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Abstract

In order to fully characterize crystal aggregates, the orientation of primary par-

ticles has to be analyzed. A procedure for extracting this information from

three-dimensional microcomputed tomography (µCT) images was recently pub-

lished by our group. We here extend this method for asymmetrical crystals and

apply it for studying the disorientation angle distribution of four potash alum

crystal samples that were obtained under various experimental conditions. The

results show that for all considered supersaturation profiles, primary particle

pairs tend to have the same orientation significantly more often than in theoret-

ical considerations, in which the orientations of primary particles are assumed

to be distributed randomly.

Keywords: A1. Aggregation, A1. Characterization, A1. Microcomputed

Tomography, A1. Crystal Morphology, B1. Salts

1. Introduction

Aggregation is an important phenomenon in crystallization and can lead to

broadening of the particle size distribution, an undesired change in flow prop-

erties, and the inclusion of impurities [1][p. 25]. In an agitated vessel, crystals

often collide and form an aggregate if they are cemented together quickly enough
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to survive the hydrodynamic forces attempting to separate them [2, 3, 4]. The

rate at which the particles are bound together depends on, among other factors,

the type of contact between the particles [4], which further depends on the shape

of particles and their mutual orientation. These aspects have typically been sim-

plified by considering a point or linear contact between spherical particles, as

reviewed by Hounslow et al. [4]. Shape information has so far been included in

the aggregation modeling through a shape-sensitive aggregation kernel [5] or by

adopting a Monte Carlo approach and a hierarchical aggregate representation

[6, 7].

The need for a more detailed understanding of the ability of a particle pair

to form a stable aggregate requires a technique to characterize the particles in

terms of their mutual orientation. This topic is of special importance in nano-

and bio-materials, where oriented particle attachment occurs [8]. Collier et al.

[9, 10] investigated calcite aggregates using a transmission electron microscope

(TEM) and a scanning electron microscope (SEM). A TEM enables measuring

diffraction patterns, which can be used to analyze the aggregate in terms of the

alignment between the primary particles. A SEM enables simple observation,

and no alignment measurements can be performed. In [10], the alignment mea-

sured within an aggregate was classified as “perfect”, “almost perfect”, “par-

tial” and “no alignment”. 40 % of the particles were classified into the first two

classes for an experiment conducted at low ionic strength. Crystals produced

at a higher ionic strength were imaged using an SEM and no alignment was

visually observed. Collier et al. [10] explained the observed behavior by assum-

ing that crystals grown at a lower ionic strength have enough time to reorient

themselves into an energetically more favorable position before being cemented

together. This time window is further explained by the increase in thickness

of the electrical double layer that, “[...] either slows the approach of the crys-

tals, allowing them to rotate before cementing, or holds them far enough apart

that only those colliding in favorable orientations are bound strongly enough to

withstand the hydrodynamic forces in the vessel” [10].

Apart from the TEM studies, information about the crystal shape can be
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obtained using image processing. Classification techniques such as discrimi-

nant factorial analysis or support vector machine can be combined with two-

dimensional (2D) image-based shape factor analysis to measure the degree of

agglomeration [11, 12, 13], or to track the aggregate volume [14]. Three-

dimensional (3D) and stereo imaging techniques enable a full description of

the particle shape [15, 16, 17, 18, 19]. They can be used to obtain the size,

shape, and orientation of each primary particle in an aggregate [20]. In the

present work, we apply our approach to extracting such information, presented

in [20], to potash alum crystals grown under various experimental conditions.

We wish to determine whether supersaturation influences the orientation be-

tween primary particles in an aggregate. Potash alum was chosen for reasons of

simplicity, being a model compound that crystallizes into octahedra. It has been

shown experimentally that potash alum forms stronger agglomerates at higher

supersaturation levels [21]. This compound is known to exhibit parallel growth

and twinning [1][p. 25], which can lead to an increased amount of identically

oriented primary particles in an aggregate.

Describing a set of crystallites in terms of their mutual orientation is a well-

known problem of material science [22]. The orientation between the crystallites

in the polycrystalline material can influence its properties, such as in which

direction the material is especially magnetizable [22][p. 1]. Thus, we adopt

here the concepts of disorientation angle and disorientation angle distribution

(DAD) from material science. We compare our experimentally measured values

to the case considered in the literature [23, 24], where each primary particle

orientation is equally probable.

2. Description of Crystal Shape

As in our previous publications [16, 20, 25], we consider three crystal rep-

resentations. A V -representation consists of a matrix V of crystal vertices vi.

A crystal can be analogously described by a set of face normals ai from the

crystal middle point, gathered as rows in the matrix A. This matrix, along
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with the vector h of crystal face distances hi from some middle point, forms the

H-representation. Given the crystal symmetry, the dimension of the vector h

can be reduced by considering only one face distance hi per crystal face group

to obtain the face distance vector hC. This is referred to as HC-representation.

In the following, bold symbols represent vectors and matrices, and italic

symbols represent scalar values. Indices that are neither bold nor italic indicate

a name or a description. Furthermore, we use “aggregate” as a general term for

a crystal consisting of more than one primary particle. The word“agglomerate”

refers to strongly bound aggregates in which primary particles are grown into

each other. Depending on the context, “crystal” may refer to either a single

crystal or an aggregate.

3. Experiments

3.1. Crystallization Experiments

We conducted two sets of potash alum seeded batch cooling crystallization

experiments. The experimental parameters are given in Table 1. The bulk

material was purchased from Merck (CAS No. 7784-24-9, assay 99.0-100.5 %

calc. on dry substance). In order to ensure saturation at 30 ◦C, 161 g of potash

alum was dissolved in 1000 g of deionized water (161.2 g - 161.3 g). The 1 l

double-jacketed vessel with an inner diameter of 10 cm and a round bottom was

stirred at 250 rpm. The dispersion was heated above the saturation temperature

to ensure complete dissolution and then cooled at the cooling rates given in Table

1. The seed material was purchased from either Roth (Art. Nr. CN78.2) or

Merck. It was sieved for 60 min with a vibratory sieve shaker (AS 200 control,

Retsch). The sieve fraction between 200 µm and 300 µm was added when the

temperature was slightly below the calculated saturation temperature. Crystals

were imaged using an online flow-through-cell QICPIC (R02, Sympatec) system,

as previously described in [26, 27].

As it can be seen in Table 1, the M experiments were performed with dif-

ferent seeds and a larger amount of seed than in experiment R in order to
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Param./Name R M10 M5 M3

Cooling rate 5 K/h 10 K/h 5 K/h 3 K/h

Seed material Roth Merck Merck Merck

Seed mass 8 g 10 g 10 g 10 g

Seeding temp. 29.87 ◦C 29.84 ◦C 29.76 ◦C 29.82 ◦C

End temp. 20.4 ◦C 21.3 ◦C 20.8 ◦C 20.5 ◦C

Effective voxel size 6.80 µm 7.85 µm 7.85 µm 7.85 µm

Preparation Aggregates All All All

Table 1: Parameters of the batch cooling crystallization experiments.

ensure more agglomeration and less nucleation. The results of the preliminary

processing on the experiment R were presented at the BIWIC 2016 conference

[28] 1. Furthermore, two different preparation procedures were performed and

different µCT resolutions were used, as explained below. In M experiments,

different constant cooling rates were applied to obtain different supersaturation

profiles while the other parameters were kept constant. This was done because

supersaturation is expected to have an influence on the DAD.

At the end of the experiments, crystals were withdrawn from different loca-

tions in the crystallizer using a large pipette and placed on a Büchner funnel

covered by filter paper. Each sample obtained this way was filtered using a

vacuum pump, washed with a cooled 50-50 solution of ethanol-water, and air

dried.

The temperature was measured with a PT100 sensor and the concentration

was monitored using an ATR-FTIR probe (Nicolet iS 10 FT-IR, Thermo Fisher

Scientific). Spectra for a potash alum solution in the considered temperature

and concentration range were used for a partial least squares calibration model.

1Processing was repeated with the user-assisted manipulation of concavity points and the

size and position of the bars in the resulting graph was slightly changed to be the same for

all experiments.
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During the experiments, spectra were automatically recorded and evaluated

with the calibration model. There is an offset in the resulting concentration.

Therefore, we use the initially known concentration c1 at time t1. The final

concentration c2(t = t2) was determined by taking three samples of the solution,

filtering the samples through filter paper, and air drying for at least two days.

The concentration c after offset correction is obtained from the measurement

without correction, cmeas, using:

c(t) = cmeas + c1 +
c2 − c1
t2 − t1

(t− t1). (1)

The supersaturation was computed as

S(T (t)) =
c(t)

csat(T (t))
, (2)

where c(t) is the concentration in grams of hydrate per kilograms of free wa-

ter at time t, and csat(T (t)), the saturation concentration for temperature T

measured at time t. The saturation concentration was previously measured and

interpolated to obtain the following equation:

csat = (0.18T 2
K − 102.726TK + 14760.7)

g hydrate

kg free water
, (3)

where TK stands for the temperature in Kelvin. The saturation is in good

agreement with measurements made by Mullin et al. [29]. The concentration

and supersaturation curves are shown in Figures 1a and 1b.

It can be seen that the concentration increases at the beginning and then

decreases for the rest of the experiment. This is consistent with the QICPIC

observation that the seed crystals start dissolving upon being introduced into

the reactor, as seen in Figure 2. Furthermore, the measured supersaturation

was the largest in the experiment with the fastest cooling rate (M10), and the

smallest in the experiment with the slowest cooling rate (M3), as expected.

3.2. Crystal Preparation and Imaging

In order to obtain a sample consisting only of aggregates, crystals of exper-

iment R were picked up from the filter paper using a pair of tweezers, observed
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Figure 1: Concentration (a) and supersaturation (b) for all four experiments. Black circles

and crosses mark the sampling time for solution and crystals, respectively. Seeds were added

at time t = 0 for all plots.

(a) R (b) M3

Figure 2: Frames from the QICPIC videos taken 37 s after adding seeds in the experiments

R (a) and 270 s after adding seeds in experiment M3 (b).
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(a) (b)

Figure 3: µCT preparation procedure. (a) Crystals are placed on an adhesive tape that is

rolled around a toothpick. (b) Final tape with crystals.

and imaged under a microscope. The crystals that were judged to be aggre-

gates were then prepared for imaging by microcomputed tomography (µCT).

This is the “Aggregates” preparation procedure referred to in Table 1. As it was

observed that some crystals fell apart during preparation, both single crystals

and aggregates from the M experiments were prepared. This ensured that the

crystals are moved with tweezers only once, which decreased the probability

of aggregates breaking apart. This is referred to as the preparation procedure

“All”. Approximately half of the sampled crystals from experiment R and a

tenth of the samples from M experiments were prepared for imaging.

The µCT preparation procedure described here represents an improvement

on the one we presented previously [20]. Adhesive tape was rolled around a

toothpick, and the crystals to be imaged were placed on the tape in rows of

three, thus ensuring sufficient separation between the particles. The tape was

then rolled in further around the toothpick, which enabled this to be done in a

controlled manner such that particle movement was minimized. The preparation

is illustrated in Figure 3.

The toothpick was then placed in a screw clamp holder and imaged in a

ZEISS X-Radia Versa XRM 500 µCT machine. The measurement was per-

formed using the parameters shown in Table 2. The proprietary software XRM

Reconstructor was used for CT reconstruction. The resulting volume was cropped
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Figure 4: One slice from experiment M5, in which the onion-like adhesive tape layers around

the porous-looking toothpick can be seen. Crystals that are present in the slice are shown in

white.

and a .tif stack containing 2D slice images was exported. One of the slices from

experiment M5 can be seen in Figure 4. Because the crystals are much brighter

than the toothpick and the adhesive tape, they can easily be segmented. A

binarization using the Otsu threshold [30][p. 515-516] was performed for all

experiments except for M10, for which the threshold was found manually by

observing the effect on different slices using the MAVI software [31].

3.3. Simulated Data

3.3.1. Simulated Single Crystals

In order to assess the accuracy of the algorithm for the given resolution,

we created crystals and their corresponding 3D images by simulation. First,

100 single octahedral crystals with a unit face distance were simulated. Their

orientation was determined by a rotation matrix computed from the Z-Y-Z

convention of Euler angles (α, β, γ). The angles α and γ were sampled uniformly

from 0 to 2π, whereas the cosine of the angle beta was uniformly sampled

between −1 and 1, which ensured that the resulting rotations were uniform

[32]. Five different samples were obtained by setting the volume-equivalent

sphere diameter of the octahedra to values from 200 µm to 600 µm with an

increment of 100 µm. We then simulated 3D images of these octahedra using
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Parameter / Experiment(s) R M

Tube Voltage 80 kV 80 kV

Power 6 W 6 W

Exposure Time 5 s 5 s

Magnification objective 0.39x 0.39x

Source-to-sample distance 25 mm 30 mm

Detector-to-sample distance 100 mm 100 mm

No. projections 1601 1601

Table 2: Parameters of the µCT measurement.

the resolution of 7.85 µm per voxel, as in the M experiments. The details of

how a 3D image with a given resolution is obtained from the octahedron with

given vertices can be found in our previous work [20].

3.3.2. Simulated Crystal Aggregates

To further show that the algorithm is capable of measuring the DAD, we

simulated a sample of 100 crystal aggregates using the approach we presented

previously [20]. The aggregates consisted of two to five primary particles. Each

particle had a random orientation, where the rotation matrix was sampled uni-

formly as explained in Section 3.3.1. The primary particle face distance h was

sampled from a normal distribution with a mean of 250 µm and a standard

deviation of 30 µm. The particles were first brought into contact where they

lightly touch. Next, they were grown by increasing the face distance of each

particle by 50 µm. The 3D images were simulated using a voxel length of 15

µm.

4. Aggregate Segmentation and Shape Identification

The presented algorithms were implemented in MATLAB 2015b, with MAT-

LAB 2014a used for visualization [33]. They use our previous framework regard-

ing convex geometry [25, 34], image processing of µCT data [16, 20] the cdd
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library [35] and the Marching Cubes rendering algorithm [36]. We considered

octahedral potash alum crystals with 8 faces, as opposed to the previously used

26 faces [16, 20] . This is justified by the shapes observed in the experiments

and is less likely to lead to errors since the non-existent small non-octahedral

faces would not be identified by a Hough transform.

4.1. Aggregate Isolation

Individual crystals were isolated from the µCT image of the sample using

the connected-component labeling procedure with a 26-8 neighborhood in the

MAVI software [31]. Because of the improved sample preparation procedure,

no further steps were necessary to ensure that crystals were indeed in contact.

This is in contrast to our previous work where additional measures had to be

taken (see [20], Section 3.2.2). Separated crystals were stored as individual 3D

images and discarded if their volume equivalent diameters were smaller than

200 µm, which was the mesh size of the finer sieve.

As one aggregate from experiment R was too large to enable processing with

the given amount of RAM, it was down-sampled by halving it in each dimension

using MAVI. This was compensated for by considering the resolution, measured

by voxel length in µm, to be twice as large for this crystal.

4.2. Aggregate Segmentation

The algorithm for segmenting an aggregate into primary particles was pre-

sented in our previous work [20]. It is summarized briefly here and illustrated in

Figure 5 for one example crystal. The algorithm considers a volume point cloud

consisting of foreground voxel center coordinates, and a surface point cloud con-

taining coordinates of voxels on the aggregate surface. The first step is finding

concavity points that are located at the interface between two primary particles

[37, 38]. A concavity expansion procedure [39] follows, which involves delet-

ing voxels in the concavity direction. This ensures separation near concavity

points when applying the distance-transform-based watershed transform [40].

The obtained image is used to impose minima for the distance-transform-based
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Segmentation example. (a) Concavity points, marked as red circles, (b) concavity

expansion results in thin holes through the crystal, (c) distance-transform based watershed

segmentation, resulting in watershed regions and separation watershed voxels, (d) watershed

voxels are reassigned to fill the holes, (e) concatenation of small and large regions, (f) iteration

1 of concatenation of large regions, (g) final segmentation after iteration 2 of concatenation

of large regions, (h) shape identification.

watershed transform of the original image. This procedure usually results in

over-segmentation and the obtained watershed regions are iteratively concate-

nated. First, the small regions are concatenated with large ones in order not to

introduce further constraints [41]. The remaining regions are concatenated [42]

while considering concavity points as indicators of correct segmentation.

The previously introduced filtering step, as described in Section 3.3. of [20],

is omitted. In the case considered here, where particles may be very loosely

connected, the described filtering can lead to the removal of one of the parti-

cles. Furthermore, filtering is no longer necessary because the surface-roughness-

induced segmentation inaccuracies will be corrected by user interaction, as ex-

plained below.
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4.2.1. User Interaction

As discussed in [20], the segmentation can sometimes appear to be incor-

rect. We here introduce two user-interaction steps in order to resolve this issue.

First, the user may remove some of the existing concavity points or add new

ones if not satisfied with the automatic identification. Afterward, the segmen-

tation steps (b)-(g) described in Figure 5h are performed. The results are then

displayed to the user, as illustrated in Figure 6. Here the user may decide to

concatenate the obtained regions or to add new regions by clicking on some

point in the point cloud, as illustrated in Figure 6. If a region is added, the

program determines the region to which the selected point belonged to after

the steps of watershed segmentation and watershed voxel reassignment. This

region is introduced as a new region. Furthermore, if any region is split into

more than one connected component by this procedure, the resulting connected

components are also added as new regions. The user may repeat these steps

until the result is satisfactory, at which point the segmentation information is

stored stored and the algorithm proceeds with the next crystal. Even though

this user interaction may introduce some non-reproducibility it should be noted

that most cases in which this procedure was applied were as obvious as that

shown in 6.

In experiment M10, we observed five particles whose shape was not consistent

with single or agglomerated potash alum crystals because of either breakage or

other artifacts, as illustrated in Figure 7. These crystals were excluded from

further consideration.

4.3. Shape Identification

After segmenting all aggregates into primary particles, particle shapes are

identified. For each primary particle, this is based on its surface point cloud.

These are the coordinates of the aggregate surface points that belong to the

considered primary particle [20].

We modify the shape identification procedures presented in [20, 16] to allow

asymmetrical crystals, as discussed below. In order to explain the modifications,
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(a)

(b)

Figure 6: Region manipulation interface. The rendered crystal regions (left) as well as the

volume point cloud (right) are displayed for the user. The figures are rendered in different

colors to eliminate contrast issues. The user can rotate the figures and click on points in the

point cloud in order to concatenate or add regions. In the presented case, the user would click

on the orange and green regions in the right-hand image of (a). These would be concatenated

to produce (b), whereupon the user would accept the segmentation.

(a) (b) (c)

Figure 7: Some of the crystals from experiment M10 that were ignored because they did not

correspond to single or agglomerated crystals.
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we first summarize the main steps from [16] and [20].

A Hough transform [43, 44] is performed in order to find crystal faces. This

is a classical image processing tool where the space is discretized into directions

ni and distances ρj from the primary-particle middle point, obtained as the

middle point of its surface point cloud. The resulting direction-distance pairs

(ni, ρj) represent the Hough transform bins bi,j . Each bin is then filled with

surface points x that satisfy the following equation [16]:

ρj −
∆ρ

2
≤ 〈ni,x〉 < ρj +

∆ρ

2
, (4)

where ∆ρ is the distance grid displacement. Finally, a grid containing the

maximal number of points per bin b̃i in each direction ni is formed and the

corresponding distance ρj is stored. Face distance directions are then obtained

by a peak search operation over this grid and are gathered in the matrix AF.

As some crystal faces are either very small or not visible on the crystal sur-

face, their face normals do not appear in the matrix AF. Therefore, a matching

between the found face normals AF and the face normals in the crystal model,

denoted by A, is performed [16]. Additionally, a rotation matrix R that rotates

the shape model into the identified shape is determined [16].

It remains to find the face distances from the middle point for each rotated

model face normal R · ai. Here we adapt the approach from [16]. If a match

in AF exists for this normal, the face distance is obtained as the distance ρj

corresponding to the Hough transform bin bi,j with the highest point count

in the direction ni closest to R · ai [16]. Otherwise, we consider the points

within each bin bi,j in the direction ni. The points are then projected to the

plane defined by (ni, ρj) and the convex hull of the projections is calculated.

The face distance is obtained as the distance ρj that leads to the highest point

number density:

rj =
bi,j
Ai,j

, (5)

where Ai,j is the area of the obtained convex hull.

The main modification to our previous approaches [20, 16] is to ignore the

symmetry conditions and accept the obtained asymmetrical shape. We observed
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(a) (b) (c)

Figure 8: A simulated symmetrical crystal (a) and an observed asymmetrical crystal from

experiment M3 (b,c). The shape identification in (b) was performed using the algorithm pre-

sented in this work. The use of our previously published algorithm, based on the symmetrical

model, results in an inadequate shape, as seen in (c). Note that the previously published

algorithm used a crystal model with 26 faces.

highly asymmetrical crystals in the experimental data presented here. The issues

regarding using a symmetrical model on an aggregate of asymmetrical crystals

were already discussed in our previous work [20]. In Figure 8, the difference

between (a) symmetrical and (b, c) asymmetrical crystals is highlighted. There

is a large difference in shape identification using (b) the modified algorithm with

the asymmetrical shape model and (c) the algorithm based on symmetry [20].

Two post-processing steps are introduced to resolve arising issues such as

nucleation.

Small Crystals. We exclude primary particles whose volume-equivalent sphere

diameter is smaller than 200 µm, which is the mesh size of the finer sieve used

to obtain the seed crystals. In the performed experiments, especially the M

batches, we observed many smaller crystals attached to larger ones. The small

particles could have been formed by nucleation toward the end of the experi-

ment. However, we also observed them at the beginning of the M experiments.

We assume that these are particles that were attached to the larger ones during

sieving, stayed in the sieve with a larger pore size, and were then detached when

dispersed in saturated solution. This is more prominent in Figure 2b, showing

one image from experiment M3, than in Figure 2a, where one image from the
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initial dispersion of the experiment R is presented. The used resolution of the

µCT system is not high enough to enable shape identification of small parti-

cles in each case. It is important to note that a particle as a whole may be

larger than 200 µm, but it is still excluded because its visible (segmented) part

is smaller than this threshold, whereas the remaining parts may overlap with

other primary particles.

Deleting Faulty Regions. The shape identification may also fail for some larger

particles, although this rarely happens. The primary particles, or regions, where

no shape identification was possible were, therefore, deleted from the aggregate

point cloud [20].

Note that these post-processing steps differ from those introduced in [20].

The steps from that work assumed that the identified shapes were symmetrical

and attempted to correct the faulty segmentation that is here resolved by user

interaction.

4.4. Goodness of Fit

The shapes of some crystals was not identified, mostly because of their size.

Furthermore, if segmentation issues could not be resolved, the identified shape

may be inadequate. In order to discriminate between these cases and ensure that

only well-identified crystals are used to obtain the DAD, the quality of fit should

be determined. Thus, we define three different measures, as in our previous work

[20], except that the mean crystal face distance must be additionally determined

because no symmetry conditions were imposed. The first measure is the mean

quadratic distance deviation [20]:

qall =

√
1

Nsurf,agg

Nsurf,agg∑
j=1

min
i
‖pj − pj,proj,i‖2

max
i
hi,mean

(6)

Here, Nsurf,agg aggregate surface points pj are projected to the identified pri-

mary particles i, as explained in our previous work [20, 16]. The value is scaled

by the maximal hi,mean, which is the mean identified face distance for the i-th

primary particle of the aggregate.
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We further exclude points belonging to particles for which no shape fit could

be obtained, so that only Nsurf,fit points remain. This results in the following

quality measure [20]:

qfit =

√
1

Nsurf,fit

Nsurf,fit∑
j=1

min
i
‖pj − pj,proj,i‖2

max
i
hi,mean

(7)

Finally, the third quality measure is the same as in our previous work and

considers the volume deviation of the fit to the voxels of the point cloud [20]:

qv =
Noutside

Nvoxels
+
Vagg −Ninside

Nvoxels
. (8)

Here, Noutside and Ninside are the numbers of voxels outside and inside the iden-

tified shapes, Nvoxels is the number of voxels in the aggregate image approxi-

mating its volume, and Vagg is the volume of the aggregate computed using the

volumes of the fitted polytopes under consideration of their overlaps [20]. Note

that the voxel is considered to be inside the shape if the point represented by

its coordinates is inside the shape.

A crystal (aggregate or single particle) is considered to have a “good” shape

fit if a fit is possible for all identified primary particles and qall < 0.15 and

qv < 0.2. An aggregate with “missing” primary particles is declared if qfit < 0.15

and there exist primary particles for which no shape identification is possible.

Otherwise, the shape fit for the aggregate is declared as “bad”. Examples of

these classifications can be seen in Figure 9.

This classification is created in order to exclude “bad” aggregates from con-

sideration when computing the DAD. However, only one crystal was classified

as “bad” for the four experimental samples and one simulated sample that were

considered, as seen in Table 3. As that particle was a single crystal, the classi-

fication has no influence on the final DAD, but serves as a quality check for the

shape identification.

4.5. Disorientation Angle Distribution

The DAD is used in material science to describe the properties of a material

in terms of the orientation of the crystallites. Mackenzie and Thomson [45] ap-
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(a) (b) (c) (d)

Figure 9: Examples of crystals according to their goodness of fit. The upper row shows

the segmentation into primary particles. In the lower row, identified shapes are marked in

black. Aggregate (a) was declared to have a “good” fit. Aggregate (b) has “missing” primary

particles, where the orange and blue particles were ignored because of their size. Crystal (c)

has “missing” primary particles, where the algorithm failed to provide a shape identification

for the blue particle. Single crystal (d) was judged to have a “bad” fit.

Sample/Type Good Missing Bad

R 46 15 0

M3 101 31 1

M5 104 55 0

M10 101 48 0

Table 3: Number of “good”, “missing” and “bad” crystals in each sample.
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proximated the DAD for randomly oriented cubic crystals using a Monte Carlo

simulation. This was followed quickly by the derivation of an analytical solution

by Handscomb [23] using the quaternion representation of the rotations. This

solution is given in the appendix. Mackenzie [24] published the same solution

using another approach at about the same time. In the following, we give the

definition of the disorientation angle and apply the approach of Mackenzie and

Thomson [45] to find the DAD of the imaged potash alum crystals.

4.5.1. Disorientation Angle Definition

Consider a cube A that has some reference orientation, and a cube B ob-

tained by rotating A using some rotation matrix R. The misorientation angle of

the cubes A and B is the angle corresponding to this rotation in the axis-angle

representation [46]. However, the same orientation between the crystals is ob-

tained if one of the 24 symmetric rotations Ri is applied to cube B. Therefore,

each rotation combination RiR results in one misorientation angle Θi. The

smallest of these angles is called the disorientation angle Θ and is obtained as

in [45]

Θ = min
i

Θi, (9)

where the misorientation angles Θi can be computed from the rotation matrices

using [45]:

tr (RiR) = 1 + 2 cos(Θi), (10)

where tr is the trace operator that sums the diagonal matrix elements.

As the octahedron is the dual body of the cube, the same considerations can

be applied to the potash alum crystals. The reference orientations of a cube

and an octahedron are illustrated in Figure 10.

The 24 symmetry operations Ri are defined for these reference orientations

as [24]:

• Identity matrix

• Rotations for 90◦, 180◦, and 270◦ around the coordinate system axes x,

y, and z, leading to 9 rotation matrices
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Figure 10: Reference orientation of cube and octahedron.

• Rotations for 180◦ around axes parallel to the face diagonals of the refer-

ence cube, leading to 6 rotation matrices

• Rotations for 120◦ and 240◦ around the four reference cube diagonals,

leading to 8 rotation matrices

Let us now consider two identified crystals in contact whose vertices are VA and

VB. In order to determine the disorientation angle, each crystal is translated

such that its center is at the origin. The corresponding H-representation is

determined leading to the matrices of face normals, AA and AB. Here, the

obtained matrices have to contain face normals in the same order as defined for

the reference octahedron Ar, and are permuted to fulfill this condition if this

was previously not the case. A unit face distance is assigned to both octahedra

to eliminate the influence of crystal size. The rotation matrix R1 that rotates

the crystal AA into the reference position Ar is now determined:

R1 = (A−1
A1:3
·Ar1:3)T . (11)

Here, AA1:3 denotes that only the first three rows of the matrix are considered

when determining the rotation matrix. This rotation is applied to both crystals

AA and AB so that the obtained crystal ÃA now has the reference orientation,

where the relative orientation between the two crystals remains unchanged:

ÃA = AART
1 (12)

ÃB = ABRT
1 (13)
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(a) Θ = 2.4 (b) Θ = 15.3 (c) Θ = 49.7 (d) Θ = 52.3

Figure 11: Examples of disorientation angles between some aggregates from the experiment

M10.

The rotation matrix R that rotates the reference crystal ÃA into the crystal

ÃB is obtained as

R = (A−1
r1:3 · ÃB1:3)T . (14)

The disorientation angle Θ is computed as the minimal angle Θi:

Θi = arccos

(
tr (RiR)− 1

2

)
. (15)

Different angles Θi are obtained using the 24 symmetry rotation matrices Ri.

These rotation matrices correspond to the symmetry operations defined above

executed on the reference coordinate system rotated by R.

It is important to note that the crystal asymmetry does not influence this

procedure. The identified shapes VA and VB may not represent perfect octahe-

dra, but their face normals in AA and AB are the octahedral face normals by the

design of the shape identification algorithm. Hence, the symmetry operations

for octahedra can be applied because the faces are equivalent.

Some examples of disorientation angles for aggregates of two primary parti-

cles can be seen in Figure 11.

4.5.2. Classification of Primary Particle Contact

The imaged aggregates consisted of both loosely bound and grown-in pri-

mary particle pairs. Note that here pairs of primary particles are investigated

instead of aggregates, as aggregates may consist of a mixture of lightly touching

and grown-in pairs. We consider only the DAD of the grown-in, agglomerated
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pairs to be reliable. This is because it is not possible to determine whether

the loosely bound pairs came into contact very recently within the crystallizer

vessel, or were formed by particles falling next to each other on the filter pa-

per. Additionally, the orientation between the lightly-touching particles can be

changed accidentally during the preparation procedure that involves rolling the

adhesive tape around the toothpick; this cannot happen for crystals that have

grown inside each other. Thus, it is necessary to classify the contact between

the pairs of primary particles.

Some cases of primary particle contact can be ambiguous. For example, if

a small crystal lies on the surface of a large crystal, given the crystal asymme-

try, it is not possible to determine whether the crystals are grown in or only

lightly touching. Furthermore, the classification cannot be performed automat-

ically because the segmentation and fitting may be erroneous. For this reason,

the classification is performed by experts with knowledge in the field of imag-

ing/crystallization, as is typically done when creating a machine classifier [14].

The expert is shown an aggregate, together with the identified shapes of the

two primary particles whose contact is to be classified. The expert classifies

the pair as “grown in”, “lightly touching” or “none”, where “none” means that

the particles are not in contact. In order to do this, the expert may rotate

the rendered particles and change the light settings. We asked three different

experts to perform the classification in order to avoid bias in ambiguous cases.

The instructions for the experts contained the following descriptions of the three

contact classes:

• “Lightly touching” are all pairs of particles that could have been brought

into contact without growth, so by simply placing them next to each other

or onto each other. They can be separated without harming one of them.

• “Grown in” are crystals where one is grown strongly into the other and

they cannot be separated without harm.

• “None” are crystals that are not in contact.
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R M3 M5 M10

Expert H M T all H M T all H M T all H M T all

grown-in 40 40 40 40 35 33 34 33 30 32 29 28 29 26 26 26

touching 6 7 6 5 40 43 41 40 53 50 53 46 34 35 35 32

none 5 4 5 4 15 14 15 14 31 32 32 27 21 23 23 21

Table 4: Number of primary particle pairs from experiments R, M3, M5, and M10 that were

classified as “grown-in”, “lightly touching” and “none” by three different experts, denoted by

H, M and T. Also, the number of pairs that were classified into the same class by all three

experts, denoted by “all”.

(a) Grown in (b) Lightly touching (c) None

Figure 12: Examples of contact classes.

The experts were also shown an example of each class. The examples belong

to sample M5 and can be seen in Figure 12. In Figure 12c, experts considered

only the framed crystals. They do not touch directly, which can be confirmed

by rotating the aggregate, so the pair is classified as not touching (“none”).

Table 4 shows the number of particles classified into each class by each expert.

It can be seen that less than 15% of primary particle pairs were excluded from

consideration by merging the opinions of the experts. Only the crystals that

all three experts placed in the same category, corresponding to entries “all” in

Table 4, were used for the DAD.

24



0 200 400 600 800
eq. diam. [µm]

-1

0

1

2

3

4

5

D
is

or
ie

nt
at

io
n 

an
gl

e 
[°

]

(a) Mean angle error

0 2 4 6 8 10 12
Disorientation angle [°]

0

10

20

30

40

# 
oc

cu
re

nc
es

(b) eq. diam. = 200 µm

0 0.5 1 1.5
Disorientation angle [°]

0

5

10

15

# 
oc

cu
re

nc
es

(c) eq. diam. = 600 µm

Figure 13: Simulation results for single crystals. Angle error is expressed as disorientation

angle between the simulated polytope and the polytope identified from the simulated image.

(a) shows the dependence of the mean disorientation angle (angle error) for the sample on the

simulated volume-equivalent sphere diameter. (b) and (c) show the angle error distributions

for the equivalent diameters of 200 µm and 600 µm, respectively. The 3D images were

simulated using the resolution of 7.85 µm per voxel length, corresponding to the resolution

used for imaging the M experiments.

5. Results and Discussion

5.1. Simulated Data

In order to ensure that the angular information for the experimental crystals

is meaningful, the introduced procedure is tested with simulated crystals with

known orientation. First, images of single crystals are considered. The images

were obtained using the procedure from Section 3.3.1. The accuracy of the

orientation/angle estimation is assessed in relation to the crystal size. The

angle error, measured as the disorientation angle between the simulated and

identified polytope, is shown in Figure 13a. The error distributions for the

volume-equivalent sphere diameters of 200 µm and 600 µm are presented in

Figures 13b and 13c.

It can be seen that the mean angle error is largest at 2.11◦ for the crystals

with an equivalent diameter of 200 µm and reduces to < 1◦ for larger crystals.

Furthermore, even for the equivalent diameter of 200 µm, most angle errors

were below 3◦, as seen in Figure 13b.

We further measured the DAD for the simulated sample of 100 aggregates,

described in Section 3.3.2. Primary particle orientations were sampled from a
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(a) Simulated polytopes
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(b) Identified polytopes

Figure 14: Original DAD for the simulated polytopes (a) and the polytopes identified from the

simulated 3D images (b). The data set contained 100 simulated aggregates. In both cases, 208

primary particle pairs were identified as being in contact, corresponding to both “grown-in”

and “lightly touching” pairs. The blue line is the expected theoretical distribution [23, 24]

uniform distribution. First, the DAD for the simulated polytopes is computed.

It is compared to the DAD computed after performing shape identification in

3D images based on these simulated polytopes. The two measured distributions

are shown in Figure 14. The quality of the simulated images with respect to

the resolution is in the same range as that of the simulated single crystals.

When considering simulated polyotpes directly, we present the DAD for pairs

of primary particles that intersect. As the correct polyotpe coordinates are

known, there is no need for classification. When considering polytopes that were

identified from the simulated images, an expert classified the contact type into

“grown-in”, “lightly touching”, and “none”, as described in Section 4.5. The

presented DAD is for the combination of “grown-in” and “lightly touching”,

leading therefore to all primary particle pairs that were in contact.

It can be seen that the DADs for both the simulated and identified poyltopes

follow the theoretically predicted distribution derived by Mackenzie [24] and

Handscomb [23]. The agreement is good, even though there are some differences

in the height of the individual bars of the two distributions. The obtained mean

angle values are 40.16◦ for the simulated polytopes and 40.18◦ for the identified

polytopes, which agree well with the theoretically expected value of 42.7◦ [23].
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Sample
/

Type

single
all

fitted

single
with
small

single
with
failed

agg.
all

fitted

agg.
with
small

agg.
with
failed

no fit
due to
small

no fit
due to
failed

R 15 6 1 31 5 3 0 0

M3 68 13 3 34 14 1 0 0

M5 75 20 7 29 24 3 0 1

M10 74 24 5 27 13 6 0 0

Table 5: Number of different crystal types in each sample. Columns 2-4 show single crystals,

single crystals with attached small particles, and single crystals with particles for which the

fitting procedure failed to produce a result. Columns 5-7 show aggregates for which a fit

was possible for all primary particles, aggregates that also contained small particles, and

aggregates that contained primary particles for which no fit was possible. Columns 8 and 9

show particles for which no shape fit was possible because each particle was too small and

the fitting procedure failed to produce a result. Note that “single” refers to crystals for which

the shape identification was possible for only one particle, whereas for “aggregates” it was

possible for multiple particles.

5.2. Batch Experimental Data

Table 5 shows the amount of single crystals and aggregates in each sample.

It can be seen that there were many single crystals and crystals with attached

small particles. It is important to note that the attached small particles do not

necessarily represent full crystals, and may simply be some surface roughness

that the user marked as a separate particle in order not to disturb the shape fit.

Three experts performed a classification of particle contacts, as described

in section 4.5.2. In order to eliminate ambiguity in the contact classification,

primary particle pairs that were classified differently by different experts were

discarded. The results for all four experiments are shown in Figure 15.

As can be seen in the figure, all experimentally obtained distributions, pre-

sented as orange bar graphs, differ from the theoretically derived distribution

[23, 24], shown as a blue line. The theoretical distribution is derived under

the assumption that the orientation of each primary particle is uniformly dis-

tributed. Under such conditions, the most probable disorientation angle is 45◦,
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(a) R, grown in, 40 pairs
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(b) R, touching, 5 pairs
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(c) R, both, 45 pairs
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(d) M10, grown in, 26 pairs
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(e) M10, touching, 32 pairs
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(f) M10, both, 58 pairs
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(g) M5, grown in, 28 pairs
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(h) M5, touching, 46 pairs
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(i) M5, both, 74 pairs
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(j) M3, grown in, 33 pairs
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(k) M3, touching, 40 pairs
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(l) M3, both, 73 pairs

Figure 15: DAD results. Each row represents one experiment. The first column represents

grown-in agglomerate pairs, the second are the pairs of lightly touching crystals, and the

third column is the distribution obtained when considering grown-in agglomerate and lightly

touching pairs together. The blue line represents the theoretically expected distribution [23,

24]. The number of primary particle pairs included in the computation can be seen below the

graphs.
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whereas a small disorientation angle–meaning that the crystals have the same

orientation–is very improbable. In our experiments, however, we observed that

a small disorientation angle is the most probable configuration, leading to a

peak at the very left of each figure. This peak is the most prominent for grown-

in agglomerate pairs. As discussed in Section 4.5, in comparison with lightly

touching primary particle pairs, grown-in pairs are definitely created during

the batch experiment. We observed a much smaller peak in the case of lightly

touching crystals, as visible in the middle column of Figure 15. The orientation

between primary particles is thus more variable in this case, as it would be ex-

pected if the particles were brought into contact during downstream processing

and preparation. We think that the still unexpectedly high number of primary

particles with the same orientation was caused by the fact that some of these

crystals might have been created in the reactor but have not had the time to

fully grow into each other. Furthermore, single potash alum crystals will always

land on the filter paper in a stable position under the influence of gravity, so

that they lie on one of their faces. The configurations in which one crystal lands

on top of or next to another single crystal do not fulfill the assumption that

their orientation is uniformly distributed and will thus lead to a deviation from

the theoretically expected distribution derived under this assumption.

We observed a much stronger peak for small disorientation angles in the R

experiment than in the M experiments. We think that this behavior is partially

caused by the preparation procedure, which is more likely to lead to breakage of

loosely bound aggregates, leading to less ambiguity as to whether the crystals

are highly agglomerated or only lightly touching. Furthermore, the fact that

different seed crystals were used may also have had an influence since the two

manufacturers reported different impurities and the initial shape may have been

different.

We did not observe a significant difference between experiments M10, M5,

and M3 with different supersaturation profiles. It is possible that a difference in

the distribution existed; however, the sample sizes analyzed here were not large

enough to observe such a difference. This was due to a large number of single
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crystals, and also due to many pairs of lightly touching primary particles and

small particles whose shapes could not be identified, as seen in Table 5. There-

fore, future studies should use more seed crystals to increase agglomeration, in

which case care should be taken to avoid small particles among them. Perform-

ing the experiments at constant but highly different supersaturation levels could

give a better insight into the influence of supersaturation on the particle ori-

entation. However, high supersaturation levels could induce nucleation, which

would lead back to the problem of attached small crystals that would not be

resolved with the level of resolution achieved in this work.

In comparison to using a TEM, the presented µCT technique requires less

effort for sample preparation and measurement, as there is no need for slicing the

crystals into thin sections or manually tilting the sample [9]. More crystals could

be investigated by preparing and measuring multiple adhesive tape structures,

discussed in Section 3.2.

6. Summary, Conclusions and Outlook

We measured the disorientation angle distribution (DAD) for pairs of pri-

mary particles in potash alum aggregates, and investigated four crystal samples

grown under various conditions. In a set of three experiments (set M), we ob-

tained different supersaturation profiles by using temperature ramps of 10 K/h,

5 K/h and 3 K/h. The fourth experiment (R) was performed with seed crys-

tals from a different manufacturer, using a temperature ramp of 5 K/h and a

smaller amount of seed. The image analysis procedure was adjusted to observed

artifacts caused by crystal asymmetry and small particles.

Primary particle pairs were classified as grown-in and lightly touching in or-

der to differentiate between agglomerate pairs that were created in the reactor

and those that could have been created during sampling and preparation. The

DAD for grown-in agglomerate pairs showed a strong peak for small angles, so

that most primary particle pairs had a very similar orientation. This is in con-

trast to the theoretically obtained distribution in which primary particles have
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uniformly random orientations, and leads to the conclusion that particle pairs

with the same orientation are more likely to withstand the hydrodynamic forces.

This behavior was most pronounced in the experiment R, where the peak value

was larger. We assume that this was due to the different preparation procedure

which involves a pre-selection of aggregates and the different seed manufacturer.

Thus, theoretical predictions for uniformly distributed aggregates should not be

applied to generate potash alum aggregates in simulations.

We did not observe any significant difference between the three M experi-

ments conducted at different supersaturation levels. This contradicts the hy-

pothesis that randomly oriented primary particles, which exhibit a lower bond

strength, are more likely to survive hydrodynamic forces at higher supersatura-

tion, where they would be bound together more quickly.

In summary, we have shown that it is possible to measure the DAD us-

ing 3D imaging and the described image processing procedure. We observed

clear indications of preferential orientation for the given model compound. The

same strategy could be applied to other compounds, enabling a much deeper

understanding of the aggregation mechanisms during crystallization.

In order to investigate this behavior further, larger sample sizes should be

used in the future to ensure more pairs of agglomerated primary particles. A

better understanding of the influence of supersaturation would be obtained by

experiments at constant supersaturation level with a higher difference between

the chosen levels. Finally, the effect of other relevant parameters, such as mix-

ing and crystal size, ought to be investigated. The obtained results should be

coupled with single agglomerate studies, in which particle hardness for different

points of contact and mutual orientations should be investigated.
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Appendix A.

The theoretical DAD, p(Θ) as obtained by Handscomb [23] is presented

below. For an angle Θ ≤ 45◦:

p(Θ) =
2

15
(1− cos(Θ)).

For 45◦ < Θ ≤ 60◦:

p(Θ) =
2

15
(1− cos(Θ))
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− 2
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.

For 60◦ < Θ ≤ 60.6◦:
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sin(Θ)− 6(1− cos(Θ)
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.

The largest possible angle is Θmax = arccos
(

1
4

(
2
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2− 1
))
≈ 62.8◦, so that for

60.6◦ < Θ ≤ Θmax:
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