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Abstract-The selection of suitable features is the most critical part of any classification process. In the 
area of textural classification, one way to determine if the features are suitable is to synthesize an image 
which has the given textural features. An algorithm for synthesizing textures that have a set of given co- 
occurrence matrices is presented, and it is shown that these synthetic images do indeed match their real 
counterparts very closely. 

The successful synthesis of textures motivates the use of co-occurrences as features for texture classifica- 
tion. A new algorithm for classifving textures based on co-occurrence feature vectors that are modelled as 
multinomial density functions is preiented. 

1. INTRODUCTION 

Computer graphics and computer vision have evolved 
independently for a long time, and there has been very 
little overlap between.these two areas of research. In 
this paper, a case in which both areas of research are 
combined will be presented. The key idea is to use a 
computer graphics method for selecting features 
which are then employed by a vision algorithm for 
image interpretation. The domain of image interpreta- 
tion that is addressed here is the classification of tex- 
tures. 

The selection of suitable features is the most critical 
part in any classification process. In the area of textural 
classification, one way to determine if the features 
chosen are suitable is to synthesize an image which 
has the given textural features. If the synthetic image 
resembles the real images closely, then we may safely 
assume that the features chosen are indeed suitable. 

In the first part of this paper, an algorithm for syn- 
thesizing textures that obey a set of given co-occur- 
rence matrices is presented, and it is shown that these 
synthetic images do indeed match their real counter- 
parts very closely. The real images that we were 
mostly interested in are remotely sensed images of 
the Landsat/TM sensor as well as ERS- 1 /AMI data, 
which generally display textures that are relatively 
fine-grained. 

We claim that for these types of images, co-occur- 
rence matrices are indeed a very good choice. In the 
second part of this paper, an algorithm for supervised 
texture classification will be presented. This algorithm 
differs from existing ceoccurrence-based schemes in 
that ii preserves the entire information content of the 
co-occurrence matrices. There are two basic ideas un- 
derlying this algorithm. The first one is to use the 
multinomial distribution as a parametric model for the 
co-occurrence features. And the second idea is to use 
the information theoretic concept of mutual informu- 
tion as a function foi assessing the weight of evidence. 

2. RELATED WORK 

Texture segmentation has been one of the key issues 
in the image processing community and has produced 

an abundancy of technical papers on the subject. Re- 
views can be found for instance in[ 1 l] or in[ 201. 

Generally, two types of approaches can be distin- 
guished: the structural approach and the statistical ap- 
proach. The structural approach describes spatial rela- 
tionships between textural primitives such as blobs or 
dots. The statistical approach on the other hand de- 
scribes spatial relationship between individual pixels. 
These latter methods work well for fine-grained tex- 
tures, whereas the former approach is mostly used for 
coarse-grained textures. As our prime interest here is 
the analysis of satellite imagery that display fine- 
grained textures, we adhere to the statistical approach. 
Among the most prominent statistical methods of tex- 
ture segmentation are various Markov-random field 
models[3, 4, 93, textural energy filters[lS, 161, co- 
occurrence-based methods [ lo], and fractal-based ap- 
proachesll31. 

The synthesis of textures has played a vital role in 
computer graphics [ 3,5,6,7]. Gagalowicz [ 51 reports 
a method for constructing texture fields of order K 
from a given second order field using the given second 
order statistic to constrain the higher order field. Since 
the number of constraints increases exponentially with 
the size of the field to be generated, this approach is 
only practical for small image sizes. The textural 
model used by Gagalowicz is similar to the model 
used in this paper. However, the method for synthesiz- 
ing the textures is very different. 

Our method is in fact very similar to the approach 
presented by Cross and Jain[ 31, who use a Metropo- 
lis-type algorithm for producing Markov random field 
textures, the difference being that Cross and Jain use 
a different textural model. 

The use of synthesis of textures for motivating tbe 
choice of textural features is not as widespread, but 
there are also some references in the literature [ 2,141. 
Khotanzad and Kashyap[l4] use estimates of parame- 
ters of stochastic random field models for synthesizing 
textures that resemble given Brodatz-type textures. 
Their motivation for using texture synthesis is very 
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similar to the one underlying this paper: normally, the 
selection of features is performed by running several 
classification experiments. If the results are unsatisfac- 
tory, then a new set of features is tested. Obviously, 
this process is very tedious and time-consuming, and 
also not very robust. Some set of features may work 
well on one image and not so well on another image. 
The selection of features on the basis of how well they 
synthesize to patterns that are visually similar to real 
patterns is certainly more reliable insofar as it presents 
a much harder criterion to fulfill 

The approach described here differs from[ 141 inso- 
far as the texture models used here are co-occurrence 
matrices instead of random field models. The reason 
why co-occurrence matrices were chosen here Zre is 
that they are much easier to handle mathematically, 
and yet they appear to suffice for the task at hand. 

3. CO-OCCURRRFJWE MATRICES AS TEXTURAL 

FEATURES 

Co-occurrence matrices have been widely used for 
describing textural properties. In the following, we 
will briefly summarize the most important definitions. 
For further reference, see, for instance, [ 10, 111. 

Consider pairs of pixels separated by distance d at 
some angle a. Generally, distances of one pixel and 
angles of 0”. 45”, 90” and 135” degrees are used. The 
(d = 1, (Y = O”)-pixel pairs are horizontally adjacent, 
the (d = 1, (Y = 90”)-pairs are vertically adjacent, the 
(d = 1, LY = 45”) -pairs are right-diagonal neighbours, 
and the (d = 1, (Y = 135”)-pairs are left-diagonal 
neighbours. 

Let m denote the number of gray levels. The (d, 
a)-co-occurrence matrix C is an m x m matrix, where 
an entry co of C denotes the number of pairs of pixels 
separated by distance d at angle cr, which have gray 
values i and j. 

For instance, the entries c;, of a ( 1, O”)-co-occur- 
rence matrix record the number of horizontal co-oc- 
currences of gray values i and j. The entries cii of a 
( 1,90” )-co-occurrence matrix record number of verti- 
cal co-occurrences of i and j, and so forth. We shall 
particularly use co-occurrence matrices in small 
neighbourhoods of s X s pixels, where typically 5 5 
s 5 15. 

The following example of a (d = 1, (Y = O”)-co- 
occurrence matrix illustrates the above definitions: 

0 0 0 0 1 

0 0 0 
0 0 0 t 

0 8 2 
120 

image CM 
The co-occurrence matrix itself is generally not 

used as a feature vector. Instead, it is transformed 
into some secondary feature that is then employed for 
classification. A number of such secondary features 
are discussed in [ 11, 201. 

The transformation into secondary features leads to 
a significant loss of information. In some cases, this 
loss of information is desired, as the new features 
reduce the information contained in the image to just 
textural properties. In this paper, we will argue that it 

is both possible and desirable to retain the complete 
information content of the co-occurrence matrices. 

Specifically, we will claim that the four primary 
co-occurrence matrices (horizontal, vertical, left- and 
right-diagonal) contain sufficient information to syn- 
thesize textures that very closely resemble textures 
from remotely sensed images of the Landsat/TM and 
ERS-1 /AMI sensors. 

4. CO-OCCURRENCE-BASED SYNTHESIS OF TEXTURES 

In the following, a new method for generating arti- 
ficial textures based on co-occurrences will be de- 
scribed. The method is a variation of the Metropolis- 
Algorithm, which has been used in the past for gener- 
ating Gibbs random fields [ 3, 91. 

Let ci j be a co-occurrence matrix, whose indices 0 
5 i, j 5 m denote the grey levels ranging from 0 to 
m. The histogram hi can be easily computed from 
c,, by: 

m-1 

f4 = c G,,. 
,=o 

The first step of the algorithm consists of randomly 
generating an initial image X0 that, has the desired 
histogram computed in the above manner. The algo- 
rithm now produces a chain of images Xi, i = 0, 1, 
. . . ) such that the initial image is iteratively trans- 
formed into a final image which has the desired co- 
occurrence properties of c, J. 

We begin by computing the co-occurrences of the 
initial image X0, and determine the error, that is, the 
distance of the current co-occurrences from the desired 
co-occurrences. In each subsequent iteration, an image 
Xi+, is derived from Xi, in which the grey values of 
two randomly selected sites s, and s2 are interchanged 
provided the new image constitutes an improvement. 
Thus, the state Xi+, differs from Xi in at most the grey 
values at those two sites. Occasionally, the interchange 
is performed even if there is no improvement. The 
probability p with which this happens follows an an- 
nealing schedule such that: 

1 
p = 1 + eAIT’ 

where A is the current error and T is a temperature 
that is slowly cooled down. 

The algorithm stops if the variable STABLE is true. 
The variable STABLE is defined as follows. Let M be 
the number of pixels in the image lattice. M attempted 
switches are considered to constitute. one iteration. The 
variable STABLE is true if the number of successful 
attempts at switching falls below some predetermined 
percentage of M . Typically, STABLE is set to a value 
of one percent or less. The algorithm is diagrammed 
in Fig. 1. 

Note that the algorithm can be easily extended to 
work for several co-occurrence matrices by incorpo- 
rating them into the error measure: 
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compute histogram from cdesired 
randomly generate an initial image with that histogram 
compute initial co-occurrences ccurrent of t’hat image 
set Aold + 11 &esired - prrenf 11 

while not STABLE do : 
randomly select sites s1 and sz 
compute ceurrcn~ with s1 and s2 interchanged 
A new 

t 11 Cde.vired _ Ceurrent 11 

if Anew < Aold 

switch s1 and s2 
else 

switch s1 and s2 with probability u = l/(1 + eAnmWjT) 

1 if switched: &,ld t AneW 

Fig. 1. An algorithm for generating textures. 
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where k ranges over all matrices. Note that the algo- 
rithm converges only if a solution exists, that is, matri- 
ces are consistent with each other. Also, note that an 
interchange of two pixels does not require a recompu- 
tation of the entire co-occurrence matrix. Instead, it 
suffices to update the previous co-occurrence matrix 
in just four positions. A more detailed description of 
the algorithm can be found in [ 181. 

4.1. Experiments 
The experiments were conducted in the following 

manner: firstly, a training area was marked in an im- 
age. Then, the four primary co-occurrence matrices 
were computed within that area. Finally, the algorithm 
described above was used to generate an artificial im- 
age that has the same co-occurrence properties as the 
training area. The results are shown in Figs. 2 and 3. 

Fig. 2 depicts band 4 of a 512 X 512 LandsatlTM 
image showing an area of the tropical rain forest in 
Brazil. Note that the mixtures of various vegetation 
types produce highly textured images. The synthetic 
images are the 64 x 64 squares superimposed on the 
original image. The corresponding training areas are 
the round-shaped areas to the left of the squares. 

Fig. 3 shows the same site, this time recorded by the 
active microwave sensor (AMI) aboard the European 
satellite ERS-1. Again, the generated textures are the 
squares, and the corresponding training areas are 
round-shaped areas to their left. Note the close resem- 
blance of the synthetically generated images to their 
corresponding training sites (satellite data provided 
by DLR/DF’D, Oberpfaffenhofen, Germany). 

5. CO-OCCURRENCE-BASED ANALYSIS OF TEXTURES 

From the fact that the synthetic textures agree so 
well with their real counterparts, we may conclude 
that the four primary co-occurrence matrices consti- 

tute suitable features for characterizing images of the 
above type. 

Unfortunately, the corresponding feature space is of 
extremely high dimension. Currently known methods 
usually fail when confronted with such problems. In 
the past, this problem was usually addressed by ex- 
tracting secondary features from these matrices. How- 
ever, the transformation into secondary features leads 
to a significant loss of information. In the following, 
we will propose a method that preserves the complete 
information content of these matrices. The key idea 
is to use the imultinomial distribution as a parametric 
model for the co-occurrence features. 

5.1. The mulrinomial density function 
Suppose we randomly select a sample of n pairs of 

pixels that are (d, cu)-adjacent. Further suppose that 
the image from which this sample is taken has a nor- 
malized co-occurrence matrix plj-. We want to compute 
the probability of selecting u,, number of pairs having 
gray values (i,j) or (j, i). 

Note that co-occurrence matrices are special kinds 
of histograms. The probability of selecting uij number 
of pairs can therefore be modelled by a multinomial 
density function: 

p$J 
P(u)=nm-& 

I,, . 

where. 

:<~~=landxu,~=n. 
iJ i., 

The termp( u) denotes the probability of encountering 
uLj number of co-occurrences of gray values (i, j) in 
a sample of n pixel pairs, where the population from 
which the sample was taken has a co-occurrence ma- 
trix po. 
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Fig. 2. LandsatlTM image with synthetic textures superimposed. 

5.2. Mutual information mation theory. Its validity and its rele 
Once an appropriate feature space and a suitable classifiers will be discussed. 

parametric model has been identified, we can set up Let X be some feature space, and 
a classification scheme. In the following, we will intro- of object classes to be identified. Let 
duce a scheme that is derived from a concept in infor- prior probability of class w. And lel 

ktion tc J Bayes ;ian 

let I 2 be the set 

P(W ) denote the 
: p(o JI x) den late 

Fig. 3. ERS-I /AM1 image with synthetic textures superimposed. 
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the posterior probability of class w given the feature 
vector x. A feature vector x can be regarded as a piece 
of evidence supporting or refuting some classification 
hypothesis w. We want a quantitative measure of the 
strength of that evidence, that is, of how much the 
occurrence of some particular x E X changes the prior 
probability of some w E R. The ratio p( w 1 x)lp( w) 
is a measure of how much more or less likely w be- 
comes in the light of the evidence provided by x. The 
logarithm of this ratio, 

is a well-known concept in information theory called 
mutual information (cf. [8]). In our context, I(x, w) 
can be viewed as the strength of the evidence provided 
by some feature vector x in favor of the classification 
hypothesis w. If 1(x, w) > 0, then x supports the 
hypothesis w. If Z(x, w) < 0, then x refutes w, and if 
1(x, w ) = 0, then x provides no evidence at all (see 
also 1171). 

The function 

1(x, w) = log z 

seems to require the computation of the terms p (w ) x) 
and p (w ) . Both terms are generally not known. Fortu- 
nately however, the following holds: 

1(x, w) = log * = logp;s;;;) 

= log - = p(x’w) I(w, x). 
P(X) 

In other words, if some approximations p(x 1 w) and 
p(x) are known, then I( x, w ) can be easily computed. 

Note that the Bayesian classification rule 

P(WolX) = 
P(Xl4P(Wo) = P(~lwo)P(%) 

~P~XlWi)P(W) P(X) 

is very similar to the above defined weight function 
I(w, x). In fact, the only difference lies in the use of 
the prior probabilities p ( wi ) . Usually however, these 
prior probabilities are not known. In practice, they are 
therefore assumed to be equal, that is, p( wi ) = 1 ln, 
where n is the number of classes. In this case, the two 
classification schemes are identical. 

In the previous section, we have already identified 
the multinomial distribution as a suitable parametric 
model for modelling the co-occurrence feature vec- 
tors. We can now use it for approximating p(x(w) 
and p(x). Let pii be the co-occurrence of the entire 
image, and let qii be the co-occurrence within object 
class w. Then, 

p(x(w) = n! n @ ) 
i, Xjj! 

and 

p(x) = n! n p:; . 
i.j x, ! 

Some simple arithmetic yields: 

P(XlJJJ) log -- = p(x) I2 x&g qij - log pi,). 
1.j 

This term can be easily computed, provided of course 
that pil, qv :> 0. This can be achieved by smoothing 
the pij and ql,, SO that indeed pi,, qi, > 0, for all i, j. 

5.3. Addition of weights 
In general, more than one co-occurrence matrix 

must be used in a classification problem. Therefore, 
we need a mechanism for combining the evidence 
provided by several feature spaces. 

Let x and JJ be two feature vectors stemming from 
two different feature spaces. For instance, let x denote 
a horizontal co-occurrence matrix, and let y denote a 
vertical co-occurrence matrix. Assuming indepen- 
dence between the two feature spaces, and also assum- 
ing conditional independence with respect to w, we 
have: 

1(x, y, w) = log p;;;$) 

= *og P(XlW)P(YlW) 

P(X)P(Y) 

P(XlWJ = log- - 
P(X) 

+ log P(YlW) 

P(Y) 

= I(x, WI + I(y, w) 

Under the above independence assumptions, it 
therefore suffices to merely add the mutual informa- 
tion weights in order to combine the evidence from 
different sources. 

Unfortunately however, these independence as- 
sumptions are unrealistic for the following reasons. 
First of all, conditional and marginal independence 
usually do noit co-occur except in very rare cases. 
Secondly, the feature spaces that we are interested in, 
namely co-occimences of gray levels at varying angles 
of the same image, are certainly not independent. So 
in most cases, neither conditional nor marginal inde- 
pendence holds. 

In practice however, the error incurred by falsely 
assuming independence appears to be tolerable. The 
addition of weights leads to some overestimation of 
the strength of the evidence. But this effect seems to 
hit all object cllasses roughly to the same degree, so 
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Fig. 4. Brodatz textures. 

that the overall effect does not dramatically diminish 
the classification accuracy. 

5.4. The algorithm 
The above considerations lead to a new algorithm 

for supervised texture classification (see also [ 191). 

Training phase 
1. Compute co-occurrences of the entire image. 
2. For all object classes, select training areas and 

compute theit’co-occurrences. 
Classification phase 
For all pixels in the image: 

1. Compute the k co-occurrence matrices cf in an 
x x s neighbourhood of the current pixel; call 
it xt. 

2. For all object classes w, compute the weight 
c logP(&lw)h(&). 

3. Aeterrnine object class w,, with the largest 
weight. 

4. I f  weight is larger than some threshold, then la- 
bel the current pixel as w,,,; else label it as NIL. 

5.5. Experiments 
This algorithm was implemented and tested on sev- 

eral different sets of images. The results were very 
promising. 

As a standard test, the algorithm was exposed to a 
set of 1.5 Brodatz textures (see Fig. 4) of size 128 X 

128 each. The top half of each image was used as a 
training pattern, and some smaller patch to be classi- 
fied was taken randomly from the lower half of each 
image. 

This experiment provided several insights. Firstly, 
the classification accuracy depends primarily on the 
number of distinct grey levels that were used to build 
the co-occurrence matrix. Sixteen grey levels were 

required to produce 100% accuracy. The results be- 
came totally unreliable if less then 12 grey levels were 
used. Secondly, the size of the patches played no im- 
portant role. Even patches of size 16 x 16 were classi- 
fied correctly, provided a sufficiently large number of 
grey levels was used. 

The results are summarized in Table 1, where n bin 
denotes the number of grey levels used in co-occur- 
rence matrix, and nerrors denotes the number of mis- 
classified patterns. 

55.1. Satellite images. As a more realistic exam- 
ple, #classification tests were done of the ERS 1 /AMI 
image introduced earlier. The classes to be identified 
were “clearcuts (A)“, “forest (B),” and “bodies of 
water (C) .” The clearcuts are the darker areas, which 
are mostly close to the river. The input image with 
the training areas marked as white boxes is shown in 
Fig. 5a. The classification result is shown in Fig. 5b. 
The :six grey levels were used to compile the co-occur- 
rence matrices, and the window size (i.e., the size of 
the neighbourhoods in which the co-occurrence matri- 
ces were computed) was 11 x 11 Pixels. 

Table 1. Classification results of Brodatz textures. 

pattern size nbins nerrors 

64 x 64 32 0 
64 x 64 16 0 
64 x 64 12 1 
64 x 64 8 5 

32 x 32 16 0 
32 x 32 12 1 
32 x 32 8 5 

16 x 16 16 0 
16 x 16 12 I 
16 x 16 8 3 
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03 
Fig. 5. (a) ERSI /AMI image; (b) classification result. 

Some slight modification to the original algorithm 
was used here: firstly, the moving window, in which 
the co-occurrence matrice were computed, was 
rounded off at the comers. 

The second modification became necessary, as the 
river class in the example is not textured at all, that 
is, its co-occurrence matrices have very few non-zero 
entries. Such classes cannot be modelled reliably by 
the above approach, as an entry qij of value zero needs 
to be adjusted so that the logarithm log qi, is defined. 
While smoothing of the co-occurrence entries elimi- 
nates this problem for matrices which have just a few 
zero entries, it does not produce good results for matri- 
ces which consist almost entirely of zero values. 
Therefore, the following procedure was adopted: if 
some co-occurrence matrix contains an entry qi/ of 
value larger than 0.8, then this matrix is assumed not 
to represent a texture class, and membership in that 
class is established if the corresponding number xi, of 
co-occurrences in the current image window is larger 
than some predefined threshold. 

To allow some preliminary verification of this re- 
sult, a visual comparison to a map published by 
Honsch [12, p. 1941 was done. Hoensch’s map was 
derived from LandsatlTM images and was at least 
partially verified by ground truth. Visual inspection 
shows that the result shown here agrees quite well 
with the earlier map. Some misclassifications occur in 
the hilly terrain in the upper right part of the image. 
The shadows cast by the hills produce textures that 
are very similar to the ones produced by clearcuts. A 
more thorough investigation is underway. 

6. CONCLUSIONS 

An algorithm for generating synthetic textures 
based on co-occurrence matrices was presented. This 
algorithm was used to imitate real textures taken from 
satellite images. Surprisingly, these synthetic images 
resemble their real models so well that they are almost 
indistinguishable by the human eye. This fact implies 

that the co-occurrence features are very well suited 
for characterizing these types of images. 

The consequence of these results is of course to 
devise an algorithm that uses co-occurrence matrices 
as feature vectors, Existing co-occurrence-based clas- 
sifiers usually reduce the information content of the 
co-occurrencl5 matrices by extracting secondary fea- 
tures. However, those features usually do no longer 
contain the original grey level and histogram informa- 
tion. In our application domain, this information is 
vital and should not be eliminated. The algorithm for 
texture segmentation presented here therefore retains 
the complete information content. The experiments so 
far show very good results. Further tests are underway. 

Comparisons to other methods of texture segmenta- 
tion lead to the following conclusions: Markov ran- 
dom field methods are perhaps closest in spirit to the 
approach described here. However, MRF methods 
present a number of problems: parameter estimation 
by Besag’s cotding method (see [ 1] ) is an optimization 
process plagued by the usual problems inherent in 
multi-dimensilonal search. In comparison, the estima- 
tion of parameters for the method described in this 
paper is trivial, as only co-occurrences need to be 
computed. Another problem with MRF methods con- 
cerns the choice of an appropriate MRF model. There 
are a variety of possible choices and parameterizations 
that are not at all obvious. The method presented here 
has very few parameters for which default values usu- 
ally work well. Other approaches to texture segmenta- 
tion such as L,aws filters are not suitable for image 
synthesis. 

Future work. will be directed towards further im- 
provement of the classification scheme. For instance, 
a large window size led to inaccurate results at the 
borders of adjacent texture classes. One way to over- 
come this problem is to post-process the result by 
some region-growing method. 
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