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SUMMARY

Regulatory protein phosphorylation controls normal
and pathophysiological signaling in eukaryotic cells.
Despite great advances in mass-spectrometry-
based proteomics, the extent, localization, and si-
te-specific stoichiometry of this posttranslational
modification (PTM) are unknown. Here, we develop
a stringent experimental and computational work-
flow, capable of mapping more than 50,000 distinct
phosphorylated peptides in a single human cancer
cell line. We detected more than three-quarters of
cellular proteins as phosphoproteins and determined
very high stoichiometries in mitosis or growth factor
signaling by label-free quantitation. The proportion
of phospho-Tyr drastically decreases as coverage
of the phosphoproteome increases, whereas Ser/
Thr sites saturate only for technical reasons. Tyro-
sine phosphorylation is maintained at especially
low stoichiometric levels in the absence of specific
signaling events. Unexpectedly, it is enriched on
higher-abundance proteins, and this correlates with
the substrate KM values of tyrosine kinases. Our
data suggest that P-Tyr should be considered a func-
tionally separate PTM of eukaryotic proteomes.
INTRODUCTION

Protein phosphorylation is of central importance in signaling sys-

tems and employed by cells to transiently alter protein properties

such as the activity of enzymes, their interactions with other pro-

teins, their localization and conformations, or to target them for

destruction. When deregulated, it is also critically involved in

disease processes, notably in cancer, where protein kinases

are now the major class of drug targets (Rix and Superti-Furga,

2009; Zhang et al., 2009). An essential step in understanding

the complex molecular circuitry of cellular signal transmission

is to develop methods for measuring the extent and nature of

phosphorylation events that occur in a cell. For this purpose,

modern quantitative mass spectrometry (MS) has proved to be
Cell Re
an ideal platform because it is a highly precise yet generic

method for the global identification and quantification of proteins

and their modifications (Choudhary and Mann, 2010; Hein et al.,

2013; Junger and Aebersold, 2013; Lemeer and Heck, 2009). In

eukaryotes, phosphorylation occurs almost exclusively on Ser,

Thr, and Tyr residues, which represent approximately 17% of

the total amino acids in an average human protein (Echols

et al., 2002). On this basis, there are nearly 700,000 different po-

tential phosphorylation sites (Ubersax and Ferrell, 2007). Recent

MS-based studies have reported the identification of tens of

thousands of phosphorylation sites in tissues and cultured cells

(Humphrey et al., 2013; Lundby et al., 2012; Zhou et al., 2013),

and it has been speculated that the total extent of the phospho-

proteome ismore than amillion (Boersema et al., 2010). This vast

and increasing number of identified phosphosites raises funda-

mental question about their properties and biological relevance

and the scale of the complete phosphoproteome.

Based on autoradiography measurements S/T/Y phosphory-

lation ratios had been estimated many years ago as 90:10:0.05

(Hunter and Sefton, 1980). The vast majority of cellular protein

phosphorylation events reported in MS-based studies occurs

on Ser and Thr residues, whereas phosphotyrosines (P-Tyr)

generally account for less than 1% of the identified sites. This

is despite a large number of Tyr kinases encoded in the genome.

There are several reasons for the relatively low number of Tyr

phosphorylation events (Hunter, 2009). First, most Tyr kinases

are only activated in specific circumstances and otherwise

remain stringently negatively regulated. Second, unless pro-

tected by binding to SH2 or PTP domains (Sadowski et al.,

1986), P-Tyr residues have a short half-life owing to high activity

of phosphotyrosine phosphatases (PTPs). Finally, P-Tyr is pri-

marily regulatory and rarely plays a structural role in proteins.

P-Tyr based signaling pathways are a comparatively recent mo-

lecular innovation in evolutionary history and appear to be a hall-

mark of more complex organisms (Lim and Pawson, 2010). As a

result of the relatively low proportion of Tyr phosphorylation

sites, studies focused on this PTM have generally applied P-

Tyr-specific antibodies (Boersema et al., 2010; Kettenbach and

Gerber, 2011; Rush et al., 2005). To date, the precise relationship

of Tyr phosphorylation to Ser and Thr phosphorylation in the

context of proteome organization is not clear.

Despite the great successes of MS-based workflows in the

study of PTMs, many challenges remain (Olsen and Mann,
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2013). For instance, the identification of phosphorylation sites,

especially on larger peptides, has remained challenging. Here,

we address this problem by developing a new computational so-

lution, implemented in thewidely usedMaxQuant framework and

its Andromeda search engine (Cox and Mann, 2008; Cox et al.,

2011). Furthermore, knowing the stoichiometry of phosphoryla-

tion sites, in addition to their confident identification and localiza-

tion, would be very helpful in biological interpretation. This has

only recently become possible, on the basis of stable-isotope la-

beling techniques (Olsen et al., 2010; Wu et al., 2011). We devel-

oped a label-free approach to quantify themodified peptides and

determine their fractional occupancy. With these and other tech-

nological advances, we present an analysis of the nature of the

phosphoproteome to very great depth by combining protein

abundancemeasurementswithphosphorylation changesacross

mitosis and epidermal growth factor (EGF) stimulation. Our paral-

lel and in-depth investigation of proteomeandphosphoproteome

resolved to Ser, Thr, and Tyr residues revealed many general as-

pects of protein phosphorylation asa cellular control process and

its potential interaction with other modifications.

RESULTS

Experimental Workflow for Deep Coverage of the
Cellular Phosphoproteome
We chose to study phosphorylation in HeLa cells, because they

are themost frequently usedmodel systems in cell biology and in

previous phosphoproteomics studies. To survey proteome and

phosphoproteome at maximum possible depth, HeLa S3 cells

were left untreated, mitotically arrested and released, or stimu-

lated with epidermal growth factor (EGF) for 5 or 15 min (Fig-

ure 1A). We used a double thymidine block in combination with

nocodazole arrest to obtain a mitotic phase population and

confirmed synchronization by fluorescence-activated cell sort-

ing (FACS) (Figure 1A, left panel). Successful growth factor stim-

ulation by EGF was apparent from increased phosphorylation of

the activation loop Thr/Tyr residues of MAPK1 and MAPK3. For

robust statistics, we analyzed biological quadruplicates for each

cellular condition and six replicates for the untreated and asyn-

chronous control cells (see Figure 1B and Experimental Proce-

dures for details).

We additionally performed immunoaffinity enrichment of Tyr

phosphorylated peptides (Kettenbach and Gerber, 2011) from

untreated, mitotic, EGF-stimulated, and pervanadate-treated

(for PTP inhibition) cells.

The instrument parameters on the quadrupole Orbitrap instru-

ment used (Q Exactive [Michalski et al., 2011]) were optimized for

phosphopeptide identification (Figure S1). The total proteome

and phosphoproteome data set comprised 273 liquid chroma-

tography-tandem mass spectrometry (LC-MS/MS) experiments

of 4 or 2 hr gradient duration (about 40 days of measuring time,

20 million MS/MS scans).

Computational Pipeline for Reliable Identification, Site
Localization, and Absolute Stoichiometry
We included quality thresholds on the spectral matches by

applying an Andromeda search engine score filter of 40, and

we increased the uniqueness of the peptide spectra match by
1584 Cell Reports 8, 1583–1594, September 11, 2014 ª2014 The Au
requiring an Andromeda delta score of 8 to the second best

match with different sequence (Supplemental Experimental Pro-

cedures; see below and Figure S2A).

The distribution of search engine scores of identified phospho-

peptides with a minimum score cutoff of 40 is shown in Fig-

ure S2B. A typical spectrum of a phosphopeptide with a score

just above the filtering cutoff provides visual evidence that

even in such a case there are sufficient peaks for phosphopep-

tide identification (Figure S2C). This is further supported by

additional annotations on low- and high-scoring peptides from

a recently developed ‘‘expert system’’ for computer-assisted

annotation of MS/MS spectra (Neuhauser et al., 2012) (Fig-

ure S2C). The localization score for a site is then defined as the

normalized sum of the probabilities for the cases where the

site is carrying a modification (Figure 2C; Table S2).

We experimentally evaluated our computational pipeline for

PTM identification and localization on results from a peptide

library containing more than 100,000 unmodified peptides

and their phosphorylated counterparts (Marx et al., 2013)

(Figure S2A).

Previously, we had determined site occupancies from stable

isotope labeling by amino acids in cell culture (SILAC) quantita-

tion on the level of protein, unmodified peptide, and modified

peptide (Olsen et al., 2010). We reasoned that label-free data

on multiple conditions might also enable accurate site occu-

pancy calculations. For each site in each condition, we select

the most suitable ‘‘reference sample’’ as the one that produces

the lowest error in the calculations involved in the occupancy for-

mula (‘‘Proportion’’ in Figure 2D). We further improved accuracy

by using a weightedmean of occupancy calculations for all avail-

able reference samples. This occupancy error captures the

spread produced by the structure of the formula independent

of the statistical errors of the measured quantities. A value less

than one indicates that errors are not magnified and therefore

the occupancy value is highly reliable.

Phosphopeptides Can Be Identified for Nearly Every
Cellular Protein
MaxQuant unambiguously identified 43% of all acquired MS/MS

scans that corresponded to 145,340 nonredundant (phospho)

peptide sequences originating from 10,801 protein groups (pro-

tein entries distinguishable on the basis of identified peptides),

when filtering at a false discovery rate of 1% at peptide and

protein levels (Table S1). After applying Andromeda score and

delta score filters for modified peptides more than 50,000 unique

phosphopeptides corresponding to 38,229 phosphorylation

events on 7,832 proteins remained, which could be localized

with high confidence to single amino acid sequence locations

(class I sites, Experimental Procedures, and Figure 3A; Table

S2). This number constitutes a lower limit on the size of a human

cancer cell line phosphoproteome. Therefore, in contrast to

commonly cited estimates that were based on in situ radiolabel-

ing and 2D electrophoresis (Cohen, 2000; Pinna and Ruzzene,

1996), at least three-quarters of the expressed proteome can

be phosphorylated. For a given condition such as mitosis, four

replicate experiments were sufficient to saturate the number of

sites identifiable with the technology used here (Figure S3A).

Next, we plotted the number of proteins with at least one
thors
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Figure 1. Workflow for Large-Scale Phosphoproteome

(A) Cell stimulation. HeLa S3 cells were synchronized using a double thymidine block and nocodazole arrest and released for 0.5 hr when they were in mitosis.

FACS profiles of the synchronized HeLa S3 populations are shown. Two other sets of HeLa S3 cells were treated with EGF for 5 or 15 min. EGF-induced ERK1/2

activation was monitored by immunoblotting. A separate population of cells was treated with sodium pervanadate for in vivo inhibition of Tyr phosphatases.

(B) Sample preparation. Cell lysates from the above treatments were lysed in SDS buffer. For proteomemeasurements peptides were separated into six fractions,

and, for total phosphoproteome analysis, phosphopeptides were enriched by strong cation exchange (SCX chromatography) and TiO2 microbeads. P-Tyr

peptides were immunoprecipitated from phosphopeptides using anti-P-Tyr antibodies.

(C) LC-MS analysis: all fractions were separated on a reverse-phase column and electrosprayed into a quadrupole-Orbitrap mass spectrometer, which was

operated in a data-dependent mode, and produced ppm range mass accuracies for precursors and fragments.
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Figure 2. Computational Pipeline for High-Stringency Identification

and Quantification of Phosphopeptides in MaxQuant
(A) Data acquisition with high resolution for precursors and fragments.

(B) Phosphopeptide identification. Only spectramatched to sequenceswith an

Andromeda score >40 and a delta score of >8 were retained. Posterior error

probabilities (PEP) were calculated based on the target decoy strategy to

control the false discovery rate.

(C) Phosphosite localization. Localization of themodification site was achieved

by looping through possible combinations for the phosphorylation on indi-

vidual amino acid residues on the peptide for which the Andromeda score is

calculated and exponentiated to obtain the localization probability.

(D) Phosphosite occupancy. The proportion of phosphorylated peptides was

calculated based on the extracted signal differences of modified peptide, un-

modified peptides, and corresponding protein ratios between biological states.
detected phosphorylation event as a function of the size of the

set of intensity ranked phosphopeptides (Figure 3A, left panel).

The curve quickly covers half of the detected proteome and

then rises more slowly as more andmore low-intensity phospho-

peptides are added. The number of phosphorylation events

found in our earlier studies at a depth of 6,600 (Olsen et al.,

2006) and 20,443 phosphosites (Olsen et al., 2010) coincide

with this curve, suggesting a general relationship. Clearly, the

curve has not reached saturation, suggesting that adding further

perturbations would add substantially to the phosphoproteome.

In particular, we predict that at a depth of 100,000 sites more
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than 90% of the expressed proteome would have detectable

phosphorylation sites (Figure 3A, left panel).

Because of the recent identification of Fam20 as a novel pro-

tein kinase that phosphorylates SXpS/E motifs in secreted pro-

teins, there is much interest in secreted phosphoproteins. To

illustrate the value of our data set, we selected proteins with

phosphosites with SXpS/E motifs that disfavor proline at +1 po-

sition. To capture putative Fam20 substrates, we further filtered

for secreted, extracellular matrix or Golgi apparatus proteins

resulting in a set of 101 phosphosites on 64 proteins (Table

S2). Likewise, our data set also constitutes a catalog of regulato-

ry protein expression and phosphorylation events associated

with mitotic and growth factor signaling. Tables with all identi-

fied proteins, phosphopeptides and phosphosites are provided

(Tables S1 and S2 and data on proteome exchange). In addition,

all the identified phosphosites, phosphopeptides, and proteins,

including their high-resolution fragment spectra, are easily

accessible through the MaxQB database (Schaab et al., 2012)

via a user-friendly web interface at http://maxqb.biochem.

mpg.de/mxdb/project/show/P007 (see Supplemental Experi-

mental Procedures) (Figure S3B).

We found that more than 22,000 of the 38,000 phosphosites

(55%) were identified in all the biological conditions and 20%

were found exclusively in mitosis (Figure 3A, right panel). The

preponderance of exclusive sites at this phase of the cell cycle

may reflect the complexity of associated regulatory events

(Table S2).

In signaling studies selected, functionally important sites are

usually followed using site-specific antibodies. For comparison

to our data set, we chose the sites for which antibodies exist in

thePhosphositePlus database (Hornbeck et al., 2012) (Figure 3B,

left panel). Our data set covered more than 50% of them,

implying that it has reached considerable depth, especially

considering that our analysis was performed with only three per-

turbations and in a single cell system, whereas antibodies have

been generated for very diverse signaling contexts. Interestingly,

the sites usually followed by antibodies are enriched on more

abundant proteins with median intensity about half an order of

magnitude higher than those of all identified sites (Figure 3B,

middle panel). It follows that either functional phosphorylation

events occur on more abundant proteins or that biological func-

tions were historically first ascribed to phosphorylation of more

abundant proteins. Intensity-ranked signal intensities of these

282 phosphosites span the entire dynamic range of MS analysis,

but 90% of them are present within four orders of magnitude. By

extension, the dynamic range achieved in our phosphoproteome

analysis appears sufficient to samplemost of the currently inves-

tigated cellular phosphoproteome.

Label-free Quantification Enables Precise Identification
of Key Pathways across Biological States
We investigated if the label-free algorithms of MaxQuant could

accurately capture signaling dynamics, similarly to SILAC (Mon-

etti et al., 2011; Olsen et al., 2006). Label-free method are partic-

ularly challenging in the analysis of PTMs because each peptide

needs to be quantified by itself, unlike in proteome quantifica-

tion, where several peptides generally contribute to protein

quantification.
thors
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Figure 3. Overview of the Identified Phos-

phoproteome

(A) Detection of phosphoproteins as a function of

the depth of phosphopeptides. Large-scale MS-

based analysis resulted in the identification of

10,801 proteins of which 7,832 were phospho-

proteins. A plot of the number of proteins that were

detected to be phosphorylated as a function of

phosphoproteome depth from this study with

phosphorylated proportion identified in two pre-

vious studies are marked in the left panel (Olsen

et al., 2006, 2010). A total of 51,098 phospho-

peptides were identified of which >38,000 phos-

phorylation events were localized to specific S/T/Y

residues. The Venn diagram depicts overlap

among high-confidence phosphosites identified

across the conditions studied (right panel).

(B) Sites with corresponding antibodies. Overview

of sites for which sequence-specific antibodies

are available identified in our data set (left panel).

Distribution of intensities of all phosphosites

identified in comparison to those with antibodies

(middle panel). Coverage of intensity ranked

phosphosites (followed by antibodies) plotted as a

function of their abundance.
We found that the key phosphosites that are known to be acti-

vated by epidermal growth factor (EGF) ere quantified accu-

rately, as illustrated by the activating phosphorylations on Tyr

1197 and Tyr 1172 on epidermal growth factor receptor (EGFR)

that are upstream of RAS/RAF/MAPK signaling (Figure 4A, upper

panels and Table S2). Phosphorylation of these sites increased

significantly in cells treated with either EGF or pervanadate

(50-fold or 5-fold, respectively; p < 0.005). Similarly, we observed

a decrease in inhibitory phosphorylation on Thr14/Tyr15 in cyclin

dependent kinase 1/2/3 and increase in activating phosphoryla-

tion of polo like kinase-1 (PLK1) only in the mitotic samples (Fig-

ure 4A, upper panels). The biological replicate measurements

showed high quantitative reproducibility with a Pearson’s corre-

lation coefficient across the entire data set of more than 38,000

sites of at least 0.82 (Figure S4A).

We obtained cluster-specific footprints of kinase activation

using a Fisher’s exact test for kinase-substrate motifs (Table

S2; heatmap in Figure 4A). In the mitotic cluster, the motifs for

proline-directed kinase CDK1 and polo box domain showed

the strongest enrichment (Figure 4B). The GO and KEGG cate-

gories characteristic of mitosis were strongly enriched (Fig-

ure 4A). Remarkably, comparative enrichment analysis (Cox

and Mann, 2012) of entire phosphoproteome of mitotic cells

versus asynchronous cells showed that all of the most highly en-

riched and most significant gene ontology terms (p < 10�20)

directly related to the cell cycle (cell-cycle phase, cell-cycle pro-

cess G2 phase/mitotic cell cycle and establishment of chromo-

some localization; Figure 4A, lower panel, inset).
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In summary, the accurate quantification

across thousands of sites and enrichment

of relevant pathways demonstrate that

label-free workflows and algorithms can

enable quantitative analysis of phospho-
proteomes to great depth, yielding functional portraits of cellular

signaling states. For each protein and phosphosite of interest,

levels estimated by label-free quantification aswell as their statis-

tical significancecan readily be visualizedacross thedifferent bio-

logical states in the MaxQB database (Figure S3B).

Specific Signaling States Are Characterized by High
Fractional Site Occupancies in Disordered Regions
Next, we extracted absolute, site-specific stoichiometries from

label-free abundances of proteins, phosphorylated peptides,

and their unmodified counterparts for more than 16,000 sites.

We assigned fractional occupancy to 7,620 phosphorylation

sites with high confidence (Table S2). In accordance with our

SILAC-based analysis of the cell cycle (Olsen et al., 2010), we

found that themitotic phaseof the cell cycle has a very largenum-

ber of Ser/Thr phosphorylation events with high site occupancy

(Figure 4B, upper panel). For half of all sites, we determined a

fractional occupancy of at least 75%. In contrast, the vast major-

ity of Ser/Thr phosphosites in control cells or EGF-stimulated

cells have less than 25% fractional occupancy (Figures 4B and

S4B). This raised the intriguing possibility that the high-occu-

pancy mitotic sites might be detectable even without any phos-

phoenrichment. Indeed, we were able to identify more than

2,000 phosphosites in the total proteome measurements of

mitotic cells in stark contrast to only a few tens of phosphosites

in control or EGF-stimulated proteome measurements.

We next analyzed structural properties of identified phosphor-

ylation sites in relation to their occupancies across different
tember 11, 2014 ª2014 The Authors 1587
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Figure 4. Relative and Absolute Label-free

Quantification

(A) Label-free quantification of regulated phos-

phopeptides. Label-free quantification of individ-

ual replicates (mean ± SD of replicates) for the

conditions studied is shown for Y1197 and Y1172

on EGFR, Y15/Y16 on CDK1/2/3, and T210 on

PLK1 (upper panel). Heatmap of phosphosites

regulated across different conditions (color scale

from green to red indicating decreased and

increased phosphorylation) with kinase motifs and

categories enriched (lower panel). Inset in the

lower panel shows 1D annotation analysis of

annotation terms of proteins significantly upregu-

lated during mitosis. The data points correspond-

ing to annotation terms whose members are

regulated with very high significance are labeled

(p < 10�20).

(B) Label-free site occupancies: frequency distri-

bution of phosphosite occupancies for control,

EGF-treated, and mitotic samples.

(C) Label-free site occupancies of P-Tyr sites:

distribution of P-Tyr occupancies across different

biological conditions.
signaling states. Disorder state was predicted using the Dis-

oPred software (Ward et al., 2004) for all proteins, and the corre-

sponding state was mapped to each phosphorylation site in our

data set (Table S2). The majority of the sites (86%) were found in

disordered regions, as expected (Iakoucheva et al., 2004).

Without stimulation there was very little difference between or-

dered and disordered sites as judged by 2D enrichment analysis

(Cox and Mann, 2012), suggesting that protein phosphorylation

tends to occur independent of structure in unstimulated cells.

In mitosis or EGF treatment, in contrast, the occupancies for or-

dered and disordered regions were significantly different (p <

10�6). High fractional occupancy sites preferentially occurred

on disordered regions in these states (Table S2), presumably

due to activation of upstream of kinase activity favoring disor-

dered regions (Tyanova et al., 2013).

In contrast to Ser/Thr site, absolute occupancy of Tyr sites has

not yet been reported from global measurements. We were able

to reliably estimate occupancies for 312 Tyr-specific phosphor-
1588 Cell Reports 8, 1583–1594, September 11, 2014 ª2014 The Authors
ylation events in at least one cellular con-

dition (Table S2). Most mitotic and control

phosphosites have less than 10% frac-

tional occupancy, whereas half of those

from EGF-treated samples show frac-

tional occupancy of 50% or higher

(Figure 4C). For pervanadate-treated

cells, three-quarters of Tyr phosphoryla-

tion events have a fractional occupancy

greater than 50%.

Our results show generally low frac-

tional occupancy in untreated cells and

that Tyr phosphorylation is maintained

at especially low stoichiometric levels

in the absence of specific signaling

events (Figure 4C). Together, the above
results show that site occupancies correlate with cellular

signaling state.

An 80-20 Rule for Protein Phosphorylation
The distribution of the MS-signals of the identified phosphopep-

tides are a function of protein abundance and site stoichiometry

and therefore can be used as a proxy for the amount of ATP

transferred as phosphate moieties onto proteins in the form

of Ser, Thr, and Tyr modifications. The MS signals of the phos-

phopeptides span six orders of magnitude, demonstrating the

sensitivity with which MS-based proteomics can now capture

them. However, 70% of the quantified phosphopeptides are

contained within only one order of magnitude above or below

the median phosphopeptide abundance (Figure 5A, left panel).

The 150 most abundant phosphopeptides already composed

20% of total phospho, whereas the most abundant 4,963 phos-

phopeptides constituted 80% of the cumulative phosphopep-

tide signal (Figure 5A, right panel). The remaining 89% of the



5 6 7 8 9 10

pY TiO2

pY IP

pY IP PV

Intensity pY sites (log10)

0 10000 30000 50000

10

10

11
12

13

lo
g1

0
(p

ho
sp

ho
pe

pt
id

e 
in

te
ns

ity
)

0 2000 6000 10000

Frequency

Intensity ranked phosphopeptides

median

Q5

Intensity ranked phosphopeptides

C
um

m
ul

at
iv

e 
ph

os
ph

op
ep

tid
e 

in
te

ns
ity

0 10000 30000 50000
0

80
60

40
20

10
0

150

443

1,139

44,230

31,008

0

10,000

20,000

30,000

40,000

pS

84.1% 

5,734

pT

15.5%

149

pY

0.4%

1,487

pY

Deep pSTY pY IP
+

Pervanadate

12,358 2,130
236

18,650 3,604
1,251

0

20

40

60

80

100
Novel Known

pS pT pY

Pe
rc

en
ta

ge
 o

f t
ot

al
 s

ite
s

N
um

be
r o

f s
ite

s

3,231

0

5

10

15

20

>24

0 500 1000 1500

N
um

be
r o

f s
ite

s 
pe

r p
ro

te
in

Number of proteins

0

1

2

3

4

5

6

7

8

Loading...

6 7 8 9 10 11 12 13
Protein intensity (log10)

N
um

be
r o

f s
ite

s 
pe

r p
ro

te
in

 (l
og

2)

Pearson correlation 0.18
-log10 (p-value) 13.80

1
2

3
4

5
6

7
8

9
10e-1

9
8

7
6

Q4
Q2

Q3
Q1

A

B

C

Figure 5. Properties of the Phosphopro-

teome

(A) Dynamic range of the phosphoproteome. His-

togram of phosphopeptide intensities showing

median intensity on which ranked phosphopeptide

abundances from decreasing to increasing

abundance are overlaid (left panel). Cumulative

phosphopeptide abundance from the highest to

the lowest abundance with pie chart separating

the abundances into five intensity quantiles (right

panel).

(B) Overview of phosphorylation sites per protein.

Distribution of phosphoproteins based on number

of phosphorylation sites per protein (left panel) and

density scatterplot of protein abundance versus

number of sites per protein. The color code in-

dicates the percentage of points that are included

in a region of a specific color (right panel).

(C) Phosphosite distribution across S/T/Y resi-

dues. Distribution of the S/T/Y phosphorylation

events by global phosphoproteomics and P-Tyr

immune precipitation (IP) (left panel). Box plots of

P-Tyr peptide intensities from global (TiO2-based),

P-Tyr IP, and IP+ pervanadate-treated samples

(middle panel). Distribution of the known and

novel P-Tyr/P-Ser/P-Thr sites after matching with

PhosphositePlus database (right panel).
quantified phosphopeptides, including both the low- and high-

occupancy phosphorylation events, correspond to only 20% of

total cellular ATP transferred as phosphate groups. This sug-

gests that a power law and specifically a Pareto Principle, or

80-20 rule, holds true for cellular phosphorylation, and it

reveals that the vast majority of phosphorylation events together

consume less than 20% of cellular ATP consumed in protein

phosphorylation.

Our parallel measurement of more than 50,000 phosphopepti-

desandabout 11,000proteinsallowedus to investigateapossible

correlation between a protein’s abundance and its propensity to

be phosphorylated. We observed a weak but highly significant
Cell Reports 8, 1583–1594, Sep
tendency for a greater number of identi-

fied phosphosites with increasing protein

abundance (Figure 5B, Pearson correla-

tion 0.18, p < 10�13). About 15% of identi-

fied proteins were phosphorylated on just

one residue, whereas the remaining 85%

were phosphorylated atmultiple sites (Fig-

ure 5B). Remarkably, half of the phosphor-

ylated proteins had six or more detected

phosphorylation sites. These multiple

phosphorylation events may either be

functional—for instance, reflecting cross-

talk downstream of multiple signaling

pathways—or they may reflect back-

ground phosphorylation due to low-level

kinase activity or both.

Because we observed that many pro-

teins could potentially be multiply phos-

phorylated, we next asked how frequently

two sites on the same protein molecule
are phosphorylated simultaneously. This can be inferred indi-

rectly from our data set. First, if we detect two or more sites on

a multiply phosphorylated peptide, they must be simultaneously

phosphorylated (indicated by multiplicity greater than 1 in Table

S2). Second, we used occupancies data to identify a minimum

set of coexisting phosphosites on a protein. Assuming that a pro-

tein with two modification sites, both of which are more than

50% occupied, the two sites cannot be completely exclusive.

This assumption can be applied to any binary combination of

modified sites on a protein. Applying this logic, we collated a

list of sites that are more than 50% occupied during mitosis

and should coexist (Table S2).
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Figure 6. Comparison of Phosphorylation on S/T versus Y Residues

(A) Density distribution of intensities of all proteins identified (black) compared

to proteins with Ser/Thr phosphorylation (green) and Tyr phosphorylation

(blue).

(B) Violin plot distributions of protein intensities of substrates phosphorylated

by the indicated kinases. Tyr kinases substrates are depicted in blue and those

for S/T kinases in red. A table of kinases and their KM values (Donella-Deana

et al., 2005; Fan et al., 2005; Sarno et al., 1996; Ubersax et al., 2003).

(C) Distribution of modified lysine residues over the protein sequence (intervals

[�10;�5], [�5;0], [0;5], [5;10]) compared to random occurrences (dashed lines)

plotted separately for S, T, and Y.
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In Vivo Inhibition of Tyr Phosphatases and
Immunoenrichment Enables Comprehensive
Coverage of P-Tyr
The residue-specific phosphorylation pattern found here (Ser

84.1%, Thr 15.5%, and Tyr 0.4%; Figure 5C) closely corre-

sponds to classical radioisotope based estimates (Hunter and

Sefton, 1980). However, successive quintiles of phosphopeptide

abundance contained proportionally fewer detected P-Tyr sites,

so that the overall the P-Tyr proportion wasmuch lower than that

in a previous phosphoproteome investigation in which we iden-

tified about 6,600 sites (Olsen et al., 2006).

Next, to ensure maximal representation of Tyr phosphoryla-

tion events, we immunoenriched Tyr phosphorylated peptides

(Kettenbach and Gerber, 2011). Apart from the three cellular

states (EGF stimulation, mitotis, and untreated control cells),

we also enriched pTyr peptides from pervanadate-treated cells.

Inhibition of Tyr phosphatases by pervanadate increased the

number of identified P-Tyr residues and also increased their

overall MS signal by an order of magnitude (Figure 5C, middle

panel). Together, this strategy allowed us to cover 10-fold more

P-Tyr residues through identification of more than 2,000 Tyr

phosphorylated peptides on about 1,300 proteins. Comparison

between TiO2 enrichment and anti-pTyr antibody enrichment

across three conditions (control, mitosis, and EGF stimulation)

revealed that two-thirds of the sites identified using TiO2

enrichment (149 sites) were identified by the pTyr antibodies.

In contrast, only 11% of the sites identified by anti-pTyr anti-

bodies (839 sites) were identified using the TiO2 enrichment

method. The P-Tyr sites were found on key proteins across

multiple signaling pathways, suggesting a global representation

of these events in our data set (Table S3). Although 60% of the

identified Ser and Thr phosphorylation events were novel, as

compared to the PhosphositePlus database (Hornbeck et al.,

2012), this was true for only 18% of the P-Tyr residues (Fig-

ure 5C, right panel). We conclude that, as depth of coverage in-

creases, detectable Tyr sites are covered relatively rapidly,

whereas the increase in Ser/Thr sites only appears to saturate

for technical reasons.

Tyrosine Phosphorylation Occurs on Higher
Abundance Proteins
Our data set revealed that proteins carrying P-Tyr residues were

significantly more abundant (p < 10�16), whereas proteins with

phosphorylated Thr or Ser residues were similar in abundance

to all identified proteins (Figure 6A). When we analyzed the

data by kinase motifs, again the Tyr kinase substrates were

more abundant than those of Ser/Thr kinases (Figure 6B).

The higher abundance of tyrosine phosphorylated proteins is

unlikely to be a consequence of poor detection of low abundant

P-Tyr peptides because the P-Tyr peptides found after in vivo in-

hibition of Tyr phosphatases (Figure 5C) were also present on

more abundant proteins. Further, if our data were technically

biased toward detecting only highly abundant P-Tyr phospho-

peptides, we would tend to identify Tyr phosphosites with high

fractional occupancies compared to Ser/Thr phosphosites.

However, we did not find evidence for such a bias. Instead, the

occupancy of Tyr-specific phosphosites was rather determined

by the signaling state of the cell (Figures 6A and S4B).
thors



We reasoned that possible explanationmay be found in the KM

values, an important factor in determining the activity of a kinase

toward its substrates. To ensure efficient phosphorylation, sub-

strates of a kinase should be present at concentrations above

their KM values. Indeed, we found that abundance of the P-Tyr

and P-Ser/Thr proteins correlates well with the relatively high

KM values of the Tyr kinases compared to those of Ser/Thr ki-

nases (Figure 6B, table within figure). Differences in median

site occupancy for Tyr and Ser/Thr phosphorylation events in

untreated cells can likewise be explained by the KM values for

Ser/Thr compared to those of Tyr kinase (Figure S4B).

Phosphorylated Residues Are Preferentially Located
near Modifiable Lysines
Crosstalk between different types of posttranslational modifica-

tion is an emerging theme in signaling biology (Hunter, 2007). To

investigate our data set for evidence of relations between phos-

phorylated residues and lysine modifications, we aligned our

sites with those of lysines that have been documented as modi-

fied by acetylation, ubiquitination or sumoylation (see Experi-

mental Procedures). If there was crosstalk between phosphory-

lation and these lysine modifications, we would expect a

nonrandom distance distribution between them, and this was

indeed the case (Figure 6C). At short distances from the phos-

phorylation sites, the measured fractions (solid lines) lie above

the randomized data (dashed lines) demonstrating a tendency

of modified lysine residues to occur with a higher preference in

the surroundings of phosphorylated residues. Furthermore, the

fraction of modified to nonmodified lysine residues decreased

with the distance to the phosphorylation site. Interestingly, this

effect was by far strongest for P-Tyr residues, where the fold dif-

ference between the measured and the randomized data was

1.57, than for either P-Ser or P-Thr residues (1.26 and 1.36,

respectively). This striking finding is in agreement with the notion

that our measured P-Tyr are primarily regulatory and stringently

controlled whereas the proportion of functional P-Ser and P-Thr

sites may be much lower. We found distances between Ser/Thr/

Tyr and lysine residues to be significantly shorter (p < 10�15) on

average in phosphopeptides than in unphosphorylated ones.

Thus, we confirmed that our observation is not biased even if it

is observed on tryptic phosphopeptides, which tend to have

modification sites in the vicinity of their C-terminal amino acid.

In any case, the highly nonrandom distribution of measured

phosphosites in relation to reported lysinemodification sites pro-

vides strong evidence for the notion of multiple modifications

acting in concert to regulate cellular processes.

DISCUSSION

Comprehensive study of PTMs is more challenging than prote-

ome analysis because of the required enrichment steps, low

abundance of modified peptides, and more complex LC-MS/

MS and computational analysis.

Here, we have developed an experimental and computation

pipeline to probe the phosphoproteome of a human cancer cell

line in unprecedented depth. We demonstrated accurate identi-

fication of phosphopeptides and validated our strategy on a

large synthetic phosphopeptide library. We also achieved effi-
Cell Re
cient relative quantification and determination of absolute site

stoichiometry from label-free data. These latter advances are

incorporated into MaxQuant and are thus freely available to the

community for the analysis of phosphorylation or other PTMs.

Likewise, our data set of more than 50,000 distinct phospho-

peptides, including quantitative and contextual information is

readily accessible through the MaxQB database (http://maxqb.

biochem.mpg.de/mxdb/project).

We find that at least three-fourths of the detected proteome

(7,832 out of 10,801 proteins) can be phosphorylated.

Combining protein abundance measurements with phosphory-

lation changes across mitosis and epidermal growth factor

(EGF) stimulation allowed determination of the occupancy of

thousands of phosphorylation sites using a label-free quantifica-

tion approach. This revealed that low-occupancy phosphoryla-

tion sites prevail in unstimulated cells. In contrast, specific

signaling states often entail high site occupancies, implying

that nearly all of the relevant signaling molecules in the cell carry

the modification. More than 80% of cellular ATP involved in

protein phosphorylation is concentrated on less than 20% of

phosphorylation site, thus phosphorylation appears to follow a

Pareto Rule. Conversely, the large majority of phosphorylation

events together consume only a minor fraction of cellular ATP.

Thus, our data provide direct experimental evidence that these

events are not energy expensive to the cell and support the

notion that controlling these events may be cost inefficient

(Levy et al., 2012). Another relevant factor in this regard are the

rates by which the phosphates may turn over on these sites

(see, for example, Kleiman et al., 2011). However, such a high

turnover rate is associated with a limited subset of regulated

phosphorylation events (Kleiman et al., 2011). Therefore, our

observation based on more than 50,000 phosphopeptides

should be a reliable estimate of cellular ATP utilization in protein

phosphorylation.

In vivo inhibition of Tyr-phosphatases followed by antibody-

based enrichment of phosphopeptides allowed recording of

tyrosine phosphorylation sites in a broad range of pathways

rather than mainly adding nonfunctional sites. Comparison of

our data to already known phosphorylation events (Hornbeck

et al., 2012) suggests that coverage of Tyr phosphorylation

is very comprehensive already. In contrast, modeling of the

number of phosphorylated proteins as a function of Ser/Thr

phosphorylated peptides demonstrates that the Ser/Thr phos-

phoproteome is far from complete, and saturation in a given

condition is rather due to technical factors. Tyr phosphorylated

residues were preferentially found closer to modifiable lysines

than Ser/Thr phosphorylated residues, implying a preferential

role in PTM crosstalk. Beltrao et al. previously hypothesize that

PTM crosstalk can be used as a feature to assign functional rele-

vance to modifications (Beltrao et al., 2012, 2013; Swaney et al.,

2013), and Swaney et al. (2013) implicated co-occurrence of

phosphorylated residues with ubiquitinylated in the regulation

of protein degradation.

Despite the large number of Tyr kinases in the genome, P-Tyr

residues account for <1% of total phosphorylation events. This

and many other lines of evidence suggest that specificity in Tyr

phosphorylation is strictlymaintained in cellular systems (Hunter,

2009). Tyrosine phosphatases are thought to have come into
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existence before the corresponding kinases (Lim and Pawson,

2010). Here, we directly determined fractional occupancy of

P-Tyr sites in cells and showed that the observed low fractional

occupancy of P-Tyr sites in unstimulated cells indeed correlates

with cellular control mechanisms determining specificity. The

global inhibition of Tyr phosphatases by pervanadate should

lead to a loss in specificity of Tyr phosphorylation events and

does not reflect a particular biological state. Nevertheless, the

observed phosphorylated pool is a collection of Tyr residues

that remain phosphorylated in the absence of phosphatase ac-

tion and represents in vivo substrates of Tyr kinases. Although

it was expected that we will identify a large number of such tyro-

sine phosphorylation events (as reported in Rush et al., 2005 and

Kettenbach and Gerber, 2011), their occupancies was a matter

of speculation. In this study, we unexpectedly found that such

events tend to have high site occupancy.

The extent of site-specific phosphorylations in vivo depends

on various factors such as the local concentrations of the

kinase, the substrate, antagonizing phosphatase(s), protein-

protein interactions as well as other potential substrates

‘‘competing’’ for the same kinase (Ubersax and Ferrell, 2007).

An example of multiple mechanisms contributing to kinase

selectivity can be found in case of cell-cycle control by cyclins,

which include a difference in kinase KM toward substrates and

interaction with specific motif on substrates (Loog and Morgan,

2005). Interestingly, we found that proteins phosphorylated on

Tyr residues are on average more abundant compared to the

entire proteome. The observed difference in phosphoproteins

abundance correlates with the substrate KM values of Tyr ki-

nases. KM differences have important consequences in the

cell, where the protein kinases are exposed to varying substrate

concentrations. We speculate that high abundance of substrate

proteins coupled with relatively lower efficiency of Tyr kinases

could buffer against harmful effects of the occasional stray

phosphorylation of functionally important sites. In contrast to

Ser/Thr kinases, the Tyr kinases might not be significantly in-

hibited by competition from general substrates because of their

high KM values for general substrates, allowing them to effi-

ciently phosphorylate a subset of low KM substrates. Conse-

quently, the low activity of Tyr kinases toward general targets,

combined with high abundance of their specific targets, con-

tributes to specificity in Tyr-based signaling events. The infor-

mation content in many tyrosine kinase recognition motifs can

be low, and therefore other control mechanisms for specificity

are required. A recent study revealed that an ensemble of

fine-tuned weak interactions control cellular decisions as exem-

plified by cell-fate control by RTKs (Findlay et al., 2013). There-

fore, in order for multiple, coincident ligand interactions to

appropriately specify stem cell differentiation, individual ligand

affinities must be selected to remain below a certain threshold.

Here, we observed fine-tuned substrate protein abundances

correlating with weak tyrosine kinase activity. We propose

that the tailored protein abundances of Tyr kinase substrates

coupled with low substrate affinities provide yet another mech-

anism controlling specificity to these signaling systems. In sum-

mary, our findings highlight the nature of P-Tyr as a separate

functional regulatory posttranslational modification of eukary-

otic proteomes.
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EXPERIMENTAL PROCEDURES

Cell Culture and Treatment

HeLa S3 cells were cultured in RPMI 1640 (Gibco) supplemented with 10%

fetal bovine serum (Invitrogen) and 1% penicillin/streptomycin (Invitrogen). A

double thymidine block in combination with nocodazole was used to obtain

a homogenous mitotic phase population and the efficiency of mitotic arrest

was monitored by FACS analysis. Cells were washed and suspended in PBS

and treated with 100 ng/ml EGF for 5 or 15 min. For tyrosine inhibition of phos-

phatases, cells were treated with 1 mM pervanadate and 50 ng/ml calyculin A

for 15 min at 37�C as described earlier (Rush et al., 2005).

Total Proteome and Phosphoproteome Sample Preparation and

MS Analyses

A total of 12.5 mg of protein lysate per experiment was digested by the FASP

method (Wi�sniewski et al., 2009b). For proteome analysis, 30 mg of the pep-

tides was separated on a pipette-tip based SAX column (Wi�sniewski et al.,

2009a). For phosphopeptide enrichment, 6 mg peptides obtained from

FASP was fractionated by strong cation exchange (SCX) chromatography

(Olsen et al., 2006) and subjected to phosphopeptide enrichment using TiO2

beads (Zhou et al., 2011). Briefly, peptides were dissolved in 80% acetonitrile

(ACN) and 6% triflouroacetic acid (TFA) and incubated with TiO2 beads (1:5

peptides to bead ratio) for 20 min. The beads were washed with 80% ACN

and 0.1% TFA and phosphopeptide elution was carried out under basic pH us-

ing ammonia. For P-Tyr enrichment, 8mg of digested peptides were subjected

to TiO2 enrichment before immunoprecipitation with a mix of anti-P-Tyr anti-

bodies as described (Kettenbach and Gerber, 2011). The (phospho)peptides

were desalted on C18 StageTips (Rappsilber et al., 2003).

Reverse-Phase Chromatography and Mass Spectrometry

Peptides were separated on a 50 cm reversed phase column (75 mm inner

diameter, packed in-housewith ReproSil-Pur C18-AQ 1.9 mm resin [Dr.Maisch

GmbH]) over a 120 or 240 min gradient of 5%–60% buffer B (0.1% [v/v] formic

acid, 80% [v/v] acetonitrile) using the ProxeonUltra EASY-nLC system. The LC

system was directly coupled online with a Q Exactive instrument (Thermo

Fisher Scientific) via a nano-electrospray source. The mass spectrometer

was programmed to acquire in a data-dependent mode using a fixed ion injec-

tion time strategy (Kelstrup et al., 2012). Full scans were acquired in the Orbi-

trap mass analyzer with resolution 70,000 at 200 m/z. For the full scans, 3E6

ions were accumulated within amaximum injection time of 20ms and detected

in the Orbitrap analyzer. The tenmost intense ions with charge statesR2 were

sequentially isolated to a target value of 1e6 with a maximum injection time of

60 or 80 ms and fragmented by HCD (Nagaraj et al., 2010) in the collision cell

(normalized collision energy of 25%) and detected in the Orbitrap analyzer at

17,500 resolution.

Data Processing and Analysis

Raw mass spectrometric data were analyzed in the MaxQuant environment

(Cox and Mann, 2008) v.1.5.0.0 and employed Andromeda for database

search (Cox et al., 2011). The MS/MS spectra were matched against the hu-

man Uniprot FASTA database v.2/25/2012 (81,213 entries). Enzyme specificity

was set to trypsin, and the search included cysteine carbamidomethylation as

a fixedmodification andN-acetylation of protein, oxidation of methionine, and/

or phosphorylation of Ser, Thr, Tyr residue (STY) as variable modifications. Up

to two missed cleavages were allowed for protease digestion, and peptides

had to be fully tryptic. For detailed explanation of PTM analysis in MaxQuant,

see Supplemental Experimental Procedures.

Downstream Bioinformatics Analyses

Bioinformatic analysis was done in the Perseus software environment, which

is part of MaxQuant. Hierarchical clustering of proteins or phosphosites was

performed on logarithmized intensities. For ANOVA analysis, replicates were

grouped, and the statistical test was performed with a permutation-based

false discovery rate (FDR) cutoff of 0.01.

Categorical annotation was supplied in the form of GO biological process,

molecular function, and cellular component, KEGG pathways for pathway

annotation and human protein reference database (HPRD) for kinase substrate
thors



motifs. Enrichment for these categories was evaluated by Fisher’s exact test

to obtain p values. The annotation matrix algorithm was used to compute

the difference of any significant protein annotation term from the overall inten-

sity distribution as described (Cox and Mann, 2012). We used a 2D version of

the nonparametric Mann-Whitney test. Multiple hypothesis testing was

controlled with a Benjamini-Hochberg FDR threshold of 0.05.

Determination of Crosstalk

Ubiquitination, acetylation, and sumoylation data sets were obtained from the

public repository PhosphoSitePlus (Hornbeck et al., 2012). Themodified lysine

residues were mapped to the phosphorylation data set. The fraction of modi-

fied to nonmodified lysine residues at the flanking regions of each phosphosite

was computed. Flanking regions of different lengths (from 5 to 40 amino acids

in intervals such as [�10;�5], [�5;0][0;5], [5;10]) were analyzed. Next, the po-

sitions of the modified lysine residues were randomized over all lysine residues

in the corresponding proteins, and the resulting fractionsofmodified to nonmo-

dified lysines were computed. The randomization was repeated 1,000 times,

creating a background distribution of random distances. The measured and

randomized fractions were plotted for each P- Ser, P- Thr, and P-Tyr residue.

ACCESSION NUMBERS

The MS-based proteomics data were deposited at the ProteomeXchange

Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE

partner repository with the data set identifier PXD000612. The data set can

also be accessed through the MaxQB database (http://maxqb.biochem.
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