
ARTICLE
doi:10.1038/nature13737

Structural basis for the inhibition of the
eukaryotic ribosome
Nicolas Garreau de Loubresse1, Irina Prokhorova1, Wolf Holtkamp2, Marina V. Rodnina2, Gulnara Yusupova1 & Marat Yusupov1

The ribosome is a molecular machine responsible for protein synthesis and a major target for small-molecule inhibitors.
Compared to the wealth of structural information available on ribosome-targeting antibiotics in bacteria, our under-
standing of the binding mode of ribosome inhibitors in eukaryotes is currently limited. Here we used X-ray crystallo-
graphy to determine 16 high-resolution structures of 80S ribosomes from Saccharomyces cerevisiae in complexes with 12
eukaryote-specific and 4 broad-spectrum inhibitors. All inhibitors were found associated with messenger RNA and
transfer RNA binding sites. In combination with kinetic experiments, the structures suggest a model for the action of
cycloheximide and lactimidomycin, which explains why lactimidomycin, the larger compound, specifically targets the
first elongation cycle. The study defines common principles of targeting and resistance, provides insights into translation
inhibitor mode of action and reveals the structural determinants responsible for species selectivity which could guide
future drug development.

In all living cells, ribosomes are large ribonucleoprotein assemblies re-
sponsible for the accurate conversion of the genetic information encoded
within mRNA into a corresponding protein. Although core functions
of the ribosome are conserved in all kingdoms of life, eukaryotic ribo-
somes are at least 40% larger than their bacterial counterparts with a
total mass ranging from ,3.3 MDa (yeasts and plants) up to ,4.5 MDa
(mammals)1–3. The additional complexity of the eukaryotic ribosome
structure is reflected in differences in terms of functions and aspects of
translation and its regulation4.

Given the central role of the ribosome in the cell, living organisms
have elaborated defence strategies using small-molecule inhibitors to
impair ribosomal functions. Decades of studies have revealed the great
diversity of molecular mechanisms used by a multitude of antibacterial
agents (antibiotics)5,6. Atomic structures of prokaryotic ribosomes pro-
vided the basis for the development of novel antibiotics and in turn
ribosome inhibitors served as tools to study protein synthesis in bacteria7.
Similarly, the eukaryotic ribosome is a major target for broad-spectrum
and eukaryote-specific small-molecule inhibitors isolated from natural
sources. Despite limited understanding of their molecular mechanism,
eukaryote-specific ribosomal inhibitors are increasingly used in research
and hold potential for new therapeutics against a wide range of infectious
diseases, cancers and genetic disorders8–12.

To date, no structural data are available for small-molecule inhibitors
in complexes with either the complete eukaryotic ribosome or its sub-
units. Some eukaryote-specific inhibitors were investigated using crys-
tals of the 50S subunit of the archaea Haloarcula marismortrui given its
similarity with some parts of the eukaryotic ribosome13,14. A previous
X-ray study of the large subunit of Tetrahymena thermophila did not
succeed to unambiguously place cycloheximide in its density due to
limited resolution15. To gain insight into the mode of action of ribosome
inhibitors in eukaryotes and to identify principles for drug development,
we determined 16 crystal structures at high resolution, up to 2.9 Å, of
the S. cerevisiae 80S ribosome in complexes with 12 eukaryote-specific
and 4 broad-spectrum inhibitors (Fig. 1, Extended Data Figs 1–3 and
Extended Data Table 1). The broad-spectrum inhibitors target the
peptidyl transferase centre on the large subunit (blasticidin S), the

decoding centre (geneticin G418) and the mRNA–tRNA binding site
on the small subunit (pactamycin, edeine). Eukaryotic-specific inhibi-
tors were chosen on the basis of their capacity to alter cell proliferation
and/or protein synthesis and their selectivity restricted to eukaryotes.
The list comprises cycloheximide, lactimidomycin, phyllanthoside,
T-2 toxin, deoxynivalenol, verrucarin A, narciclasine, lycorine, nagi-
lactone C, anisomycin, homoharringtonine and cryptopleurine.

The present study illustrates the chemical diversity of the small-
molecule inhibitors targeting the eukaryotic ribosome. All of them were
systematically found in a clash with or in a close proximity to mRNA or
transfer RNA (tRNA) binding sites on both subunits (Fig. 2a, b). In
contrast to bacterial antibiotics, none were located in the peptide exit
tunnel, which correlates with the increased number of rRNA modifica-
tions in this region of the eukaryotic ribosomes16. Although the 80S
ribosome contains 1.4 MDa of additional features absent in bacteria, it is
noteworthy that all eukaryote-specific inhibitors target primary func-
tional sites. This observation highlights the role of nucleotide substitu-
tions in the formation of eukaryotic-specific pockets in the core of the
machinery. Remarkably, the structures also explain the predominance
of resistance mutations found in ribosomal proteins in or near the
inhibitor binding sites (Extended Data Table 2). In contrast to bacteria,
the high-copy number of rDNA in eukaryotic genomes limits the
appearance of point mutations in rRNA. Instead, resistance mutations
emerge exclusively within ribosomal proteins, encoded by one or two
genes, sometimes located further away and separated by a layer of
rRNA nucleotides like in the case of protein uL3. Consequently, deve-
lopment of drugs targeting the eukaryotic ribosome can be facilitated
to prevent drug resistance by focusing on regions with the smallest
number of proteins.

The 60S tRNA E-site
Among all three tRNA binding sites on the large subunit, the E-site is the
most diverse across species, showing different nucleotide and protein
content in bacteria, archaea and eukaryotes. Following peptide bond
formation, this site accommodates deacylated tRNAs before their re-
lease in the cytoplasm.
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The glutarimide inhibitors, cycloheximide and lactimidomycin,
were located in the E-site on the large subunit in a pocket formed
by universally conserved nucleotides of the 25S rRNA and a stretch
of the eukaryote-specific protein eL42 (Fig. 3a). Lactimidomycin

bears an additional lactone ring that is positioned on top of eL42 and
directed towards the subunit interface. Although chemically unrelated
to glutarimides, phyllanthoside makes contact with the same rRNA
nucleotides and interacts with eL42 in a manner resembling the tRNA
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Figure 1 | Chemical structures of the 16 small-molecule inhibitors.
a, Chemical structures of small-molecule inhibitors analysed in the study.
Cycloheximide and lactimidomycin have an instrumental role in ribosome
profiling experiments18,20. Homoharringtonine is a marketed drug for the
treatment of chronic myeloid leukaemia37. Lycorine and narciclasine are

alkaloids known for their medicinal and toxic properties38. T-2 toxin,
deoxynivalenol and verrucarin A are widespread mycotoxins representatives of
the three major trichothecenes subclasses39. The aminoglycoside geneticin
(G418) promotes the read-through of premature termination codons11.
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Figure 2 | Binding sites of inhibitors on the yeast ribosome. a, The binding
sites can be grouped in four functional regions: the tRNA E-site and the
peptidyl transferase centre (PTC) on the large subunit (60S) and the decoding
centre (DC) and the mRNA channel on the small subunit (40S). View from

the subunit interface. b, All inhibitors target mRNA and tRNA binding
sites. The tRNAs and mRNA (white) structures were taken from the PDB
(Protein Data Bank) entries 3I8I and 3I8H. Eukaryotic-specific inhibitors are
marked with an asterisk.
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CCA-end (Fig. 3b). The electron density suggests the presence of a cova-
lent bond between C2764 (C2394, Escherichia coli numbering) and
phyllanthoside epoxide group. This observation is consistent with
the described irreversible effect of the inhibitor on protein synthesis17.

The strict selectivity of E-site inhibitors towards eukaryotes is ex-
plained by the presence of two bacterial-specific rRNA residues that
occlude the binding pocket (Fig. 3c). In archaea, the orientation of the
protein eL42 on the large subunit of H. marismotui would most probably
preclude the binding of lactimidomycin and phyllanthoside (Extended
Data Fig. 4). To localize the position of the E-site tRNA on the large
subunit, we solved the structure of the yeast ribosome in complex with
the tri-nucleotide CCA that mimics the acceptor end of the deacylated
tRNA (Extended Data Fig. 5). The structures explain previous bioche-
mical data showing that cycloheximide and lactimidomycin compete
with the binding of the tRNA CCA-end in the E-site of the large subunit18

(Fig. 3d). Phyllanthoside probably has a similar mode of inhibition17.

60S E-site accessibility for inhibitors
Although cycloheximide and lactimidomycin bind to the same site
and probably compete with the E-site tRNA, they affect translation in
a different way. Lactimidomycin preferentially arrests ribosomes at

the first peptide bond, whereas cycloheximide stalls ribosomes during
ongoing translation18–20.

To better understand this difference, we used a rapid kinetic approach
to study the effects of both inhibitors on tRNA binding to the E-site with
a fluorescently labelled tRNA (proflavin (Prf) tRNAPhe)21. Binding of
tRNAPhe(Prf) to the 80S or 70S ribosomes resulted in an almost iden-
tical rapid fluorescence change, reflecting the recruitment of the tRNA
to the E-site, whereas transition from the E-site to the P-site was slow
and not monitored (Extended Data Fig. 6a)22. When the ribosomes were
pre-treated with lactimidomycin or cycloheximide, the rate of tRNA
binding decreased, as expected for competitive inhibition (Fig. 3e). The
apparent rates of tRNA binding decreased with the inhibitor concen-
tration with a dose response curves, yielding Ki 5 2.7 6 0.7mM for
lactimidomycin and Ki 5 0.1 6 0.05mM for cycloheximide (Extended
Data Fig. 6b). Although the value for lactimidomycin was in agreement
with the published data, cycloheximide appeared to have a much higher
efficacy than reported for mammalian ribosomes using a footprinting
technique18. Direct measurements of the binding affinity of cyclohexi-
mide to yeast ribosomes using isothermal titration calorimetry yielded a
Kd 5 0.14 6 0.05mM, in agreement with the result of our competition
studies (Extended Data Fig. 6c).

Next, we tested whether the accessibility of the E-site plays a role.
We followed the dissociation of tRNAPhe(Prf) from 80S ribosomes
upon addition of cycloheximide or lactimidomycin (Fig. 3f). Upon
addition of cycloheximide, tRNAPhe(Prf) was rapidly removed from
the E-site, indicating that the inhibitor can rapidly exchange with
tRNA. In contrast, lactimidomycin did not induce tRNA dissociation,
suggesting that its binding to 80S ribosomes is inhibited when the E-site
is occupied by deacylated tRNA. Clearly, tRNAPhe(Prf) can un-bind
from the E-site within the observation time; however, its re-binding
appears to be faster than the accommodation of lactimidomycin in the
E-site. The structure of lactimidomycin with its additional lactone ring
may obstruct the binding of the inhibitor to the E-site, making lactimi-
domycin a ‘slow’ inhibitor that can efficiently bind only in the absence
of the physiological competitor, that is, during the first elongation cycle.
Our data demonstrate that the size of the glutarimide compounds
dictates their accessibility to the ribosome and consequently their mode
of action.

The peptidyl transferase centre
Targeted by the majority of antibiotics, the catalytic centre of the ribo-
some located on the large subunit is exclusively composed of highly
conserved rRNA nucleotides. The reaction of peptide bond formation
requires the two substrates, that is, aminoacyl-tRNA and peptidyl-tRNA,
to be properly aligned in the A-site and P-site of the peptidyl transfer-
ase centre, respectively.

In contrast to blasticidin S which binds in the P-site of the large
subunit in the same way in bacteria and archaea, numerous eukaryote-
specific inhibitors were found associated with the A-site of the peptidyl
transferase centre (Fig. 4a and Extended Data Fig. 7)23. Remarkably,
chemically diverse inhibitors share a similar mode of binding within
the pocket. Upon binding, all A-site inhibitors induce a similar pat-
tern of structural rearrangements in their direct vicinity that propagate
up to 15 Å away from the peptidyl transferase centre (Extended Data
Fig. 8a). The common structural scaffold of trichothecenes inhibitors,
represented by T-2 toxin, deoxynivalenol and verrucarin A, mediates
all major contacts with rRNA residues in the binding pocket (Fig. 4b).
The acetate-based substituents of T-2 toxin are pointing towards the
peptide tunnel entrance, whereas the verrucarin A large macrocycle
extends further towards the macrolide binding site in bacteria. Lyco-
rine, narcilasine and homoharringtonine are plant alkaloids sharing
similarities, including a dioxol-pyrroline group (Fig. 4c). In contrast to
trichothecenes, the three alkaloids adopt a distinct conformation in the
pocket where the dioxol-pyrroline group is positioned differently.
These findings suggest that the dioxol-pyrroline group might play a
specific role such as being a recognition motif for enzymes in the alkaloid
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Figure 3 | Structure and function of 60S tRNA E-site inhibitors.
a, Cycloheximide (green) and lactimidomycin (pink) share the same binding
site. Both structures are in agreement with resistance mutations in proteins
eL42 (Pro 56) and uL15 (Gln 38) (red) and with the role of eL42 Lys 55
monomethylation (red sphere)40–42. b, Binding site of phyllanthoside (light
blue). The asterisk indicates a putative covalent bond. c, Two bacterial-specific
nucleotides, U2431 and A2432, prevent the binding of E-site inhibitors to
the bacterial ribosome (PDB accession codes: 2AVY, 2AW7). d, E-site
inhibitors prevent the binding of deacylated tRNA. The CCA tri-nucleotide
(red) mimics the acceptor end of the deacylated tRNA. e, Inhibition of tRNA
binding to the 80S E-site by lactimidomycin (blue) and cycloheximide
(magenta). Controls without inhibitors (upper trace) and in the absence of
80S ribosomes (lower trace) are also shown. f, Dissociation of tRNAPhe(Prf)
from 80S E-site as induced by addition of excess of non-labelled tRNAPhe

(black), cycloheximide (magenta) or lactimidomycin (blue).
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biosynthetic pathway. Nagilactone C shares all the features of A-site
inhibitors (Fig. 4d). Finally, homoharringtonine and anisomycin binding
is conserved between archaea and eukaryotes; however, some variations
were found in the anisomycin vicinity (Extended Data Fig. 8b).

Consistent with structural data obtained from the archaeal 50S sub-
unit, the identity of 25S rRNA residue 2397 (2055) is suggested to in-
fluence the conformation of U2873 (U2504) that dictates the binding of
either bacterial-specific or eukaryotic-specific inhibitors (Fig. 4e)14. In
bacteria, the residue 2397 (2055) is a cytosine, whereas an adenine is
found in 96% of eukaryotes. Of therapeutic interest, the remaining 4%
of eukaryotes might be sensitive to antibacterial drugs instead of eukar-
yotic inhibitors, such as Giardia species24. Most A-site inhibitors were
found to impair peptide bond formation during translation elongation
(Extended Data Table 1). Superimposition of aminoacyl-tRNA struc-
tures shows that the entrance of the amino acid moiety in the peptidyl
transferase centre is hindered by the presence of A-site inhibitors (Fig. 4f).

The decoding centre
The decoding centre of the ribosome forms a geometrically restricted
pocket that accurately selects aminoacyl-tRNA in accordance with

mRNA codons positioned in the A-site25,26. In bacteria, aminoglycosides
antibiotics alter translation accuracy and inhibit tRNA translocation by
perturbing the conformation of the decoding centre nucleotides. Besides
their potent activity against Gram-negative bacteria, the aminoglyco-
side-induced suppression of premature termination holds potential for
the treatment of inherited disorders caused by nonsense mutations11,27.

The canonical aminoglycoside binding site is located within the
internal loop of helix 44 of 18S rRNA, which is part of the decoding
centre that contains the essential and universally conserved nucleotides
A1755 (A1492) and A1756 (A1493). In close vicinity, two nucleotides
differ between bacteria and eukaryotes, but are identical in yeast and
humans: G1645 (A1408) and A1754 (G1491) (Fig. 5a)28,29.

The large class of aminoglycosides can be divided in three subgroups
according to their chemical structures: kanamycins, neomycins and
gentamicins30. We chose geneticin (G418) as a representative of kana-
mycins with high affinity for the eukaryotic ribosome. Geneticin binds
into the aminoglycoside pocket and induces the flipping out of A1755
and A1756 (Fig. 5b). The structure highlights direct interactions
between geneticin ring I and the eukaryote-specific residues G1645
and A1754.
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Although some aminoglycosides exhibit broad-spectrum activity
against both bacteria and eukaryotes, most of them remain poorly or
not active on eukaryotic cytosolic ribosomes. This resistance mech-
anism observed within the class is attributed to the aforementioned
structural differences present in eukaryotes. We demonstrate that the
conformation of G1645, which is different from the conformation of
A1408 in bacteria, acts as a barrier on the eukaryotic ribosome by pre-
venting the accommodation of aminoglycosides with a 69-substituent
in ring I different from hydroxyl (Fig. 5c). This finding confirms previ-
ous results on low inhibitory activity of aminoglycosides in eukaryotes31.
In line with this, most kanamycins and all gentamicins contain an
amino group or a carbon side chain at this position responsible for
their limited effect on the eukaryotic ribosome. However, some mem-
bers of the neomycin family, such as paromomycin, contain a 69-
hydroxyl substituent and yet remain poorly active on the cytosolic
eukaryotic ribosomes. We identified a second structural barrier to neo-
mycin binding: in comparison to bacteria, A1754 is shifted in eukaryotes
due to a non-canonical interaction with C1646. Consequently, A1754
prevents the accommodation of the 599-hydroxyl group in ring III some-
times present in neomycins, which provides an explanation for the bio-
chemical data (Fig. 5d)28.

The mRNA and tRNA binding sites
Additional rRNA elements and proteins have led to important re-
modelling of the small subunit structure in eukaryotes, which serves
as a platform for numerous protein factors and participates actively
in translation initiation. During initiation, the subunit binds to and
moves along the mRNA 59 untranslated region to search for the proper
start codon.

In bacteria, edeine binds between the P-site and the E-site of the
small subunit and impairs the binding of initiator tRNA to the P-site
during initiation32,33. In the yeast ribosome, edeine binds to the same
region but adopts a markedly different conformation than on the bac-
terial 30S subunit (Fig. 5e). Located almost exclusively in the E-site, the
binding pocket is formed by 18S rRNA nucleotides positioned in the
mRNA path. Edeine affects translation differently in prokaryotes and
eukaryotes in keeping with the fact that the mechanism of initiation is
markedly distinct. Indeed, edeine interferes with start codon recognition
by promoting continuous scanning of the 40S subunit and preventing
subunit joining34. Thus, mRNA and edeine may simultaneously bind to
the 40S subunit to promote scanning and prevent initiator tRNA inter-
action with the start codon.

Pactamycin and cryptopleurine are located exclusively in the 40S
E-site and share the same binding pocket that overlaps in part with the
edeine binding site. Both inhibitors are found in the mRNA channel in
the E-site and interact with the ribosome by stacking with the residue
G904 of 18S rRNA (Fig. 5f). Pactamycin is a broad-spectrum inhibitor

with binding mode conserved in bacteria and eukaryotes. On the
other hand, cryptopleurine was described as a eukaryote-specific inhib-
itor35. The structure of cryptopleurine bound to yeast ribosome in the
present functional state does not provide the basis for its specificity.
The location of pactamycin and cryptopleurine imply that they act on
the step of translocation from the P-site to the E-site and may also
affect initiation in eukaryotes. It remains to be shown whether the
translocation inhibition is promoted by hindering mRNA and/or
tRNA movement.

Conclusions
This study provides a complete atomic description of 16 inhibitors
bound to the yeast ribosome, highlighting common principles of tar-
geting and shedding light on their binding sites, modes of action,
determinants of species selectivity and resistance. By targeting exclu-
sively mRNA and tRNA binding sites on both subunits, small-molecule
inhibitors impair several ribosome functions mainly, but not exclusively,
during the elongation cycle (Fig. 6).

In conjunction with kinetic experiments, we demonstrate that the
size of glutarimide inhibitors dictates their binding to the ribosome at
specific stages of elongation, resulting in different effects on trans-
lation. This model may have direct implications for other ribosome
inhibitors in eukaryotes and in bacteria. For example, in the peptidyl
transferase centre A-site, a similar mechanism may explain why ani-
somycin (small) and homoharringtonine (large) share the same bind-
ing site but block different stages of elongation36.

Similarly to antibiotics acting against the bacterial ribosome, 80S
ribosome inhibitors are sophisticated tools to study protein synthesis
in eukaryotes20. Our study highlights general principles for drug tar-
geting and provides foundations for structure-based drug design.
These structures will facilitate the development of next-generation
antibiotics with reduced adverse effects and new therapeutics against
infectious diseases, cancers and genetic disorders caused by premature
termination codons8–12. High-resolution X-ray crystallography of the
80S ribosome opens a new area of investigation—a large number of
ribosome inhibitors certainly remain to be discovered and analysed.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.

Received 7 May; accepted 6 August 2014.

Published online 10 September 2014.

1. Ben-Shem, A. et al. The structure of the eukaryotic ribosome at 3.0 Å resolution.
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METHODS
Reagents. Lactimidomycin was provided by Jon Liu (Johns Hopkins Medical
Institute), edeine by Daniel Wilson (Gene Center Munich) and T-2 toxin by
Paul Hazendonk (Agriculture and Agri-Food Canada). Lycorine, homoharring-
tonine and narciclasine were ordered from Santa Cruz Biotech. Anisomycin,
pactamycin, blasticidin S, cycloheximide, geneticin (G418), verrucarin A and
deoxynyvalenol were obtained from Sigma-Aldrich. Cryptopleurine, nagilactone
C and phyllanthoside were provided by NIH/NCI Developmental Therapeutics
Program. When not soluble enough in water, compounds were dissolved in
DMSO to achieve high concentration for stock solutions. The CCA tri-nucleotide
sample was purchased from Dharmacon Thermo Scientific.
Ribosome purification, crystallization and data collection. 80S ribosomes from
the yeast S. cerevisiae were purified and crystallized as previously described1. The
80S ribosome complexes with cycloheximide and lactimidomycin were obtained by
incubating vacant 80S ribosomes with 20-fold excesses of each of these compounds
respectively (30mM final concentration) for 15 min at 30uC prior to crystallization.
All other ribosome–inhibitor complexes and the CCA complex were formed by
soaking 80S ribosome crystals with 0.3–0.7 mM of each inhibitor for 2 h at 4uC.
Data collection was performed at SOLEIL synchrotron, beam line PROXIMA1. We
applied the data collection strategy previously described1,44, attenuating the beam to
20% of the incoming photon flux and collecting highly redundant data when
possible. Diffraction data were reduced using the XDS suite45.
Structure determination, refinement and analyses. The structures were solved
by molecular replacement using the deposited 80S ribosome structure (PDB 3U5B–
3U5I) as search model and then subjected to refinement using Phenix.refine46. The
electron density was manually inspected to search the density corresponding to the
inhibitors. Coordinates and restraints for each inhibitor were generated online
with the Grade web server (Global Phasing, http://grade.globalphasing.org) using
SMILES strings from PubChem database47. Ligands fitting and remodelling of
ribosomal binding sites were performed manually using Coot48. Final refinement
was performed with Phenix.refine. Crystallographic statistics are reported in Sup-
plementary Information Table 1. Ligands geometry was validated with the software
Mogul from the CCDC package49. Drawing of chemical structures was performed
with MarvinSketch suite (ChemAxon, http://www.chemaxon.com/) and figures
of structures were prepared using PyMOL 1.5 (Schrödinger, http://pymol.org/).
Ribosomal proteins were named throughout the manuscript according to the
newly established nomenclature50.
Rapid kinetic methods. Fluorescence experiments were carried out in buffer A
(50 mM Tris-HCl, pH 7.5, 70 mM NH4Cl, 30 mM KCl and 20 mM MgCl2, 1 mM
DTT) at 20uC using a stopped-flow apparatus (SX-20MV; Applied Photophysics).
Proflavin fluorescence was excited at 470 nm and detected after passing a KV500
cut-off filter (Schott). Equal volumes of ribosomes (0.4mM) and tRNAPhe(Prf)
(0.15mM) were rapidly mixed and the fluorescence change was monitored over
time. Experiments in the presence of inhibitors (lactimidomycin or cyclohexi-
mide) were performed at different concentrations of inhibitor as indicated. Com-
plexes for chase experiments were prepared by incubating fluorescence-labelled
tRNA (0.15mM) with ribosomes (0.4mM) for 1 min at 4uC. The dissociation of
tRNAPhe(Prf) from ribosomes was induced by addition of excess non-labelled
tRNAPhe (20mM), lactimidomycin (15mM) or cycloheximide (500mM). Time
courses were evaluated using TableCurve software by single-exponential fitting,
yielding kapp values. The dependence of kapp values on inhibitor concentrations
were fitted to hyperbolic functions. Average kapp values and standard deviations
were obtained from at least seven time courses.
Isothermal titration calorimetry. Experiments were carried out using a MicroCal
ITC200 instrument (MicroCal, LLC, Northampton, MA) in buffer (20 mM
HEPES, pH 7.5, 30 mM KCl, 70 mM NH4Cl, 7 mM MgCl2). Two-microlitre ali-
quots of cycloheximide (70mM stock solution) were injected into the 0.2-ml cell
containing the solution of 80S ribosomes (3.7mM). The resulting titration curves
were fitted using MicroCal Origin software.
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Extended Data Figure 1 | Unbiased positive electron density of small-
molecule inhibitors and CCA-trinucleotide. Fo–Fc positive electron density

maps of the 16 small-molecule inhibitors and the CCA tri-nucleotide. The
maps were contoured at 3.0–3.5s.
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Extended Data Figure 2 | Electron density of small-molecule inhibitors and CCA-trinucleotide. 2Fo–Fc electron density maps of the 16 small-molecule
inhibitors and the CCA tri-nucleotide. The maps were contoured at 1.0–1.5s.
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Extended Data Figure 3 | Structures of homoharringtonine, anisomycin,
blasticidin S and pactamycin in eukaryotes, archaea and bacteria.
Complexes with bacterial and archaeal structures were aligned with the 25S
rRNA or the 18S rRNA of the yeast ribosome. Differences in the binding pocket

were found only in the case of anisomycin as described in Extended Data Fig. 8.
Coordinates were taken from the PDB databank; PDB entries are indicated
in parentheses.
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Extended Data Figure 4 | Structural differences in protein eL42 may
preclude the binding of lactimidomycin and phyllanthoside to the archaeal
ribosome. In archaea, the protein eL42 (in red, PDB 1JJ2) is shorter than its
eukaryotic counterpart (yellow) and adopts a markedly different conformation
that clashes with lactimidomycin (pink) and phyllanthoside (cyan). Residues
of protein eL42 from archaea involved in the steric clash with both
inhibitors are depicted in red with sticks and van der Waals spheres. Although
the 60S tRNA E-site is targeted by small-molecule inhibitors in archaea
and eukaryotes, remarkably no antibiotics targeting this site in bacteria have
been described.

ARTICLE RESEARCH

Macmillan Publishers Limited. All rights reserved©2014



Extended Data Figure 5 | Close-up view of CCA tri-nucleotide binding site.
CCA tri-nucleotide (white) bound to the 60S tRNA E-site. The binding
pocket is formed by 25S rRNA nucleotides (blue) and part of protein eL42
(yellow). In eukaryotes, the protein eL42 remodels the 60S E-site and

participates actively in positioning the CCA-end. Although C75 is stabilized by
stacking and hydrogen bonds interactions with eL42, the terminal residue
A76 of deacylated tRNA enters the pocket and forms a non-canonical base pair
with a conserved residue of the 25S rRNA.
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Extended Data Figure 6 | Kinetic study of lactimidomycin and
cycloheximide. a, Deacylated tRNA binding to the bacterial 70S and
eukaryotic 80S ribosomes. Time courses of tRNAPhe (Prf) binding to the
S. cerevisiae 80S (blue) and E. coli 70S (red) ribosomes measured by the
stopped-flow technique. b, Competition binding assays. Dose response curves
for lactimidomycin (closed circles) and cycloheximide (open circles). Inset,
the binding of the tRNA to the 70S ribosome was not affected in the presence
of lactimidomycin (blue) and cycloheximide (magenta). Control without
inhibitors is shown in black. c, Measurement of cycloheximide affinity to the
80S ribosome by isothermal titration calorimetry. The curves present the
thermodynamic parameters of cycloheximide binding to 80S ribosomes (black
circles) and control buffer (red circles). N, number of binding sites. The affinity
was determined in 4 independent experiments.
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Extended Data Figure 7 | Close-up view of blasticidin S binding site.
Blasticidin S (pink) bound to the 60S tRNA P-site. The binding pocket is
formed exclusively by nucleotides of the 25S rRNA (yellow). Dashed lines

indicate hydrogen contacts with G2619 that precludes the formation of the base
pair with C75 of the tRNA in the P-site.
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Extended Data Figure 8 | Conformational changes in the peptidyl
transferase centre and differences with the archaeal ribosome. a, A-site
inhibitors induce conformational changes upon binding to the peptidyl
transferase centre of the yeast ribosome. Superimposition of the vacant 80S
ribosome (PDB 3U5A–3U5D, blue) and the 80S ribosome in complexes
with A-site inhibitors (25S rRNA in yellow). The structure of anisomycin
(orange) was chosen as a reference to represent the peptidyl transferase
centre A-site inhibitors. Residue U2875 (U2506) undergoes the most drastic

change resulting in the breakdown of a canonical base pair formed by
G2952 (U2583) and its subsequent flipping out. The reorientation of U2875
(U2506) participates in preventing the binding of aminoacyl-tRNA. b, U2875
adopts a different conformation upon binding of anisomycin (orange) to the
peptidyl transferase centre A-site (yellow) in eukaryotes in contrast to its
homologue (U2541) in archaea (magenta). Superimposition of the 50S large
subunit from H. marismortui in complex with anisomycin (PDB 1K73) and the
80S ribosome in complex with anisomycin.
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Extended Data Table 1 | Summary of information for the 16 small-molecule inhibitors

Binding sites are divided as following: the tRNA E-site on the large subunit (60S E-site), the tRNA A-site and P-site of the peptidyl transferase centre on the large subunit (60S A-site peptidyl transferase centre and
60S P-site peptidyl transferase centre, respectively), the decoding centre on the small subunit (40S DC) and the tRNA P-site and E-site on the small subunit (40S P-site and 40S E-site, respectively). The broad-
spectrum inhibitors except geneticin were previously analysed by X-ray crystallography on the bacterial 70S ribosome from Thermus thermophilus (T) or its isolated subunits: blasticidin S (PDB 1KC8, 4L6J–4L6M),
pactamycin (PDB 1HNX) and edeine (PDB 1I95). Similarly, structural data of complexes with the archaeal Haloarcula marismortui (H) 50S subunit are available for anisomycin (PDB 1K73, 3CC4) and
homoharringtonine (PDB 3G6E). The spectrum of action is either eukaryote-specific (E) or broad-spectrum (BE). We provide a selection of references (refs 51–73) with experimental data demonstrating the
inhibition of protein synthesis in eukaryotes, direct binding to the ribosome and functional characterization of the inhibitors when available.
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Extended Data Table 2 | Resistant mutations in proteins of the yeast ribosome

Referenced functional studies (refs 74–83) are listed.
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