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Figure S1. Human diversity per site (calculated in the CG panel) scaled by divergence of the human
reference to the human-chimpanzee ancestor around different classes of fixed modern-human-specific
single-nucleotied changes where Altai Neanderthal and Denisova are homozygous ancestral. The
statistic was calculated in windows of 0.01 cM and the x-axis shows distance of the window midpoint to
the fixed change on a log-scale. The upper left panel shows all functional categories tested, while the
other panels show different subsets of these for ease of comparison.
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Figure S2. Human diversity per site (calculated in the 1000G panel) scaled by divergence of the human
reference to the human-chimpanzee ancestor around different classes of fixed modern-human-specific
single-nucleotied changes where Altai Neanderthal and Denisova are homozygous ancestral. The
statistic was calculated in windows of 0.005 cM and the x-axis shows distance of the window midpoint
to the fixed change on a log-scale. The upper left panel shows all functional categories tested, while the
other panels show different subsets of these for ease of comparison.
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Figure S3. Human diversity per site (calculated in the CG panel) scaled by divergence of the human
reference to the human-chimpanzee ancestor around different classes of fixed modern-human-specific
single-nucleotied changes where Altai Neanderthal and Denisova are homozygous ancestral. The
statistic was calculated in windows of 0.005 cM and the x-axis shows distance of the window midpoint
to the fixed change on a log-scale. The upper left panel shows all functional categories tested, while the
other panels show different subsets of these for ease of comparison.
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Figure S4. We subs-sampled SNCs within each genomic category so that each SNC was more than
100 kb away from any other. We then tested whether changes in different presumably functional sites
have higher Bayes factors in favor of selection relative to synonymous changes that are far (> 1Mb)
from any nonsynonymous change (left panels) or relative to intergenic changes (middle panels), using a
one-tailed Wilcoxon rank-sum test. The x-axes show different quantile partitions of the data in each of
the two categories under comparison. The dashed lines denote the p-values cutoff after correcting for
multiple testing (P = 0.05/20 = 0.0025). We also show empirical cumulative distribution functions of
Bayes factors for each category tested (right panels). First row from top: Test B (including poor model
fits) using 1000G data and first 3 PLS-DA components. Second row: Test B using 1000G data and first
10 PLS-DA components. Third row: Test B using CG data and first 3 PLS-DA components. Bottom
row: Test B using CG data and first 10 PLS-DA components.
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Figure S7. Power to reject neutrality for different statistics and different number of SNPs per block in
the case when 200 modern human sequences are available (like in the 1000G data). We tested two
different selection regimes: s=0.1 (left column) and s=0.01 (right column). We also tested a range of
times since fixation (x-axis). Power was estimated by calculating the proportion of simulations (out of
200) that have a value more extreme (higher for H ′M , H ′′M , H ′S and H ′′S ; lower for H

′
E , H

′′
E , H

′
I and H ′′I )

than 90% of 200 neutral simulations with the same fixation time. Skewness is not shown for blocks of
size 1 SNP because the sample third moment of a count vector of size two is always zero, so the statistic
is meaningless in that case. The thick black line denotes the 10% rejection level.
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Figure S8. Power to reject neutrality for different statistics and different number of SNPs per block in
the case when 200 modern human sequences are available (like in the 1000G data). We tested two
different selection regimes: s=0.1 (left column) and s=0.01 (right column). We also tested a range of
times since fixation (x-axis). Power was estimated by calculating the proportion (out of 200) of selective
simulations with a particular fixation time (x-axis) that have a value more extreme (higher for H ′M ,
H ′′M , H ′S and H ′′S ; lower for H

′
E , H

′′
E , H

′
I and H ′′I ) than 90% of 800 neutral simulations with different

times of fixation (200 with t=1000 gen., 200 with t=5000 gen., 200 with t=9000 gen. and 200 with
t=13000 gen.). Skewness is not shown for blocks of size 1 SNP because the sample third moment of a
count vector of size two is always zero, so the statistic is meaningless in that case. The thick black line
denotes the 10% rejection level.
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Figure S9. Power to reject neutrality for different statistics and different number of SNPs per block in
the case when 26 modern human sequences are available (like in the CG data). We tested two different
selection regimes: s=0.1 (left column) and s=0.01 (right column). We also tested a range of times since
fixation (x-axis). Power was estimated by calculating the proportion of simulations (out of 200) that
have a value more extreme (higher for H ′M , H ′′M , H ′S and H ′′S ; lower for H

′
E , H

′′
E , H

′
I and H ′′I ) than 90%

of 200 neutral simulations with the same fixation time. Skewness is not shown for blocks of size 1 SNP
because the sample third moment of a count vector of size two is always zero, so the statistic is
meaningless in that case. The thick black line denotes the 10% rejection level.
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Figure S10. Power to reject neutrality for different statistics and different number of SNPs per block
in the case when 26 modern human sequences are available (like in the CG data). We tested two
different selection regimes: s=0.1 (left column) and s=0.01 (right column). We also tested a range of
times since fixation (x-axis). Power was estimated by calculating the proportion (out of 200) of selective
simulations with a particular fixation time (x-axis) that have a value more extreme (higher for H ′M ,
H ′′M , H ′S and H ′′S ; lower for H

′
E , H

′′
E , H

′
I and H ′′I ) than 90% of 800 neutral simulations with different

times of fixation (200 with t=1000 gen., 200 with t=5000 gen., 200 with t=9000 gen. and 200 with
t=13000 gen.). Skewness is not shown for blocks of size 1 SNP because the sample third moment of a
count vector of size two is always zero, so the statistic is meaningless in that case. The thick black line
denotes the 10% rejection level.
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Figure S14. Root mean squared error plots (RMSEP), showing the decrease in RMSE in the first 20
PLS components extracted from the summary statistics, for each parameter on which we placed a prior.
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Figure S15. Sets of 100 simulations were run through the ABC pipeline to obtain Bayes factors in
favor of selection (versus neutrality) under different known parameters (PLSDA = 10). The colored
lines show the proportion of the simulations that have a Bayes factor larger than the specified cutoffs,
when 26 present-day human sequences are available. The thick black line denotes the 0.05 significance
cutoff. BF = Bayes factor, s=selection coefficient, t=time since derived allele fixation, in generations.
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Figure S16. Sets of 100 simulations were run through the ABC pipeline to obtain Bayes factors in
favor of selection (versus neutrality) under different known parameters (PLSDA = 10). Here, we
simulated the case where two datasets are avaialble: one with 200 sequences (like the 1000G dataset)
and one with 26 sequences (like the CG dataset). The colored lines show the proportion of the
simulations where the maximum Bayes factor across the two datasets is larger than the specified cutoffs
(as in Table 1). The thick black line denotes the 0.05 significance cutoff. BF = Bayes factor, s=selection
coefficient, t=time since derived allele fixation, in generations.
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Figure S17. Sets of 100 simulations were run through the ABC pipeline (with 10 PLS components) to
infer the selection coefficients under different parameters, assuming 200 sequences were sampled (as in
the 1000G data). The red line represents the true value of log10(s), specified in the simulations. The
histograms represent the posterior modes inferred for that parameter. s=selection coefficient, t=time
since derived allele fixation, in generations.
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Figure S18. Sets of 100 simulations were run through the ABC pipeline (with 10 PLS components) to
infer the selection coefficients under different parameters, assuming 200 sequences were sampled (as in
the 1000G data). The red line represents the true value of the time of fixation of the derived allele,
specified in the simulations. The histograms represent the posterior modes inferred for that parameter.
s=selection coefficient, t=time since derived allele fixation, in generations.
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Figure S19. Sets of 100 simulations were run through the ABC pipeline (with 10 PLS components) to
infer the selection coefficients under different parameters, assuming 26 sequences were sampled (as in
the CG data). The red line represents the true value of log10(s), specified in the simulations. The
histograms represent the posterior modes inferred for that parameter. s=selection coefficient, t=time
since derived allele fixation, in generations.
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Figure S20. Sets of 100 simulations were run through the ABC pipeline (with 10 PLS components) to
infer the selection coefficients under different parameters, assuming 26 sequences were sampled (as in
the CG data). The red line represents the true value of the time of fixation of the derived allele,
specified in the simulations. The histograms represent the posterior modes inferred for that parameter.
s=selection coefficient, t=time since derived allele fixation, in generations.
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Figure S21. We applied our ABC method (with the first 3 PLS/PLSDA components) to the list of
100 most disruptive SNCs in Prüfer et al. (2014)’s HMM selective sweep screen. We compared the
inferred parameters and Bayes factors for this list against the inferred parameters and Bayes factors
inferred for the 100 most disruptive SNCs genome-wide. Disruptiveness was determined using the
C-score method developed in Kircher et al. (in press) and used in Prüfer et al. (2014). As expected,
disruptive SNCs in the HMM regions have larger log(s) and Bayes factors in favor of selection across
different quantiles than the genome-wide disruptive SNCs. We have more power to identify the regions
as selected using the 1000G data (upper panels and purple dots in lower panel) than when using the CG
data (middle panels and dark red dots in lower panel). The dashed black line in the lower panel denotes
the P-value cutoff after correcting for multiple testing: P=0.05/8=0.00625.
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Figure S22. We applied our ABC method (with the first 10 PLS/PLSDA components) to the list of
100 most disruptive SNCs in Prüfer et al. (2014)’s HMM selective sweep screen. We compared the
inferred parameters and Bayes factors for this list against the inferred parameters and Bayes factors
inferred for the 100 most disruptive SNCs genome-wide. Disruptiveness was determined using the
C-score method developed in Kircher et al. (in press) and used in Prüfer et al. (2014). As expected,
disruptive SNCs in the HMM regions have larger log(s) and Bayes factors in favor of selection across
different quantiles than the genome-wide disruptive SNCs. We have more power to identify the regions
as selected using the 1000G data (upper panels and purple dots in lower panel) than when using the CG
data (middle panels and dark red dots in lower panel). The dashed black line in the lower panel denotes
the P-value cutoff after correcting for multiple testing: P=0.05/8=0.00625.
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Figure S23. Distribution of scores for nonsynonymous-SNC-matched region filters in which we used
“top best-matching” criteria. The red line shows the real value of the region containing a
nonsynonymous SNC. The grey shade shows the distribution of the top X% best-matching regions that
we were able to sample from the genome. X=10 for B-scores, while X=25 for GC content and
recombination rates.
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Table S1. Modern-human specific changes that lead to an amino acid replacement, affect a splice site
or are located in a UTR, and that: 1) have Bayes factors > 10 in favor of selection using either the
1000G and CG datasets and 2) are a good fit (P > 0.05) to the selection model using both the 1000G
and CG datasets. Parameters listed are the posterior modes inferred using ABC. The Bayes factor
shown for each site is the maximum across the two datasets. tS is in generations. All logs are base 10.
1K: 1000 Genomes. CG: Complete Genomics. BF: Bayes factor.

Position log(BF) log(s) (1K) log(s) (CG) tS (1K) tS (CG) Class Gene
chr1:38423232 1.05 -1.95 -2.6 9476 10322 3’ UTR SF3A3
chr1:78183739 1.96 -1.03 -1.99 11596 7777 Splice USP33
chr1:114516356 4.76 -1.47 -0.62 5094 11878 3’ UTR HIPK1
chr1:162750208 1.21 -1.95 -3.85 11737 9333 3’ UTR DDR2
chr3:9428211 1.44 -1.59 -3.77 6648 8767 3’ UTR THUMPD3
chr3:28476768 1.43 -1.35 -1.99 11596 4525 Splice ZCWPW2
chr3:28503157 1.55 -1.35 -2.04 11596 4384 3’ UTR ZCWPW2
chr3:47316797 1.16 -1.99 -0.58 11313 12302 3’ UTR KIF9
chr3:47386060 1.05 -2.08 -0.66 12303 11029 3’ UTR KLHL18
chr3:52009091 1.41 -1.59 -2.48 11737 3535 5’ UTR ABHD14B
chr3:52109349 1.21 -1.87 -2.36 11879 11171 3’ UTR POC1A
chr4:103936040 1.17 -1.39 -3.37 8486 2828 5’ UTR SLC9B1
chr4:139983298 2.52 -2.28 -0.66 10182 11736 5’ UTR ELF2
chr4:73930626 1.06 -1.23 -3.45 10041 7212 Splice COX18
chr5:86564477 1.14 -1.27 -1.99 10748 11171 NonSyn RASA1
chr7:73113999 2.18 -1.47 -1.19 7638 9474 3’ UTR STX1A
chr9:127282609 1.23 -1.71 -1.91 10324 10888 3’ UTR NR6A1
chr10:102724515 1.17 -2.4 -3.81 11879 12160 3’ UTR FAM178A
chr10:15254162 1.01 -2.16 -3.77 9900 12302 3’ UTR FAM171A1
chr11:64900743 1.17 -1.47 -2.32 11455 9333 5’ UTR SYVN1
chr11:66406503 1.17 -1.39 -1.91 8345 4667 5’ UTR RBM4
chr11:66406696 1.17 -1.39 -1.91 8345 4667 5’ UTR RBM4
chr11:66407111 1.13 -1.43 -1.91 8203 4667 5’ UTR RBM4
chr11:66407983 1.15 -1.39 -1.91 8345 4667 3’ UTR RBM4
chr11:66453702 1.3 -1.27 -1.95 7073 8060 3’ UTR SPTBN2
chr11:129769974 1.64 -1.19 -1.47 12161 10322 3’ UTR PRDM10
chr11:129771185 1.44 -1.47 -2.08 12303 11312 3’ UTR PRDM10
chr11:129771376 1.37 -1.51 -2.08 12727 11312 3’ UTR PRDM10
chr11:129771773 1.28 -1.63 -1.39 12444 12019 3’ UTR PRDM10
chr11:129772293 1.16 -1.39 -1.23 12727 11453 NonSyn PRDM10
chr13:41132149 1.06 -2.36 -3.13 12161 9191 3’ UTR FOXO1
chr13:52301811 1.48 -1.19 -1.63 6083 9757 Splice WDFY2
chr16:66947064 1.14 -3.09 -1.55 10465 7212 NonSyn CDH16
chr16:66968760 1.3 -2.48 -1.75 8062 7212 5’ UTR CES2
chr17:27955042 1.9 -3.85 -1.83 11737 8201 3’ UTR SSH2
chr17:27959258 2 -4.01 -2.04 11879 8060 NonSyn SSH2
chr20:33337529 2.24 -3.69 -2.76 6648 11029 NonSyn NCOA6
chr20:35412163 1.41 -0.94 -1.39 9193 6363 3’ UTR SOGA1
chr20:35412323 1.43 -1.11 -1.39 8203 6505 3’ UTR SOGA1
chr20:35413846 1.34 -0.94 -1.35 9193 7212 3’ UTR SOGA1
chr22:40723118 1.18 -1.79 -1.43 6931 4384 3’ UTR TNRC6B
chr22:40724058 2.34 -1.83 -1.99 9052 6646 3’ UTR TNRC6B
chr22:40760978 1.08 -1.95 -0.94 6790 6080 NonSyn ADSL


