starting point for the final EH design in the PCS.
However, the separate PCS design task will determine
the final PCS architecture, which can then be evaluated
and eventually converted to realtime implementation
code using PCSSP.

The PCSSP design philosophy is to develop custom
infrastructure only if it makes simulations easier to
perform. Otherwise, the project relies on capabilities
provided by Simulink. In the design, tradeoffs must be
made, e.g., standardizing a data interface methods allows
more automation of configuration tasks and thereby
improves ease of use, but reduces flexibility. Some
methods to improve ease of use can also have the side
effect of increasing simulation execution time.

	

Fig.3 Simulink	 top-‐level	 architecture	 implementation.

To maintain flexibility, PCSSP imposes no
constraints on internal structure of individual modules.
However, some standardization is imposed on inter-
module connections to allow modules provided from
multiple sources to be easily connected and to take
advantage of capabilities provided by PCSSP. For
example, it is expected that signal lines connecting
modules will be standardized to be Simulink bus signals
(thick lines in Fig. 3). This choice allows individual
module developers to add outputs to their module
without becoming inconsistent with users’ previously
constructed simulations. It also provides a form of self-
documentation of signal line content.

Data used to configure and initialize simulation
modules is also standardized to some extent. Although
data content for each module will be determined by the
module providers, the data is required to be represented
by a Matlab data structure with some required fields
representing data for configuration, initialization, time
series inputs, and module documentation. The
documentation field itself has some prescribed content,
such as descriptions of module input and output signals.
Use of a single data structure provides a method of
grouping all data needed to use a module for simulation.
This helps the user to identify the data needed to prepare
the module for simulation and makes it easier to develop
and maintain the methods used by the SRM to archive
and restore this data.

Appropriate standardization can also support
validation. Identifying system characteristics that can be
modeled by the same calculations for all devices allows
the same modules to be used in simulations for existing
devices and for ITER. The only change typically

required is in the data used to configure the modules.
Most plasma models can be represented this way, but
many plant systems cannot. Methods are being
developed to manage the modeling and simulation of
multiple devices so as to exploit commonalities
whenever available. Figure 4 illustrates the file structure
that will be used to manage Simulink model files and
input data for multiple device simulations.

Methods provided by PCSSP will support
construction of new simulations using PCSSP-installed
modules. For example, separate Simulink model files
containing generic and device-specific modules will be
provided. Drag-and-drop of a PCSSP-provided module
will automatically create the data structure needed to set
up that module. Many of the configuration data fields
will have default values, but all are modifiable by the
user.

Fig.4 File management structure to support multiple device
simulation. Actual devices supported will depend on IO
deployment strategies.

PCSSP is required to provide methods for
connecting with existing detailed simulation codes.
Combining two or more simulation components into a
single simulation can use either an integrative approach,
i.e., all components fully integrated into the same
environment, or a co-simulation approach, in which
some of the components execute separately but exchange
data in such a way as to synchronize the separate
simulations. Connections between PCS simulations in
PCSSP and external full Plant simulations such as those
in Fig. 1 will be made through co-simulation.
Incorporation of individual external modules in PCSSP
will be done by embedding the module code in a
Simulink S-function.

Acknowledgment
This work was supported by the the ITER

Organization under ITER/CTS/6000000037. The views
and opinions expressed herein do not necessarily reflect
those of the ITER Organization.

	

References
[1] R. Meyers, et al, Modeling of Plug-In Series Hybrid

Powertrain for USPS Carrier Route Vehicle, Proc. SAE
World Congress, Detroit, Michigan, Mar. 2007; T. Denery,
et al., Creating Flight Simulator Landing Gear Models
Using Multidomain Modeling Tools, AIAA Modeling and
Simulation Tech. Conf., Keystone, Colorado, 2006;
M. Castillo-Effen, et al, Modeling and Visualization of
Multiple Autonomous Heterogeneous Vehicles, IEE
Systems, Man and Cybernetics Int. Conf., v.3, 2005, 2001

[2] W. Suttrop, et al., Predictive Simulation of Tokamak
Discharge Behaviour based on Simple Scalings, Proc 32nd
EPS Conf Plasma Phys, Tarragona, vol. 29C, 2005,
P-4.076.

[3] G. Raupp, et al., Fusion Eng. & Design 82, 1102 (2007).
[4] R. Albanese, et al., Fusion Eng. & Design 66–68, 715

(2003).
[5] G. de Tommasi, et al., IEEE Trans. Plasma Sci. 35, 709,

(2007).

[6] J.B. Lister, et al., Proc. 38th European Phys. Soc. Conf. on
Plasma Physics, Strasbourg, France, 2011, P1.105.

[7] M. Ferrara, et al., Alcasim Simulation Code for Alcator
C-Mod, Proc. 45th IEEE Conf. on Decision and Control,
San Diego, CA, 2006, 2238.

[8] M.L. Walker, et al., Fusion Eng. & Design 82, 1051
(2007).

[9] D.A. Humphreys, et al., Nucl. Fusion 47, 943 (2007).
[10] PCSSP Final Requirements Document v.1.2, 4FK397

(2012).
[11] Preliminary Architecture for PCSSP v1.0, 13, CAARKY

(2012).
[12] PCSSP Functional Specification, Draft for IO review v1.0,

C9766M (2012).
[13] G. Raupp, et al., Event Generation and Simulation of

Exception Handling with the ITER PCSSP, O1-5, this
conference

[14] Vergara Fernández, et al., Fusion Eng. & Design 86, 1137
(2011).

[15] H.G. Kim, E.J. Lee, SDN Software Architecture Design
Description v.1.4, B7AWBK (2013).

