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SUMMARY

The plant immune signaling network needs to be
robust against attack from fast-evolving pathogens
and tunable to optimize immune responses. We
investigated the basis of robustness and tunability
in the signaling network controlling pattern-triggered
immunity (PTI) in Arabidopsis. A dynamic network
model containing four major signaling sectors, the
jasmonate, ethylene, phytoalexin-deficient 4, and
salicylate sectors, which together govern up to
80% of the PTI levels, was built using data for
dynamic sector activities and PTI levels under
exhaustive combinatorial sector perturbations. Our
regularized multiple regression model had a high
level of predictive power and captured known and
unexpected signal flows in the network. The sole
inhibitory sector in the model, the ethylene sector,
contributed centrally to network robustness via its
inhibition of the jasmonate sector. The model’s
multiple input sites linked specific signal input
patterns varying in strength and timing to different
network response patterns, indicating a mechanism
enabling tunability.

INTRODUCTION

Inducible immunity is a major component of plants’ immunity

against pathogens (Jones and Dangl, 2006) in which plants

recognize pathogen attack and transduce this information

through signaling networks within the cell, to different cells,

and to distant tissues. This culminates in activation of defense

responses, which could affect fitness of the pathogen. Although

this sequence of recognition, signal transduction, and response

is the common theme in biological responses to stimuli, induc-

ible immunity in plant is unique in that pathogens not only initiate

the signaling event, but also attack the signaling network.

In pattern-triggered immunity (PTI), a well-defined mode of

plant inducible immunity (Dodds and Rathjen, 2010; Jones and
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Dangl, 2006; Tsuda and Katagiri, 2010), pattern recognition re-

ceptors (PRRs) of a plant recognize molecular patterns relatively

conserved among similar types of microbes (microbe-associ-

ated molecular patterns, MAMPs). For example, a part of bacte-

rial flagellin (flg22), a part of bacterial elongation factor-Tu (elf18),

and an oligosaccharide part of fungal cell walls (chitin) are recog-

nized in Arabidopsis thaliana by the receptor-like kinase PRRs,

FLS2, EFR, and CERK1, respectively (Chinchilla et al., 2006;

Miya et al., 2007; Wan et al., 2008; Zipfel et al., 2006). Such

recognition of MAMPs by the cognate PRRs initiates PTI

signaling. A successful pathogen overcomes PTI by delivering

effectors that interfere with PTI signaling (Dodds and Rathjen,

2010; Jones and Dangl, 2006). For example, the Gram-negative

bacterial pathogen Pseudomonas syringae delivers various

proteinaceous effectors via its type III secretion system into

host plant cells (Lindeberg et al., 2012). As microbial pathogens

can evolve much faster than plants, it seems unlikely that plants

can keep upwith evolution of pathogens by dependingmainly on

simple adaptation (Katagiri and Tsuda, 2010).

Previously, we investigated quantitative relationships among

four major signaling sectors, the jasmonate (JA), ethylene (ET),

phytoalexin-deficient 4 (PAD4), and salicylate (SA) sectors,

which provide much of the network backbone during PTI in

Arabidopsis (Tsuda et al., 2009). JA, ET, and SA are phyto-

hormones important for immune signaling, and their signaling

can be abolished by mutations in the genes DDE2, EIN2, and

SID2, respectively (Alonso et al., 1999; Park et al., 2002; Wilder-

muth et al., 2001). The PAD4 gene affects the SA level as well as

many SA-independent responses (Glazebrook et al., 2003;

Jirage et al., 1999); the latter were defined as the PAD4 effect

in our study. In a quadruple mutant, dde2/ein2/pad4/sid2, the

level of immunity triggered by flg22 (flg22-PTI) against

P. syringae pv. tomato DC3000 (Pto) was diminished to 20% of

the wild-type level (Tsuda et al., 2009). Signaling allocation

analysis was used to determine the contributions to flg22-PTI

of the four signaling sectors and the sector interactions (Tsuda

et al., 2009). Signaling allocation analysis conceptually reconsti-

tutes the signaling network step by step from the near-ground

state of the quadruple mutant based on immunity level mea-

surements in all 16 Arabidopsis combinatorial genotypes

regarding the 4 sectors (dde2/ein2/pad4/sid2, dde2/ein2/pad4,

dde2/ein2/sid2, dde2/pad4/sid2, ein2/pad4/sid2, dde2/ein2,
nc.
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A B Figure 1. Starting Network Structures of

Regression Models

(A) The sector activity starting model with the JA

sector as an example.

(B) An immunity-level starting model with immunity

against Pto as an example.

Our model consists of four layers, listed from the

top: (1) three MAMP treatment inputs (flg22, red;

elf18, green; and chitosan, blue); (2) activities of

four signaling sectors at 3 hpt (yellow nodes); (3)

activities of the signaling sectors at 9 hpt (orange

nodes); and (4) two immunity outputs (against Pto

and Pma strains, pto gray node shown). Each link

represents a directional dependency between

an explanatory variable ‘‘source’’ node and a

response ‘‘target’’ node. Gray and black links in (A)

represent the models for 3 and 9 hpt, respectively.

See also Figure S1.
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dde2/pad4, dde2/sid2, ein2/pad4, ein2/sid2, pad4/sid2, dde2,

ein2, pad4, sid2, and wild-type). In flg22-PTI, the interactions

that involve both the PAD4 and SA sectors had synergistic con-

tributions to immunity, but the other interactions were compen-

satory. The compensatory interactions indicate robustness

against perturbations, which could provide a mechanism for

the network to withstand attack from fast-evolving pathogens.

The plant immune signaling network response should be

tunable, as well as robust, to accommodate the following

aspects. First, unnecessary induction of immunity negatively

impacts plant fitness. Second, signals indicating pathogen

attack may not be reliable. For example, both pathogenic and

nonpathogenic microbes may present the same MAMPs (Boller

and Felix, 2009). Strong induction of immunity by MAMPs from

nonpathogenswould incur a fitness cost; thus, the level of immu-

nity should be tuned probabilistically according to the reliability

of pathogen attack signals (Katagiri and Tsuda, 2010). Third,

different types of defense responses have different efficacies

against different types of pathogens (Glazebrook, 2005). Thus,

the spectrum of defense responses should be tuned to respond

efficiently to different types of pathogens.

Robustness of the network output to perturbations may

suggest inflexibility in the network response and appears incon-

sistent with tunability of the response. Investigating how the

apparently contradictory network properties of robustness and

tunability emerge in the plant immune signaling network is a

main motive of the current study. Our experimental system,

consisting of 16 Arabidopsis combinatorial genotypes, allows

investigation of complex interactions among four signaling

sectors. We built a quantitative model describing signaling

dynamics in the four-sector network during PTI, based on the

sector activities at two time points and the immunity levels

against two P. syringae strains after flg22, elf18, a modified

chitin, or mock treatment in 16 genotypes. The model demon-

strated predictive power. Contrary to current understanding,

the model predicted a positive regulatory role of the JA sector

on the SA sector, which was confirmed by SA-level measure-

ment. The inhibitory effect of the ET sector on the JA sector,

which was predicted by the model and confirmed by JA

measurement, was central to the robustness of the network

output. The network response to different MAMPs was tuned
Cell H
by different intensity and timing patterns of inputs to three

sectors. Particularly, the network may have evolved to switch

among four qualitative states of the JA and PAD4 sectors: only

JA on, only PAD4 on, both on, and neither on.

RESULTS

The Modeling Approach
Two types of data were collected: (1) the mRNA levels of marker

genes for each of four signaling sectors as proxies of sector ac-

tivities (Supplemental Experimental Procedures and Figure S1A

available online) and (2) apoplastic growth of Pto and

P. syringae pv. maculicola ES4326 (Pma). The mRNA level and

bacterial count measurements were performed after treatment

with mock, flg22, elf18, or chitosan (a modified chitin; Silipo

et al., 2010) in 16 combinatorial genotypes of Arabidopsis. The

mRNA levels of themarker genesweremeasured 3 and 9 hr post-

treatment (hpt). The bacterial strains were infiltrated into leaves

24 hpt, and the bacterial growth was measured 2 days after infil-

tration. The log2-transformed mRNA level values were nonli-

nearly scaled for a homogenous noise level (Figures S1B–S1D).

These preprocessed mRNA level values were used in modeling

and are called the sector activity values hereafter. The log10-

transformed bacterial counts were used in modeling, and the

decrease due to MAMP versus mock treatment of the same ge-

notype is called the (MAMP-induced) immunity level hereafter.

There are four layers of nodes in our model. The top layer

consists of three MAMP nodes, flg22 (red), elf18 (green), chito-

san (blue), and mock (not shown). After fitting the model, all

MAMP inputs were calculated relative to mock inputs, so the

mock node is not included in the visualization. The yellow and

orange nodes of the second and third layers represent the 3

and 9 hpt states, respectively, of the four signaling sectors.

The gray output node in the bottom layer represents the immu-

nity level measured with either Pto or Pma. A multiple regression

model with each of the sector and output nodes as the response

(targets of directed links) and the nodes in the preceding or same

layers as the explanatory variables (sources of directed links)

was set up as the starting model (Figures 1). The link from the

3 hpt to the 9 hpt sector nodes within each signaling sector

(i.e., JA 3 hpt to JA 9 hpt in Figure 1A) was omitted from the
ost & Microbe 15, 84–94, January 15, 2014 ª2014 Elsevier Inc. 85
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Figure 2. The PTI Signaling Network Model Has a High Level of Predictive Power

(A) The obtained model. Directional links in red and green represent the significant parameters, indicating activation and inhibition, respectively. The width and

color intensity of the links represent parameter values. The links to the immunity nodes are scaled differently than those to the sector nodes for better visualization.

The links from theMAMP nodes to the immunity nodes are not shown, as they represent the immunity level that is not explained by the four sectors. The estimated

mean parameter value for each link is indicated.

(B and C) Themodel predictions versus the observed data of the sector activities across the treatment:genotoype:time:sector combinations (B) and the immunity

level across the treatment:genotype:strain combinations (C). The associated Pearson correlation coefficients are shown as r. Red circle, JA; green, ET; blue,

PAD4; gray, SA in (B). Red, Pto; blue, Pma in (C). See also Figures S1F, S2, and S3 and Table S1.
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starting model because it is not linearly independent of a link

from any MAMP node to the 9 hpt node. Thus, the link from a

MAMP node to a 9 hpt node represents the sum of those from

the MAMP node and from the early node of the same sector.

The starting model was fit using Lasso regression with varying

penalty (l) values (Friedman et al., 2010) in combination with a

bagging approach (Hastie et al., 2009), and the predictive power

of the model structure (i.e., nonzero link parameters) obtained

for each l value was evaluated. A compact model structure

maintaining high predictive power was selected in this way and

refit to the complete data set using least squares to estimate

the parameter values (Figure 2A, Table S1). We also built a

Bayesian network model (Supplemental Experimental Proce-

dures and Figure S2A) and a multiple regression model with

the same starting structure as the Bayesian model, which were

found to have lower predictive power than the full regression

model described above (Figures S2A and S2B). Thus, we

focused our efforts on the full regression model.

The Obtained Model Has a High Level of Predictive
Power
Model predictions for each treatment:genotype:time:sector

activity and each treatment:genotype:strain immunity level
86 Cell Host & Microbe 15, 84–94, January 15, 2014 ª2014 Elsevier I
were made by a bagging approach, fitting the fixed

model structure shown in Figure 2A with least squares.

Figures 2B and 2C show high Pearson correlation coeffi-

cients (PCCs) between the predicted values and the mean

observed values for the sector activities (0.881) and the log10
of bacterial counts (0.911), demonstrating high levels of predic-

tive power.

If the starting model structure was too complex, the structure

of the final regularized model could vary with relatively small

changes in the data. To test the stability of the model, random

noise at varying levels was generated and added to the original

data set, the same modeling procedure was performed on the

noise-added data, and the obtained models were compared

to the original model (Figures S3A and S3B). Even when the

SD of the added noise was twice as large as the SD of the resid-

uals associated with the original model (log2k = 1), the parameter

values were quite consistent, suggesting that the model infer-

ence process is largely stable.

We further tested the contributions of the intersector links to

the model performance. When all links between signaling

sectors were removed from the starting model structure, the

PCCs between the predicted and observed data were reduced

to 0.681 for the sector activity and 0.887 for log10 of bacterial
nc.



Figure 3. Confirmation of Predicted Regu-

latory Relationships

(A) SA upregulation after flg22 treatment required

the JA sector or the PAD4 sector in a compensa-

tory manner. The means of three biological repli-

cates are shown as bars for the log2-transformed

SA level increase from 0 to 9 hpt, with flg22 in

the indicated genotypes (black dot and blank for

the wild-type and mutant alleles, respectively).

Significant differences from the aggregated mean

of the sid2-containing genotypes (black bars) are

indicated by asterisks.

(B) The JA level was lowered by the ET sector

activity at 9 hpt with flg22. The bars show the

means of the log2-transformed JA levels in three

biological replicates for the indicated genotypes

as in (A). The dde2-containing genotypes were

aggregated to one, as many measurements were

below detection (black bar; x for the genotype

represents either wild-type or mutant alleles).

Asterisks indicate significant differences in the

comparisons between EIN2 (gray bars) and ein2

(mottled bars) of the same genetic backgrounds.
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counts (Table S2), indicating that sector crosstalk links help

capture the network’s behavior.

The Roles of the PAD4 and SA Sectors in Immunity
against the P. syringae Strains
A positive feedback loop structure consisting of the PAD4 and

SA sectors, which is well established (Jirage et al., 1999; Shah,

2003), was correctly captured by the model (bidirectional red

links between the PAD4 and the SA nodes at both 3 and 9 hpt

in Figure 2A). SA signaling is a positive regulator of immunity

against biotrophic and hemibiotrophic pathogens, such as

P. syringae (Glazebrook, 2005); our model concurred (red links

from the SA 9 hpt to the pto and pma nodes). Although SA-

independent functions of PAD4 have been described (Glaze-

brook et al., 2003), the primary role of PAD4 has often been

characterized as positive regulation of SA signaling (Vlot et al.,

2009). The high orders of network perturbation used in our study
Cell Host & Microbe 15, 84–9
revealed a direct (i.e., not via SA) and

strong contribution of PAD4 to immunity

(thick red links from the PAD4 9 hpt to

the pto and pma nodes). EDS1, which

forms a heterodimer with PAD4, is likely

involved in this direct immune contribu-

tion of PAD4 (Wiermer et al., 2005). The

SA sector activation byMAMPs is indirect

(Figure 2A), which may be the basis of

delayed activation of SA signaling during

flg22-PTI (Tsuda et al., 2008), possibly

limiting the negative impacts of misfired

immunity (Katagiri and Tsuda, 2010).

The JA Sector Activates the SA
Sector
Although it is often thought that JA

signaling inhibits SA signaling (Vlot

et al., 2009), the JA sector activated the
SA sector in our model (the red link from the JA to SA nodes at

9 hpt in Figure 2A). We tested this model prediction by directly

measuring the SA level at 0 and 9 hpt with flg22 in 16 combina-

torial genotypes and a flg22 receptor mutant, fls2. Figure 3A

shows that the SA increase was dependent on flg22 treatment

since the increase in fls2 (white bar) was not different from the

sid2-containing mutants (black bars). In the pad4-containing

genotypes, the SA increase completely depended on the wild-

type allele of DDE2, indicating that the JA sector is required for

the SA increase (gray and mottled bars under ‘‘pad4 back-

ground’’). The PAD4 sector was required for SA increase in

dde2-containing genotypes (compare left two bars to right two

bars among four mottled bars). Since the SA increases were

lower in theDDE2/PAD4-containing genotypes than in the corre-

sponding dde2/PAD4-containing genotypes (gray and mottled

bars under ‘‘PAD4 background’’), the JA and PAD4 sectors are

compensatory in activation of the SA sector. Thus, this positive
4, January 15, 2014 ª2014 Elsevier Inc. 87



Figure 4. The JA and ET Sectors Are Salient Factors in Network

Robustness

The differential fragility was calculated for predicted (light gray bars) and

observed (dark gray bars) immunity levels. A positive differential fragility means

that removal of the indicated sector decreases network robustness. Each

bar shows the mean and SE across the appropriate treatment:strain:

secondary_sector combinations. See also Figure S4.
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JA sector effect on the SA sector became evident only under

high-order perturbation of the system. These observations of

higher SA increases in dde2/PAD4-containing genotypes than

in the corresponding DDE2/PAD4-containing genotypes are

reminiscent of the notion that JA signaling inhibits SA signaling.

However, the higher SA increases occurred not because the JA

sector per se inhibits the SA sector activation but because the

dde2 mutation eliminates the above-noted compensation (i.e.,

a negative interaction) between the JA and PAD4 sectors on

SA activation. This is an example of the fact that in a web-like

network, the effect of removal of a single network component

is not necessarily the opposite of the component’s function (Ka-

tagiri and Tsuda, 2010).

Inhibition of the JA Sector by the ET Sector Is Important
for Robustness of the PTI Network Output
Our model predicts that the ET sector is the sole source of inhib-

itory effects in the immune signaling network (Figure 2A). In

particular, the model highlights inhibition of the JA sector by

the ET sector. We tested this prediction by directly measuring

the JA level at 9 hpt with flg22 in 16 combinatorial genotypes

and fls2 (Figure 3B). The JA levels in ein2-containing genotypes

were always higher than the corresponding EIN2-containing

genotypes (paired mottled and gray bars), indicating that the

ET sector inhibits the JA sector regardless of the states of the

other sectors.

One signaling sector inhibiting another, if both regulate

network output, can produce robust network output. When the

first sector is compromised by, for example, a pathogen effector,

the second sector is released from inhibition and backs up the

function of the first sector, which we referred to as sector switch-

ing (Sato et al., 2010). We tested whether the ET sector inhibition

of the JA sector contributes to network robustness. We

measured howmuch loss of a sector in question affects network

fragility, which we defined as the impact on network output

further removing another (secondary) sector. For example, the
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impacts of removing the PAD4 sector (a secondary sector)

when the JA sector is in question was calculated for each treat-

ment:strain combination as
��mdde2=pad4 �mdde2

�� for the dde2

background and
��mpad4 �mwt

�� for the DDE2 background, where

mk is the mean immunity level of genotype k. The differential

fragility of the JA sector for the treatment:strain:PAD4 combina-

tions was calculated by
��mdde2=pad4 �mdde2

��� jmpad4 �mwtj. If a
differential fragility is positive or negative, removal of the sector in

question decreases or increases robustness, respectively. The

fragility values for each treatment:strain:secondary_sector com-

bination in the absence versus the presence of each sector in

question are plotted in Figure S4. Figure 4 shows the mean

and SE of the differential fragility values. The differential fragilities

were calculated from either the observed data or model pre-

dictions (light and dark gray bars, respectively), demonstrating

consistent results between them. Loss of the JA or ET sectors

increased network fragility, indicating that both the JA and ET

sectors are important for network robustness. Removal of either

the source (ET) or target (JA) sector would eliminate the ET-to-JA

inhibitory link. We conclude that this inhibitory link is important

for network robustness.

MAMP Treatments Tune the Response of an Invariant
Network Using Different Input Patterns
The model with the link parameter values (Figure 2A) does not

allow easy visualization of signal flow, which is the product of

the source node activity and the link parameter for each link.

To facilitate model interpretation, we made network activity

maps in which the sector node size represents the sector activ-

ity, and the link width and color intensity represent the amount of

signal flow (Figure S5). In the network activity maps, it is evident

that flg22 treatment strongly activates the JA, ET, and PAD4

sectors, whereas chitosan treatment predominantly activates

the JA sector (Figure 5). This difference in network input pattern

results in activation of the 9 hpt PAD4 sector node by flg22 treat-

ment that is much stronger than that by chitosan treatment; this

difference in the 9 hpt PAD4 sector activity between flg22 and

chitosan treatments largely explains the difference in the level

of immunity induced by flg22 and chitosan. In addition, flg22

treatment, but not chitosan treatment, also activates the 9 hpt

ET sector node, which raises immunity levels. The differential

signal flows activated by the two treatments strongly suggest

that oneway to tune the network response is to change the inten-

sity and timing pattern of the inputs to the signaling sectors.

Another possible explanation for different efficacies in immu-

nity conferred by different MAMP treatments is that the signaling

network structure changes according to MAMP treatments. To

explore this possibility, we fit separate models for different

treatments (treatment-specific models; Figure S3C) and

compared the predictive power of the obtained models to the

original treatment-invariant model (Figure 2A) across all treat-

ments. The predictions of the sector activities and the immunity

levels by the invariant model were as good as or better than

those by the treatment-specific models (Table S3), and the

invariant model was less complex (the total numbers of para-

meters were 45 and 82, respectively). Thus, the invariant model

is the better representation of the signaling network, and differ-

ential network responses to different MAMP treatments are likely

achieved by different signal input patterns.
nc.
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Figure 5. Treatments of Wild-Type with flg22 and Chitosan Have Different Signal Input Patterns, which Results in Distinct Network Re-

sponses

(A and B) Treatments of wild-type with flg22 (A) and chitosan (B). These network activity maps visually represent the model-predicted relative sector activity and

immunity level by the respective node sizes and the relative amount of signal flow by thewidth and color intensity of the link. Link values were calculated relative to

mock treatment for eachMAMP treatment. The range of immunity levels was scaled from 0 to 1, and the links targeting the immunity nodes were scaled according

to the scaled immunity level. The predicted relative sector activity and the relative signal flow values are indicated in the node and along the link, respectively.

Otherwise, the representation is the same as the model with parameter values in Figure 2A. See also Figure S5.
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If the hypothesis that an invariant network is tuned by different

input patterns is correct, we should be able to predict the

network response to an arbitrary MAMP as long as we know

the input signal pattern. To test this, the model parameters

were fit to subsets of the observations in which the data from

one of the three MAMPs were withheld. Using only the sector

activities of the wild-type genotype after treatment with the with-

held MAMP, the input signal pattern was inferred, and the sector

activities and the immunity levels of the other genotypes after

treatment with the withheld MAMP were predicted (see Supple-

mental Information). Predicted immunity and sector activities

were compared with the actual observations for each withheld

MAMP treatment (Figure S3D). The PCCs between the model

predictions and observed data ranged from 0.623 to 0.725 for

the sector activities and 0.684 to 0.807 for the immunity level.

This level of predictive power supports the hypothesis and

suggests that the invariant model captures the core network

parameters well. Furthermore, it indicates that the same invariant

model will likely be able to predict the sector activities and the

immunity levels across the genotypes for any other MAMPs

given only sector activity measurements after MAMP treatment

of the wild-type genotype.

DISCUSSION

In the current study, we built a multiple regression model of

the signal flow dynamics in the network, consisting of four

major signaling sectors during PTI. The revealed signal flows
Cell H
provide mechanistic explanations for the static sector inter-

actions described in our prior study (Tsuda et al., 2009). For

example, we showed that inhibition of the JA sector by the ET

sector is a main cause of observed partial robustness against

network perturbations during PTI. Our model was based on

expression levels of sector marker genes as proxies for the

sector activities. We strictly selected the marker genes to

minimize systematic error of known sources, which included

the phytohormones gibberellic acid, auxin, abscisic acid, and

brassinosteroid, as well as the response specificity to JA,

ET, and SA. However, such strict selection in the response spec-

ificity does not completely exclude the possibility that marker

gene expression is affected by some signals we did not consider

and that the resulting model might be affected by such un-

known signals. This is the reason we used direct hormone

measurement to validate some of the key model predictions:

inhibition of the JA sector by the ET sector and activation of

the SA sector by the JA sector (Figure 3). Since we defined the

corresponding hormone levels as the sector activities, these

predictions were firmly validated. Despite the fact that our model

exhibited a high level of predictive power, our model is unlikely

to be the perfect model. The complexity of our data was vastly

increased by high orders of genetic perturbation of the network

compared to conventional types of data, and this data

complexity supported our current modeling study (see below).

However, it is conceivable that future data with even higher

complexity would support more complex models. Nevertheless,

our current model explained known network responses well and
ost & Microbe 15, 84–94, January 15, 2014 ª2014 Elsevier Inc. 89



Figure 6. The Multifactorial Nature of the Data Set Was Important in Obtaining a Sector Activity Model with High Predictive Power

(A) Models having limited sectors or obtained with limited data have lower predictive power than the original model. The significance of the PCCs (�log10P)

between the predictions of different models and the observed data are shown with darker colors for higher significances. The models were made with data sets

that were limited in three categories: the number of signaling sectors (four, three, and two sectors for the three right columns); the order of perturbations (up to

triple, double, and single mutants for the three left columns); and the number of MAMP treatments (three, two, and oneMAMP treatment[s], plus mock treatment,

for the three rows). The average significance values for the limited models of the same class are shown. The middle cell in the top row represents the original

model.

(B) The structures of the limitedmodels are substantially different from those of the original model. The Jaccard indices between the original model and the limited

models used in (A) are shown.

(C) Models obtained with lower orders of sector perturbation have poor predictive power of data collected from higher orders of perturbation. The PCCs between

the model predictions and the observed data for the triple mutants are shown. See also Figures S6 and S7.
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generated several testable hypotheses, which demonstrates

its utility.

The Multifactorial Features of the Data Set Were
Important for Obtaining a High-Performance Model
Our sector activity model was built on a multifactorial data set:

4 signaling sectors, 16 exhaustive combinatorial genotypes

regarding the signaling sectors, 3 MAMP (and 1 mock) treat-

ments, and 2 time points. We examined the importance of (1)

the number of explanatory sectors used to decipher network

activity and output (4 sectors), (2) high orders of sector perturba-

tion represented by the combinatorial genotypes (16 genotypes),

and (3) several network stimuli (3 MAMP treatments). First, the
90 Cell Host & Microbe 15, 84–94, January 15, 2014 ª2014 Elsevier I
predictive power was compared between the original model

with four sectors andmodels with fewer sectors (Figure 6A, three

columns on the right). For example, in modeling with three

sectors, one sector and the links connected to the sector were

removed from the starting model, and the data from genotypes

containing the mutation for that sector were removed. The sig-

nificance of the PCC (�log10P) between the observed and the

predicted sector activity values decreased in the models with

fewer sectors. The structures of the models with fewer sectors

were substantially different from that of the corresponding part

of the original model as shown by the Jaccard index (Figure 6B).

These results indicate that inclusion of all four highly interacting

sectorswas important for the high predictive power of themodel,
nc.
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suggesting that this inclusion also captured mechanistic rela-

tionships among the sectors more accurately.

Second, the models built on lower orders of sector perturba-

tions were compared, i.e., modeling was performed with the

data sets in which the data from higher orders of multiple

mutants were removed. When four-sector models were made

using only lower orders of sector perturbations, the predictive

power and the structural similarity to the original model

decreased (Figures 6A and 6B, three columns on the left). In

this case, we further tested whether the structure of the original

model was not only different from, but also more accurate than

those of the models with lower orders of sector perturbations.

Figure 6C shows that the models built on the data sets with up

to single mutants (i.e., wild-type and the single mutants) poorly

predicted the sector activity values for the higher orders of

mutants, indicating that the mechanistic relationships captured

based only on lower orders of sector perturbation were not

accurate.

We similarly demonstrated the importance of having multiple

MAMP inputs for the predictive power and structure of themodel

(Figures 6A and 6B, rows of the cells). Thus, our multifactorial

data set was important in obtaining a model with high predictive

power and with accurate mechanistic relationships. Although we

only tried a limited number of modeling approaches, we anti-

cipate that our multifactorial data set will provide a rich basis

for further modeling work. All raw and preprocessed data are

included in Data S1 and S2.

Limited Statistical Power Associated with the Immunity
Data
The above-noted importance of including four highly interacting

signaling sectors implies the importance of intersector links in

the model. In fact, a sector activity model devoid of intersector

links performed poorly in predicting sector activity across the

treatments and genotypes (Table S2). On the other hand, the

starting model for the immunity level did not contain terms for

further interactions downstream of the sectors; such interactions

might be significant. For example, SA signaling inhibits some

downstream transcriptional responses requiring activation of

both the JA and ET sectors (Van der Does et al., 2013), which

could be included as an interaction term in the immunity model.

However, as the immunity level is already well explained by the

original model, our current data set is unlikely to have the power

to investigate such interaction terms. To gain sufficient power to

test interaction terms in the immunity-level model, it will be

necessary to measure the activities directly corresponding to

the interactions in question, such as the expression level of a

marker gene that reports the level of signaling requiring both

JA and ET sector activation. This discussion also reveals that

immunity is a highly summarized phenotype and that immunity

level data alone do not have much power to elucidate the under-

lying mechanisms.

Inhibitory Regulation in the Immune Network May
Increase Plant Fitness
Inhibition of the JA sector by the ET sector was important in

the robustness of the network output against perturbations

(Figure 4), suggesting that the intact network internally represses

signaling sector(s), keeping the network output suppressed rela-
Cell H
tive to its maximum possible activity. This suppression could

be interpreted as a tradeoff of gaining network robustness,

but plants may not benefit from higher levels of PTI. Nonpatho-

genic microbes also present MAMPs, and responding to non-

pathogens with a strong immune response would reduce plant

fitness. It is conceivable that the level of inhibition by the ET

sector on the JA sector has been selected to probabilistically

optimize plant fitness in two ways: limiting response to imperfect

information and conferring network robustness against potential

network perturbations by pathogen effectors.

Tuning of the Network Response According to the Input
Pattern May Provide Immunity to Specific Pathogens
Our network activity maps revealed how different MAMP treat-

ments lead to very different responses of the same network (Fig-

ure 5). The network response is modulated by a combination of

multiple input points and the patterns of intensity and timing on

these inputs. For example, flg22 is a MAMP derived from

Gram-negative bacteria, such as P. syrinage (Zipfel et al.,

2004). Treatment with flg22 activated the JA, ET, and PAD4

sectors at similar levels, which resulted in strong immunity

against P. syringae, as PAD4 sector activation at 9 hpt strongly

contributes to immunity. In contrast, chitin is a MAMP derived

from fungi (Silipo et al., 2010), which include necrotrophs. Chito-

san treatment predominantly activated the JA sector, which

controls responses effective against necrotrophs. Thus, the

network input patterns associated with flg22 and chitin may be

selected to optimize the network response for immunity against

bacterial and fungal pathogens, respectively.

Treatment with elf18, a bacterial MAMP (Zipfel et al., 2006),

had an input pattern more similar to chitosan than flg22

(Figure S5). This might indicate that the JA sector contributes

to immunity against bacterial necrotrophs, such as Pectobacte-

rium species (Davidsson et al., 2013). Another possibility is that

the input pattern from EFR, the elf18 receptor, has not yet

been adapted well, as EFR seems to have evolved relatively

recently (Lacombe et al., 2010; Saijo et al., 2009). Yet another

possibility is that EFR may also be involved in recognition of

other microbes. The chitin receptor CERK1 is also a coreceptor

of the bacterial MAMP peptidoglycan (Willmann et al., 2011),

which raises the possibility that a single PRR may be involved

in recognition of different types of microbes. If this is the case,

the spectrum of microbes recognized by a PRR would probabi-

listically shape the signal input pattern from the PRR to the

invariant network, and the signal input pattern could be locally

adapted to variable microbe spectra. Such intraspecific local

adaptation could be observed as variation in the signal input

pattern mediated by the PRR. Although this is an interspecific

comparison, chitin-induced immunity in tomato is quite effective

against a biotrophic fungus, Cladosporium fulvum (de Jonge

et al., 2010), suggesting variation in chitin-triggered immune

signaling between the tomato variety used and Arabidopsis

accession Col-0.

An invariant signaling network whose response is tuned by

differential input patterns, determined by MAMPs, allows us to

predict the network response and output under other input

scenarios. Once input patterns are determined (e.g., through

measurement of sector activities upon MAMP treatment of a

wild-type plant), the network response and the induced immunity
ost & Microbe 15, 84–94, January 15, 2014 ª2014 Elsevier Inc. 91



Figure 7. A Static Summary of the Model

Suggests a JA-PAD4 Dichotomy and Tetra-

stable Network States

(A) A static summary of signal flows in the sector

activity model shown in Figure 2A.

(B) A schematic representation of tetrastable

states of the signaling network. The only JA on,

both on, only PAD4 on, and neither on states may

correspond to lower energy states of the network.
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level against Pto and Pma in different genotypes can be

predicted using the network model (Figure S3D). In nature, a

single microbe is likely to present multiple MAMPs. With their

collective signal input pattern information, our model should

be able to predict the network response and the triggered immu-

nity level after treatment with such collective MAMPs.

Symmetric Roles of the JA and PAD4 Sectors: Inhibition
by the ET Sector and Positive Feedback Loops with the
SA Sector
Figure 7A depicts a static summary of major regulatory relation-

ships in the model shown in Figure 2A. This summary network

suggests that the JA and PAD4 sectors play symmetric roles in

the sense that they are both inhibited by the ET sector and

involved in positive feedback loops with the SA sector. The

observation that the JA and PAD4 sectors are compensatory in

activation of the SA sector (Figure 3A) is consistent with this sym-

metry. A characteristic property of a positive feedback loop is a

bistable switch (Ferrell and Xiong, 2001). It is conceivable that

both the JA-SA and PAD4-SA feedback loops function as

compensatory bistable switches, with the activation thresholds

adjusted by inhibition from the ET sector. This notion suggests

that the JA and PAD4 sectors may be pushed toward one of

four rather qualitative states: only JA on, only PAD4 on, both

on, or neither on, i.e., a tetrastable switch (Figure 7B). The

case with mock treatment represents the neither on state, the

cases with chitosan and elf18 represent the only JA on state,

and the case with flg22 represents the both on state (Figures 5

and S5). The only PAD4 on state might be caused by treatment

with MAMPs not included in our study. An alternative, tantalizing

possibility is that the only PAD4 on state might be related

to effector-triggered immunity (ETI). ETI triggered by the

P. syringae effector AvrRpt2 (AvrRpt2-ETI) is largely dependent

on the signaling network defined by the four signaling sectors,

and the AvrRpt2-ETI level is largely intact in dde2/ein2/sid2

(i.e., only PAD4 is wild-type) (Tsuda et al., 2009). These observa-

tions suggest that a different state of the same invariant signaling

network obtained by modeling PTI signaling may explain

AvrRpt2-ETI signaling and that the response mediated by the

PAD4 sector is crucial for AvrRpt2-ETI.

A dichotomic view that the responses mediated by the JA

sector and the SA sector are important for immunity against

necrotrophic pathogens and immunity against biotrophic and

hemibiotrophic pathogens, respectively, is generally accepted

(Glazebrook, 2005; Spoel et al., 2007). However, the symmetric
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roles of the JA and PAD4 sectors in our

network model raise a question: is it the

SA sector per se that is important for
immunity against biotrophs and hemibiotrophs, or is the main

role of the SA sector to activate the PAD4 sector, whichmediates

more effective responses against these pathogens? Our obser-

vation that the (SA-signaling-independent) PAD4 sector’s effect

on Pto and Pma immunity is stronger than that of the SA sector

(Figure 2A) is consistent with the latter. The high orders of

network perturbations utilized in this study will allow rigorous

testing of these hypotheses.

Conclusions
Teasing out mechanistic models from complex networks is a

difficult, but critical, task of systems biology. Our success was

enabled by the inclusion of several highly interacting signaling

sectors, high orders of network perturbation regarding the

sectors, multiple defined inputs, and measurement of the activ-

ities at the perturbation points across multiple time points. Our

model revealed how the robustness of the network output

against network perturbations and the tunability of the network

response are achieved in a single invariant network for plant

immune signaling under PTI conditions. Furthermore, analysis

of the network structure led to testable hypotheses of a tetrasta-

ble switch and of alternative roles for the PAD4 and SA sectors.

Modeling signal flows in a complex network via network sector

reconstitution is a powerful strategy by which to elucidate the

mechanisms behind network properties.

EXPERIMENTAL PROCEDURES

Plant Materials and Growth Conditions

Arabidopsis thaliana accession Col-0 was the background of the 16 combina-

torial genotypes (Tsuda et al., 2009) and fls2 (SAIL_691C4) (Zipfel et al., 2004).

Plants were grown in a controlled environment at 22�C with a 12 hr/12 hr

photoperiod and 75% relative humidity. Leaves of 4-week-old plants were

used.

Sector Marker Gene Expression Level Measurements and Data

Preprocessing

Selection of the sector marker genes, At3g50280, At2g41230, At5g46960, and

At2g14610 (PR1) for the JA, ET, PAD4, and SA sectors, and the normalization

gene At4g29480 is described in the Supplemental Information. Leaves were

harvested 3 or 9 hr after infiltration with mock (H2O), 1 mM flg22, 1 mM elf18,

or 100 mg/ml chitosan using a needleless syringe. RNA extraction and

mRNA quantification by qRT-PCRwith the primers listed in Table S4 were per-

formed as previously described (Tsuda et al., 2008). From three independent

experiments, the Ct values for the sector marker genes were subjected to

between-samples normalization, mutant adjustment, and nonlinear transfor-

mation for homogenous SD within and between sectors to obtain the sector

activity values, as detailed in the Supplemental Information.
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Bacterial Count Measurements

At 24 hpt with a MAMP or mock, the same leaves were infiltrated with a

suspension of Pto or Pma at optical density at 600 nm (OD600) = 0.0001. The

bacterial titer in the leaves wasmeasured 2 days after inoculation as previously

described (Tsuda et al., 2009).

SA and JA Measurements and Data Analyses

Leaveswereflash frozenwith liquidN2,macerated topowder,and freezedriedat

9 hpt with flg22 and at 0 hpt (untreated). Extraction and determination of SA and

JA from Arabidopsis were performed with an ultra-performance liquid chroma-

tography-tandem mass spectrometer (UPLC-MS/MS) (ACQITY UPLC System/

Quattro Premier XE; Waters) with an ODS column (ACQUITY UPLC BEH C18,

1.7 mm, 2.13 100mm;Waters) as described previously (Kojima et al., 2009; Ko-

jimaandSakakibara, 2012). Themeasurementsweremade in three independent

experiments. A mixed linear model with genotype:time fixed effects and exper-

iment random effects was fit to the log2-transformed SA or JA level (pmol/g dry

weight of tissue) data. Themeanestimatesand their SEobtained from themodel

were used to perform two-sided t tests for the comparisons of interest.

Multiple Regression Models

The starting multiple regression models were fitted with L1-norm (Lasso)

regularization (Friedman et al., 2010), formulated via:

bb lasso
= min

ðb0 ;bÞ˛Rp+ 1

�
1

2N

XN

i =1

�
ymi � b0 � xT

i b
�2

+ lkbkl1
�
;

where p is the total number of initial parameters excluding an intercept,N is the

total number of cases covering all possible combinatorial conditions, b0 is an

intercept, and b is the parameter vector to be estimated (i.e., the links in Fig-

ure S1E). The explanatory variable xi consists of either binary indicators for

treatment-specific variables or continuous variables corresponding to the

sector activity. ymi is the response, which is either an actual activity value for

sector m or an actual log10-transformed count of bacterial strain m. l is the

penalty factor balancing the prediction error and the model complexity, which

was searched in (0.001,1.5).

For each l, the startingmodel was fit to each of 1,000 data sets generated by

bootstrapping the treatment:genotype combinations from the full data set.

Each of the 1,000 obtained models was used to predict the sector activities

and the immunity levels for the treatment:genotype combinations held out

from the bootstrapped training data set, and the median of the predictions

was chosen as the prediction for each treatment:genotype:time:sector activity

or each treatment:genotype:strain immunity level (a bagging approach; Hastie

et al., 2009). Based on thePCCbetween theobserveddata and thepredictions,

the largest l that yielded a PCC within the 95% confidence interval of the best

PCCs across all l valueswas selected (Friedman et al., 2010). Themodel struc-

ture for the selected lwas refit to the full data set, using least squares to obtain

the parameter value estimates (Figure 2A). See Supplemental Information for

details and evaluation of the modeling approach and analysis of the model.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and four tables and can be found with this article online at

http://dx.doi.org/10.1016/j.chom.2013.12.002.
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