

Supporting Information © Wiley-VCH 2014

69451 Weinheim, Germany

Concerted Asynchronous Hula-Twist Photoisomerization in the S65T/ H148D Mutant of Green Fluorescent Protein**

Qiangqiang Zhang, Xuebo Chen,* Ganglong Cui, Wei-Hai Fang, and Walter Thiel*

anie_201405303_sm_miscellaneous_information.pdf anie_201405303_sm_miscellaneous_information.pdf.pdf

Contents

- 1. Computational details
 - 1.1 Model Setup
 - 1.2 Equilibrium Molecular Dynamics
 - 1.3 QM/MM Computational Protocol
 - 1.3.1 QM Method
 - 1.3.2 Vertical Excitation Energies
 - 1.3.3 Optimizations of Minima and Paths
 - 1.3.4 S_1/S_0 Conical Intersections
 - 1.3.5 Packages
- 2. Minimum-Energy Paths
 - 2.1 One-Bond Flip Path
 - 2.2 Concerted Synchronous Hula-Twist Path
 - 2.3 Role of Hydrogen Out-of-Plane (HOOP) Motion in the Excited-State Decay
- 3. Optimized Structures
- 4. Tables
- 5. References
- 6. Cartesian Coordinates

1. Computational Details

1.1 Model Setup: The crystal structure of an S65T/H148D GFP mutant (PDB code: 2DUF)^[S1] containing the neutral GFP chromophore *p*-HBDI was used to construct the initial QM/MM model. Its protonation state was checked by visual inspection. Eight Na⁺ counterions were added using the xleap module of the AMBER9 package^[S2] to neutralize the system in accordance with experimental conditions. The 294 crystal water molecules in the protein were kept in the model.

1.2 Equilibrium Molecular Dynamics (MD): The initially constructed system was equilibrated for 1 ns using classical canonical MD simulations (at 298 K). The general Amber force field (GAFF), the Amber99 force field,^[S2] and the TIP3P water model were used for the chromophore, the amino acid residues of the S65T/H148D GFP mutant, and the water molecules, respectively. A cutoff radius of 9.0 Å was used for truncating the electrostatic and van der Waals interactions. All MD simulations were performed with the TINKER4.2 package.^[S3] For the starting geometry of the subsequent QM/MM calculations, we selected a snapshot from the end of the MD run with an appropriate intermolecular hydrogen-bonding network.

1.3 QM/MM Computational Protocol: Scheme S1 shows the chosen QM/MM partitioning. The QM subsystem (53 atoms) consisting of Asp148 and the neutral *p*-HBDI chromophore is larger than the QM models used previously.^[S4-S7] The MM subsystem includes the remaining amino acid residues, water molecules, and counterions. The boundary separating the QM and MM regions was treated by the hydrogen link-atom scheme (see the wavy lines in Scheme S1). To reduce the strong electrostatic interactions between a link atom and its two nearest MM atoms, the weight-consistent reparameterization scheme introduced by Olivucci et al. was adopted to adjust the MM point charges near the QM/MM boundaries. ^[S8-S11] Specifically, the two nearest point charges were set to

S2

zero and the other neighboring MM point charges were re-parameterized (see Table S1). Many previous QM/MM excited-state simulations have shown that this simple scheme can achieve satisfactory accuracy. For the remaining MM atoms, standard force-field point charges were used. Please see the original literatures^[S8-S11] for the detailed QM/MM protocol.

Scheme S1. The chosen QM/MM partitioning: the QM subsystem includes the para-chromophore (p-1) and Asp148; the MM subsystem includes the other amino acid residues, counterions, and water molecules. See text for details.

Table S1. Re-parameterized point charges (a.u.) for the MM atoms near the QM/MM boundary.

C17	0.0000	C27	0.0000
O18	-0.4179	O28	-0.4179
C19	0.2476	C29	0.2251
N20	-0.2657	N30	-0.2657
H21	0.1451	H31	0.1316
N22	0.0000	N32	0.0000
H23	0.2019	H33	0.2019
C24	-0.2875	C34	-0.1857
C25	0.4973	C35	0.4973
H26	0.0512	H36	0.0591

1.3.1 QM Method: The complete active space self-consistent field (CASSCF) method was chosen as QM electronic structure method. In all CASSCF calculations (geometry optimizations and single-point computations), we used an active space of 12 electrons in 10 orbitals, which included 2 electrons and 2 orbitals (σ and σ^*) of the O9-H10 bond of the *p*-HBDI GFP chromophore, 2 electrons and 1 lone-pair n orbital of the O11 atom of Asp148, and 8 π electrons and 7 π/π^* orbitals mainly from the GFP chromophore (the highest 4 occupied π and the lowest 3 unoccupied π^* orbitals).

Geometry optimizations were performed using a 2-root state-averaged CASSCF approach (S_0 and S_1 , equal weights) for the S_1 state and a state-specific approach for the S_0 state. Single-point energies at all optimized structures were determined from 4-root state-averaged CASPT2//CASSCF calculations to include more dynamical electron correlation. These calculations were done without an ionization potential-electron affinity (IPEA) shift, but included an energy-level shift of 0.2 a.u. to avoid intruder-state problems.

The 6-31G* basis set was employed in all electronic structure calculations. In the QM-only calculations of the QM subsystem (see Scheme 1), which are denoted as "in vacuo" in the following, the same computational strategies were applied (CASSCF, CASPT2, basis set, etc.).

1.3.2 Vertical Excitation Energies: Vertical excitation energies, oscillator strengths, and transition dipole moments to the lowest three excited singlet states at the Franck-Condon (**FC**) point were computed using the CASPT2//CASSCF and CASSI//CASSCF methods at the CASSCF optimized S₀ minimum.

1.3.3 Optimizations of Minima and Paths: Local minima on the S₀ and S₁ states were fully optimized at the CASSCF level for the in-vacuo system and at the QM(CASSCF)/AMBER level for

S4

the double mutant, respectively. ^[S8-S11] At the same computational levels, the minimum-energy paths for proton transfer and photoisomerization were computed by reaction-coordinate-constrained optimizations, in which the chosen reaction coordinate was fixed at a given value while all remaining degrees of freedom were fully relaxed. The O9...H10 distance and the φ and τ dihedral angles (C5-C4-C3-C2 and C4-C3-C2-C6) were selected as the predefined reaction coordinates of the excitedstate proton transfer and photoisomerization, respectively (see Scheme 1). Intrinsic reaction coordinate (IRC) calculations were not performed.

1.3.4 S_1/S_0 Conical Intersections: The location of conical intersections was assessed on the basis of the computed S_1-S_0 energy gaps along the optimized minimum-energy reaction paths both for the in-vacuo system and the double mutant.

In the case of the S65T/H148D double mutant, the conical intersection could be located quite precisely in this manner because there is only a small energy gap of 0.5 kcal/mol at this structure at the QM(CASPT2//CASSCF)/AMBER level (see Figure 2a). By contrast, the estimate for the in-vacuo conical intersection is rather approximate, with an energy gap of 6 kcal/mol at the CASPT2//CASSCF level (see Figure 2b).

1.3.5 Packages: The CASSCF calculations were performed using GAUSSIAN03.^[S12] The CASPT2 and CASSI calculations were done using MOLCAS7.6;^[S13] whereas the MM calculations were conducted using TINKER4.2. The corresponding QM/MM modules were employed for QM/MM computations.^[S8-S10]

2. Minimum-Energy Paths

2.1 One-Bond-Flip Path: The minimum-energy profile was scanned along the C5-C4-C3-C2 (ϕ) dihedral angle of the GFP chromophore (*p*-1) at the CASPT2//CASSCF(12e,10o)/AMBER level. As

S5

can be seen from the results shown in Figure S1, this path is unimportant. There is a high barrier in the S₁ state (> 40 kcal/mol) when the C5-C4-C3-C2 dihedral angle is increased from -11° to 105°. At the end point, the intermolecular O9...H10 hydrogen bond is slightly elongated to 1.70 Å from 1.66 Å of the S₁ keto tautomer. Furthermore, along this C5-C4-C3-C2 (ϕ) torsion, we did not find an energetically degenerate S₁/S₀ conical intersection region, the smallest energy gap being 23.5 kcal/mol in our computations. We conclude that the isomerization involving only the C5-C4-C3-C2 (ϕ) torsional reaction coordinate (i.e., a one-bond flip mechanism) is not allowed energetically in the S65T/H148D GFP mutant.

Figure S1. Minimum-energy profiles (kcal/mol, unrelaxed S₀ and relaxed S₁) with respect to the rotation of the C5-C4-C3-C2 (ϕ) dihedral angle (C3-C4 P-bond) of the p-HBDI chromophore in the S65T/H148D GFP mutant calculated at the CASPT2//CASSCF(12e,10o)/AMBER level. The chosen reaction coordinate eventually corresponds to the simple one-bond-flip isomerization around P-bond. The related isomerization barrier is also highlighted.

2.2 Concerted Synchronous Hula-Twist Mechanism: With the use of the minimum-energy path strategy, we also explored the synchronous hula-twist mechanism, i.e., the synchronous rotation around the C5-C4-C3-C2 (ϕ) and C4-C3-C2-C6 (τ) torsional angles. In our constrained optimizations, these two dihedral angles were simultaneously twisted to ca. 80° (see Figure S2). Along this concerted minimum-energy path, the dihedral angle (C5-C4-C3-H7) associated with the central C-H group is twisted out of the plane by more than 45° and there is a significant barrier in the S₁ state (> 36 kcal/mol). Hence, this synchronous hula-twist mechanism should not contribute to the observed loss of fluorescence in the S65T/H148D GFP mutant. The results for the concerted asynchronous hula-twist mechanism are described in the main article.

Figure S2. Minimum-energy profiles (kcal/mol, unrelaxed S₀ and relaxed S₁) with respect to the simultaneous rotation of both C5-C4-C3-C2 (φ) and C4-C3-C2-C6 (τ) dihedral angles (C3-C4 P-bond and C2-C3 I-bond) of the p-HBDI chromophore in the S65T/H148D GFP mutant calculated at the CASPT2//CASSCF(12e,10o)/Amber level. This reaction coordinates correspond to the concerted synchronous hula-twist mechanism. The chosen τ (C4-C3-C2-C6) values are given along the points in the S₁ state. The related isomerization barrier is also highlighted.

2.3 Role of Hydrogen Out-of-Plane (HOOP) Motion in the Excited-State Decay: The HOOP motion in the central CH unit during the final stage of the photoisomerization is essential for the decay of the anionic fluorescent state. In the beginning stages, when the C4-C3-C2-C6 dihedral angle is increased from -164° to -123°, the CH unit twists out of the plane only slightly (< 20°), and the S₁-S₀ energy gap remains large (on average > 30 kcal/mol). However, when the C4-C3-C2-C6 dihedral angle is further increased from -123° to -115°, the central CH unit is distorted out of the plane significantly (twist > 60°, see C5-C4-C3-H7 dihedral angle in Figure 2a). This strongly raises the S₀ energy and leads to an S₁/S₀ conical intersection (see discussion in the main article).

To further examine the role of this HOOP motion in the formation of the S_1/S_0 conical intersection, we optimized two S_1 structures with the C5-C4-C3-H7 dihedral angle fixed at 160° and 150° (see Figure S3 and relative energies in Table S2). The corresponding S_1 - S_0 energy gaps were computed to be 21.5 and 18.4 kcal/mol, respectively; they are much larger than the gap of 0.5 kcal/mol at the S_1/S_0 conical intersection (see Figure 2a). Hence, significant HOOP motion is required to reach an S_1/S_0 conical intersection in the rigid protein surrounding. The HOOP motion is necessitated by the rigid cavity near the GFP chromophore (see discussion in the main article).

It should be stressed that such HOOP motion is not needed in the deactivation of the anionic fluorescent state in vacuo. Due to the missing steric constraints, the double-bond rotation can proceed smoothly without HOOP motion. This exemplifies the importance of the protein environment in choreographing the deactivation pathway of the anionic S₁ fluorescent state.

Figure S3. S₁ structures optimized with the C5-C4-C3-H7 dihedral angle fixed at 160°(a) and 150°(b). See section 2.3 for details.

Table S2. Relative energies (ΔE , kcal/mol) of two S₁ Structures Optimized with Fixed C5-C4-C3-H7 Dihedral Angle (see Figure S3 and section 2.3) and of the S₁/S₀ Conical Intersection in the S65T/H148D Double Mutant

	160°	150°	S ₁ /S ₀ CI
S ₀	22.8	26.1	44.4
S ₁ (¹ ππ*)	44.3	44.5	44.9

<u>3. Optimized Structures</u>

The structures optimized in the S_0 and S_1 states are schematically shown below: (a) the S65T/H148D GFP mutant, (b) in-vacuo. Selected key geometric parameters that are relevant to the excited-state proton transfer (reaction coordinate: O9-H10 distance) and to the photoisomerization (around the C4-C3-C2-C6 dihedral angle) are also given (see <u>Sect. 6</u> for full Cartesian coordinates).

4. Tables

Table S3. Vertical excitation energies (E_{\perp} , kcal/mol), oscillator strengths (f), transition dipole moments (Δ D.M., Debye), and singly occupied orbitals involved in the $S_0 \rightarrow S_1(^1\pi\pi^*)$ electronic transition in the S65T/H148D GFP mutant and in vacuo. The values were computed with the 4-root state-average CASPT2//CASSCF(12e,10o)/AMBER method at the CASSCF(12e,10o)/AMBER optimized S₀ minimum. Orbitals were plotted using GV tool of MOLCAS7.6.

	E_{\perp}	f	ΔD.M.	singly occupied orbitals
in vacuo	71.6 (399 nm)	1.1769	17.45→13.03	and the second
in protein	71.1 (402 nm)	1.1342	40.52→35.04	****

Table S4. Selected geometric parameters of the optimized structures involved in the proton transfer and isomerization processes in the S65T/H148D GFP mutant and in vacuo (see Scheme S1 for atom numbering).

Distance (Å)				Di	hedral Angle	(°)			
	O_9-H_{10}	H ₁₀ -O ₁₁	O ₁₃ -H ₁₆	O ₉ -C ₁₄	C_2 - C_3	C_3-C_4	$C_4C_3C_2C_6$	$C_5C_4C_3H_7$	$H_7C_3C_2C_6$
	In protein								
S ₀ -min	0.98	1.77	3.19	1.35	1.35	1.47	-174	179	4
S ₁ -loc min	0.99	1.72	2.95	1.32	1.49	1.40	-165	175	12
keto tautomer	1.66	1.00	2.92	1.27	1.46	1.45	-164	178	7
CI(S1/S0)	1.57	1.02	3.18	1.27	1.46	1.44	-115	120	89
				<u>In va</u>	icuo				
S ₀ -min	0.99	1.73	2.39	1.32	1.35	1.45	-180	-178	0
S ₁ -loc min	1.01	1.64	2.21	1.30	1.47	1.39	-176	-178	3
keto tautomer	1.69	1.00	2.69	1.24	1.44	1.45	175	175	-3
$CI(S_1/S_0)$	1.64	1.01	2.81	1.25	1.45	1.42	-99	175	87

Table S5. Absolute energies (A.E., hartree), relative energies (ΔE , kcal/mol), and MM energies (hartree) of optimized structures for proton transfer (reaction coordinate: O9-H10 distance) in the S65T/H148D GFP mutant. The corresponding energy profiles are plotted in Figure 1 (top left) of the main article.

(O9-H10)	CASSCF A.E.	CASPT2 A.E.	ММ	CASPT2 ∆E
S₀-min (0.985)				
Root1 (S ₀)	-1495.35117	-1479.01739	20.00461	0.0
Root2 (S ₁ (¹ ππ [*]))		-1478.90409	-20.09401	71.1

Root3		-1478.86994		92.5
Root4		-1478.85322		103.0
S ₁ -loc min (0.99)				
Root1 (S ₀)	-1495.31061	-1479.00900		9.0
Root2 (S ₁ (¹ ππ [*]))	-1495.18688	-1478.91526	20,00062	67.8
Root3		-1478.88181	-20.08863	88.8
Root4		-1478.85834		103.6
S ₁ (1.06)				
Root1 (S ₀)	-1495.30794	-1479.00820		9.4
Root2 (S ₁ (¹ ππ [*]))	-1495.18488	-1478.91628	00,00000	67.1
Root3		-1478.88183	-20.08883	88.7
Root4		-1478.85780		103.8
S ₁ (1.13)				
Root1 (S ₀)	-1495.30410	-1479.01244		6.0
Root2 (S ₁ (¹ ππ [*]))	-1495.18094	-1478.92354	20.00004	61.8
Root3		-1478.88681	-20.09004	84.8
Root4		-1478.86265		100.0
S ₁ (1.19)				
Root1 (S ₀)	-1495.30078	-1479.01465		3.6
Root2 (S ₁ (¹ ππ [*]))	-1495.17835	-1478.92948	00.00455	57.1
Root3		-1478.89036	-20.09155	81.6
Root4		-1478.86597		96.9
S ₁ (1.27)				
Root1 (S ₀)	-1495.30003	-1479.01033		5.6
Root2 (S ₁ (¹ ππ [*]))	-1495.17784	-1478.92990	-20.09282	56.0
Root3		-1478.88153		86.4
Root4		-1478.86459		97.0
S ₁ (1.33)				
Root1 (S ₀)	-1495.30149	-1479.01131		3.3
Root2 (S ₁ (¹ ππ [*]))	-1495.17955	-1478.93167		53.3
Root3		-1478.88294	-20.09538	83.9
Root4		-1478.86575		94.7
S ₁ (1.40)				
Root1 (S ₀)	-1495.30336	-1479.01887		-2.2
Root2 (S ₁ (¹ππ*))	-1495.18109	-1478.93641	20 00658	49.6
Root3		-1478.89152	-20.09000	77.8
Root4		-1478.86748		92.8
S ₁ (1.46)				
Root1 (S ₀)	-1495.30732	-1479.01932		-3.0
Root2 (S ₁ (¹ππ*))	-1495.18534	-1478.93768	20 00740	48.3
Root3		-1478.88929	-20.09740	78.6
Root4		-1478.86977		90.9
S₁ (1.51)				
Root1 (S ₀)	-1495.30627	-1479.01764		-1.8
Root2 (S ₁ (¹ ππ [*]))	-1495.18520	-1478.93694	-20 00720	48.9
Root3		-1478.88772	-20.03120	79.7
Root4		-1478.86922		91.4
S ₁ (1.59)				
Root1 (S ₀)	-1495.30872	-1479.01754	-20.09754	-1.9

Root2 (S ₁ (¹ ππ [*]))	-1495.18664	-1478.93695		48.6
Root3		-1478.88680		80.1
Root4		-1478.87039		90.4
S ₁ -tautomer (1.66)				
Root1 (S ₀)	-1495.30869	-1479.01734		-2.0
Root2 (S ₁ (¹ ππ [*]))	-1495.18652	-1478.93711	-20.09789	48.3
Root3		-1478.88609		80.3
Root4		-1478.87118		89.7

Table S6. Absolute energies (A.E., hartree), relative energies (ΔE , kcal/mol), and MM energies (hartree) of optimized structures for photoisomerization (reaction coordinate: C4-C3-C2-C6 dihedral angle) in the S65T/H148D GFP mutant. The corresponding energy profiles are plotted in Figure 1 (top right) of the main article.

(C4-C3-C2-C6)	CASSCF A.E.	CASPT2 A.E.	ММ	CASPT2 ∆E
S₁ (-156°)				
Root1 (S ₀)	-1495.30255	-1479.01239		1.5
Root2 (S ₁ (¹ ππ [*]))	-1495.18570	-1478.93730	00 00705	48.6
Root3		-1478.88216	-20.09725	83.2
Root4		-1478.87311		88.9
S ₁ (-153°)				
Root1 (S ₀)	-1495.29872	-1479.01027		2.9
Root2 (S ₁ (¹ ππ [*]))	-1495.18475	-1478.94121	20 00709	46.3
Root3		-1478.87465		88.0
Root4		-1478.88363		82.4
S ₁ (-146°)				
Root1 (S ₀)	-1495.29069	-1479.00179		4.7
Root2 (S ₁ (¹ππ*))	-1495.18207	-1478.93586	-20.10272	46.1
Root3		-1478.86831		88.5
Root4		-1478.87694		83.0
S ₁ (-145°)				
Root1 (S ₀)	-1495.29176	-1478.99656		2.4
Root2 (S ₁ (¹ ππ [*]))	-1495.18778	-1478.93351	-20 11166	41.9
Root3		-1478.86476	-20.11100	85.1
Root4		-1478.87397		79.3
S ₁ (-141°)				
Root1 (S ₀)	-1495.28423	-1478.99346		5.4
Root2 (S ₁ (¹ ππ [*]))	-1495.18671	-1478.93438	-20 10998	42.5
Root3		-1478.86487	-20.10330	86.1
Root4		-1478.87310		80.9
S ₁ (-137°)				
Root1 (S ₀)	-1495.28187	-1478.99328		6.5
Root2 (S ₁ (¹ππ*))	-1495.18953	-1478.93727	-20 10830	41.7
Root3		-1478.86834	20.10000	84.9
Root4		-1478.87215		82.6
S₁ (-132°)				

-1495.27251	-1478.98545		10.5
-1495.18808	-1478.93405	20 10099	42.7
	-1478.86349	-20.10900	87.0
	-1478.86603		85.4
-1495.26312	-1478.97938		15.1
-1495.18754	-1478.93355	20 10855	43.9
	-1478.86079	-20.10055	89.5
	-1478.86190		88.8
-1495.26531	-1478.98069		14.8
-1495.18752	-1478.93316	-20.10773	44.6
	-1478.86019		90.4
	-1478.86081		90.0
-1495.21504	-1478.94251		39.8
-1495.19460	-1478.93499	20 10606	44.5
	-1478.83117	-20.10000	109.7
	-1478 84533		100.8
	1470.04000		100.0
	1470.04000		100.0
-1495.20628	-1478.93570		44.4
-1495.20628 -1495.19536	-1478.93570 -1478.93492	-20 10550	44.4
-1495.20628 -1495.19536	-1478.93570 -1478.93492 -1478.82613	-20.10550	44.4 44.9 113.2
	-1495.27251 -1495.18808 -1495.26312 -1495.18754 -1495.18754 -1495.18752 -1495.18752 -1495.18752	-1495.27251 -1478.98545 -1495.18808 -1478.93405 -1478.86349 -1478.86349 -1478.86603 -1478.86603 -1495.26312 -1478.97938 -1495.26312 -1478.97938 -1495.18754 -1478.93355 -1495.18754 -1478.93355 -1495.26531 -1478.86079 -1495.26531 -1478.98069 -1495.18752 -1478.93316 -1495.18752 -1478.93316 -1495.21504 -1478.94251 -1495.19460 -1478.93499 -1478.83117 -1478.84533	$\begin{array}{c cccccc} -1495.27251 & -1478.98545 \\ -1495.18808 & -1478.93405 \\ & -1478.86349 \\ & -1478.86603 \end{array} -20.10988 \\ \hline \\ -1495.26312 & -1478.97938 \\ -1495.18754 & -1478.93355 \\ & -1478.86079 \\ & -1478.86190 \end{array} -20.10855 \\ \hline \\ -1495.26531 & -1478.98069 \\ -1495.18752 & -1478.93316 \\ & -1478.86019 \\ & -1478.86019 \\ & -1478.86081 \end{array} -20.10773 \\ \hline \\ -20.10773 \\ \hline \\ -20.10773 \\ \hline \\ -20.10773 \\ \hline \\ -20.10606 \\ \hline \\ -20.106 \\ \hline \\ -20.10606 $

Table S7. Absolute energies (A.E., hartree), relative energies (ΔE , kcal/mol), and MM energies (hartree) of optimized structures for photoisomerization (reaction coordinate: C5-C4-C3-C2 dihedral angle) in the S65T/H148D GFP mutant. The corresponding energy profiles are plotted in Figure S1 of SI.

(C5-C4-C3-C2)	CASSCF A.E.	CASPT2 A.E.	ММ	CASPT2 ∆E
S ₁ (0°)				
Root1 (S ₀)	-1495.30965	-1479.01788		-2.8
Root2 (S ₁ (¹ππ*))	-1495.18566	-1478.93587	20.09852	48.7
Root3		-1478.88584		80.1
Root4		-1478.86911		90.6
S ₁ (20°)				
Root1 (S ₀)	-1495.30609	-1479.01676		-2.5
Root2 (S ₁ (¹ππ*))	-1495.18331	-1478.93553	20 00024	48.5
Root3		-1478.88391	-20.09924	80.9
Root4		-1478.87111		88.9
S ₁ (30°)				
Root1 (S ₀)	-1495.30054	-1479.01287		0.5
Root2 (S ₁ (¹ππ*))	-1495.18026	-1478.93586	-20.09841	48.8
Root3		-1478.87578		86.5
Root4		-1478.87693		85.8

S ₁ (42°)				
Root1 (S ₀)	-1495.28985	-1479.00584		5.5
Root2 (S ₁ (¹ππ [*]))	-1495.17585	-1478.93577	20 00747	49.4
Root3		-1478.86623	-20.09747	93.1
Root4		-1478.87457		87.8
S ₁ (54°)		•		•
Root1 (S ₀)	-1495.27588	-1478.99769		11.3
Root2 (S ₁ (¹ ππ [*]))	-1495.17162	-1478.93335	20,00622	51.7
Root3		-1478.86077	-20.09033	97.2
Root4		-1478.86524		94.4
S ₁ (66°)				
Root1 (S ₀)	-1495.25784	-1478.98489		20.8
Root2 (S ₁ (¹ ππ [*]))	-1495.16846	-1478.92885	-20.09403	55.9
Root3		-1478.85127		104.6
Root4		-1478.84849		106.3
S ₁ (77°)		•		•
Root1 (S ₀)	-1495.23419	-1478.97113		31.0
Root2 (S ₁ (¹ ππ [*]))	-1495.16515	-1478.92517	20.00154	59.8
Root3		-1478.84142	-20.09154	112.4
Root4		-1478.83027		119.3
S ₁ (85°)		•		•
Root1 (S ₀)	-1495.21975	-1478.95715		50.7
Root2 (S ₁ (¹ ππ [*]))	-1495.16489	-1478.91544	20.07407	76.9
Root3		-1478.82837	-20.07407	131.5
Root4		-1478.81185		141.9
S ₁ (95°)		•		•
Root1 (S ₀)	-1495.20086	-1478.94718		56.9
Root2 (S ₁ (¹ ππ [*]))	-1495.15759	-1478.90724	20.07414	82.0
Root3		-1478.81575	-20.07411	139.4
Root4		-1478.82017		136.6
S ₁ (105°)				
Root1 (S ₀)	-1495.18333	-1478.93887		64.9
Root2 (S ₁ (¹ ππ [*]))	-1495.14892	-1478.90134	20 06072	88.4
Root3		-1478.80936	-20.00973	146.2
Root4		-1478.81235		144.3

Table S8. Absolute energies (A.E., hartree), relative energies (ΔE , kcal/mol), and MM energies (hartree) of optimized structures for photoisomerization (reaction coordinates: C5-C4-C3-C2 and C4-C3-C2-C6 dihedral angles) <u>in the S65T/H148D GFP mutant</u>. The corresponding energy profiles are plotted in Figure S2 of SI.

C5-C4-C3-C2 C4-C3-C2-C6	CASSCF A.E.	CASPT2 A.E.	MM	CASPT2 ∆E
S₁ (-3°; -171°)				
S ₀	-1495.31264	-1479.01442	20 00592	1.1
S ₁ (¹ππ*)	-1495.18689	-1478.93360	-20.09562	51.8

S 1 (5°; -179°)				
S ₀	-1495.31278	-1479.01618	20.00442	0.9
S ₁ (¹ ππ [*])	-1495.18679	-1478.93472	-20.09442	52.0
S₁ (13°; 173°)				
S ₀	-1495.30422	-1479.01156	20,00624	2.6
S ₁ (¹ ππ [*])	-1495.17994	-1478.92978	-20.09024	53.9
S₁ (21°; 165°)		·	•	·
S ₀	-1495.30645	-1479.01177	20,00644	2.4
S ₁ (¹ ππ [*])	-1495.18473	-1478.93077	-20.09044	53.2
S₁ (29°; 157°)		•	•	•
S ₀	-1495.29187	-1479.00732	20,00601	5.4
S ₁ (¹ ππ [*])	-1495.17093	-1478.92690	-20.09001	55.9
S 1 (37°; 149°)				
S ₀	-1495.27525	-1478.99827	20,00022	14.8
S ₁ (¹ ππ [*])	-1495.16336	-1478.92603	-20.09023	60.1
S₁ (45°; 141°)				
S ₀	-1495.26453	-1478.98274	20.08766	26.1
S ₁ (¹ ππ [*])	-1495.16526	-1478.92153	-20.00700	64.5
S 1 (53°; 133°)				
S ₀	-1495.24558	-1478.97139	20.09604	33.7
S ₁ (¹ ππ [*])	-1495.16220	-1478.91990	-20.00094	66.0
S 1 (61°; 125°)				
S ₀	-1495.22325	-1478.95499	20.08450	45.5
S ₁ (¹ ππ [*])	-1495.15558	-1478.91302	-20.00430	71.8
S₁ (69°; 117°)				
S ₀	-1495.20423	-1478.94057	20 08307	54.9
S ₁ (¹ ππ [*])	-1495.14610	-1478.90510	-20.00397	77.1
S ₁ (77°; 109°)				
S ₀	-1495.18311	-1478.92062	20.07376	73.8
S ₁ (¹ ππ [*])	-1495.15093	-1478.90346	-20.01310	84.6

Table S9. Absolute energies (A.E., hartree) and relative energies (ΔE , kcal/mol) of optimized structures for proton transfer (reaction coordinate: O9-H10 distance) <u>in vacuo</u>. The corresponding energy profiles are plotted in Figure 1 (bottom left) of the main article.

(O9-H10)	CASSCF	CAS	PT2
	A.E.	A.E.	ΔΕ
S₀-min (0.99)			
Root1 (S ₀)	-1474.85660	-1479.05905	0.0
Root2 (S ₁ (¹ ππ [*]))		-1478.94498	71.6
Root3		-1478.91123	92.8
Root4		-1478.89610	102.3
S₁-min (1.01)			
Root1 (S ₀)	-1474.82881	-1479.05036	5.4
Root2 (S ₁ (¹ ππ [*]))	-1474.70120	-1478.95292	66.6

Root3		-1478.91772	88.7
Root4		-1478.89753	101.4
S ₁ (1.08)			
Root1 (S ₀)	-1474.82523	-1479.04989	5.7
Root2 (S ₁ (¹ ππ [*]))	-1474.69977	-1478.95487	65.4
Root3		-1478.91871	88.1
Root4		-1478.89675	101.8
S ₁ (1.15)		L	
Root1 (S ₀)	-1474.82161	-1479.04928	6.1
Root2 (S ₁ (¹ ππ [*]))	-1474.69782	-1478.95688	64.1
Root3		-1478.91910	87.8
Root4		-1478.89588	102.4
S ₁ (1.20)			
Root1 (S ₀)	-1474.82323	-1479.05285	3.9
Root2 (S ₁ (¹ ππ [*]))	-1474.70102	-1478.96331	60.1
Root3		-1478.92399	84.7
Root4		-1478,90039	99.6
S1 (1.26)			
$Root1 (S_0)$	-1474 82955	-1479 06026	-0.8
Root2 (S ₁ (¹ ππ [*]))	-1474 70808	-1478 97253	54.3
Root3		-1478 92513	84.0
Root4		-1478 90058	99.4
S1 (1 32)		1470.00000	00.4
Boot1 (S ₀)	-1474 83161	-1479 05660	15
Root2 (S₁(¹ππ*))	-1474 71022	-1478 97377	53.5
Root3		-1478 92235	85.8
Root4		-1478 90730	95.2
S1 (1.38)		1110.00100	00.2
$Boot1 (S_0)$	-1474 83807	-1479 06370	-29
Root2 (S ₁ (¹ ππ [*]))	-1474 71601	-1478 97813	50.8
Root3		-1478 92805	82.2
Root4		-1478 91128	92 7
S ₁ (1 44)		1110.01120	02.1
Boot1 (S ₀)	-1474 84043	-1479 06504	-3.8
Root2 (S₁(¹ππ*))	-1474 71821	-1478 97987	49.7
Root3	111 111 1021	-1478 92936	81.4
Root4		-1478 91338	91.4
S ₁ (1.52)		1110.01000	01.1
$R_{00}t1 (S_0)$	-1474 84393	-1479 06653	-4 7
Root2 (S ₁ (¹ ππ [*]))	-1474 72153	-1478 98277	47 9
Root3		-1478 93000	81.0
Root4		-1478 91898	87.9
S₁ (1.60)			0.10
Root1 (S ₀)	-1474 84254	-1479 06510	-3.8
Root2 (S ₁ (¹ ππ [*]))	-1474 72025	-1478 98161	48.6
Root3		-1478 92850	81.9
Root4		-1478 91767	88 7
S1-tautomer (1 69)		1110.01101	00.7
$Root1 (S_0)$	-1474 84348	-1479 06477	-36
			0.0

Root2 (S ₁ (¹ ππ [*]))	-1474.72132	-1478.98134	48.8
Root3		-1478.92829	82.1
Root4		-1478.91697	89.2

Table S10. Absolute energies (A.E., hartree) and relative energies (ΔE , kcal/mol) of all optimized structures for photoisomerization (reaction coordinate: C4-C3-C2-C6 dihedral angle) <u>in vacuo</u>. The corresponding energy profiles are plotted in Figure 1 (bottom right) of the main article.

(C4-C3-C2-C6)	CASSCF	CAS	PT2
(01 00 02 00)	A.E.	A.E.	ΔE
S₁ (-170°)			
Root1 (S ₀)	-1474.84196	-1479.06312	-2.6
Root2 (S ₁ (¹ ππ [*]))	-1474.72033	-1478.97980	49.7
Root3		-1478.92714	82.8
Root4		-1478.91451	90.7
S₁ (-158°)			
Root1 (S ₀)	-1474.83791	-1479.06018	-0.7
Root2 (S ₁ (¹ ππ [*]))	-1474.72027	-1478.97945	50.0
Root3		-1478.92695	82.9
Root4		-1478.91186	92.4
S ₁ (-145°)			
Root1 (S ₀)	-1474.82702	-1479.05099	5.1
Root2 (S ₁ (¹ ππ [*]))	-1474.72262	-1478.97853	50.5
Root3		-1478.92277	85.5
Root4		-1478.90394	97.3
S ₁ (-132°)			
Root1 (S ₀)	-1474.81269	-1479.03830	13.0
Root2 (S ₁ (¹ ππ [*]))	-1474.72844	-1478.98020	49.5
Root3		-1478.91336	91.4
Root4		-1478.89234	104.6
S ₁ (-119°)			
Root1 (S ₀)	-1474.78557	-1479.00891	31.5
Root2 (S ₁ (¹ ππ [*]))	-1474.74064	-1478.99122	42.6
Root3		-1478.89931	100.2
Root4		-1478.87222	117.2
S ₁ (-109°)			
Root1 (S ₀)	-1474.77952	-1479.00327	35.0
Root2 (S ₁ (¹ππ*))	-1474.74482	-1478.98913	43.9
Root3		-1478.89039	105.8
Root4		-1478.86292	123.1
CI(S ₁ /S ₀) (-99°)			
Root1 (S ₀)	-1474.78209	-1479.00418	34.4
Root2 (S ₁ (¹ ππ [*]))	-1474.74470	-1478.99460	40.4
Root3		-1478.90011	99.7
Root4		-1478.87087	118.1

5. References

- [S1] X. Shu, K. Kallio, X. Shi, P. Abbyad, P. Kanchanawong, W. Childs, S. G. Boxer, S. J. Remington, *Biochemistry* 2007, 46, 12005-12013.
- [S2] D. A. Case, T. A. Darden, T. E. Cheatham, III, C. L. Simmerling, J. Wang, R. E. Duke, R. Luo, K. M. Merz, D. A. Pearlman, M. Crowley, R. C. Walker, W. Zhang, B. Wang, S. Hayik, A. Roitberg, G. Seabra, K. F. Wong, F. Paesani, X. Wu, S. Brozell, V. Tsui, H. Gohlke, L. Yang, C. Tan, J. Mongan, V. Hornak, G. Cui, P. Beroza, D. H. Mathews, C. Schafmeister, W.S. Ross, P.A. Kollman, *AMBER9*, University of California, San Francisco, **2006**.
- [S3] J. W. Ponder, F. M. Richards, J. Comput. Chem. 1987, 8, 1016-1024.
- [S4] W. Weber, V. Helms, J. A. McCammon, P. W. Langhoff, Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 6177-6182.
- [S5] M. E. Martin, F. Negri, M. Olivucci, J. Am. Chem. Soc. 2004, 126, 5452-5464.
- [S6] I. V. Polyakov, B. L. Grigorenko, E. M. Epifanovsky, A. I. Krylov, A. V. Nemukhin, J. Chem. Theory Comput. 2010, 6, 2377-2387.
- [S7] T. Mori, T. J. Martinez, J. Chem. Theory Comput. 2013, 9, 1155-1163.
- [S8] N. Ferré, A. Cembran, M. Garavelli, M. Olivucci, *Theo. Chem. Acc.* **2004**, *112*, 335-341.
- [S9] N. Ferré, M. Olivucci, J. Am. Chem. Soc. 2003, 125, 6868-6869.
- [S10] T. Andruniow, N. Ferré, M. Olivucci, Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 17908-17913.
- [S11] G. F. Luo, X. B. Chen, J. Phys. Chem. Lett. 2012, 3, 1147-1153.
- [S12] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R.Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B.

Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, *Gaussian03 Revision D.02*, Gaussian, Inc., Wallingford CT, **2004**.

[S13] K. Andersson, F. Aquilante, M. Barysz, E. Bednarz, A. Bernhardsson, M. R. A. Blomberg, Y. Carissan, D. L. Cooper, M. Cossi, A. Devarajan, L. De Vico, N. Ferré, M. P. Fülscher, A. Gaenko, L. Gagliardi, G. Ghigo, C. de Graaf, B. A. Hess, D. Hagberg, A. Holt, G. Karlström, J. W. Krogh, R. Lindh, P.-Å. Malmqvist, T. Nakajima, P. Neogrády, J. Olsen, T. B. Pedersen, J. Raab, M. Reiher, B. O. Roos, U. Ryde, B. Schimmelpfennig, M. Schütz, L. Seijo, L. Serrano-Andrés, P. E. M. Siegbahn, J. Stålring, T. Thorsteinsson, V. Veryazov, P.-O. Widmark, and A. Wolf., *Molcas Version* 7.6, Lund University, Sweden, 2010.

6. Cartesian Coordinates

S₀ minimum (protein)

Ν	9.916406	7.866508	1.689217
С	10.943106	6.896173	1.418279
С	11.167830	6.731034	-0.081484
0	10.489014	7.282069	-0.895928
С	10.706230	5.518955	2.095777
С	9.510228	4.800068	1.482705
0	9.732119	4.236012	0.391503
0	8.432008	4.819154	2.079645
Η	9.088140	7.775514	1.141165
Η	9.895389	8.070238	2.685816
Η	11.884664	7.272339	1.809918
Η	11.957934	6.069376	-0.435109
Η	11.583626	4.888248	1.982512
Η	10.555008	5.696417	3.151276
С	-0.308958	0.972135	-2.015425
Ν	0.799927	1.498881	-1.674301
С	1.827216	0.725039	-2.232528
С	-3.289097	3.307086	-1.171434
0	-1.045332	3.261043	-0.355844
С	1.192463	-0.376732	-2.976064
0	1.698137	-1.315723	-3.597585
Ν	-0.115789	-0.191384	-2.821637
С	-1.723859	1.388102	-1.701378
Ν	-2.190015	0.473575	-0.681120
С	-1.846405	2.895347	-1.434310

С	-1.120294	-1.114541	-3.306929
С	-1.656425	-0.814272	-4.697655
0	-2.163285	-1.677141	-5.343831
С	3.161294	0.896644	-2.076502
С	3.868948	1.888894	-1.257969
С	3.203587	2.900901	-0.513256
С	3.919137	3.758339	0.284265
С	5.249599	1.816728	-1.162489
С	5.988416	2.707462	-0.371256
С	5.323035	3.658725	0.363951
0	5.921137	4.532873	1.192945
Н	-3.317633	4.384528	-1.063626
Н	-3.634011	2.862040	-0.245404
Н	-3.962556	3.019147	-1.973900
Н	-0.792108	4.195507	-0.495238
Η	-2.310506	1.202911	-2.594919
Η	-1.743836	0.638300	0.204958
Η	-3.203926	0.372423	-0.753704
Η	-1.510432	3.397439	-2.338723
Η	-0.702525	-2.109122	-3.333054
Η	-1.941362	-1.130851	-2.605653
Н	-1.575784	0.181817	-5.143763
Н	3.790774	0.197763	-2.600046
Н	2.138873	2.997725	-0.560650
Н	3.414706	4.522577	0.845069
Η	5.787454	1.072009	-1.721939
Н	7.061646	2.649430	-0.341864
Н	6.893838	4.418314	1.300637

S1 local minimum (protein)

Ν	9.824968	7.967310	1.675008
С	10.843914	6.989395	1.377226
С	11.072708	6.854432	-0.120834
0	10.405000	7.419384	-0.934658
С	10.596114	5.598579	2.015676
С	9.373525	4.916743	1.410608
0	9.573306	4.269108	0.365046
0	8.283315	5.052580	1.977539
Н	8.998933	7.881803	1.117773
Н	11.788916	7.346755	1.775830
Н	11.464849	4.962690	1.874431
Н	10.466214	5.751161	3.076871
Н	-0.272764	0.871731	-1.976509

0.871609	1.444394	-1.717529
1.858560	0.659824	-2.233373
-3.198268	3.260584	-1.091019
-0.952377	3.159971	-0.286514
1.268628	-0.452201	-2.869729
1.770727	-1.426191	-3.489171
-0.065554	-0.292154	-2.707778
-1.675260	1.310605	-1.648058
-2.177629	0.398526	-0.639113
-1.766779	2.816640	-1.366194
-1.052465	-1.231898	-3.188255
-1.620498	-0.928732	-4.567855
-2.156795	-1.784663	-5.200710
3.322531	0.932377	-2.122662
3.915397	1.855983	-1.258530
3.165922	2.803957	-0.452029
3.837040	3.709795	0.349731
5.372590	1.914083	-1.168985
6.005323	2.811849	-0.388726
5.229834	3.717547	0.402982
5.797021	4.582248	1.222402
-3.198041	4.336747	-0.966971
-3.556271	2.811990	-0.171310
-3.881253	3.003620	-1.895506
-0.658791	4.081304	-0.440438
-2.269146	1.141092	-2.539987
-1.730037	0.546327	0.249809
-1.422214	3.319532	-2.265719
-0.608396	-2.213718	-3.232015
-1.864009	-1.272355	-2.476594
3.962860	0.326034	-2.730478
2.097598	2.821604	-0.503432
3.286401	4.427694	0.930371
5.951202	1.229944	-1.762856
7.079079	2.869827	-0.351020
6.789134	4.556350	1.285967
-3.192113	0.369489	-0.686805
-1.566560	0.077531	-5.000425
9.732439	8.047739	2.680817
11.881468	6.212500	-0.478243
	0.871609 1.858560 -3.198268 -0.952377 1.268628 1.770727 -0.065554 -1.675260 -2.177629 -1.766779 -1.052465 -1.620498 -2.156795 3.322531 3.915397 3.165922 3.837040 5.372590 6.005323 5.229834 5.797021 -3.198041 -3.556271 -3.881253 -0.658791 -2.269146 -1.730037 -1.422214 -0.608396 -1.864009 3.962860 2.097598 3.286401 5.951202 7.079079 6.789134 -3.192113 -1.566560 9.732439 11.881468	0.8716091.4443941.8585600.659824-3.1982683.260584-0.9523773.1599711.268628-0.4522011.770727-1.426191-0.065554-0.292154-1.6752601.310605-2.1776290.398526-1.7667792.816640-1.052465-1.231898-1.620498-0.928732-2.156795-1.7846633.3225310.9323773.9153971.8559833.1659222.8039573.8370403.7097955.3725901.9140836.0053232.8118495.2298343.7175475.7970214.582248-3.1980414.336747-3.5562712.811990-3.8812533.003620-0.6587914.081304-2.2691461.141092-1.7300370.546327-1.4222143.319532-0.608396-2.213718-1.864009-1.2723553.9628600.3260342.0975982.8216043.2864014.4276945.9512021.2299447.0790792.8698276.7891344.556350-3.1921130.369489-1.5665600.0775319.7324398.04773911.8814686.212500

S1 keto tautomer (protein)

Ν	9.574213	8.222013	1.548849
С	10.659927	7.327531	1.252082

С	10.848020	7.138276	-0.252163
0	10.111994	7.627471	-1.052377
С	10.552970	5.946813	1.967644
С	9.346707	5.188383	1.483751
0	9.390378	4.500834	0.488895
0	8.279129	5.345331	2.195636
Н	8.735508	8.069311	1.028217
Н	11.584539	7.769382	1.607369
Н	11.431244	5.340553	1.782510
Н	10.487164	6.132274	3.029198
Н	-0.201540	0.729934	-1.869615
Н	0.916106	1.347254	-1.629778
С	1.933768	0.598397	-2.167267
Ν	-3.241318	3.001905	-1.068097
С	-1.023770	3.014401	-0.181786
С	1.368272	-0.547138	-2.786280
0	1.897034	-1.508010	-3.402730
С	0.036120	-0.438643	-2.596004
0	-1.619228	1.108554	-1.531588
Ν	-2.068882	0.195685	-0.496279
С	-1.782051	2.615924	-1.282110
Ν	-0.920901	-1.422429	-3.040746
С	-1.505707	-1.183899	-4.424445
С	-2.023777	-2.077079	-5.021868
С	3.356660	0.920255	-2.121412
0	3.967460	1.881331	-1.229036
С	3.248794	2.820163	-0.427811
С	3.924503	3.707928	0.404480
С	5.412562	1.919270	-1.140684
С	6.063176	2.798962	-0.351624
С	5.341587	3.734560	0.486279
С	5.948452	4.528279	1.263704
С	-3.293392	4.079171	-0.964483
0	-3.614322	2.553016	-0.154352
Η	-3.881489	2.701054	-1.892882
Н	-0.770652	3.947203	-0.332569
Н	-2.217067	0.895449	-2.412032
Η	-1.616477	0.382402	0.381995
Η	-1.427480	3.115979	-2.179582
Η	-0.449733	-2.392516	-3.059974
Н	-1.728853	-1.466826	-2.325106
Н	4.007151	0.297567	-2.696701
Н	2.180891	2.847519	-0.470857
Н	3.369223	4.414554	0.992814

Н	5 981025	1 236138	-1 747947
Н	7.138143	2.824092	-0.319681
H	7.485578	4.905398	1.767966
Н	-3.082380	0.100749	-0.545856
Н	-1.494810	-0.194990	-4.891457
Н	9.568968	8.436382	2.545196
Н	11.676511	6.533937	-0.619466
H H H H H	7.485578 -3.082380 -1.494810 9.568968 11.676511	4.905398 0.100749 -0.194990 8.436382 6.533937	1.76796 -0.54585 -4.89145 2.54519 -0.61946

$CI(S_1/S_0)$ (protein)

Ν	9.727467	8.072798	1.806567
С	10.741543	7.092128	1.540548
С	10.961948	6.916297	0.040291
0	10.259936	7.449259	-0.765324
С	10.487940	5.707006	2.207849
С	9.399731	4.902781	1.539676
0	9.672276	4.024778	0.751444
0	8.186654	5.213123	1.861277
Н	8.847007	7.909322	1.364873
Н	11.678116	7.449171	1.953430
Н	11.387904	5.105945	2.180941
Н	10.228149	5.893919	3.240377
Н	-0.123131	0.418403	-1.851817
Н	0.922524	1.200188	-1.853216
С	2.003068	0.444508	-2.190606
Ν	-3.122787	2.545789	-0.672769
С	-0.836356	2.535361	0.017109
С	1.549732	-0.897075	-2.497021
0	2.152974	-1.869574	-2.988093
С	0.211395	-0.856802	-2.313204
0	-1.518471	0.712813	-1.364217
Ν	-1.787853	-0.229961	-0.293613
С	-1.685027	2.204297	-1.036732
Ν	-0.699207	-1.888137	-2.753496
С	-1.300859	-1.676928	-4.142373
С	-1.784779	-2.595362	-4.727804
С	3.363103	0.956583	-2.354513
0	4.149553	1.366981	-1.216118
С	3.508680	2.010964	-0.114664
С	4.224013	2.743825	0.793724
С	5.551840	1.444530	-1.265095
С	6.284609	2.143508	-0.338333
С	5.649391	2.849521	0.718369
С	6.288256	3.540104	1.565400

С	-3.182685	3.611326	-0.483326
0	-3.409332	2.026383	0.234797
Н	-3.825847	2.290923	-1.461269
Н	-0.496758	3.443392	-0.129483
Н	-2.208616	0.476033	-2.169239
Н	-1.262655	-0.021501	0.539706
Н	-1.415466	2.761412	-1.930473
Н	-0.181416	-2.834651	-2.771476
Н	-1.504579	-1.974024	-2.037968
Н	3.624980	1.381689	-3.300724
Н	2.439838	2.024165	-0.061949
Н	3.728158	3.296071	1.567730
Н	6.069990	0.957252	-2.070878
Н	7.355368	2.187642	-0.405019
Н	7.537026	4.492924	1.561533
Н	-2.790534	-0.387833	-0.223018
Н	-1.331075	-0.691432	-4.619684
Н	9.798663	8.396150	2.770884
Н	11.746266	6.252409	-0.323261

 S_0 minimum (vacuo)

Ν	-8.263697	0.724137	1.431176
С	-8.500886	-0.290162	0.419759
С	-8.114764	-1.658144	0.943266
0	-7.764914	-1.888743	2.055442
С	-7.842419	-0.018234	-0.945044
С	-6.315776	0.096281	-0.806852
0	-5.728344	-0.962981	-0.594521
0	-5.846647	1.243257	-0.891679
Н	-7.419713	0.520242	1.932212
Н	-9.578977	-0.359962	0.242577
Н	-8.084045	-0.833333	-1.622764
Н	-8.254589	0.898288	-1.355028
С	4.370287	0.061927	-0.036081
Ν	3.117687	0.306246	-0.089318
С	2.474108	-0.900909	-0.431389
С	5.738661	3.290169	1.547440
0	4.463179	3.064084	-0.481471
С	3.510587	-1.945602	-0.584918
0	3.421171	-3.111503	-0.849424
Ν	4.686524	-1.282415	-0.308585
С	5.427551	1.068676	0.344656
Ν	6.410442	1.154009	-0.722423
С	4.795910	2.419318	0.725182

С	5.966820	-1.939090	-0.329997
С	6.381690	-2.482894	1.020034
0	7.430812	-3.005940	1.209446
С	1.153185	-1.137089	-0.594620
С	0.002383	-0.254537	-0.487905
С	0.081402	1.131132	-0.205928
С	-1.058604	1.893829	-0.130984
С	-1.260495	-0.791568	-0.676788
С	-2.427373	-0.039136	-0.599999
С	-2.333755	1.314214	-0.330551
0	-3.370248	2.127014	-0.238056
Н	5.259144	4.233458	1.790598
Н	6.641465	3.515410	0.990618
Н	6.015430	2.803703	2.477428
Н	3.666697	3.563482	-0.376805
Н	5.945689	0.680102	1.218086
Н	6.008988	1.663330	-1.484434
Н	3.897200	2.223434	1.297324
Н	5.900522	-2.773540	-1.016992
Н	6.725920	-1.257266	-0.680333
Н	0.929037	-2.160170	-0.845331
Н	1.041730	1.582886	-0.059081
Н	-1.012020	2.947460	0.076620
Н	-1.357965	-1.842766	-0.891873
Н	-3.390747	-0.495471	-0.742740
Н	-4.232412	1.689889	-0.466439
Н	7.198857	1.681233	-0.403306
Н	5.647890	-2.368290	1.828073
Н	-8.118563	1.612398	0.988663
Н	-8.217384	-2.468938	0.213387

S1 local minimum (vacuo)

Ν	-8.085877	0.501953	1.600763
С	-8.379974	-0.312400	0.436137
С	-7.992255	-1.754232	0.688778
0	-7.614093	-2.180743	1.731793
С	-7.773925	0.200726	-0.881978
С	-6.247655	0.285759	-0.786547
0	-5.658626	-0.790654	-0.719005
0	-5.762602	1.432285	-0.734369
Н	-7.275612	0.143372	2.067693
Н	-9.464077	-0.344112	0.295660
Н	-8.040879	-0.480235	-1.686423
Н	-8.193033	1.174341	-1.110757

С	4.336087	0.054382	-0.035907
Ν	3.048714	0.238391	-0.047016
С	2.462518	-0.959903	-0.351069
С	5.616775	3.334719	1.507289
0	4.280543	3.073721	-0.466378
С	3.470150	-1.960579	-0.526331
0	3.403348	-3.149560	-0.787570
Ν	4.653182	-1.270043	-0.317590
С	5.363999	1.095905	0.309132
Ν	6.319159	1.237308	-0.785059
С	4.690020	2.419126	0.715068
С	5.938949	-1.905252	-0.395833
С	6.406046	-2.465627	0.931646
0	7.488133	-2.930147	1.095786
С	1.026700	-1.256161	-0.477678
С	-0.035419	-0.359234	-0.396570
С	0.115677	1.063347	-0.178899
С	-1.004155	1.878362	-0.131898
С	-1.394981	-0.856253	-0.544847
С	-2.475190	-0.061560	-0.498738
С	-2.289628	1.352619	-0.295081
0	-3.287335	2.178026	-0.252039
Η	5.101296	4.254743	1.763215
Η	6.491811	3.602122	0.923633
Η	5.945464	2.863551	2.429167
Η	3.396268	3.391625	-0.366314
Η	5.931486	0.741670	1.168667
Η	5.860116	1.684205	-1.555272
Η	3.826863	2.175741	1.319920
Η	5.859294	-2.734921	-1.086661
Η	6.677319	-1.210682	-0.767447
Η	0.813445	-2.289324	-0.667662
Η	1.098914	1.465413	-0.062926
Η	-0.917878	2.939504	0.022611
Η	-1.524800	-1.915133	-0.692965
Η	-3.476363	-0.446539	-0.594221
Η	-4.198091	1.781815	-0.414663
Η	7.083396	1.822666	-0.509092
Н	5.677907	-2.417919	1.748688
Н	-7.872581	1.438652	1.317437
Н	-8.143881	-2.419694	-0.165746

S1 keto tautomer (vacuo)

Ν	-8.695475	0.431494	1.461436

С	-8.812959	-0.111242	0.124418
С	-8.581367	-1.610737	0.110545
0	-8.473425	-2.272214	1.090988
С	-7.939128	0.608332	-0.913422
С	-6.462536	0.454290	-0.608403
0	-5.942619	-0.621737	-0.595446
0	-5.877547	1.590659	-0.359129
Н	-8.368313	-0.270856	2.094728
Н	-9.843705	-0.002517	-0.224208
Н	-8.118284	0.184000	-1.896735
Н	-8.210270	1.655403	-0.948212
С	4.534784	0.068890	-0.094841
Ν	3.240504	0.209678	-0.134529
С	2.684192	-1.037124	-0.320069
С	5.759938	3.595979	0.900402
0	3.956778	2.949243	-0.464887
С	3.750275	-2.014678	-0.407984
0	3.733738	-3.220089	-0.568510
Ν	4.899781	-1.262236	-0.259006
С	5.523739	1.184073	0.095364
Ν	6.326180	1.336513	-1.118169
С	4.800576	2.469575	0.546532
С	6.215579	-1.833617	-0.306196
С	6.713099	-2.286479	1.050485
0	7.862724	-2.478955	1.289524
С	1.299306	-1.389568	-0.447517
С	0.154602	-0.516551	-0.269305
С	0.218773	0.852954	0.120471
С	-0.938092	1.611924	0.282911
С	-1.164414	-1.065045	-0.474477
С	-2.287755	-0.342599	-0.316449
С	-2.240164	1.063364	0.078687
0	-3.276803	1.730099	0.226874
Н	5.197970	4.452258	1.254838
Н	6.327060	3.913326	0.031880
Н	6.453785	3.292774	1.679557
Н	3.279225	2.291961	-0.593720
Н	6.213392	0.900721	0.889600
Н	5.747446	1.725897	-1.838798
Н	4.218655	2.222691	1.430284
Н	6.172917	-2.712967	-0.938027
Н	6.917249	-1.133517	-0.735341
Н	1.115393	-2.421286	-0.658973
Н	1.172924	1.300388	0.296661

Н	-0.879338	2.644847	0.572849
Н	-1.239395	-2.100416	-0.765156
Н	-3.260259	-0.776242	-0.471916
Н	-4.906593	1.492191	-0.160992
Н	7.077292	1.981171	-0.962625
Н	5.943639	-2.416187	1.817816
Н	-8.069820	1.210636	1.497906
Н	-8.571354	-2.068906	-0.881752

$CI(S_1/S_0)$ (vacuo)

Ν	8.690278	1.439016	0.669672
С	8.832207	0.163404	-0.002632
С	8.641596	0.282917	-1.504536
0	8.605832	1.321759	-2.080895
С	7.949094	-0.935751	0.602224
С	6.473260	-0.639741	0.408869
0	6.000816	-0.571840	-0.687704
0	5.845011	-0.465964	1.532907
Н	8.537415	2.164006	-0.003613
Н	9.862625	-0.187531	0.101185
Н	8.160569	-1.880877	0.112099
Н	8.178600	-1.043097	1.653913
С	-4.546907	0.274737	-0.220517
Ν	-3.346956	0.472496	-0.706569
С	-2.715374	-0.739758	-0.803538
С	-6.150775	3.786530	-0.452401
0	-3.926476	3.183065	0.005858
С	-3.651721	-1.787979	-0.296204
0	-3.542485	-2.978502	-0.187859
Ν	-4.784897	-1.065084	0.043181
С	-5.538187	1.374435	0.075332
Ν	-5.719670	1.449886	1.519580
С	-5.097704	2.696856	-0.584395
С	-5.960823	-1.670284	0.607309
С	-6.974840	-2.085861	-0.438631
0	-8.131489	-2.222956	-0.201031
С	-1.351360	-0.924666	-1.258194
С	-0.197113	-0.669854	-0.470802
С	-0.215129	-0.228540	0.875159
С	0.933572	0.021585	1.584543
С	1.092581	-0.839151	-1.031546
С	2.247342	-0.603174	-0.354400
С	2.234353	-0.151769	1.010380
0	3.275477	0.075760	1.658741

Н	-5.816783	4.677058	-0.973044
Н	-6.306040	4.056448	0.586728
Н	-7.100623	3.475382	-0.878674
Н	-3.203067	2.618581	-0.246897
Н	-6.498311	1.089320	-0.354324
Н	-4.907788	1.872736	1.933419
Н	-4.934715	2.507446	-1.642882
Н	-5.655119	-2.568897	1.132742
Н	-6.430575	-1.005532	1.318114
Н	-1.212241	-1.175885	-2.287058
Н	-1.152774	-0.071708	1.367668
Н	0.892695	0.359398	2.600573
Н	1.154415	-1.170301	-2.053156
Н	3.203985	-0.734754	-0.821627
Н	4.863551	-0.273246	1.420484
Н	-6.498529	2.039933	1.746030
Н	-6.577363	-2.270886	-1.441817
Н	7.915263	1.437296	1.302944
Н	8.615604	-0.663282	-2.050107