J. Org. Chem., 1996, 61(12), 3942-3943, DOI:10.1021/jo960733v

Terms \& Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

ACS Publications

SUPPLEMENTARY MATERIAL

Conformationally Unbiased Macrocyclization Reactions by Ring Closing Metathesis

Alois Fürstner* and Klaus Langemann
Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1, D-45470 Mülheim/Ruhr, Germany

General. All reactions were carried out under Ar using Schlenk techniques. $\mathrm{Cl}_{2} \mathrm{Ru}\left(\mathrm{PCy}_{3}\right)_{2}=\mathrm{CHCH}=\mathrm{CPh}_{2}$ (1) was prepared from 3,3-diphenylcyclopropene according to the literature procedure. ${ }^{3}$ Commercially available reagents: 10 -undecen-1-ol, 5 -hexenoic acid, 10-undecenoyl chloride, 5 -hexen-1-ol, 4-(N,N-dimethyl)-amino-pyridine (DMAP), (Fluka); 7-octene-1-ol, Pd on charcoal (5\%), (Aldrich). Other substrates: Racemic 2-methyl-hept-6-en-1-ol (19) was prepared from 2-methyl-6-heptenoic acid by reduction with LiAlH_{4} according to Snider, B. B.; Allentoft, A. J.; Walner, M. B. Tetrahedron 1990, 46, 8031 - 8042. (R)-2-methyl-hept-6-en-1-ol (+)-(19) was obtained upon alkylation of (2S)-N-propionylbornane-10,2sultam (17) ${ }^{13}$ with 1 -iodo-5-pentene and subsequent reduction of the resulting product 18. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was dried by distillation from CaH_{2} and was stored under Ar. Flash Chromatography: Merck silica gel 60 (230-400 mesh) with n-hexane/ethyl acetate in various proportions as eluent. Instrumental Analyses: NMR: Spectra were recorded on a Bruker AC 200 at $200.2 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $50.3 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$ in CDCl_{3}. Chemical shifts are listed downfield in ppm relative to tetramethylsilane. Coupling
constants (J) are given in Hz . IR: Nicolet FT - 7199, wavenumbers in $\mathrm{cm}^{-1} . \mathrm{MS}$: Varian CH - $5(70 \mathrm{eV})$. HR-MS: Finnigan MAT SSQ $7000(70 \mathrm{eV})$. Optical rotation measurements: Jasco DIP - 360 polarimeter in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ using a 5 cm path length quartz cell at the temperature stated.

Preparation of Terminally Unsaturated Esters. Representative Procedure. A solution of hex-5-en-1-ol ($475 \mathrm{mg}, 4.75 \mathrm{mmol}$) and DMAP ($610 \mathrm{mg}, 5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL) was added dropwise to a stirred solution of 10 -undecenoyl chloride ($810 \mathrm{mg}, 4 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. Stirring was continued for 4 h at room temperature. The reaction mixture was filtered through a short pad of silica, the solvent was evaporated and the product purified by flash chromatography with hexane/ethyl acetate ($50: 1 \rightarrow 20: 1$) as eluent. Ester 3 was obtained as a colorless syrup ($1.002 \mathrm{~g}, 94 \%$).

Macrocyclization Reactions via Ring Closing Metathesis (RCM). Representative

 Procedure. A solution of substrate $3(298 \mathrm{mg}, 1.12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and a solution of the ruthenium carbene $1\left(50 \mathrm{mg}, 0.054 \mathrm{mmol}, 5 \mathrm{~mol} \%\right.$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100 mL) were simultaneously added dropwise over a period of 24 h to $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at room temperature. After stirring for another 6 h , the solvent was removed in vacuo and the residue was purified by flash column chromatography with n-hexane/ethyl acetate (100:1) as eluent to afford lactone 4 as a colorless syrup ($219 \mathrm{mg}, 79 \%$).Hydrogenation of Unsaturated Lactones. Representative Procedure. Pd on charcoal ($5 \% \mathrm{w} / \mathrm{w}, 35 \mathrm{mg}$) was added to a solution of compound 4 ($135 \mathrm{mg}, 0.57$ mmol) in ethyl acetate (10 mL). The mixture was stirred under H_{2} (1 atm) at room temperature for 40 min . The Pd catalyst was filtered off through a short pad of silica
and was washed several times with ethyl acetate. Removal of the solvent in vacuo afforded Exaltolide (2) in analytically pure form ($130 \mathrm{mg}, 95 \%$).

Hex-5-en-1-yl undec-10-enoate (3). Colorless syrup. ${ }^{1}$ H NMR: $1.30-1.72(\mathrm{~m}, 16 \mathrm{H})$, 1.98-2.16(m,4H), 2.29(t,2H, J=7.7), 4.07(t, 2H, J=6.6), 4.91-5.05(m,4H), 5.70 - 5.88 (m, 2H). ${ }^{13} \mathrm{C}$ NMR: 25.0, 25.2, 28.1, 28.9, 29.1, 29.1, 29.3, 29.4, 33.3, $33.8,34.4,64.1,114.1,114.9,138.3,139.1,173.9$. IR: 3077, 2976, 2928, 2856, $1738,1641,1461,1441,1417,1390,1354,1240,1172,1116,993,910 . \mathrm{MS} \mathrm{m} / \mathrm{z}$ (rel. intensity): $266\left(\mathrm{M}^{+}, 1\right), 166(7), 148(12), 96(11), 82(100)$.

Pentadec-10-en-15-olide (4). Colorless syrup. Ratio of isomers $\sim 46: 54 .^{1} \mathrm{H}$ NMR: $1.30-1.49(\mathrm{~m}, 10 \mathrm{H}), 1.54-1.72(\mathrm{~m}, 4 \mathrm{H}), 2.00-2.10(\mathrm{~m}, 4 \mathrm{H}), 2.29-2.37(\mathrm{~m}, 2 \mathrm{H})$, 4.07-4.18(m, 2H), 5.28-5.45 (m, 2H). ${ }^{13} \mathrm{C}$ NMR: 25.2, 25.4, 26.5, 26.6, 27.1, 27.2, 27.6, 27.9, 28.0, 28.1, 28.2, 28.3, 28.4, 28.4, 29.1, 32.0, 33.9, 34.7, 64.0, 64.1, 129.6, 130.1, 130.4, 131.7, 173.9. IR: $3000,2928,2856,1736,1461,1385,1346$, 1252, 1234, 1168, 1152, 1113, 1085, 1024, 969, 719. MS m / z (rel. intensity): 238 $\left(M^{+}, 20\right), 210(18), 109(17), 96(49), 82(100), 67(64), 55(64)$. HR-MS calcd. for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2}$: 238.1933, found: 238.1920 .

Undec-10-en-1-yl hex-5-enoate (5). Colorless syrup. ${ }^{1} \mathrm{H}$ NMR: $1.30-1.37$ ($\mathrm{m}, 12 \mathrm{H}$), $1.55-1.80(m, 4 H), 1.99-2.16(m, 4 H), 2.31(t, 2 H, J=7.4), 4.06(t, 2 H, J=6.7)$, 4.90-5.07 (m, 4H), 5.68-5.87 (m, 2H). ${ }^{13} \mathrm{C}$ NMR: 24.1, 25.9, 28.7, 28.9, 29.1, 29.2, $29.4,29.5,33.1,33.6,33.8,64.4,114.1,115.2,137.6,139.1,173.6$. IR: 3078, 2928, $2855,1738,1641,1461,1244,1171,993,911 . \mathrm{MS} m / z$ (rel. intensity): $266\left(\mathrm{M}^{+}, 2\right)$, 154 (18), 115 (47), 96 (48), 82 (50), 69 (100), 55 (97).

Pentadec-5-en-15-olide (6). Colorless syrup. (E): (Z) ~ $77: 23 .{ }^{1} \mathrm{H}$ NMR: 1.24 $1.28(\mathrm{~m}, 12 \mathrm{H}), 1.55-1.71(\mathrm{~m}, 4 \mathrm{H}), 1.92-2.09(\mathrm{~m}, 4 \mathrm{H}), 2.28(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.2), 4.05(\mathrm{t}$, 1.7 $\mathrm{H}, \mathrm{J}=5.3$), $4.08(\mathrm{t}, 0.3 \mathrm{H}, \mathrm{J}=5.2), 5.16-5.36(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: (E)-isomer: $22.5,25.0,25.2,25.9,26.3,26.8,26.9,27.3,29.7,31.0,31.1,63.5,128.5,131.2$, 172.6. (Z)-isomer (resolved signals): 24.4, 24.5, 25.1, 25.2, 25.5, 25.8, 25.9, 26.8, $33.1,63.3,127.8,130.0,172.7$. IR: $3005,2934,2850,1738,1452,1350,1254$, 1240, 1170, 969, 714. MS m/z (rel. intensity): $238\left(\mathrm{M}^{+}, 48\right), 126(26), 110(18), 96$ (55), 82 (100), 67 (83). HR-MS calcd. for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2}$: 238.1933, found: 238.1910.

Exaltolide (2). Colorless syrup. ${ }^{1} \mathrm{H}$ NMR: $1.32-1.45(\mathrm{~m}, 20 \mathrm{H}), 1.57-1.70(\mathrm{~m}, 4 \mathrm{H})$, $2.33(t, 2 H, J=7.0), 4.14(t, 2 H, J=5.8) .{ }^{13} \mathrm{C}$ NMR: 24.9, 25.1, 25.9, 26.0, 26.0, 26.4, 26.7, 26.9, 27.1, 27.2, 27.8, 28.4, 34.4, 63.9, 174.0. IR: 2929, 2858, 1737, 1461, 1349, 1237, 1167, 1108, 1069, 1052, 719. MS m / z (rel. intensity): $240\left(M^{+}, 46\right), 222$ (31), $180(18), 138(13), 124(14), 110(15), 97(31), 83(47), 69(66), 55(100)$. HRMS calcd. for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{2}$: 240.2089, found. 240.2080.

10-Undecen-1-yl 10-undecenoate (8). Colorless syrup. ${ }^{1} \mathrm{H}$ NMR: 1.30-1.41 (m, $24 \mathrm{H}), 1.55-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.98-2.08(\mathrm{~m}, 4 \mathrm{H}), 2.28(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.6), 4.06(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ $6.7), 4.89-5.04(\mathrm{~m}, 4 \mathrm{H}), 5.70-5.90(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: 24.6, 25.5, 28.3, 28.5, 28.5, 28.7, 28.7, 28.7, 28.8, 28.9, 29.0, 29.1, 33.4, 34.0, 63.9, 113.7, 113.8, 138.6, 173.4. IR: 3077, 2927, 2855, 1739, 1641, 1465, 1239, 1172, 993, 909, 723. MS m/z (rel. intensity): $336\left(\mathrm{M}^{+}, 8\right), 185(7), 167(12), 152(28), 124(20), 110(29), 96(51), 82$ (67), 69 (65), 55 (100).

10-Eicosen-20-olide (9). Colorless syrup. Ratio of isomers ~ $45: 55 .{ }^{1} \mathrm{H}$ NMR: 1.23 - $1.45(\mathrm{~m}, 22 \mathrm{H}), 1.58-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.98-2.03(\mathrm{~m}, 4 \mathrm{H}), 2.31(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.4), 4.11$ (td, 2H, J = 5.6, 1.7), 5.28-5.44 (m, 2H). ${ }^{13} \mathrm{C}$ NMR: 25.2, 25.9, 26.2, 26.6, 26.7, 27.7, $28.0,28.4,28.5,28.7,28.7,28.8,29.0,29.0,29.1,29.1,29.2,29.4,29.5,31.7,32.0$, $34.5,34.8,64.0,64.2,130.0,130.1,130.6,130.9,173.9,174.0 . \operatorname{IR}: 3001,2926$, $2854,1737,1462,1385,1348,1252,1236,1175,1117,1090,1066,1030,969,722$. MS m / z (rel. intensity): $308\left(\mathrm{M}^{+}, 32\right), 290(11), 124$ (18), 110 (23), 96 (74), 82 (100). HR-MS calcd. for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{2}$: 308.2715, found. 308.2720.

20-Eicosanolide (7). Colorless syrup. ${ }^{1}$ H NMR: $1.26-1.30(\mathrm{~m}, 34 \mathrm{H}), 2.31(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ 7.0), 4.11 ($\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.9$). ${ }^{13} \mathrm{C}$ NMR (resolved signals): 22.7, 25.1, 26.0, 27.5, 27.6, $27.7,27.8,27.9,28.2,28.3,28.4,28.7,28.8,28.9,29.0,31.6,34.7,64.4,173.6$. IR: 2925, 2854, 1737, 1461, 1351, 1250, 1169, 1112, 808, 722. MS m/z (rel. intensity): $310\left(\mathrm{M}^{+}, 75\right), 292(40), 250(11), 124(12), 111(23), 97(47), 83(57), 69(65), 55$ (100). HR-MS calcd. for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{O}_{2}: 310.2872$, found. 310.2858 .

Dec-9-en-2-yl hex-5-enoate (11). Colorless syrup; ${ }^{1} \mathrm{H}$ NMR: 1.14 ($\mathrm{s}, 3 \mathrm{H}$), 1.17 (s, $3 H), 1.20-1.57(\mathrm{~m}, 11 \mathrm{H}), 1.69$ (quint., $2 \mathrm{H}, \mathrm{J}=7$), $1.90-2.10(\mathrm{~m}, 4 \mathrm{H}), 2.24(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}$ $=7), 4.81-5.04(\mathrm{~m}, 4 \mathrm{H}), 5.62-5.86(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: 173.1, 138.9, 137.7, 115.2, $114.1,70.7,35.8,33.9,33.7,33.0,29.2,28.9,28.7,25.3,24.1,19.9$. IR: 3080, 2990 , 2920, 2860, 1725, 1645, 1380, 1250, 1180, 1130, 990, $910 . \mathrm{MS} \mathrm{m} / \mathrm{z}$ (rel. intensity): $252\left(\mathrm{M}^{+}, 2\right), 206(2), 163(3), 138(18), 114(83), 110(19), 97(100), 83(39), 82(31)$, 80 (31), 69 (74), 68 (53), 67 (28), 55 (77), 41 (61).

13-Methyl-tridec-5-en-13-olide (10). Colorless syrup; $(E):(Z) \sim 31: 69 .{ }^{1} \mathrm{H}$ NMR: 1.19-2.46(m,22H), 4.88-5.07(m,1H), 5.30-5.41(m,2H). ${ }^{13} \mathrm{C}$ NMR: (Z)-isomer:
20.7, 23.3, 25.0, 25.0, 25.2, 26.2, 26.6, 27.0, 33.8, 34.7, 69.3, 128.9, 130.9, 173.4. (E)-isomer: 20.4, 22.5, 24.3, 26.2, 27.1, 27.4, 31.3, 32.2, 32.6, 34.4, 69.7, 129.3, 132.3, 173.6. IR: $3000,2930,2857,1732,1653,1460,1414,1374,1345,1293$, 1246, 1206, 1172, 1132, 1107, 1042, 1022, 971, 877, 806, 719. MS m/z (rel. intensity): 224 ($\mathrm{M}^{+}, 10$), 164 (8), 126 (30), 95 (43), 81 (100), 67 (93), 55 (77).
(+)-(R)-2-Methyl-hept-6-en-1-yl oct-7-enoate (+)-(15). Colorless syrup. ${ }^{1} \mathrm{H}$ NMR: $0.92(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.8), 1.02-1.52(\mathrm{~m}, 8 \mathrm{H}), 1.56-1.83(\mathrm{~m}, 3 \mathrm{H}), 1.99-2.10(\mathrm{~m}, 4 \mathrm{H})$, $2.31(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.3$), 3.89 ($\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.7,6.6$), 3.92 ($\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.7,6.0$), 4.91 $5.05(\mathrm{~m}, 4 \mathrm{H}), 5.70-5.90(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: 16.9, 24.9, 26.2, 28.5, 28.6, 32.5, 32.9, 33.6, 33.9, 34.4, 69.1, 114.4, 114.5, 138.7, 138.8, 173.9. IR; 3078, 2932, 2858, 1738, 1641, 1462, 1247, 1172, 994, 911. MS m/z (rel. intensity): $252\left(\mathrm{M}^{+},<1\right), 210$ (2), 125 (19), 110 (23), 95 (23), 81 (47), 69 (97), 55 (100). HR-MS calcd. for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{2}$: 252.2089, found: 252.2078. $[\alpha]_{\mathrm{D}^{23}}=+1.42^{\circ},[\alpha]_{546^{23}}=+1.68^{\circ}(\mathrm{c}=16.5$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).
(+)-(R)-12-Methyl-tridec-7-en-13-olide (+)-(16). Colorless syrup. (E : (Z) ~ $96: 4$,. ${ }^{1} \mathrm{H}$ NMR (E-isomer): 0.89 ($\mathrm{d}, 3 \mathrm{H}, \mathrm{J}=6.8$), $1.18-2.11(\mathrm{~m}, 15 \mathrm{H}), 2.30-2.37(\mathrm{~m}, 2 \mathrm{H})$, 3.81 (dd, $1 \mathrm{H}, \mathrm{J}=10.8,9.2$), 4.06 (dd, $1 \mathrm{H}, \mathrm{J}=10.8,3.5$), $5.24-5.29$ ($\mathrm{m}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (E-isomer): 15.9, 25.1, 25.3, 26.8, 28.1, 30.2, 31.2, 31.5, 32.3, 34.9, 68.4, 131.5, 131.6, 174.0. IR: 3024, 2929, 2856, 1734, 1461, 1444, 1378, 1341, 1252, 1206, 1168, 1148, 1116, 1007, 970, 737. MS m/z (rel. intensity): 224 ($\mathrm{M}^{+}, 24$), 109 (23), 95 (51), 81 (100), 67 (69). HR-MS calcd. for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2}$: 224.1776, found. 224.1755. $[\alpha]_{D^{25}}=+31.48^{\circ},[\alpha] 548^{25}=+32.24^{\circ}\left(\mathrm{c}=5.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
$(+)-(R)-12$-Methyl-13-tridecanolide (+)-(12). Colorless syrup. ${ }^{1} \mathrm{H}$ NMR: $0.92(\mathrm{~d}, 3 \mathrm{H}$, $\mathrm{J}=6.9$), $1.13-1.91(\mathrm{~m}, 19 \mathrm{H}), 2.26-2.50(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.9,8.4), 4.20$ (dd, $1 \mathrm{H}, \mathrm{J}=10.9,3.4$). ${ }^{13} \mathrm{C}$ NMR: 16.7, 22.5, 23.7, 24.1, 24.6, 25.6, 25.9, 26.2, 26.3, 30.1, 31.9, 34.2, 68.0, 173.9. IR: 2931, 2861, 1736, 1461, 1447, 1377, 1241, 1150, 1109, 1010, 733. MS m/z (rel. intensity): 226 ($\mathrm{M}^{+}, 33$), 208 (27), 153 (20), 124 (13), 111 (19), 98 (39), 83 (39), 69 (80), 55 (96), 41 (100). HR-MS calcd. for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{2}$: 226.1933, found. 226.1920. $[\alpha]_{0}{ }^{25}=+14.54^{\circ},[\alpha]_{546}{ }^{25}=+17.22^{\circ}(\mathrm{c}=4.25) . \mathrm{ref}^{12 \mathrm{~d}}$: $[\alpha]_{D}^{25}=+14.7^{\circ},[\alpha]_{546}{ }^{25}=+17.5^{\circ}(c=1.4)$.

