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Abstract In these proceedings we will present recent progress concerning a
construction of a geometric invariant for initial data sets for the Einstein vacuum
field equations. This geometric invariant vanishes if and only if the initial data set
corresponds to data for the Kerr spacetime, and thus, it characterizes this type of
data. The construction was initially based on Killing spinors, but here we trans-
late the results to tensor language. We can now handle both compact domains and
domains reaching the asymptotically flat ends.

1 Introduction

Given a solution (S , hab, Kab) to the Einstein vacuum constraint equations, how do
we know if it is a slice of the Kerr spacetime? If not, can we measure how much it
differs? These are the questions we will consider here. We will introduce a geometric
invariant on the slice, which will measure this deviation fromKerr data. The invariant
is constructed as an L2-norm constructed from global information on the slice, but
it only depends on information from one slice, and is therefore local in time.

It is expected that a dynamical vacuum black hole will always settle down to a
Kerr black hole. To make a proper mathematical formulation of this statement, one
will need a good way to measure how close data on a slice is to Kerr data. This
gives a clear motivation for our work. Our invariant is coordinate independent and
straightforward to compute. It is therefore well suited for studying how the non-
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Kerrness evolves for numerically computed spacetimes. It can also be used as a tool
for more theoretical work, for instance when one studies non-linear stability of the
Kerr solution. For this purpose a coordinate independent integral over a slice as we
have is well suited.

We have developed the theory in four papers [1–4]. Herewe onlymake a summary
and concentrate on some aspects of the problem. In the first paper [1] we present the
general ideas and the invariant for general non-boosted slices with two asymptotic
ends. The second paper [2] contains all technical details and generalizations so even
boosted slices can be handled. The third paper [3] deals with the same problem, but
only using data exterior to a surface. In the fourth paper [4] we also introduce an outer
boundary so our domain becomes compact. This requires some extra conditions that
we in the previous papers got from the asymptotic behaviour.

2 Characterization of the Kerr Spacetime

To construct the non-Kerrness invariant of initial data on a slice, we begin with a
spacetime characterization of the Kerr solution. We then make a 3+1 splitting of the
equations involved. This is done in such a way that one can reconstruct the spacetime
objects that we used for the spacetime characterization. Therefore, we get an initial
data characterization of Kerr initial data. The initial data equations one obtains are
then used to construct the non-Kerrness invariant that measures the deviation from
Kerr data.

In our papers we used a spacetime characterization based on Killing spinors, but
for ease of presentation we will here translate this to Killing-Yano tensors.

2.1 Killing-Yano Tensors

Throughout, we will assume that (M , gμν) is an orientable and time orientable glob-
ally hyperbolic vacuum spacetime, and we let ∇μ denote the Levi-Civita connection
of gμν . Here we will use the (− + ++) sign convention to obtain a positive definite
spatial metric. Observe that this differs from the one used in the references [1–4].

Definition 1 A conformal Killing-Yano tensor is an antisymmetric tensor Yμν =
Y[μν] that satisfies

∇(μYν)λ = 1
3gλ(μ∇σ Yν)σ − 1

3gμν∇σ Yλσ . (1)

It is called a Killing-Yano tensor if it satisfies

∇(μYν)λ = 0. (2)
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Given a (conformal) Killing-Yano tensor, one automatically gets a Killing vector
ξμ = εμ

νγλ∇νYγ λ of the spacetime. We also get an integrability condition that will
strongly restrict the Weyl tensor. In the tensorial picture, this condition is given by

0 = − C[μν]δ [λYρ]δ − C[λρ]δ [μYν]δ + Cδ [μν][λYρ]δ + Cδ [λρ][μYν]δ. (3)

The spinorial version of the above condition is simpler. From it, it is easy to conclude
that the spacetime has to be of Petrov type D, N or O .

2.2 Spacetime Characterization

We have the following theorem which is a translation of Theorem B.3 in [3]

Theorem 1 A smooth spacetime (M , gμν) is locally isometric to the Kerr spacetime
if and only if the following conditions are satisfied:

(i) there exists a Killing-Yano tensor Yμν , with associated Killing vector ξμ;
(ii) the spacetime (M , gμν) has a stationary asymptotically flat 4-end with non-

vanishing mass in which ξμ tends to a time translation.

2.3 Initial Data Characterization

To get an initial data characterization, we make a 3 + 1 splitting of the conformal
Killing-Yano equation and the integrability condition to obtain the (4a)–(4b) below.
After some work we see that one can propagate solutions to this system to obtain a
conformal Killing-Yano tensor of the spacetime. See [2] and [4] for details.

Theorem 2 Let (S , hab, Kab) be a vacuum initial data set, where S is a Cauchy
hyper-surface. The development of the initial data set will have a conformal Killing-
Yano tensor in the domain of dependence of S if and only if

ζab ≡ D(aκb) − 1
3hab Ddκd − iε(a

dl Kb)dκl = 0, (4a)

Fab ≡ − C(a
cεb)c

dκd = 0, (4b)

are satisfied on S . Here, Cab ≡ Eab + i Bab, where Eab and Bab are the electric
and magnetic parts of the Weyl tensor. Furthermore, these conditions give a complex
spacetime Killing vector. Reality of this Killing vector gives a Killing-Yano tensor.

Remark The 1-form κa is the pull-back of − i
2 tνYμν + 1

4εμνλδtνY λδ , where tμ is
the normal to S with normalization tμtμ = −1. Observe that we use a different
normalization in references [1–4]. The lapse and shift of the Killing vector initial
data is constructed from κa via
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ζ = Daκa, ζa = − 3i
2 εa

bc Dcκb + 3
2 Kabκ

b − 3
2 K b

bκa . (5)

The vacuum constraint equations are

R = Kab K ab − (K a
a)2, Da Kab = Db K a

a . (6)

The electric and magnetic parts of the Weyl tensor can be written entirely in terms
of initial data via

Eab = −Ka
c Kbc + Kab K c

c − Rab, Bab = −ε(a
cd D|c|Kb)d . (7)

3 Non-Kerrness Invariant

The idea behind our non-Kerrness invariant is to measure the L2-norms of the left
hand sides of (4a) and (4b) for a clever choice of κa . We have to choose κa in a
unique coordinate independent way, and we need it to coincide with the solution to
the system (4a) and (4b) if such a solution exists. It turns out that minimizing the
L2-norm of left hand side of (4a) while specifying the asymptotic behaviour, gives
rise to a good choice.

3.1 Approximate Killing-Yano Tensors

Let J denote the L2-norm of the left hand side of (4a), that is

J =
∫
S

ζab ζ̄
abdμ. (8)

Tominimize thisweneed to solve the correspondingEuler–Lagrange equation,which
reads

L(κa) ≡ Dbζa
b + iεac f K bcζb

f = 0. (9)

The operator L is a linear second order self adjoint elliptic operator. A solution,
κa , to the elliptic equation (9) is called an approximate spatial Killing-Yano tensor.
Clearly, any solution to ζab = 0 is also a solution to (9).

Definition 2 An initial data set (S , hab, Kab)will be calledasymptotically Schwarz-
schildean at an end if there is a Schwarzschild initial data setwith the same asymptotic
expansion up to and including the mass order term.
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For non-boosted data and asymptotically Cartesian coordinates this condition
reads

hi j =
(
1 + 2mr−1

)
δi j + o∞(r−3/2), (10a)

Ki j = o∞(r−5/2), (10b)

where o∞(r δ) denotes functions in a weighted Sobolev space, and m denotes the
ADM-mass of the asymptotic end. See [2] for definitions of the Sobolev spaces and
asymptotics for boosted data.

Theorem 3 Given an initial data set (S , hab, Kab) with two asymptotically
Schwarzschildean ends, there exists a smooth unique solution to (9) with the same
asymptotic behaviour as the solution for Kerr from Theorem 1.

This result was proven in [2]. In [3] we replaced one asymptotic end with an inner
boundary. Appropriate data for the boundary was then constructed from the Weyl
tensor. Finally in [4] we replaced all asymptotic ends with boundaries so the result
extends to compact domains. In the latter case however, we needed to add extra
conditions on one point to replace the asymptotic conditions in Theorem 1.

Now we can define the geometric invariant. Let κa be a solution to (9) as given
by Theorem 3. With

J =
∫

S

ζab ζ̄
abdμ, (11a)

I1 ≡
∫

S

Fab F̄abdμ, (11b)

the geometric invariant is defined by

I ≡ J + I1. (12)

By construction I is coordinate independent and non-negative. It can furthermore be
verified that it is finite. More importantly we have

Theorem 4 Let (S , hab, Kab) be a vacuum initial data set with two asymptotically
Schwarzschildean ends. Let I be the invariant defined above, where κa is the only
solution to (9) with the same asymptotic behaviour as the solution for Kerr from
Theorem 1. The invariant I vanishes if and only if the development of (S , hab, Kab)

is locally isometric to the Kerr spacetime.

For the proof, see Theorem 28 in [2] and Theorem B.3 in [3] together with Theorem
4 in [4]. In [3] this was extended to the case with one asymptotic end and an inner
boundary, and in [4] this was worked through for compact domains.
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