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HA, hemagglutinin; LatB, latrunculin B; PM, plasma membrane;, RFP, red fluorescent protein; 

RT-PCR, reverse transcriptase polymerase chain reaction; SLC, split luciferase 
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receptors; SYP, Syntaxin-of-Plant; TGN, trans-Golgi network; VAMP, vesicle-associated 

membrane protein; WT, wild-type 
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Abstract 

Root hairs are fast-growing tubular protrusions on root epidermal cells that play important roles 

in water and nutrient uptake in plants. The tip-focused polarized growth of root hairs is 

accomplished by the secretion of newly synthesized materials to the tip via the polarized 

membrane trafficking mechanism. Here, we report the function of two different types of plasma 

membrane (PM) Qa-SNAREs, SYP123 and SYP132, in the growth of root hair in Arabidopsis. 

We found that SYP123, but not SYP132, localizes in the tip region of root hairs by recycling 

between the BFA-sensitive endosomes and the PM of the expanding tip in an F-actin-dependent 

manner. VAMP721/722/724 also exhibited tip-focused localization in root hairs and formed 

ternary SNARE complexes with both SYP123 and SYP132. These results demonstrate that 

SYP123 and SYP132 coordinate to mediate tip-focused membrane trafficking for root hair tip 

growth.  
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Introduction 

Cell polarity is central to establishing cell morphology in eukaryotes. In plants, protrusions 

called root hair rapidly and characteristically extend from root hair cells. This type of tip-

focused growth, called ‘tip growth’, requires polarization of the cytoplasm and unidirectional 

membrane trafficking to the tip region. During root hair development, newly synthesized 

proteins, lipids, and cell wall materials are delivered to the plasma membrane (PM) of the tip 

region by polarized vesicle trafficking with subsequent retrieval of excess proteins and 

membranous materials from the adjacent region of the tip by the endocytic pathway (Carol and 

Dolan 2002). The internalized materials are sorted in endosomes and partially recycled back to 

the tip. This complicated polarized membrane trafficking in root hair cells is established by 

various molecules involved in membrane trafficking, including small GTPases of the Rop, Rab, 

and Arf families, as well as their regulatory proteins (Molendijk et al. 2001, Xu and Scheres 

2005, Preuss et al. 2004).     

 Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are 

essential molecules in membrane trafficking and constitute a large superfamily in eukaryotes 

(Hong 2005). SNAREs are categorized into two distinct classes according to their conserved 

residues within the SNARE motif: Q-SNARE and VAMP/R-SNARE. Q-SNARE proteins are 

further subdivided into three subfamilies: Qa-, Qb-, and Qc-SNAREs. Three Q-SNAREs on a 
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target membrane and one VAMP/R-SNARE on transport vesicles form a ternary SNARE 

complex for membrane fusion (Fasshauer et al. 1998). More than 60 SNARE genes have been 

reported for the Arabidopsis genome, and many Arabidopsis SNAREs localize on the PM 

(Sanderfoot 2007). In particular, nine Qa-SNARE molecules localize to the PM (Uemura et al.  

2004), implying that each PM Qa-SNARE molecule has specialized physiological functions in 

Arabidopsis. Among these PM Qa-SANREs, KNOLLE/SYP111 is predominantly expressed 

during mitosis and functions in cell plate formation (Lauber et al. 1997). SYP121/PEN1/SYR1 

has multiple functions in various physiological steps, including accurate secretion and changes 

in the mobility of the KAT1 K+-channel (Sutter et al. 2006), and non-host resistance against 

powdery mildew (Collins et al. 2003). SYP122 has redundant functions with SYP121 in growth 

and development because the syp121syp122 double mutant is severely dwarfed and necrotic 

(Assaad et al. 2004). SYP132 orthologs in Nicotiana benthamiana and Medicago truncatula 

play important roles in bacterial defense (Kalde et al. 2007) and symbiosome definition 

(Catalano et al. 2007), respectively. However, no SNARE has been reported to be involved in 

root hair development, although several SNARE molecules are expressed in root hair cells 

(Enami et al. 2009).  

 In contrast to the complexity of the PM Qa-SNAREs, a few R-SNARE/VAMP proteins 

localize to the PM in Arabidopsis (Uemura et al. 2004). Among the PM VAMPs, VAMP721 
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and VAMP722 share 96% amino acid sequence identity (Collins et al. 2003, Kwon et al. 2008, 

Yun et al. 2013). These VAMPs are proposed to operate in various secretory pathways by 

forming ternary SNARE complexes with PEN1/SYP121 (Kwon et al. 2008), SYP122 (Pajonk et 

al. 2008), KNOLLE/SYP111 (El Kasmi et al. 2013), and SYP132 (Yun et al. 2013). 

VAMP721/722 co-silenced plants are lethal (Kwon et al. 2008), suggesting that VAMP721 and 

VAMP722 have overlapping functions not only in the defense pathway, but also general 

secretion events by forming multiple PM Qa-SNAREs in Arabidopsis. 

 We previously reported SYP123 is predominately expressed in the root hair cells and 

localizes to the tip-region of growing root hair, whereas SYP132 uniformly localizes on the PM 

within the same cells (Enami et al. 2009). The difference in the subcellular distribution of these 

two Qa-SNAREs in tip-growing root hair cells implies that SYP123 and SYP132 may have 

different functions in polarized membrane trafficking to the tip region during root hair 

elongation. 

 Here, we report the function of SYP123 and SYP132 in the root hair elongation process 

in Arabidopsis. SYP123, but not SYP132, polarly localized to the tip region of root hairs via 

membrane recycling between the brefeldin A (BFA)-sensitive endosomes and the tip. Despite 

the different PM localization patterns of SYP123 and SYP132, loss-of-function of both SYP123 

and SYP132 caused severe defects in root hair elongation. VAMP721/722/724 also exhibited 

 at M
PI M

ax Planck Institute for Plant B
reeding R

esearch on A
pril 3, 2014

http://pcp.oxfordjournals.org/
D

ow
nloaded from

 

http://pcp.oxfordjournals.org/
http://pcp.oxfordjournals.org/


 8 

tip-focused localization in root hair cells and formed ternary SNARE complexes with both 

SYP123 and SYP132. These results indicate that two different PM Qa-SNARE, SYP123 and 

SYP132, coordinately function in root hair elongation in Arabidopsis by forming SNARE 

complexes with a PM R-SNARE, VAMP721/722/724.  
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Results 

 

Loss of SYP123 and SYP132 expression impairs root hair elongation  

We previously reported that one of the PM-resident Qa-SNAREs, SYP123, is predominantly 

expressed in root hair cells and polarly accumulates in the tip region of root hairs. Another PM-

resident Qa-SNARE, SYP132, is also expressed in root hair cells (Enami et al. 2009). This 

unique expression pattern of two distinct SNAREs in root hair cells implies that both SYP123 

and SYP132 are involved in root hair elongation and/or root hair cell development. 

 To investigate how SYP123 functions in root hair cell development, we obtained a T-

DNA insertion line (CS488587) that has a T-DNA insertion in the first exon of the SYP123 gene 

and designated the line as syp123-1 (Fig. 1A). Semi-quantitative RT-PCR analysis did not 

detect SYP123 transcript in homozygous syp123-1 seedlings, indicating that syp123-1 is a null 

mutant. Expression of SYP123 was detected in a complementation line expressing GFP-SYP123 

under the control of the SYP123 promoter (Fig. 1B). The root hair length of syp123-1 was 

significantly shorter (377.2 ± 113.8 µm) than that of WT plants (497.4 ± 104.3 µm). The 

expression of GFP-SYP123 under the control of the SYP123 promoter in syp123-1 significantly 

complimented the short root hair phenotype of syp123-1, suggesting that GFP-SYP123 is 
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functional (Fig. 1C, D). No difference in root length was observed between WT and syp123-1 

(Supplementary Fig. S1). Thus, only the root hair length was shortened in the syp123-1 mutant. 

 Next, we investigated the function of SYP132 in root hair development. Because 

SYP132 is ubiquitously expressed in all tissues including root hair cells as the most 

conventional PM-SNARE in Arabidopsis, is possibly involved in the general secretion event 

(Enami et al. 2009, Sanderfoot 2007), it might be difficult to investigate the function of SYP132 

only in root hair development using T-DNA knockout lines due to lethality. Therefore, we 

generated artificial microRNA (amiRNA) constructs on a pER8-modified vector, 

pER8GWExpA7, in which the G10-90 promoter region of pER8 vector was replaced by the 

Arabidopsis Expansin A7 promoter, which is able to conditionally induce gene expression only 

in root hair cells. Adding 10 µM estradiol induced GFP only in the root hair cells of the 

transgenic plant generated by the vector (Supplementary Fig. S2A). After conditional induction 

of RNA interference of SYP132 in the presence of estradiol, SYP132 RNA content decreased 

significantly in SYP132 amiRNA lines #1 and #2 (Fig. 2A and Supplementary Fig. S2B). Next, 

we crossed the GFP-SYP132-expressing line and the SYP132 amiRNA line to investigate 

whether the expression of GFP-SYP132 decreases only in root hair cells. As shown in 

Supplementary Fig. S2C, the fluorescence of GFP-SYP132 was strongly attenuated in root hair 

cells. The GFP-SYP132 fluorescence was also decreased in the non-root hair cells, probably 
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because of leaky expression of SYP132 amiRNA into the non-root hair cells. The length of root 

hairs on SYP132 amiRNA plants was drastically shortened in the presence of estradiol in both 

the transgenic lines, #1 and #2 (Fig. 2 B, C). The root length in SYP132 amiRNA plants was 

also decreased in the presence of estradiol, probably due to the reduced expression of SYP132 

in root epidermal cells, including root hair cells and non-root hair cells (Supplementary Fig. S3). 

Taken together, these results clearly demonstrate that both SYP123 and SYP132 function in the 

root hair elongation process in Arabidopsis.  

 

Focal accumulation of SYP123 in the tip region of the root hair is F-actin dependent  

Because the actin cytoskeleton is known to be involved in the polarized delivery of secretory 

vesicles to the root hair apex (Smith and Oppenheimer 2005), we tested the effect of an actin 

polymerization inhibitor, latrunculin B (LatB), on the focal accumulation of GFP-SYP123 in the 

root hair tip. As shown in Fig. 3A and 3B, LatB treatment gradually reduced the fluorescence 

intensity of GFP-SYP123 in the root hair region, but no difference was found in the root hair 

cell region. After 30 min of treatment, the focal accumulation of GFP-SYP123 in the root hair 

tip completely disappeared, and little difference was observed in fluorescence intensity between 

the root hair region and root hair cell region. Therefore, the accumulation of GFP-SYP123 in 
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the root hair tip region was F-actin dependent. The localization and intensity of GFP-SYP132 

on the PM of root hair was unchanged with LatB treatment (Supplementary Fig. S4).  

 The tip-focused distribution of GFP-SYP121 was also observed when GFP-SYP121 

was expressed ectopically under the control of the CaMV 35S promoter (Supplementary Fig. 

S5A-D), although no fluorescence of GFP-SYP121 was observed in root hair cells when 

expressed under the control of its own promoter (Enami et al. 2009). The characteristic tip-

focused GFP-SYP121 localization disappeared with the treatment of another actin 

polymerization inhibitor, cytochalasin D. The vesicles were still concentrated in the tip region 

after treatment (Supplementary Fig. S5E, F). Thus, SYP121 potentially localizes to the tip of 

root hair, and this focused accumulation of GFP-SYP121 was also F-actin dependent. Because 

disruption of SYP121 function caused no particular difference in root hair elongation (data not 

shown) and SYP121 is expressed at lower levels in root hair cells (Enami et al. 2009), the 

accumulation of GFP-SYP121 in the root hair tip may be an artificial effect of the ectopic 

expression of GFP-SYP121 under the control of the CaMV35S promoter.    

  

SYP123, but not SYP132, is focally delivered to the root hair tip region  

To test whether SYP123 is polarly delivered to the tip region of root hair, we photo-bleached 

pre-existing GFP-SYP123 in the root hair and analyzed the recovery of fluorescence at the PM 
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of root hair cells. Fluorescence recovery after photo-bleaching (FRAP) analysis showed that 

GFP fluorescence first recovered in the tip region of the growing root hair (Fig. 4A, C). In 

contrast, the tip-focused fluorescence of GFP-SYP123 was never observed in non-elongating 

root hair (Supplementary Fig. S6). In addition, treatment with tyrphostin A23, a well-

characterized inhibitor of the clathrin-mediated endocytic pathway (Banbury et al. 2003), 

resulted in the disappearance of the focal accumulation of GFP-SYP123 in the root hair tip. 

After 60 min of treatment, the tip region of the root hair finally ruptured (Supplementary Fig. 

S7). These results did not occur with the non-functional analog tyrphostin A51, suggesting that 

clathrin-mediated endocytosis is required for the accumulation of SYP123 in the root hair tip.  

 In contrast to GFP-SYP123, fluorescence recovery of GFP-SYP132 was almost 

identical between the tip and base regions of the root hair (Fig. 4B, D), suggesting that the 

distribution of SYP132 in the tip region of the root hair cells is not polar.  

 

Brefeldin A induces large aggregated GFP-SYP123 structures inside the root hair region 

BFA is known to interfere with the recycling of several PM proteins, inhibiting the activity of 

the exchange factors for ARF GTPases (ARF-GEFs) and forming large aggregations called 

“BFA compartments” inside cells (Satiat-Jeunemaitre et al. 1996, Staehelin and Driouich 1997). 

We treated the growing root hair cells of transgenic plants expressing GFP-SYP123 and GFP-
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SYP132 with BFA to test whether the treatment affects the localization of these SNAREs.

 Although no change in the localization pattern was observed in the control experiment 

(Fig. 5A), after 30 min of BFA treatment a few large GFP-SYP123 aggregations were observed 

in the root hair cells, particularly in the root hair region. GFP-SYP123 was completely 

depolarized from the PM of the root hair tip, and GFP-SYP123 became uniformly distributed to 

the entire PM of the root hair cells (Fig. 5B). The tip-focused localization of ectopically 

expressed GFP-SYP121 in growing root hairs also exhibited a strong response to BFA. After 30 

min, the tip-polarization of GFP-SYP121 completely disappeared and large aggregations of 

GFP fluorescence emerged inside of the root hair (Supplementary Fig. S5G). In contrast, no 

change in localization or aggregation of GFP-SYP132 was observed after 30 min of BFA 

treatment (Fig. 5C, D). These data strongly suggest that the polarized distribution of SYP121 

and SYP123, but not SYP132, in the root hair tip is BFA-sensitive. 

 

SNARE complex formation by SYP123, SYP132, and VAMP721/722/724 

Most of the VAMP72 family proteins (e.g., VAMP721, VAMP722, VAMP724, VAMP725, and 

VAMP726), except VAMP727, localize to the PM (Uemura et al. 2004, Ueda et al. 2004). 

Among the PM-localized VAMP72 proteins, VAMP721/722 have been proposed to function in 

various exocytic pathways by forming distinct SNARE complexes with PEN1/SYP121 (Kwon 

 at M
PI M

ax Planck Institute for Plant B
reeding R

esearch on A
pril 3, 2014

http://pcp.oxfordjournals.org/
D

ow
nloaded from

 

http://pcp.oxfordjournals.org/
http://pcp.oxfordjournals.org/


 15

et al. 2008), KNOLLE (El Kasmi et al. 2013), and SYP132 (Yun et al. 2013), implying that 

VAMP72s also form SNARE complexes with SYP123 in root hair cells. Microarray analysis 

using the Arabidopsis eFP Browser program (Winter et al. 2007) revealed that VAMP721, 

VAMP722, and VAMP724 are expressed in the root tissues. To determine which VAMP72s are 

expressed in root hairs, we generated transgenic plants expressing mRFP-VAMP721, -

VAMP722, and -VAMP724 under the control of their promoters. As shown in Fig. 6, mRFP-

VAMP721/722/724 were expressed in root hair cells and accumulated in the root hair tip region. 

This accumulation disappeared and a few large aggregations formed after BFA treatment (Fig. 

6B, D, F), indicating that the focal accumulation of VAMP72s in the root hair tip is a BFA-

sensitive recycling process.  

 Next, we tested the possibility of in vitro ternary SNARE complex formation by 

SYP123 and SNAP33 with various VAMP72 proteins. Each VAMP72 protein (i.e., VAMP721, 

VAMP722, VAMP724) was incubated with recombinant HA-tagged SYP123 (HA-SYP123) 

and glutathione-S-transferase (GST)-fused SNAP33 (GST-SNAP33). Protein complexes were 

recovered by the adsorption of GST-SNAP33 to glutathione Sepharose 4B and analyzed for the 

presence of SDS-resistant ternary SNARE complexes by immunoblot analysis with the anti-HA 

antibody. The high molecular weight bands disappeared with boiling, indicating that SYP123 

might form SDS-resistant ternary SNARE complexes with all VAMP72 proteins (i.e., 
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VAMP721, VAMP722, and VAMP724) tested in vitro (Fig. 7A). These results suggest that 

SYP123 potentially has an ability to form ternary SNARE complexes with SNAP33 and various 

VAMP72 proteins in vitro.  

  To confirm the interaction between SYP1s and VAMP72s, we also examined the in 

vivo interaction of SYP121, SYP123, and SYP132 with VAMP72s using the split luciferase 

complementation (SLC) assay (Fujikawa and Kato 2007). In the SLC assay, a protein pair of 

interest is genetically fused to the N- or C-terminal fragment of Renilla luciferase (Nluc or Cluc, 

respectively) and transiently expressed in Arabidopsis protoplasts. The interaction of the protein 

pairs is then evaluated by measuring complemented luciferase activities. We successfully 

demonstrated in a previous study that the SCL assay allows the evaluation of binary interactions 

among various SNARE subfamilies (Kato et al. 2010). Therefore, we transiently expressed three 

distinct SYP1s (Nluc-SYP121, Nluc-SYP123, or Nluc-SYP132) and four distinct VAMP72s 

(Cluc-VAMP721, Cluc-VAMP722, Cluc-VAMP723, and Cluc-VAMP724) simultaneously in 

Arabidopsis protoplasts to evaluate the interaction of SYP121, SYP123, and SYP132 with 

VAMP72s. As shown in Fig. 7B, strong interactions were observed between SYP1s and the 

PM-localized VAMP72s (i.e., VAMP721, VAMP722, and VAMP724). No or little interaction 

was observed with the TGN-localized SYP41/vacuolar-localized SYP22 pair used as a negative 

control (Fujikawa and Kato 2007) or the PM-localized SYP1s and ER-localized VAMP723 pair.  

 at M
PI M

ax Planck Institute for Plant B
reeding R

esearch on A
pril 3, 2014

http://pcp.oxfordjournals.org/
D

ow
nloaded from

 

http://pcp.oxfordjournals.org/
http://pcp.oxfordjournals.org/


 17

 Taken together, these results suggest that SYP123 and SYP132 in the PM form SNARE 

complexes with VAMP721/722/724 with no difference in interaction specificity in Arabidopsis 

root hair cells. 

 

Discussion 

We previously reported that both SYP123 and SYP132 are expressed in root hair cells with 

different localization patterns: SYP123 is predominantly expressed in root hair cells and 

accumulates in the root hair tip, whereas SYP132 is ubiquitously expressed in all tissues and 

uniformly localizes to the PM (Enami et al. 2009). These results imply that these two PM-

SNAREs may be coordinately involved in the development of root hair cells.  

  In the present study, we examined how these PM-SNAREs contribute to root hair 

elongation in Arabidopsis. Impairing the function of SYP123 and SYP132 individually strongly 

inhibited root hair elongation, suggesting that both SYP123 and SYP132 function on the 

membrane trafficking cell surface materials during root hair elongation, despite SYP123 and 

SYP132 having different localization patterns in root hair cells.  

  Disruption of the tip-focused accumulation of GFP-SYP123 by LatB treatment suggests 

that the polar localization of SYP123 is achieved by the actin cytoskeleton. Intriguingly, GFP-

SYP121 also accumulates in the tip region of the root hair when the protein is ectopically 
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expressed in root hair cells. SYP121 is known to be focally recruited to the fungal penetration 

site for deposition of cell wall materials for papilla formation (Assaad et al. 2004, Bhat et al. 

2005). Alternatively, SYP12 family proteins SYP124 and SYP125 predominantly localize to the 

tip region of growing pollen tubes (Enami et al. 2009, Silva et al. 2010, Ul-Rehman et al. 2011), 

and transiently expressed GFP-SYP121, GFP-SYP122, and GFP-SYP124 in tobacco exhibit 

focal accumulation in the tip region of pollen tubes (Silva et al. 2010). Upon fungal infection, 

actin microfilaments become focused on the penetration site (Takemoto et al. 2006, Shimada et 

al. 2006). In growing root hairs and pollen tubes, actin cytoskeleton functions not only in 

organelle movement, but also in polarized secretion of cell wall and membranous materials 

(Carol and Dolan 2002, Šamaj et al. 2006). A high similarity in amino acid sequences and gene 

structures among SYP12 family proteins indicate that all SYP12 family proteins potentially 

have the ability to interact with the F-actin cytoskeleton in order to focally accumulate in 

particular domains on the PM. Future studies need to confirm the interaction between actin and 

SYP12s and the actin interaction domain of SYP12s.      

 One important role of the actin cytoskeleton in promoting tip growth in root hair or 

pollen tubes is to drive the long-range movement of secretory vesicles, transporting cell wall 

and plasma membrane materials toward the tip (Smith and Oppenheimer 2005). A plant 

homolog of mammalian RAB11 in Arabidopsis, RabA4b, localizes to the clear zone of growing 
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root hair (Preuss et al. 2004). This localization depends on an intact actin cytoskeleton, and the 

tip-focused localization of RabA4b is essential for sustained growth of the root hair tip. The Rab 

protein acts as a molecular switch in membrane trafficking by cycling between active GTP-

bound and inactive GDP-bound states. The RABs activated by the guanine nucleotide exchange 

factor (GEF) tether transport vesicles to the target organelle membrane, and SNAREs function 

in the subsequent step of vesicle and target membrane fusion (Ueda et al. 2012). Therefore, the 

tip-focused accumulation of SYP123 may indicate that SYP123 and RabA4b are cooperatively 

involved in root hair elongation.  

 BFA is known to inhibit the secretion process to perturb ARF-GEFs in eukaryotes 

(Klausner et al. 1992). In plants, BFA treatment results in the so-called BFA compartments, 

which are composed of TGN/early endosomes and inhibit a wide variety of membrane 

trafficking events (Satiat-Jeunemaitre et al. 1996). Various tropic responses and development 

are controlled by directional auxin flow, which is mainly established by polar localization of 

auxin transporters, such as AUX1, PGPs, and PINs (Swarup et al. 2001, Terasaka et al. 2010, 

Feraru and Friml 2008). In particular, the polarity of PIN family proteins are established by the 

endocytic recycling pathway, which is controlled by the BFA-sensitive ARF-GEF GNOM 

(Geldner et al. 2003, Kleine-Vehn et al. 2008). In root hairs, BFA-induced aggregations of early 

endosomes are formed in the presence of BFA and root hair elongation is completely inhibited 
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(Ovecka et al. 2005, Hlavacka et al. 2005, Ovecka et al. 2010). Similarly, we found that BFA 

treatment results in a few large aggregations and the depolarization of GFP-SYP123 and mRFP-

VAMP721/722/724, but not GFP-SYP132, in root hair cells. These findings suggest that the 

polarized localization of SYP123 and mRFP-VAMP72s is accomplished by the BFA-sensitive 

membrane recycling mechanism in root hair cells.   

 The proteins of the PM-localized SYP1 Qa-SNARE family have different spatio-

temporal expression patterns: SYP132 is expressed ubiquitously in all tissues throughout plant 

development, whereas SYP124, SYP125, and SYP131 are only expressed in pollen, and 

SYP123 appears to be exclusively expressed in root hair cells during root development (Enami 

et al. 2009). KNOLLE/SYP111 is a specialized SYP1 syntaxin in flowering plants that is 

required for cytokinesis (Lauber et al. 1997). SYP121/PEN1/SYR1 is reported to be involved in 

various physiological processes, including secretion, cellular growth (Geelen et al. 2002), ion 

homeostasis (Leyman 1999), and non-host resistance to powdery mildew fungus (Collins et al. 

2003). SYP122, a paralog of SYP121, is phosphorylated in response to elicitor flagellin (Nühse 

et al. 2003). A syp121syp122 double mutant previously exhibited a dwarfed and necrotic 

phenotype, suggesting that these two PM SNARE molecules have redundant functions not only 

in plant immunity, but also in general secretion events (Assaad et al. 2004, Zhang et al. 2007). 

SYP132 is ubiquitously expressed in Arabidopsis (Enami et al. 2009) and has been related to 
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the most ancient evolutionary branch of SYP1 proteins (Reichardt et al. 2011), suggesting that 

SYP132 is involved in the general secretion event in land plants. Although no function has been 

reported so far for SYP132 in Arabidopsis, SYP132 orthologs play important roles in bacterial 

defense in Nicotiana benthamiana (Kalde et al. 2007) and symbiosome membrane definition in 

Medicago truncatula (Catalano et al. 2007). Therefore, these results suggest that PM-resident 

Qa-SNARE molecules function in different membrane trafficking pathways leading to particular 

domains or the entire PM for the transport of various functional molecules in a polarized or non-

polarized manner. In contrast to the complexity of SYP1s, basically only one type of VAMP/R-

SNARE exists; VAMP721/722 forms SNARE complexes with various SYP1 molecules in 

vegetative tissues (Lipka et al. 2007, Yun et al. 2013, Kato et al. 2010). Recently, 

KNOLE/SYP111 is reported to interact with NPSN (Qb) and SYP7 (Qc) instead of SNAP33 

(Qb + Qc) (El Kasmi et al. 2013), suggesting that two different types of PM-SNARE complex 

are generated during the membrane fusion between secretory vesicles and the PM.  Although we 

found no clear difference in the interaction specificity of VAMP721/722/724 with SYP123 or 

SYP132 in our experimental conditions, two different types of SNARE complex may form 

between SYP123/132 and VAMP721/722/724 to interact with distinct types of the PM Qb- and 

Qc-SNAREs in root hair elongation process.  
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. In conclusion, we propose that de novo secretion of cell wall and plasma membrane 

materials is established by a SYP132 and VAMP721/722/724-mediated non-polar secretory 

pathway, and that secretory vesicles are then recycled by the clathrin-dependent endocytic and 

BFA-sensitive exocytic pathway and focally delivered to the root hair tip by a SYP123 and 

VAMP721/722/724-mediated vesicle fusion process. Consequently, tip-focused polarized 

secretion is established in root hair cells (Fig. 8).        
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Materials and Methods 

 

Plant material and growth conditions 

 The syp123-1 T-DNA insertion mutant line CS488587 (Arabidopsis thaliana ecotype 

Columbia background) was obtained from the Arabidopsis Biological Resource Center (ABRC). 

The inserted locus was sequence-verified by analysis of the PCR-amplified fragment using 

appropriate primer sets. Establishment of the GFP-SYP123 and GFP132 lines and the growth 

conditions were reported previously (Enami et al. 2009).  

 

Plasmid construction and plant transformation 

For the construction of estrogen-induced artificial microRNA (amiRNA) SYP132 and GFP 

constructs, the pER8 vector (Zuo et al. 2000) was digested with SpeI and XhoI and then blunted 

by the T4 DNA polymerase. The Gateway conversion cassette (Invitrogen) was ligated into the 

blunted vector. The resulting vector was designated pER8GW. The G10-90 promoter of 

pER8GW was replaced by the Arabidopsis Expansin A7 promoter sequence to generate 

pER8GWExpA7. To generate the SYP132 amiRNA construct for inhibition of SYP132 

expression, we designed an optimal amiRNA sequence using the WMD3 program 

(http://wmd3.weigelworld.org/cgi-bin/webapp.cgi). The designed target 21-mer amiRNA 
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sequence (5’-TGTTACTGTATAAAGTCGCCT-3’) was synthesized using the following 

primers: (miRNA-sense,miRNA-antisense, miRNA*-sense, miRNA*-antisense, see 

supplementary table1) according to the method described by Ossowski et al. (2008). GFP and 

SYP132 amiRNA sequences were subcloned into pER8GWExpA7 using the Gateway cloning 

method according to the manufacturer’s instructions.    

 PAtVAMP72s::mRFP-AtVAMP72s (721, 722, 724) were constructed using the FTFLP 

method described previously (Ebine et al. 2011). Agrobacterium tumefaciens strain GV3101 

was used for transformation into plants by the floral dip method (Clough and Bent 1998).  

For the in vitro SNARE complex assay, cDNAs corresponding to SYP123, AtVAMP72s, and 

AtSNAP33 were obtained by RT-PCR using Arabidopsis RNA extracts or from RIKEN. The 

full-length coding regions were amplified by PCR and sub-cloned into the plasmid vector 

pGEX-6p-1 (GE Health). The HA tag was fused with SYP123 by adding corresponding DNA 

sequences to primers for PCR. 

 

RT-PCR 

 Total RNA was extracted using the RNeasy plant mini kit (QIAGEN) according to the 

manufacturer’s instructions. First strand cDNAs were synthesized using an RNA PCR kit 
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(Takara Bio) with oligo-dT primer. The cDNA was amplified by PCR using a set of primers 

specific to SYP123 or ACT2. PCR products were loaded on 1.0% agarose gel. 

 

Inhibitor treatment 

For the inhibitor assay, 4d-old seedlings were submerged into 1 ml of distilled water containing 

the respective inhibitor or corresponding amount of solvents in microtubes, and then subjected 

to microscopy. In the case of the time lapse chase assay, seedlings were directly mounted on a 

glass slide in the presence of a working solution of the inhibitor and monitored. The final 

concentration and duration of each inhibitor treatment was as follows: 2 µM latrunculin B 

(Calbiochem) for 30 min, 20 µM brefeldin A (Sigma) and 50 µM tyrphostin A23 and A51 

(Sigma) for 1 h. 

 

Confocal microscopy and image analysis 

 Fluorescent signals and corresponding differential interference contrast (DIC) values 

were obtained using a Nikon ECLIPSE E600 laser scanning microscope equipped with a C1si-

ready confocal system (Nikon, Tokyo, Japan), an argon laser, and a green HeNe laser. The 

collected images were processed using Nikon EZ-C1 software and analyzed using ImageJ 

1.38X. 
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For FRAP analysis, transgenic plants were cultivated on cover slips with 1/2 MS medium. After 

5d, the cover glasses with seedlings were inverted on glass slides, and put on the stage of the 

microscope for CLSM. FRAP experiments were performed using a laser-scanning microscope 

(Eclipse E600; Nikon) equipped with the C1-si ready confocal system (Nikon). Bleaching was 

carried out on the root hair with the laser power set to 100% until the GFP fluorescence was 

bleached. The images were obtained at 5 minutes intervals for 30 minutes and analyzed using 

EZ-C1 software (Nikon) to measure GFP intensity. 

 

In vitro SNARE complex assay 

 To express SNARE proteins in bacteria, the plasmid DNA constructs mentioned above 

were transformed into the E. coli BL21 (DE3) pLysS strain. Protein expression was induced by 

adding 1 mM IPTG to the bacterial suspension and the expressed recombinant proteins affinity-

purified using glutathione-Sepharose 4B (GE Health). To obtain the GST-devoid proteins, bead-

bound proteins were digested with Prescission Protease (GE Health) and the released proteins 

were collected. To analyze ternary SNARE complex formation, equimolar (1 µM) amounts of 

protein were mixed and incubated at 4°C overnight. After retrieving the interacting proteins by 

precipitating GST-SNAP33 with glutathione Sepharose 4B, the matrix-bound complexes were 

subjected to immunoblot analysis using anti-HA and anti-GST antibodies. To detect SDS-
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resistant but heat-labile ternary SNARE complexes, boiled and non-boiled protein samples were 

compared. 

 

Split luciferase complementation assay 

The split luciferase complementation assay was performed as reported previously (Kato and Bai 

2010). Briefly, protoplasts were prepared from the rosette leaves of 3 to 4-week-old Arabidopsis 

thaliana Col-0 plants. The protoplasts were then transformed in 96-well microplates with equal 

amounts of the pDuExAn6 and pDuExD7 plasmids expressing full-length cDNAs of interest 

(Fujikawa and Kato 2007). In the plasmids, the cDNA was inserted into the C-terminal end of 

the sequence that encodes either the N- or C-terminal fragment of Renilla luciferase. To 

measure the complemented Renilla luciferase activities, luminescence was detected by a 

microplate luminometer after adding ViviRen (Promega), a Renilla luciferase substrate, to 

protoplast solutions in the wells. To normalize for deviations in the transformation efficiency in 

each well, the protoplasts were co-transformed with the pMONT plasmid expressing click 

beetle red luciferase (Kato et al. 2010). The click beetle red luciferase-dependent luminescence 

was measured after adding luciferin, a click beetle red luciferase substrate, to the protoplast 

solutions in the wells. Because luciferin and ViviRen emit different colors of fluorescence (red 

and cyan, respectively), the click beetle luciferase-dependent luminescence was detected 
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through a red filter (Kodak Wratten filter No. 29, Kodak) after measuring the Renilla luciferase–

dependent luminescence. The Renilla luciferase-dependent luminescence was expressed in 

normalized relative luminescence units (nRLUs) and calculated by dividing the cyan 

luminescence unit by the red luminescence unit. 
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Figure legends 

 

Fig. 1. The root hair elongation phenotype of the syp123 mutant. (A) Schematic representation 

of SYP123 gene and the position of the T-DNA insertion. Boxes indicate exons. Dark grey 

regions indicate untranslated regions. The open triangle indicates the position of the T-DNA 

insertion. Arrows indicate the positions of primers used for RT-PCR and genomic PCR. (B) RT-

PCR analysis to detect the expression of SYP123 in wild-type (WT) and mutant plants. Total 

RNA was purified from 7d-seedlings. ACT2 was used as an internal control. “Genomic DNA” 

indicates that PCR was performed by using Arabidopsis genomic DNA as a template. (C) 

Lengths of root hairs from WT, syp123-1 mutant, and the complementation line expressing 

GFP-SYP123 under the control of its promoter in SYP123-1. Root hair length was measured 

using the 10 longest root hairs from 20 primary roots of 5-day-old each seedling on half-length 

MS agar plates. Values represent mean ± SD of 200 root hairs. * p < 0.01, t-test. (D) Images 

of roots from WT, syp123-1, and GFP-SYP123/syp123-1 plants.    Scale Bar = 500 µm. 

 

Fig. 2. The root hair elongation phenotype of SYP132 amiRNA plants. (A) RT-PCR analysis to 

detect the expression of SYP132 amiRNA plants (lines #1 and #2) and a GFP-expressing line in 

the presence or absence of 10 µM estradiol. SYP123 in wild-type (WT) and mutant plants. ACT2 
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was used as an internal control. (B) Images of roots from SYP132 amiRNA plants (lines #1 and 

#2) in the presence or absence of estradiol. Scale bars = 1000 µm. (C) The lengths of roots from 

SYP132 amiRNA plants in the presence or absence of 10 µM estradiol. Root hair length was 

measured using the 10 longest root hairs from 20 primary roots of 5-day-old each seedling on 

half-length MS agar plates. Values represent mean ± SD of 200 root hairs. * p < 0.01, t-test.  

 

Fig. 3. Effect of latrunculin B treatment on the accumulation of GFP-SYP123 in the tip region 

of root hair cells. (A) Reconstituted 3D projection images of serial z-stack sections of root hair 

cells at the indicated times. GFP-SYP123 fluorescence immediately dispersed in the tip region 

of root hairs upon the addition of 2 µM latrunculin B. (B) Quantitative analysis of signal 

intensity within the root hair cell (dotted circle) and root hair region (open circle) shown in (A). 

Scale bar = 20 µm 

 

Fig. 4.  FRAP analysis of GFP-SYP123 and GFP-SYP132. (A) GFP fluorescence images of 

GFP-SYP123 and (B) GFP-SYP132 before and after photo-bleaching. Before collecting the 

fluorescence images, photo-bleaching was performed around the root hair tip region. 

Fluorescence intensity was measured in the tubular-formed region (cyan box) and tip region 

(red box) in the same root hair. (C) Recovery of fluorescence intensity for GFP-SYP123 and 
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(D) GFP-SYP132 after photo-bleaching was measured for 35 min, respectively, at the indicated 

time points. 

 

Fig. 5. Effect of brefeldin A treatment on the localization of GFP-SYP123 and GFP-SYP132 in 

root hair cells. (A, B) 3D projection images of GFP-SYP123 and (C, D) GFP-SYP132. BFA 

treatment (20 µM) induced large aggregations of GFP-SYP123 (B) but not GFP-SYP132 (D) 

inside root hairs. A and C represent mock (DMSO) controls. Scale bars = 20 µm. 

 

Fig. 6. mRFP-VAMP721/722/724 accumulate in the tip region of root hairs. (A, B) The root 

hair elongation zones of transgenic plants expressing mRFP-VAMP721, (C, D) mRFP-

VAMP722, or (E, F) mRFP-VAMP724 were observed for the accumulation of fluorescence. 

Fluorescence accumulated in the tip region of root hairs from transgenic plants expressing 

mRFP-VAMP721, mRFP-VAMP 722, and mRFP-VAMP724. Scale bar = 10 µm.   

 

Fig. 7. SYP123 and SYP132 interact with VAMP721/722/724 in vitro and in vivo. (A) SYP123 

forms SDS-resistant ternary SNARE complexes with SNAP33 and various VAMP 72 paralogs. 

(B) Interactions between SYP123 or SYP132 and VAMP721/722/723/724 in vivo. SYP123 and 

SYP132 fused to the N-terminal fragment of luciferase were co-expressed in protoplasts with 
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the indicated VAMPs conjugated to the C-terminal fragment of luciferase. Complemented 

luciferase activities were normalized to the activity of beetle red luciferase co-expressed in the 

protoplasts. Means and standard deviations were calculated from four independent biological 

replicates.    

 

Fig. 8. Schematic model of the functional diversification of SYP123 and SYP132 in the growth 

of polarized root hair tips. We propose that de novo secretion of cell wall and plasma membrane 

materials is established by a SYP132 and VAMP721/722-mediated non-polar secretory pathway, 

followed by focal delivery of secretory vesicles to the root hair tip by an F-actin-dependent 

SYP123-mediated polarized recycling pathway, thereby tip-focused polarized secretion is 

established in root hair cells. 
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Supplementary Figure S1. Primary root lengths for WT and syp123-1 mutant plants. The 

lengths of primary roots from 5-d-old WT and syp123-1 seedlings were measured. Values 

represent mean ± SD of 50 primary roots. 

 

Supplementary Figure S2. The fluorescence images of a GFP-SYP132 expressing line crossed 

with a SYP132 amiRNA line. We crossed the GFP-SYP132-expressing line and the SYP132 

amiRNA line. The F1 generation of the crossed line was used for the observation. (A) GFP 

fluorescence was observed only in root hair cells in the presence of estradiol in a 

GFP/pER8GWExpA7 expressing plant.  Scale bars =50 µm. (B) Quantitative RT-PCR analysis 

of SYP132 transcripts of 5-d-old seedlings of SYP132 amiRNA lines #1 and #2 in the presence 

or absence of 10 µm estradiol. Polyubiqutin-10 gene (UBQ10) was used as an internal control. 

Values represent mean ± SE (n=5). (C) The fluorescence of the root of GFP-SYP132 was 

observed in the presence of or absence of 10 µm estradiol. White triangles indicate root hair cell 

files.  

 

Supplementary Figure S3. Primary root lengths for SYP132 amiRNA plants. The lengths of 

primary roots from 5-d-old GFP and SYP132 amiRNA seedlings, in the presence or absence of 

estradiol, were measured. Values represent mean ± SD of 50 primary roots. * p < 0.01, t-test. 
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Supplementary Figure S4. Effect of latrunculin B treatment on the localization of GFP-

SYP132 in root hair cells. Scale bar = 20 µm. 

 

Supplementary Figure S5. Fluorescence images of GFP-SYP121 in the root hair of a 

transgenic plant ectopically expressing GFP-SYP121. (A) Projection of a growing root hair with 

polarized distribution of GFP-SYP121. (B) A growth-terminating root hair displaying a 

varnishing polarized distribution of GFP-SYP121. (C) Microscopic image of a growing root 

hair with its normal tip-focused GFP-SYP121 localization and (D) the corresponding density 

file (white = high fluorescence density, blue = low fluorescence density). (E) Microscopic 

image of a growing root hair after exposure to 1 µM cytochalasin D and (F) the corresponding 

density profile. (G) The GFP-SYP121 transgenic plant was exposed to BFA.  

 

Supplementary Figure S6. FRAP analysis of non-growing root hair. Images of GFP-SYP123 

fluorescence before and after photo-bleaching. Before collecting the fluorescence images, 

photo-bleaching was performed around the root hair tip region. Fluorescence intensity was 

measured in the tubular-formed region (cyan box) and tip region (red box) in the same root hair. 
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Recovery of GFP-SYP123 fluorescence intensity after photo-bleaching was measured for 35 

min at the indicated time points.  

 

Supplementary Figure S7. Effect of tyrphostin A23 and A51 treatment on the localization of 

GFP-SYP123 in root hair cells. (A) GFP-SYP123 root hairs were treated with 50 µM tyrphostin 

A23 and (B) A51. The arrow indicates the ruptured region. (C) Fluorescence intensity was 

measured for the indicated regions and (D, E) plotted at such times. Scale bar = 25 µm. 
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Fig. 1. The root hair elongation phenotype of the syp123 mutant. (A) Schematic representation of SYP123 
gene and the position of the T-DNA insertion. Boxes indicate exons. Dark grey regions indicate untranslated 

regions. The open triangle indicates the position of the T-DNA insertion. Arrows indicate the positions of 

primers used for RT-PCR and genomic PCR. (B) RT-PCR analysis to detect the expression of SYP123 in wild-
type (WT) and mutant plants. Total RNA was purified from 7d-seedlings. ACT2 was used as an internal 

control. “Genomic DNA” indicates that PCR was performed by using Arabidopsis genomic DNA as a template. 
(C) Lengths of root hairs from WT, syp123-1 mutant, and the complementation line expressing GFP-SYP123 

under the control of its promoter in SYP123-1. Root hair length was measured using the 10 longest root 
hairs from 20 primary roots of 5-day-old each seedling on half-length MS agar plates. Values represent 
mean ± SD of 200 root hairs. * p < 0.01, t-test. (D) Images of roots from WT, syp123-1, and GFP-

SYP123/syp123-1 plants.    Scale Bar = 500 µm.  
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Fig. 2. The root hair elongation phenotype of SYP132 amiRNA plants. (A) RT-PCR analysis to detect the 
expression of SYP132 amiRNA plants (lines #1 and #2) and a GFP-expressing line in the presence or 

absence of 10 µM estradiol. SYP123 in wild-type (WT) and mutant plants. ACT2 was used as an internal 

control. (B) Images of roots from SYP132 amiRNA plants (lines #1 and #2) in the presence or absence of 
estradiol. Scale bars = 1000 µm. (C) The lengths of roots from SYP132 amiRNA plants in the presence or 
absence of 10 µM estradiol. Root hair length was measured using the 10 longest root hairs from 20 primary 
roots of 5-day-old each seedling on half-length MS agar plates. Values represent mean ± SD of 200 root 

hairs. * p < 0.01, t-test.  
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Fig. 3. Effect of latrunculin B treatment on the accumulation of GFP-SYP123 in the tip region of root hair 
cells. (A) Reconstituted 3D projection images of serial z-stack sections of root hair cells at the indicated 

times. GFP-SYP123 fluorescence immediately dispersed in the tip region of root hairs upon the addition of 2 
µM latrunculin B. (B) Quantitative analysis of signal intensity within the root hair cell (dotted circle) and root 

hair region (white circle) shown in (A). Scale bar = 20 µm  
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Fig. 4.  FRAP analysis of GFP-SYP123 and GFP-SYP132. (A) GFP fluorescence images of GFP-SYP123 and (B) 
GFP-SYP132 before and after photo-bleaching. Before collecting the fluorescence images, photo-bleaching 
was performed around the root hair tip region. Fluorescence intensity was measured in the tubular-formed 

region (cyan box) and tip region (red box) in the same root hair. (C) Recovery of fluorescence intensity for 
GFP-SYP123 and (D) GFP-SYP132 after photo-bleaching was measured for 35 min, respectively, at the 

indicated time points.  
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Fig. 5. Effect of brefeldin A treatment on the localization of GFP-SYP123 and GFP-SYP132 in root hair cells. 
(A, B) 3D projection images of GFP-SYP123 and (C, D) GFP-SYP132. BFA treatment (20 µM) induced large 

aggregations of GFP-SYP123 (B) but not GFP-SYP132 (D) inside root hairs. A and C represent mock (DMSO) 
controls. Scale bars = 20 µm.  
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Fig. 6. mRFP-VAMP721/722/724 accumulate in the tip region of root hairs. (A, B) The root hair elongation 
zones of transgenic plants expressing mRFP-VAMP721, (C, D) mRFP-VAMP722, or (E, F) mRFP-VAMP724 

were observed for the accumulation of fluorescence. Fluorescence accumulated in the tip region of root hairs 

from transgenic plants expressing mRFP-VAMP721, mRFP-VAMP 722, and mRFP-VAMP724. Scale bar = 10 
µm.    
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Fig. 7. SYP123 and SYP132 interact with VAMP721/722/724 in vitro and in vivo. (A) SYP123 forms SDS-
resistant ternary SNARE complexes with SNAP33 and various VAMP 72 paralogs. (B) Interactions between 
SYP123 or SYP132 and VAMP721/722/723/724 in vivo. SYP123 and SYP132 fused to the N-terminal 
fragment of luciferase were co-expressed in protoplasts with the indicated VAMPs conjugated to the C-

terminal fragment of luciferase. Complemented luciferase activities were normalized to the activity of beetle 
red luciferase co-expressed in the protoplasts. Means and standard deviations were calculated from four 

independent biological replicates.    
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Fig. 8. Schematic model of the functional diversification of SYP123 and SYP132 in the growth of polarized 
root hair tips. We propose that de novo secretion of cell wall and plasma membrane materials is established 

by a SYP132 and VAMP721/722-mediated non-polar secretory pathway, followed by focal delivery of 

secretory vesicles to the root hair tip by an F-actin-dependent SYP123-mediated polarized recycling 
pathway, thereby tip-focused polarized secretion is established in root hair cells.  
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