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Abstract
Variational integrators for Lagrangian dynamical systems provide a systematic

way to derive geometric numerical methods. These methods preserve a discrete mul-
tisymplectic form as well as momenta associated to symmetries of the Lagrangian
via Noether’s theorem. An inevitable prerequisite for the derivation of variational
integrators is the existence of a variational formulation for the considered problem.
Even though for a large class of systems this requirement is fulfilled, there are many
interesting examples which do not belong to this class, e.g., equations of advection-
diffusion type frequently encountered in fluid dynamics or plasma physics.

On the other hand, it is always possible to embed an arbitrary dynamical system
into a larger Lagrangian system using the method of formal (or adjoint) Lagrangians.
We investigate the application of the variational integrator method to formal La-
grangians, and thereby extend the application domain of variational integrators to
include potentially all dynamical systems.

The theory is supported by physically relevant examples, such as the advec-
tion equation and the vorticity equation, and numerically verified. Remarkably,
the integrator for the vorticity equation combines Arakawa’s discretisation of the
Poisson brackets with a symplectic time stepping scheme in a fully covariant way
such that the discrete energy is exactly preserved. In the presentation of the results,
we try to make the geometric framework of variational integrators accessible to non
specialists.

Keywords: Conservation Laws, Geometric Discretization, Lagrangian Field Theory, Linear and
Nonlinear PDEs, Noether Theorem, Variational Integrators, Variational Methods for PDEs
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1 Introduction
In recent years, the field of structure-preserving or geometric discretisation [17, 22, 14] has
become a flourishing discipline of numerical analysis and scientific computing. One particular
family of geometric discretisation methods is that of variational integrators [64, 46, 48, 34,
47, 42, 40], which are based on the discretisation of Hamilton’s principle of stationary action
[31, 6, 23, 45, 3]. Variational integrators preserve a discrete multisymplectic form and have
good longtime energy behaviour. As we will see, they can be designed to preserve energy even
exactly, which in practice means up to machine precision. Furthermore, they preserve momenta
associated to symmetries of the discrete equations of motion via a discrete version of Noether’s
theorem [53, 33].
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While in most standard discretisation techniques for dynamical systems the equations of
motion are directly discretised, the basic idea of variational integrators is to construct a discrete
counterpart to the considered system. This means that the fundamental building blocks of
classical mechanics and field theory, namely the action functional, the Lagrangian, the variational
principle, and the Noether theorem, all have discrete equivalents. The application of the discrete
variational principle to the discrete action then leads to discrete Euler-Lagrange equations. The
evolution map that corresponds to the discrete Euler-Lagrange equations is what is called a
variational integrator. The discrete Noether theorem can be used to relate symmetries of the
discretised system to discrete momenta that are exactly preserved by this integrator. Whereas
most standard techniques put emphasis on the minimisation of local errors, for variational
integrators the focus is rather on the preservation of global or geometric properties of the system.

An obvious limitation of the variational integrator method is its applicability to Lagrangian
systems only. This excludes a large class of interesting systems, for example the problems of
advection-diffusion type often found in fluid dynamics and plasma physics. We propose here
that the method of formal (or adjoint) Lagrangians [8] can be used as an expedient to avoid
this limitation. More specifically, formal Lagrangians allow us to embed any given system into a
larger system which, in turn, admits a Lagrangian formulation. To obtain a formal Lagrangian
L, the equation at hand, say F [u] = 0, is multiplied by an adjoint variable v, giving L = v ·F [u].
Variation of the resulting action functional, A =

∫
Ldn+1x, with respect to v gives the original

equation F [u] = 0. Variation of the action functional with respect to the physical variable u
gives an additional equation that determines the evolution of the adjoint variable v.

At first sight one might be tempted to regard the formal Lagrangian formalism as merely
a method for obtaining a weak formulation of the problem at hand. Then, if our goal is to
obtain an integrator, the details of the dynamics of the adjoint variable v would seem irrelevant.
However, it turns out that the dynamics of v play a key role in relating symmetries of the formal
Lagrangian to conservation laws satisfied by u. Ibragimov [25, 26, 27] developed a theory for
the analysis of conservation laws of arbitrary differential equations by extending the Noether
theorem to formal Lagrangians. This leads to conservation laws for the extended system (u, v),
which can be restricted to the original system provided that it is possible to express the solution
of the adjoint variable v in terms of u.

In this work, we propose the combination of the discrete variational principle with Ibragi-
mov’s theory in order to derive variational integrators for systems without a natural Lagrangian
formulation and to determine the associated discrete conservation laws. Thereby we extend
significantly the applicability of the variational integrator method. The goal of this approach
is to design numerical schemes which respect certain conservation laws of a given system in a
rather systematic way.

We proceed as follows. In section 2, we present the theory of variational integrators in simple
terminology. To set the stage and fix notation we review the continuous action principle for field
theories and the corresponding Noether theorem before passing over to the discrete theory,
which is extended to account for discrete divergence symmetries. The style of presentation is
chosen to make the theory accessible to a wide audience without extensive background in modern
differential geometry. This implies some loss of generality, but hopefully not too much of the
geometric beauty of the original work is lost. In section 3, we recall the inverse problem of
the calculus of variations, review the theory of formal Lagrangians and explain the derivation of
conserved quantities in this setting. We also provide a geometric formulation of the theory, which
to our knowledge has not been presented, yet. Finally, in section 4, we apply the method to some
prototypical examples, including the advection equation and the vorticity equation, and verify
the theoretical properties in numerical experiments. More elaborate numerical examples for the
Vlasov-Poisson system as well as ideal and reduced magnetohydrodynamics will be presented
elsewhere [38, 36, 37]. The examples we provide here can be seen as building blocks for these
more complicated systems.
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2 Variational Integrators
2.1 Geometry and Notation
In this work, we are concerned with the discretisation of partial differential equations (PDEs) of
evolution type. A field is a map u : X → F from a bounded domain X ⊂ Rn+1 taking values in
an open set F ⊆ Rm. Most often, X corresponds to some region of spacetime with coordinates

x = (xµ) = (x0, xi) = (t, x, y, z) with 0 ≤ µ ≤ n, 1 ≤ i ≤ n,

and n = dimX − 1 being the number of space-like dimensions. Most of the theoretic results
rely neither on this space-plus-time splitting nor on X being a subset of an Euclidean space.
Thus X can be replaced by a differentiable manifold, in which case the results are valid locally
in a coordinate chart. Points on F are denoted by y = (ya) with 1 ≤ a ≤ m and m = dimF
being the number of field components. We make use of the Einstein summation convention on
repeated indices, both for coordinates and fields.

The configuration of a field u is geometrically represented by its graph

graph(u) =
{
(x, y)

∣∣ y = u(x)
}
,

which is a subset of the Cartesian product

Y = X × F =
{
(x, y)

∣∣ x ∈ X, y ∈ F
}
.

With the projection onto the first factor,

π : Y → X,
(x, y) 7→ x,

we can define a geometrical structure (Y,X, π) called (trivial) fibre bundle. Here, X is called
the base space, Y the configuration space, and F the fibre. Local coordinates on Y are given by

(xµ, ya) with 0 ≤ µ ≤ n, 1 ≤ a ≤ m.

A field u can be identified with a section of the bundle, i.e., a map ϕ : X → Y , satisfying the
condition

π ◦ ϕ = idX ,

where idX is the identity map on X. This condition ensures that the image of a section ϕ
corresponds to the graph of a field u,

ϕ(X) =
{
(x, y) = ϕ(x)

∣∣ x ∈ X
}

=
{
(x, u(x))

∣∣ x ∈ X
}
.

In local coordinates, a section ϕ : X → Y can be written as ϕ(x) = (xµ, ϕa(x)), that is ϕ(x) is
given by functions ya = ϕa(x) = ua(x).

Partial derivatives of a field component ua with respect to xµ or xi are denoted uaµ or uai ,
respectively. The collection of all partial derivatives of a given order k is denoted u(k). The
appropriate geometric setting for partial derivatives of a field u is the theory of jet bundles
[58, 32, 55, 29, 15]. Jets combine into a single object the values of a field at a point and the
values of its derivatives. More specifically, the jet prolongation of a section ϕ is a map

j1ϕ : x 7→
(
xµ, ϕa(x), ϕaµ(x)

)
,
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taking values in Y × Rm(n+1). This space is identified with the first jet bundle of Y , denoted
J1Y , so that the first jet prolongation of a field is a section of J1Y . Local coordinates on J1Y
are given by

(xµ, ya, zaµ) with 0 ≤ µ ≤ n, 1 ≤ a ≤ m,

where zaµ represents the possible values of partial derivatives. The Lagrangian of a first order
field theory for example will be a function defined on the first jet bundle J1Y . The jet bundle
J1Y has a natural projection on both Y and X, denoted by πY and πX , respectively. The latter
defines a fibre bundle (J1Y,X, πX). It is worth noting that not every section ψ of the bundle
J1Y → X is the jet prolongation of a section ϕ : X → Y . When that happens we say that ψ is
holonomic.

Higher order jet bundles JkY of Y can be defined analogously by considering the kth jet
prolongation of a section ϕ,

jkϕ : x 7→
(
xµ, ϕa(x), ϕaµ(x), ϕaµν(x), ...

)
,

which includes derivatives of ϕ up to kth order. Higher-order jet bundles JkY can also be
defined as submanifolds of iterated first-order jet bundles, e.g., J2Y is a submanifold of J1(J1Y ).
If coordinates on J1(J1Y ) are denoted by

(xµ, ya, zaµ, z̄aµ,wa
µν) with 0 ≤ µ, ν ≤ n, 1 ≤ a ≤ m,

then J2Y is obtained by requiring that zaµ = z̄aµ for all a and all µ, and accordingly for larger k
(for more details see e.g. [32, Chapter 32] or [15, Section 4.1.4]).

Jet bundles have become the standard framework for PDE analysis and variational calculus.
They provide a natural setting for the formulation of field theories and the analysis of conser-
vation laws which are central to this work. This framework generalises in a standard way to
non-trivial cases in which X is a manifold and Y cannot be written globally as a Cartesian
product. For a thorough introduction into the geometric framework we refer to Gotay et al.
[21].

2.2 Continuous Action Principle
For definiteness, let us consider only first order Lagrangian field theories, i.e., the Lagrangian
L shall depend only on the coordinates, the fields and their first derivatives. Therefore, the
Lagrangian is a function defined on the first jet bundle,

L : J1Y → R. (1)

The corresponding action functional is

A[ϕ] =
∫
X

L
(
j1ϕ
)
dn+1x. (2)

Hamilton’s principle of stationary action [31, 6, 3] states that among all possible field configu-
rations ϕ : X → Y , the one chosen by nature makes the action functional (2) stationary. As
usual in geometric mechanics [23, 45, 21, 48], stationary points of the action are meant in the
formal sense. The variations of a field ϕ are defined in terms of a geometric transformation of
the underlying bundle Y , that is a sufficiently regular one-parameter group of transformations
σε(x, y) of Y into itself, defined for ε in a neighbourhood of zero. In order to have near identity
transformations, it is required that σε reduces to the identity map at ε = 0, i.e., σε|ε=0 = id.
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Furthermore, variations should vanish at boundary points, so that σε = id for x ∈ ∂X. The
map σε(x, y) is the flow of the vector field V over Y given by

V (x, y) = d

dε
σε(x, y)

∣∣∣∣
ε=0

, (3)

and written in components as

V (x, y) = ηa(x, y) ∂

∂ya , (4)

where we have ηa(x, y) = 0 for x ∈ ∂X. Here, vector fields are identified with first-order
differential operators. The variation of a field ϕ in the direction of V is then defined by

ϕε = (σε ◦ ϕ)(x) = σε(ϕ(x)), (5)

and we have ϕε|ε=0 = ϕ and ϕε = ϕ on boundary points x ∈ ∂X. Loosely speaking, ϕε is
obtained by dragging ϕ along the flow of the vector field V . For sake of simplicity, we consider
transformations in σε that leave the point x unchanged, thus, preserving the fibres of the bundle
Y . Those are referred to as vertical transformations1. We say that ϕ is a stationary point of
A[ϕ] if for every σε we find that ε = 0 is a stationary point of A[ϕε] viewed as a function of ε in
an open interval about ε = 0. Then Hamilton’s principle amounts to

d

dε
A[σε ◦ ϕ]

∣∣∣∣
ε=0

= 0 for every σε. (6)

Explicitly,
d

dε
A[σε ◦ ϕ]

∣∣∣∣
ε=0

=
∫
X

d

dε

[
L
(
j1(σε ◦ ϕ)

)]∣∣∣∣
ε=0

dn+1x (7)

=
∫
X

[
∂L

∂ya
(
j1ϕ
)
· d(σε)a

dε
+ ∂L

∂zaµ
(
j1ϕ
)
· d
dε

∂(σε)a

∂xµ
]∣∣∣∣
ε=0

dn+1x. (8)

The second term in (8) can be integrated by parts,

d

dε
A[σε ◦ ϕ]

∣∣∣∣
ε=0

=
∫
X

[
∂L

∂ya
(
j1ϕ
)
− ∂

∂xµ

(
∂L

∂zaµ
(
j1ϕ
)) ]

· ηa(ϕ) dn+1x, (9)

where we used (3) and (4). As the variation of the action has to vanish for arbitrary transfor-
mations σε and therefore for arbitrary vector fields V , the term in square brackets has to vanish
identically, that is

(
j2ϕ
)∗(DEL(L)

)a = ∂L

∂ya
(
j1ϕ
)
− ∂

∂xµ

(
∂L

∂zaµ
(
j1ϕ
))

= 0. (10)

These are the Euler-Lagrange field equations, i.e., the equations of motion for a first order
Lagrangian field theory, which for a non-degenerate Lagrangian L live in the second-order jet
bundle J2Y . By DEL we denote the Euler-Lagrange operator acting on the Lagrangian L.
The pull-back notation (j2ϕ)∗ states that the result is evaluated on the second jet prolongation
j2ϕ. The theory is fully covariant, that is for time-dependent problems, time is regarded as a
component of x.

1 As noted in [48, 49], one really should consider general transformations that might affect the points
of the base space as well as the fields. Otherwise, the Cartan form and thus the multisymplectic form will
not be correctly obtained from the variational principle. However, in this work we are only concerned
with the Euler-Lagrange equations and the Noether theorem. Both will be obtained correctly even if
only transformations of the fields (vertical transformations in the language of jet bundles) are consid-
ered. Transformations of the base space (horizontal transformations) would substantially complicate the
derivations and are neglected for sake of simplicity.
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2.3 Continuous Noether Theorem
The Noether theorem [53, 33] states that each Lie point symmetry of a Lagrangian corresponds
to a conservation law of the associated Euler-Lagrange equations.

We restrict our attention to conservation laws that are generated by vertical transformations
of the configuration bundle Y , i.e., transformations which leave the base space X invariant.
In the framework of formal Lagrangians addressed below, this is often sufficient to uncover
interesting conservation laws (including conservation of momentum and energy). Our derivation
of the Noether theorem is essentially based on reference [48].

As in section 2.2, a transformation is generated by a map σε(x, y), that is

ϕε = σε ◦ ϕ with σε|ε=0 = id and V = dσε

dε

∣∣∣∣
ε=0

, (11)

but it is not required that σε reduces to the identity at boundary points. In our analysis we will
usually just prescribe the generating vector field V instead of the actual transformation σε. In
components, V can be written as

V (x, y) = ηa(x, y) ∂

∂ya with ηa(x, y) = d

dε
(σε)a(x, y)

∣∣∣∣
ε=0

, (12)

where (σε)a is the a-th component of the transformation map. Since Lagrangians are functions
defined on J1Y , we need to compute the first prolongation of the generating vector field. The
prolongation of V is defined via the jet prolongation of the transformation map σε,

j1V = d

dε

[
j1σε(x, y)

]∣∣∣∣
ε=0

, (13)

and is given by

j1V = ηa
∂

∂ya +
(
∂ηa

∂xµ + zbµ
∂ηa

∂yb
)
∂

∂zaµ
= ηa

∂

∂ya + ηaµ
∂

∂zaµ
. (14)

A vertical transformation σε is a symmetry transformation for the Lagrangian (1) if the invari-
ance condition,

L
(
j1(σε ◦ ϕ)

)
= L

(
j1ϕ
)
, (15)

is satisfied2. Taking the ε derivative of (15), we obtain an infinitesimal invariance condition,

d

dε
L
(
j1(σε ◦ ϕ)

)∣∣∣∣
ε=0

= 0, (16)

which is equivalent to (15). Explicitly computing the ε derivative, we obtain

j1V
(
L
)(

j1ϕ
)

= ∂L

∂ya
(
j1ϕ
)
· ηa(ϕ) + ∂L

∂zaµ
(
j1ϕ
)
·
[
∂ηa

∂xµ + ∂ηa

∂yb
∂ϕb

∂xµ
]

= 0. (17)

2 Here, invariance of the Lagrangian suffices, but for general transformations, i.e., transformations
that transform the base space in addition to the configuration space, invariance of the Lagrangian does
not guarantee that ϕε is a solution whenever ϕ is a solution. Invariance of solutions requires invariance
of the action, and invariance of the action requires equivariance of the Lagrangian, which also takes the
deformation of the integration domain X into account. For a detailed discussion see, e.g., Lew et al. [41],
section 6.5.
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If ϕ solves the Euler-Lagrange field equations (10), we can replace the first term on the right-
hand side of (17) to obtain[

∂

∂xµ
∂L

∂zaµ
(
j1ϕ
)]
· ηa(ϕ) + ∂L

∂zaµ
(
j1ϕ
)
·
[
∂ηa

∂xµ + ∂ηa

∂yb
∂ϕb

∂xµ
]

= 0. (18)

This, at last, amounts to a total divergence,

div
[
J(j1ϕ)

]
= 0, (19)

with the Noether current J given by

Jµ
(
j1ϕ
)

= ∂L

∂zaµ
(
j1ϕ
)
· ηa(ϕ). (20)

The fact that the Noether current is divergence-free, expresses the conservation law satisfied by
solutions ϕ of the Euler-Lagrange field equations (10). The flux of J through the boundary of
any domain Ω ⊆ X is zero.

Global Form of Conservation Laws

Let us consider an alternative point of view that is better suited for actual computations on the
discrete level. If the Lagrangian is invariant under the vertical transformation (11), the action
is also invariant under this transformation,

d

dε
A[σε ◦ ϕ]

∣∣∣∣
ε=0

=
∫
X

j1V
(
L
)(

j1ϕ
)
dn+1x = 0. (21)

Repeating the steps that lead from (17) to (19) this becomes

d

dε
A[σε ◦ ϕ]

∣∣∣∣
ε=0

=
∫
X

∂

∂xµ
[
∂L

∂zaµ
(
j1ϕ
)
· ηa(ϕ)

]
dn+1x = 0. (22)

With appropriate boundary conditions, one has∫
∂

∂xi
[
∂L

∂zai

(
j1ϕ
)
· ηa(ϕ)

]
dnx = 0, (23)

and thus, integrating (22) for x0 = t ∈ [t0, t1],

d

dε
A[σε ◦ ϕ]

∣∣∣∣
ε=0

=
[ ∫

∂L

∂zat
(
j1ϕ
)
· ηa(ϕ) dnx

]t1
t0

= 0. (24)

This is equivalent to integrating the divergence of the Noether current (19) over the spatial
dimensions and using (23). Since t0 and t1 are arbitrary, this implies the conservation of

J =
∫
∂L

∂zat
(
j1ϕ
)
· ηa(ϕ) dnx =

∫
J t(j1ϕ) dnx, (25)

which is called Noether charge.
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Divergence Symmetries

Sometimes it is necessary to consider a slightly more general version of Noether’s theorem
[54, 26]. The invariance condition (17) can be weakened to

j1V (L)(j1ϕ) = divB(j1ϕ), (26)

with B being a vector field over Y of the form B = Bµ(x, y) ∂/∂xµ, and divB is a scalar field
defined over J1Y given by

divB(x, y, z) = ∂Bµ(x, y)
∂xµ + ∂Bµ(x, y)

∂ya zaµ. (27)

This form of the invariance condition is tightly related to the gauge freedom of the Lagrangian.
We can add any divergence to the Lagrangian without changing the equations of motion as

A[ϕ] =
∫
X

L′(j1ϕ) dn+1x =
∫
X

(
L+ divH

)
(j1ϕ) dn+1x =

∫
X

L(j1ϕ) dn+1x, (28)

assuming appropriate boundary conditions. Here, H is a vector field over Y of the form H =
Hµ(x, y) ∂/∂xµ, divH is defined as in (27), and

L′(x, y, z) =
(
L+ divH

)
(x, y, z). (29)

One can check that the Euler-Lagrange equations for L and L′ are the same. Requiring the
invariance condition (17) to be satisfied for L′,

j1V (L′)(j1ϕ) = j1V (L)(j1ϕ) + div H̃(j1ϕ) = 0, with H̃ = V (Hµ) ∂

∂xµ
, (30)

we find the following relation between the vector fields B and H,

B = −H̃. (31)

In summary, if V is a divergence symmetry for L in the sense of (26) and there exists a vector
field H satisfying (31), then V is a Lie-point symmetry (17) of the equivalent Lagrangian L′

defined in (29). We can therefore apply the Noether theorem to L′, obtaining the Noether
current

J ′(j1ϕ) = J(j1ϕ)−B(ϕ), (32)

with J ′ the conserved Noether current associated to the divergence symmetry (26) and J as
defined in (20), which is not conserved in this case.

2.4 Discrete Jet Bundles
In order to derive a discrete version of Hamilton’s action principle, we proceed in three steps.
In this section, we define discrete analogues of the base space X, the configuration space Y , and
the jet bundles J1Y and J2Y . In the next section, we discretise the Lagrangian and the action
functional, and finally, we work out the discrete action principle.

The continuous base space X is replaced by its discrete analogue Xd, a bounded subset
Xd ⊂ Zn+1 which corresponds to a grid of points in X. In what follows we assume X to
be two-dimensional and choose an equidistant rectangular discretisation like it is depicted in
Figure 1(a). The theory is easily applicable to other types of grids as well, e.g., triangular as in
Figure 1(b), hexagonal as in Figure 1(c), or even staggered or irregular ones.
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(a) Rectangular Grid (b) Triangular Grid (c) Hexagonal Grid

Figure 1: Different regular grids.

The coordinates on the discrete base space Xd ⊂ Z × Z are denoted (i, j) and assumed to
take values i ∈ {1, ..., N0} and j ∈ {1, ..., N1}, respectively, where N0 and N1 are the number
of points for each dimension. This corresponds to a grid of points xi,j = (ih, jh) in X with, for
simplicity, the same step size h in both directions. Then

Xd
∼=
{
(ih, jh) ∈ X

∣∣ i = 1, ..., N0, j = 1, ..., N1
}
. (33)

The discrete configuration space is defined as the cartesian product

Yd = Xd × F, (34)

where F is the same as in the continuous case and we have an analogous projection

πd : Yd → Xd,
(yi,j) 7→ (i, j). (35)

Coordinates of Yd are denoted yai,j with 1 ≤ a ≤ dimF . The coordinates of the base point (i, j)
are already implied and therefore not specified separately. While coordinates on Xd and Yd are
defined point-wise, coordinates on J1Yd will be defined grid-cell-wise. We therefore introduce
the following abstract but convenient notation. A square � on Xd is an ordered quadruplet

� =
(
(i, j), (i, j + 1), (i+ 1, j + 1), (i+ 1, j)

)
, (36)

defining a primal grid cell. The set of such cells on Xd is denoted X�. Vertices �l of a square
� with 1 ≤ l ≤ 4 are counted counter-clockwise from the bottom left (c.f. Figure 2(a)), namely,

�1 = (i, j), �2 = (i, j + 1), �3 = (i+ 1, j + 1), �4 = (i+ 1, j). (37)

On a quadrilateral grid, the first jet bundle of Yd becomes [48]

J1Yd = X� × F 4, (38)

with coordinates given by{
(�, ya�l)

∣∣ � ∈ X�, ya�l ∈ R, 1 ≤ l ≤ 4, 1 ≤ a ≤ dimF
}
. (39)

This implies that if �1 = (i, j), then we have

y�1 = yi,j , y�2 = yi,j+1, y�3 = yi+1,j+1, y�4 = yi+1,j . (40)

A section of Yd, representing a discrete field, is a map ϕd : Xd → Yd such that π ◦ ϕd = idXd
.

The components of a discrete field ϕd at the vertices (37) of a specific square are

ϕ�1 = ϕd(�1), ϕ�2 = ϕd(�2), ϕ�3 = ϕd(�3), ϕ�4 = ϕd(�4), (41)
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(i, j) (i, j + 1)

(i+ 1, j + 1)(i+ 1, j)

(a) Grid Points

y�1 y�2

y�3y�4

(b) Field Components

Figure 2: Vertices of a primal grid cell in a two-dimensional rectangular grid and field
components at those vertices.

as depicted in Figure 2(b). The discrete first jet prolongation of a discrete field ϕd is a map
j1ϕd : X� → J1Yd, defined as

j1ϕd(�) =
(
�, ϕ�1 , ϕ�2 , ϕ�3 , ϕ�4

)
. (42)

This contains all the information necessary to define discrete first-order derivatives.
We will see that the discrete Euler-Lagrange equations are living on J2Yd, i.e., the second jet

bundle of Yd, similar to the continuous case (see [34] for another discussion of discrete second
order jet bundles). Coordinates on J2Yd will be defined on a quadruple of cells �, namely those
cells � in X� which share a common vertex. The cells �m of � with 1 ≤ m ≤ 4 are counted
counter-clockwise from the bottom left, so that

� =
{
�1,�2,�3,�4 ∈ X� ∣∣ �3

1 = �4
2 = �1

3 = �2
4
}
. (43)

The set of all such quadruples on Xd is denoted by X�. Vertices �l of a quadruple � with
1 ≤ l ≤ 9 are counted row-wise from bottom left to top right, namely,

�1 = (i− 1, j − 1), �2 = (i− 1, j), �3 = (i− 1, j + 1),
�4 = (i, j − 1), �5 = (i, j), �6 = (i, j + 1),
�7 = (i+ 1, j − 1), �8 = (i+ 1, j), �9 = (i+ 1, j + 1).

On a quadrilateral grid, the second jet bundle of Yd can be identified with

J2Yd = X� × F 9, (44)

with coordinates given by{
(�, ya�l)

∣∣ � ∈ X�, ya�l ∈ R, 1 ≤ l ≤ 9, 1 ≤ a ≤ dimF
}
, (45)

in analogy with (39). The second jet prolongation of a discrete field ϕd is a map j2ϕd : X� →
J2Yd, defined as

j2ϕd(�) =
(
�, ϕ�1 , ϕ�2 , ϕ�3 , ϕ�4 , ϕ�5 , ϕ�6 , ϕ�7 , ϕ�8 , ϕ�9

)
. (46)

Similar to the continuous case, J2Yd can also be defined via iteration as the first jet bundle of
J1Yd. If we write coordinates on J1(J1Yd) as{

(�, �m, ya�l
m

)
∣∣ � ∈ X�, �m ∈ �, ya�l

m
∈ R, 1 ≤ l,m ≤ 4, 1 ≤ a ≤ dimF

}
, (47)

then J2Yd consists of all elements of J1(J1Yd), which satisfy

ya�3
1

= ya�4
2

= ya�1
3

= ya�2
4
, ya�2

1
= ya�1

2
, ya�3

2
= ya�2

3
, ya�4

3
= ya�3

4
, ya�1

4
= ya�4

1
, (48)

for all a, which in our construction is always guaranteed due to (40) and (43). Therefore, J2Yd
can be identified with J1(J1Yd), unlike the continuous case, where J2Y is strictly embedded into
J1(J1Y ).
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2.5 Discrete Action Principle
The discretisation of the Lagrangian is based on the observation that the continuous action
functional can be written as

A[ϕ] =
∑

�∈X�

∫
Vol(�)

L
(
j1ϕ
)
dn+1x, (49)

where Vol(�) ⊂ X is the physical domain enclosed by �. The integral in (49) is approximated
by a function of values of ϕd in four different points in the spacetime grid, which corresponds to
the discrete jet prolongation defined in (42). This is the discrete Lagrangian Ld, i.e.,∫

Vol(�)

L
(
j1ϕ
)
dn+1x ≈ Ld

(
j1ϕd(�)

)
= Ld

(
�, ϕ�1 , ϕ�2 , ϕ�3 , ϕ�4

)
. (50)

The action functional (49) is then approximated by

Ad[ϕd] =
∑

�∈X�

Ld
(
j1ϕd(�)

)
, (51)

which can also be written explicitly as

Ad[ϕd] =
N0−1∑
i=1

N1−1∑
j=1

Ld
(
ϕi,j , ϕi,j+1, ϕi+1,j+1, ϕi+1,j

)
, (52)

but for most of our derivations the abstract notation is more practical.
Specifically, the discrete Lagrangian is obtained by introducing a quadrature rule (e.g., trape-

zoidal, midpoint, Simpson) to approximate the integral in (50) as well as approximations of the
fields and their derivatives. In the spirit of the Veselov discretisation [62, 63, 51, 48], we will use
the midpoint rule and first-order finite differences. This entails that the continuous fields in the
Lagrangian are replaced with averages of field values at the four vertices of the grid cell �, i.e.,

ya → 1
4
(
ya�1 + ya�2 + ya�3 + ya�4

)
≡ ya(�). (53)

There are two possibilities for the definition of each of the derivatives. With reference to Fig-
ure 2(b), let the vertical dimension correspond to x0 (time) and the horizontal dimension to x1

(space). Then ∂0 can be defined along the left as well as along the right edge of the grid cell.
Similarly, ∂1 can be defined along the upper as well as along the lower edge. Best results are
usually obtained for the most symmetric discretisation of the Lagrangian. Therefore we use the
average of the respective options and replace the derivatives in the Lagrangian according to

za0 →
1
2

(ya�4 − ya�1

h
+

ya�3 − ya�2

h

)
≡ za0(�), (54)

za1 →
1
2

(ya�2 − ya�1

h
+

ya�3 − ya�4

h

)
≡ za1(�). (55)

At last, in order to obtain the discrete equations of motion, we only need to apply a discrete
version of Hamilton’s principle of stationary action. The vertical transformation σε is discretised
in the same way as the fields ϕ, by considering its values over points (i, j) of the discrete base
space Xd, i.e., we replace σε(x, y) with σεd =

(
σεi,j(yi,j)

)
. The generating vector field is computed

as in (3), but on grid points only,

ηai,j =
d(σεi,j)a

dε

∣∣∣∣
ε=0

. (56)
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yi−1,j−1

yi,j−1

yi+1,j−1

yi−1,j

yi,j

yi+1,j

yi−1,j+1

yi,j+1

yi+1,j+1

Figure 3: Contributions to the discrete Euler-Lagrange field equations. The derivatives
of the discrete Lagrangian at the highlighted grid cells with respect to yi,j correspond to
the terms in equation (59).

The discrete version of the action principle (6) then reads

d

dε
Ad[σεd ◦ ϕd]

∣∣∣∣
ε=0

= 0 for every σεd. (57)

The explicit computation of (57) leads to

d

dε
Ad[σεd ◦ ϕd]

∣∣∣∣
ε=0

=
∑

�∈X�

d

dε
Ld
(
j1ϕεd(�)

)∣∣∣∣
ε=0

=
∑

�∈X�

4∑
l=1

∂Ld
∂ya�l

(
j1ϕd(�)

)
· ηa�l(ϕ�l). (58)

As the variation of the action has to vanish for each ηai,j on the spacetime grid independently,
it is sufficient to consider only those contributions that are multiplied with the vector field at a
fixed grid point (i, j). In total there are four such contributions (see Figure 3),

d

dε
Ad[σεd ◦ ϕd]

∣∣∣∣
ε=0

=

...+ ∂Ld
∂ya�1

(
ϕi,j , ϕi,j+1, ϕi+1,j+1, ϕi+1,j

)
· ηai,j(ϕi,j) + ...

...+ ∂Ld
∂ya�2

(
ϕi,j−1, ϕi,j , ϕi+1,j , ϕi+1,j−1

)
· ηai,j(ϕi,j) + ...

...+ ∂Ld
∂ya�3

(
ϕi−1,j−1, ϕi−1,j , ϕi,j , ϕi,j−1

)
· ηai,j(ϕi,j) + ...

...+ ∂Ld
∂ya�4

(
ϕi−1,j , ϕi−1,j+1, ϕi,j+1, ϕi,j

)
· ηai,j(ϕi,j) + ... = 0.

The variation of the discrete action vanishes, if the sum of all expressions multiplying ηai,j vanishes
identically for all (i, j) (since the (σεi,j)a and therefore the ηai,j are arbitrary). For each a, this
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requirement yields the discrete Euler-Lagrange field equations at (i, j),

0 = ∂Ld
∂ya�1

(
ϕi,j , ϕi,j+1, ϕi+1,j+1, ϕi+1,j

)
+ ∂Ld
∂ya�2

(
ϕi,j−1, ϕi,j , ϕi+1,j , ϕi+1,j−1

)
+ ∂Ld
∂ya�3

(
ϕi−1,j−1, ϕi−1,j , ϕi,j , ϕi,j−1

)
+ ∂Ld
∂ya�4

(
ϕi−1,j , ϕi−1,j+1, ϕi,j+1, ϕi,j

)
, (59)

which can be compactly written as an equation on the discrete second jet bundle J2Yd, namely

(
j2ϕd(�)

)∗(DEL(Ld)
)a =

4∑
l=1

�l=�5

∂Ld
∂ya�l

(
j1ϕd(�)

)
= 0 for all a and all �. (60)

Here, DEL(Ld) is the discrete Euler-Lagrange operator acting on the discrete Lagrangian Ld,
which is evaluated on the prolongation j2ϕd(�) as indicated by the pull-back notation. These
relations define the variational integrator for a first-order Lagrangian field theory according to
the Veselov discretisation of the Lagrangian as it was described above.

2.6 Discrete Noether Theorem
Following the derivation of the continuous theory from the previous section, we consider vertical
transformations σεi,j(yi,j) and define

ϕεi,j = σεi,j ◦ ϕi,j with σεi,j |ε=0 = id and ηai,j =
d(σεi,j)a

dε

∣∣∣∣
ε=0

. (61)

The transformation σεi,j is a symmetry for the discrete Lagrangian (50) if

Ld
(
j1ϕεd(�)

)
= Ld

(
j1ϕd(�)

)
, (62)

which is equivalent to the infinitesimal symmetry condition

d

dε
Ld
(
j1ϕεd(�)

)∣∣∣∣
ε=0

=
4∑
l=1

∂Ld
∂ya�l

(
j1ϕd(�)

)
· ηa�l

(
ϕ�l

)
= 0. (63)

On each grid cell � we can define four discrete momentum maps in analogy to (20),

(
j1ϕd(�)

)∗
J�l = ∂Ld

∂ya�l

(
j1ϕd(�)

)
· ηa�l

(
ϕ�l

)
, l ∈ {1, 2, 3, 4}. (64)

Instead of two components of J , corresponding to the coordinates of the base space, we now
have four contributions, corresponding to the vertices of a grid cell. With that, we can write
the discrete symmetry condition (63) as

J�1 + J�2 + J�3 + J�4 = 0, for every � ∈ X�. (65)

In addition to (64), we define some explicit shorthand notation that will become useful in the
following derivation,

J1
i,j = ∂Ld

∂ya�1

(
ϕi,j , ϕi,j+1, ϕi+1,j+1, ϕi+1,j

)
· ηai,j(ϕi,j), (66a)

J2
i,j = ∂Ld

∂ya�2

(
ϕi,j , ϕi,j+1, ϕi+1,j+1, ϕi+1,j

)
· ηai,j+1(ϕi,j+1), (66b)

J3
i,j = ∂Ld

∂ya�3

(
ϕi,j , ϕi,j+1, ϕi+1,j+1, ϕi+1,j

)
· ηai+1,j+1(ϕi+1,j+1), (66c)
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i = 1

i = N0

1 j − 1 j j + 1 j + 2 N1 − 1

Figure 4: Contributions to the discrete Noether theorem.

J4
i,j = ∂Ld

∂ya�4

(
ϕi,j , ϕi,j+1, ϕi+1,j+1, ϕi+1,j

)
· ηai+1,j(ϕi+1,j). (66d)

In order to derive the discrete conservation law, we follow the argument from section 2.3.
If the Lagrangian is invariant under a given vertical transformation, then the action is also
invariant under this transformation, namely,

d

dε
Ad
[
ϕεd
]∣∣∣∣
ε=0

= 0, (67)

which becomes

d

dε
Ad
[
ϕεd
]∣∣∣∣
ε=0

=
∑

�∈X�

4∑
l=1

∂Ld
∂ya�l

(
j1ϕd(�)

)
· ηa�l

(
ϕ�l

)
=

∑
�∈X�

4∑
l=1

(
j1ϕd(�)

)∗
J�l = 0. (68)

Those contributions to the sum that originate from interior points vanish in virtue of the discrete
Euler-Lagrange field equations (59). Specifically,

J1
i,j + J2

i,j−1 + J3
i−1,j−1 + J4

i−1,j =
(
j2ϕd(�)

)∗(DEL(Ld)
)a
i,j
· ηai,j(ϕi,j) = 0, (69)

so that only boundary cells contribute to (68), c.f. Figure (4). For simplicity, we will assume
periodic boundary conditions in the space-like variable, then the only contribution comes from
the boundary of the time-like variable,

0 =
N1−1∑
j=1

[
J1

1,j + J2
1,j−1 + J3

N0−1,j−1 + J4
N0−1,j

]
. (70)

Using the discrete symmetry condition (65) to replace the first two terms as well as the periodicity
of the spatial domain, we obtain the discrete counterpart of (24), that is the discrete conservation
law

N1−1∑
j=1

[
J3

1,j + J4
1,j

]
=

N1−1∑
j=1

[
J3
N0−1,j + J4

N0−1,j

]
, (71)
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see Figure 4. Since the number of timesteps N0 is arbitrary, this is equivalent to

Jd =
N1−1∑
j=1

�1=(i,j)

[
J�3

(
j1ϕd(�)

)
+ J�4

(
j1ϕd(�)

)]
= const. for all i, (72)

in analogy to (25). This proves that variational integrators preserve discrete invariants Jd to
machine accuracy3.

Discrete Divergence Symmetries

We can generalise the discrete Noether theorem in a similar way as we did with the contin-
uous Noether theorem for divergence symmetries. In analogy to (26), we rewrite the discrete
symmetry condition (65) as

J�1 + J�2 + J�3 + J�4 = B�1 +B�2 +B�3 +B�4 . (73)

Making no assumption on the B�l , equation (70) takes the form

N1−1∑
j=1

[
J1

1,j + J2
1,j−1 −B1

1,j −B2
1,j−1 + J3

N0−1,j−1 + J4
N0−1,j −B3

N0−1,j−1 −B4
N0−1,j

]
=

=
N0−1∑
i=2

N1−1∑
j=1

[
B1
i,j +B2

i,j−1 +B3
i−1,j−1 +B4

i−1,j

]
. (74)

We conclude, that we have the discrete equivalent of a divergence symmetry, if the sum of all
Bl
i,j in the interior of Xd vanishes,

N0−1∑
i=2

N1−1∑
j=1

[
B1
i,j +B2

i,j−1 +B3
i−1,j−1 +B4

i−1,j

]
= 0, (75)

such that only the fluxes at the boundaries of Xd contribute to (74). Then, the generalised
Noether charge (72) becomes

Jd =
N1−1∑
j=1

�1=(i,j)

[
J�3

(
j1ϕd(�)

)
+ J�4

(
j1ϕd(�)

)
−B�3

(
j1ϕd(�)

)
−B�4

(
j1ϕd(�)

)]
= const. for all i,

(76)

in correspondence with (32).

3 Formal Lagrangians
In this section we review the idea of formal (or adjoint) Lagrangians [8, 25] and the corresponding
Noether theorem as introduced by Ibragimov [26]. We provide a geometric view of this theory
in line with the formalism adopted in the rest of the paper, so that the application of the results
of section 2 to formal Lagrangians becomes natural. At last, we propose a discrete version of
Ibragimov’s extension of Noether’s theorem, which allows us to prove discrete conservation laws
for variational integrators obtained from formal Lagrangians.

3 In practice, many variational integrators require the solution of nonlinear algebraic equations. In
that case, the accuracy to which the invariants are preserved will generally depend on the accuracy of
the nonlinear solver.
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3.1 Inverse Problem of the Calculus of Variations
Consider a generic system of nonlinear partial differential equations,

F(x, u, u(1), ..., u(k)) = 0, (77)

for a field u : X → F , where u(k) denotes all derivatives of order k. Here, F is a (sufficiently
regular) function of the point x ∈ X, the field u(x), and its derivatives up to order k, taking
values in Rm, wherem = dimF , so that we have as many equations as variables. The components
of F are denoted Fa with 1 ≤ a ≤ m.

Let B be the space of functions u : X → F where the solution of (77) is sought. We
assume that B is a Banach space and denote by B∗ its topological dual, i.e., the space of linear
continuous functionals from B to R. The specific choice of the space B depends on the problem
at hand. For definiteness, we require B ↪→

[
L2(X)

]m, i.e., B is continuously embedded in[
L2(X)

]m. If the function x 7→ F(x, u, u(1), ..., u(k)) defined in (77) belongs to
[
L2(X)

]m, then
it can be identified with the mapping F : B → B∗ defined by

〈F [u], v〉 =
∫
X

v(x) · F(x, u, u(1), ..., u(k)) dn+1x, (78)

where 〈·, ·〉 : B∗×B → R is the duality pairing between elements of B∗ and B. With some abuse
of notation we denote by F both the function in (77), which is defined on a finite-dimensional
space, and the mapping F : B → B∗, which is defined on a Banach space.

The nonlinear operator F admits a natural variational formulation if there exists a functional
A : B → R of class C1(B), such that F = DA, where D denotes the Fréchet derivative operator.
We recall that the Fréchet derivative of A : B → R is a map DA : B → B∗, such that for every
u, v ∈ B, 〈DA[u], v〉 coincides with the Gateaux derivative of A along v [54, 50], that is

〈DA[u], v〉 = lim
ε→0

A[u+ εv]−A[u]
ε

= d

dε
A[u+ εv]

∣∣∣∣
ε=0

. (79)

In this framework, the functional derivative δA[u]/δu, if it exists, is defined as the L2-represen-
tative of the Fréchet derivative. Specifically, δA[u]/δu is the unique element of

[
L2(X)

]m, if it
exists, such that

〈DA[u], v〉 =
∫
X

δA[u]
δu

· v dx, (80)

for all v ∈ B [4]. Here, we are implicitly assuming that boundary conditions on the field u are
encoded in the definition of the linear space B; this is possible in particular for both homogeneous
Dirichlet and periodic boundary conditions.

Analogously to (79), the Fréchet derivative at u ∈ B of a functional F : B → B∗ of class C1

is the linear continuous operator DF [u] : B → B∗, such that for every v ∈ B, DF [u]v coincides
with the Gateaux derivative of F along v, i.e.,

DF [u]v = d

dε
F [u+ εv]

∣∣∣∣
ε=0

. (81)

Therefore, DF : B → L(B,B∗) ∼= B∗ ⊗ B∗, where L(B,B∗) is the space of linear continuous
operators from B to B∗. If F admits a variational formulation, then the second-order Fréchet
derivative DF = D2A : B → B∗ ⊗ B∗ should be symmetric at each u, hence a necessary
condition for the existence of the action A is

〈DF [u]v, w〉 = 〈DF [u]w, v〉 ∀u, v, w ∈ B. (82)
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It turns out that this condition is also sufficient [54, 11, 60].
Unfortunately, for many interesting systems this condition is not fulfilled. Some of these

systems admit a variational principle after a variable transformation. This is the case for many
equations from fluid dynamics [59]. But such transformations can be inconvenient since the new
variables might suffer from problems with respect to non-uniqueness, boundary conditions or
regularity. In addition, the resulting variational principle might be subject to constraints on the
variations which are not easily dealt with at the discrete level. Instead, they call for extensions
of the theory that complicate its application [56, 20]. For a still larger class of systems, a
variational formulation is not known, even after a change of coordinates. Nevertheless, we can
derive variational integrators for these systems by considering the following construction.

3.2 Formal Lagrangians
A generic system of differential equations (77) can be treated as part of a Lagrangian system,
constructed by doubling the number of variables. The action of such a Lagrangian system is

A[u, v] = 〈F [u], v〉 , (83)

with u, v ∈ B and the pairing as defined in (78). Then, the Lagrangian is

L(x, u, u(1), ..., u(k), v, v(1), ..., v(k)) = v(x) · F(x, u, u(1), ..., u(k)). (84)

This is referred to as formal (or adjoint) Lagrangian [8, 25]. The variational principle (6) applied
to (84) gives the original equation,

δA[u, v]
δv

= F [u] = 0, (85)

as well as the adjoint equation, which is defined by

δA[u, v]
δu

= F∗[u, v] = 0, (86)

assuming that the functional derivative exists.
Summarising, if we consider a dynamical system described by the variables (u, v), whose

dynamics are governed by the equations F [u] = 0 and F∗[u, v] = 0, then this system has a
variational formulation and contains the original system (77) as a subsystem. In the following,
we refer to the system (85-86) as extended system describing the dynamics of the variables (u, v).

Geometry of Formal Lagrangians

As before, we identify a field u with a section ϕ : X → Y of the configuration bundle Y . With
jkϕ the kth jet prolongation of ϕ, we can write the system of equations (77) as a function on
the jet bundle JkY ,

F(jkϕ) = 0. (87)

The configuration bundle Ỹ of the extended system is given by the Cartesian product

Ỹ = X × F × F, (88)

together with the projection

π̃ : Ỹ → X,
(x, y, ỹ) 7→ x. (89)
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Local coordinates on Ỹ are denoted by (xµ, ya, ỹa) with 1 ≤ a ≤ m = dimF . Sections ϕ̃ : X → Ỹ
are at the same time associated to the graph of u and v,

ϕ̃ : x 7→
(
xµ, ϕa(x), ϕ̃a(x)

)
=
(
xµ, ua(x), va(x)

)
, (90)

where the ϕa are associated with the physical variables ua and the ϕ̃a are associated with the
adjoint variables va. With jkϕ̃ the kth jet prolongation of ϕ̃, we can write the formal Lagrangian
(84) as a function on the jet bundle JkỸ ,

L
(
jkϕ̃
)

= v · F(x, u, u(1), ..., u(k)), (91)

and the formal action functional (83) as

A[ϕ̃] =
∫
X

L
(
jkϕ̃
)
dn+1x. (92)

In the following we shall consider first-order Lagrangians only, i.e., k = 1.

3.3 Noether Theorem
Ibragimov [26] has shown that the adjoint equations (86) inherit all symmetries of the original
equations (85). Therefore it is possible to determine conservation laws of any system of differen-
tial equations, even without a natural Lagrangian, by application of the Noether theorem from
section 2.3 to the corresponding formal Lagrangian (91). Again, we restrict our attention to the
case of first order field theories.

More specifically, if the the original system (77) admits a symmetry related to the infinites-
imal vector field

V = ηa(x, y) ∂

∂ya , (93)

then the extended system (85-86) admits a symmetry related to the vector field

Ṽ = ηa(x, y) ∂

∂ya + η̃a(x, y, ỹ) ∂

∂ỹa , (94)

with appropriately chosen coefficients η̃a [26]. By definition, the vector field (93) describes a Lie
point symmetry of (77), if there exists a matrix-valued function λ = (λba(x, y, z)), such that

j1V (Fa) = λbaFb, (95)

where F(x, y, z) is the function defining the system of first order equations F(x, u, u(1)). We
apply the jet prolongation of the extended vector field (94) to the Lagrangian (91) of the extended
system (85-86), treating η̃a as unknown coefficients,

j1Ṽ (L) = η̃aFa + ỹa j1V (Fa) = η̃aFa + ỹaλbaFb. (96)

We want to choose the η̃a so that the symmetry condition (17) is satisfied. We see that it is
sufficient to set

η̃a = −λab ỹb (97)

for (96) to vanish. The extended vector field (94) therefore becomes

Ṽ = ηa
∂

∂ya − λ
a
b ỹb ∂

∂ỹa , (98)
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with λ given in the symmetry condition (95). In the line of the standard Noether theorem, c.f.
section 2.3, if (94) is a symmetry of the formal Lagrangian (91), we obtain the local conservation
law

div J̃(j1ϕ̃) = 0, (99)

for all solutions ϕ̃ of the Euler-Lagrange equations on Ỹ , with the Noether current J̃ given by

J̃µ
(
j1ϕ̃
)

= ∂L

∂zaµ
(
j1ϕ̃
)
· ηa(ϕ̃) + ∂L

∂z̃aµ
(
j1ϕ̃
)
· η̃a(ϕ̃). (100)

For formal Lagrangians of the form (91), the second terms on the right-hand side are zero.
Sometimes, however, we might want to symmetrise the Lagrangian (see e.g. section 4.3), in
which case these terms do contribute to the Noether current. From equation (100), we obtain
the (global) Noether charge (25),

J̃ =
∫ [

∂L

∂zat
(
j1ϕ̃
)
· ηa(ϕ̃) + ∂L

∂z̃at
(
j1ϕ̃
)
· η̃a(ϕ̃)

]
dnx, (101)

which is constant for all times t. Usually, formal Lagrangians of the form (91) do not feature a
time derivative of the adjoint variables, so that the Noether charge simplifies accordingly.

Restriction of Conservation Laws

The conservation law thus obtained is of course a conservation law of the extended system (85-
86), and therefore generally depends on both u and v. In order to restrict conservation laws
of the extended systems to conservation laws of the physical system, we have to find a suitable
way of restricting solutions of the extended system to solutions of the physical system. For that
purpose, the following two definitions will become useful.

If the adjoint equation (86), restricted to v = u, becomes equivalent to the original equation
(77), i.e.,

F∗[u, u] = λF [u], (102)

for some matrix λ, possibly depending on the fields and their derivatives, the system (77) is
called self-adjoint in the sense of Ibragimov [25]. If F [u] is a linear operator and λ the identity
matrix 1m×m, the above definition coincides with the standard definition of formally self-adjoint
operators. In general, however, the systems we are considering are not self-adjoint. Ibragimov
relaxed the requirement of self-adjointness by introducing the concept of quasi-self-adjointness
[27, 28]. This is a generalisation of self-adjointness where v = u is generalised to v = φ(u) for
some function φ : F → F . The advantage of self-adjointness or quasi-self-adjointness in the
sense of Ibragimov is the possibility to build a solution of the full extended system (85-86) given
a solution of the original problem (85).

Given a diffeomorphism φ : F → F of F into itself, we can build the embedding

Φ : Y ↪→ Ỹ ,(
x, y

)
7→
(
x, y, φ(y)

)
.

(103)

In order to use this embedding to restrict the Noether current to the physical system, we need
to lift Φ to a map from J1Y to J1Ỹ . With this aim, let us consider a generic section ϕ of Y for
which the composed map

ϕ̃ = Φ ◦ ϕ : X → Ỹ (104)
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amounts to

ϕ̃ : x 7→
(
x, u(x), φ(u(x))

)
=
(
x, u(x), v(x)

)
, (105)

where u(x) is the field component corresponding to ϕ, and we have defined the second field
v = φ ◦ u : X → F . It follows that the condition ϕ̃ ◦ π̃ = idX is satisfied and ϕ̃ = Φ ◦ϕ is indeed
a section of Ỹ , i.e., the composition with Φ maps sections of Y into sections of Ỹ . By the chain
rule, we compute the first jet of ϕ̃, that is

j1ϕ̃(x) =
(
x, u(x), v(x), Du(x), Dv(x)

)
=
(
x, u(x), φ(u(x)), Du(x), Dφ(u(x)) ·Du(x)

)
, (106)

where Df denotes the Jacobian matrix of a function f . We now can define the lift

j1Φ : J1Y → J1Ỹ (107)

by

j1Φ (x, y, z) =
(
x, y, φ(y), z, Dφ(y) · z

)
, (108)

which by construction satisfies the identity

j1
(
Φ ◦ ϕ

)
= j1Φ ◦ j1ϕ, (109)

as desired. With an abuse of notation, the symbol j1Φ is not used here in the usual sense of jet
prolongation, instead j1Φ is a lift of Φ up to the first jet bundle. We can now use (108) to pull
back the Noether current in (99) if we assume that ϕ̃ can be realised in the form ϕ̃ = Φ ◦ ϕ,

J̃
(
j1ϕ̃
)

= J̃
(
j1(Φ ◦ ϕ)

)
= J̃

(
j1Φ ◦ j1ϕ

)
=
(
J̃ ◦ j1Φ

)(
j1ϕ
)
. (110)

If ϕ̃ = Φ ◦ ϕ solves the equations of the extended system (85-86), then div J̃
(
j1ϕ̃
)

= 0. Upon
defining the restricted Noether current by

J = J̃ ◦ j1Φ, (111)

the Noether theorem (99) takes the form

div J(j1ϕ) = 0, (112)

which expresses the local conservation law for the physical system.
This result is crucial for the application of variational integrators to formal Lagrangians.

Without the construction of a solution (u, φ(u)) of the extended system from a solution u of
the physical system, it is in general not possible to determine the discrete momenta that are
conserved by the variational integrator due to symmetries of the physical system.

Generalisations

To simplify the derivations and the analysis of the conservation laws, it is sometimes useful
to add a term G(jkϕ) to the Lagrangian, that is a function of the coordinates, the physical
variables and their derivatives, but not of the adjoint variables and their derivatives. The
modified Lagrangian,

L′
(
jkϕ̃
)

= L
(
jkϕ̃
)

+G
(
jkϕ̃
)

with ∂G

∂ỹa
(
jkϕ̃
)

= 0 and ∂G

∂z̃aµ
(
jkϕ̃
)

= 0 for all µ, a, (113)
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yields the same physical equations of motion as L, but in general will lead to different adjoint
equations. This freedom can be used to simplify the search for the embedding Φ used to restrict
the conservation laws of the extended system to the physical system.

For example, for equations of advection type,

ut +A(u, ux) = 0, (114)

where A is some possibly nonlinear function of the field u and its spatial derivatives, it is possible
to construct an extended system which is guaranteed to be always self-adjoint. It suffices to
choose G = −u ·A, so that the Lagrangian becomes

L′
(
jkϕ̃
)

= v · ut + v ·A(u, ux)− u ·A(u, ux). (115)

While this simplifies the construction of the embedding Φ, it complicates the extension of sym-
metries. In general it will not be possible to determine the components of the generating vector
field in an algorithmic way as in (97).

Discrete Embedding

At this point, the discretisation of formal Lagrangians can be carried out straightforwardly as
an application of the theory reviewed in section 2. The only missing element is the restriction
of discrete conservation laws of the extended system to the physical system.

Since the fibres of Yd are copies of F , we can consider a diffeomorphism φ : F → F , as in
the continuous case and define the discrete embedding

Φd : Yd ↪→ Ỹd,(
yi,j
)
7→
(
yi,j , φ(yi,j)

)
,

(116)

and its lift to the discrete first jet bundle,

j1Φd : J1Yd → J1Ỹd, (117)

which is given by

j1Φd(�) =
(
�, y�1 , y�2 , y�3 , y�4 , φ(y�1), φ(y�2), φ(y�3), φ(y�4)

)
. (118)

With this we can pullback discrete conservation laws (72) of the extended system,

J̃d =
N1−1∑
j=1

�1=(i,j)

[
J̃�3

(
j1ϕ̃d(�)

)
+ J̃�4

(
j1ϕ̃d(�)

)]
= const. for all i, (119)

to the physical system by defining the restricted discrete momentum map

J�l = J̃�l ◦ j1Φd(�), (120)

such that the restricted Noether charge becomes

Jd =
N1−1∑
j=1

�1=(i,j)

[
J�3

(
j1ϕd(�)

)
+ J�4

(
j1ϕd(�)

)]
= const. for all i. (121)

It is worth noticing that we do not pull back the Noether charge J̃ but the momentum maps
J̃�l , just as in the continuous case (111), where we pull back the Noether current J̃ .
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4 Applications
In this section we present two applications, the linear advection equation and the vorticity
equation. The linear advection equation in one spatial dimension is a prototypical example
that shares many characteristics with more complicated systems from plasma physics and fluid
dynamics. The vorticity equation in two spatial dimensions is an important equation of fluid
dynamics which is widely used for example in atmospheric sciences but also in plasma physics.
It consists of an advection equation which is coupled to a Poisson equation.

On the continuous level, we construct the formal Lagrangian and compute variations of the
corresponding action functional. We check the resulting equations of motion for self-adjointness
or quasi-self-adjointness in order to define the restriction map φ. Then we check the equations
for symmetries and compute the extended generating vector field. This vector field is applied to
the Lagrangian in order to compute the corresponding conservation laws. After discretising the
formal Lagrangian, we derive the actual variational integrator and check the discrete equations
of motion for discrete self-adjointness or quasi-self-adjointness. Then we check the discrete
Lagrangian for symmetries and compute the discrete conservation laws. We will discuss different
discretisations of the Lagrangian, especially with respect to different quadrature rules, and their
consequences for properties of the resulting variational integrator (e.g., explicit vs. implicit) and
the corresponding conservation laws.

Discretisation of Formal Lagrangians

Before we proceed, we want to give a short comment on the discretisation of formal Lagrangians.
A straight forward application of the Veselov discretisation, i.e., using the midpoint quadrature
rule for both time and space integration, as it was presented in section 2.5 and as it is used in
many works on variational integrators, does not appear to be suitable for formal Lagrangians
due to their particular structure. As we will see in section 4.2 on the linear advection equation,
it results in numerical schemes, which are prone to unphysical oscillations in space. Instead,
when discretising the derivatives with first-order finite differences, the spatial integral can be
approximated by the trapezoidal or Simpson rule. Another option to avoid this issue is to move
to a slightly more abstract Galerkin framework and use e.g. Lagrange polynomials [16] or splines
[35] as basis functions.

4.1 Some Definitions
So far, we have only considered the midpoint rule (Veselov discretisation) for approximating the
Lagrangian L(u, ut, ux), namely,

Lmp
d

(
j1ϕd(�)

)
= hthx L

(
1
4

(
ϕ�1 + ϕ�2 + ϕ�3 + ϕ�4

)
,

1
2

(
ϕ�4−ϕ�1

ht
+ ϕ�3−ϕ�2

ht

)
,

1
2

(
ϕ�2−ϕ�1

hx
+ ϕ�3−ϕ�4

hx

))
. (122)

As will be discussed below, for formal Lagrangians the midpoint rule does not appear to lead to
stable variational integrators. Therefore we will also consider some alternative discretisations of
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the Lagrangian. First, the trapezoidal rule,

Ltr
d

(
j1ϕd(�)

)
= hthx

4

(
L
(
ϕ�1 ,

ϕ�4−ϕ�1
ht

,
ϕ�2−ϕ�1

hx

)
+L

(
ϕ�2 ,

ϕ�3−ϕ�2
ht

,
ϕ�2−ϕ�1

hx

)
+L

(
ϕ�3 ,

ϕ�3−ϕ�2
ht

,
ϕ�3−ϕ�4

hx

)
+L

(
ϕ�4 ,

ϕ�4−ϕ�1
ht

,
ϕ�3−ϕ�4

hx

))
, (123)

which leads to the (explicit) Leapfrog scheme. Second, a combination of both, the midpoint rule
for time integration and the trapezoidal rule for spatial integration,

Lmt
d

(
j1ϕd(�)

)
= hthx

2 L

(
ϕ�1 +ϕ�4

2 ,
ϕ�4−ϕ�1

ht
, 1

2

(
ϕ�2−ϕ�1

hx
+ ϕ�3−ϕ�4

hx

))
+ hthx

2 L

(
ϕ�2 +ϕ�3

2 ,
ϕ�3−ϕ�2

ht
, 1

2

(
ϕ�2−ϕ�1

hx
+ ϕ�3−ϕ�4

hx

))
. (124)

This leads to a simplified implicit scheme with the same conservation properties as the midpoint
scheme derived from (122) but without the aforementioned instability.

We want to define some shorthand notation similar to (53-55),

u→ 1
4
(
u�1 + u�2 + u�3 + u�4

)
≡ u(�) (125)

∂u

∂t
→ 1

2

(
u�4 − u�1

ht
+ u�3 − u�2

ht

)
≡ ut(�), (126)

∂u

∂x
→ 1

2

(
u�2 − u�1

hx
+ u�3 − u�4

hx

)
≡ ux(�). (127)

For the product of two fields as well as the product of a field and a derivative, according to the
mixed use of trapezoidal and midpoint rule, we obtain

vu→ 1
2

[
v�1 + v�4

2
u�1 + u�4

2 + v�2 + v�3

2
u�2 + u�3

2

]
≡ vu(�), (128)

v
∂u

∂t
→ 1

2

[
v�1 + v�4

2
u�4 − u�1

ht
+ v�2 + v�3

2
u�3 − u�2

ht

]
≡ vut(�), (129)

v
∂u

∂x
→ 1

2

[
v�1 + v�2

2
u�2 − u�1

hx
+ v�3 + v�4

2
u�3 − u�4

hx

]
≡ vux(�). (130)

This will prove handy in writing the discrete Lagrangians.

4.2 Linear Advection Equation
The initial value problem for the linear advection equation is an instructive example for the
derivation of numerical schemes. Its analytic solution is known and its structure is similar to
the systems we will consider in subsequent publications [38, 36, 37]. It is given by

ut + cux = 0, (131)

with initial condition

u(0, x) = u0(x), (132)
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and describes the advection of a field u(t, x) with a constant velocity c that is given as a
parameter. The analytic solution is

u(t, x) = u0(x− ct). (133)

Here, x denotes the spatial variable only, while the base space X comprises both space and
time, i.e., (t, x) ∈ X. The field u can be interpreted as a density, such that

∫
cu dx is the total

momentum and 1
2
∫
c2u dx is the total energy of the system. Both are proportional to the “mass”∫

u dx which is a conserved quantity. In this case, we have

F [u] = ut + cux, (134)

and the Fréchet derivative (81),

DF [u]v = vt + cvx, (135)

is not self-adjoint, as under the assumption of appropriate boundary conditions (e.g., periodic
or homogeneous Dirichlet), integration by parts gives

〈DF [u]v, w〉 = −〈DF [u]w, v〉 . (136)

It follows that there is no functional A[u] such that DA = F , i.e., F cannot be written as a
variational problem.

4.2.1 Formal Lagrangian

The formal Lagrangian for the advection equation is obtained by multiplying (131) with the
auxiliary variable v(t, x). The solution vector of the extended system is denoted (u, v) with the
corresponding section of the configuration bundle Ỹ denoted by ϕ̃. In coordinates, ϕ̃ is given
explicitly as

ϕ̃ : (t, x) 7→ (t, x, u, v), (137)

and its jet prolongation as

j1ϕ̃ : (t, x) 7→ (t, x, u, v, ut, ux, vt, vx). (138)

With that, the Lagrangian can be written as

L = ỹ
(
zt + czx

)
, (139)

with action functional

A[ϕ̃] =
∫
L(j1ϕ̃) dt dx =

∫
v
(
ut + cux

)
dt dx. (140)

The variation of the action with respect to the adjoint variable v gives the advection equation,

δA[ϕ̃]
δv

= ut + cux = 0, (141)

while the variation with respect to the original variable u yields the adjoint equation,

δA[ϕ̃]
δu

= −vt − cvx = 0, (142)

always assuming vanishing variations at the boundaries. It is immediately observed that the
adjoint equation has the same solution as the original equation, such that if u is a solution of the
advection equation, then (u, u) solves the Euler-Lagrange equations of the extended Lagrangian
(139). This means, that the advection equation is actually self-adjoint in the sense of Ibragimov,
cf. equation (102), with λ = −1.
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4.2.2 Continuous Conservation Laws

We will consider the conservation of mass and the L2 norm of u. The general form of the Noether
charge (101) is

J̃ =
∫ [

∂L

∂zat
(
j1ϕ̃
)
· ηa(ϕ̃) + ∂L

∂z̃at
(
j1ϕ̃
)
· η̃a(ϕ̃)

]
dnx =

∫
J̃ t(j1ϕ̃) dnx =

∫
vη dnx, (143)

with J̃ = const. for all t. Since the advection equation is self-adjoint, we can use the identity
as embedding map, i.e., φ(u) = u, such that v = u, and the restriction of conservation laws for
the extended system to the original system is straight forward.

The infinitesimal generator of the transformation that leads to mass conservation and its
first jet prolongation are

V = ∂

∂y , j1V = ∂

∂y . (144)

Applying j1V to (134), we obtain

j1V (F) = 0, (145)

such that by (95) and (97) we find η̃ = 0 and the extended vector field (94) is

Ṽ = η
∂

∂y + η̃
∂

∂ỹ = ∂

∂y , (146)

and its prolongation is

j1Ṽ = ∂

∂y . (147)

The invariance of the Lagrangian (139) is easily confirmed, as

j1Ṽ (L) = ∂L

∂y = 0. (148)

The resulting conservation law (143) reads

J̃ =
∫
J̃ t(j1ϕ̃) dx =

∫
v dx = const. for all t. (149)

Upon restricting the Noether current J̃ with v = φ(u) = u, this becomes conservation of the
total mass in the system,

J =
∫ (

J̃ t ◦ j1Φ
)
(j1ϕ) dx =

∫
u dx = const. for all t. (150)

The conservation of momentum and energy follows exactly in the same way for η = c and
η = 1

2c
2, respectively.

The infinitesimal generator corresponding to conservation of the L2 norm is given by

V = y ∂

∂y . (151)

Applying its prolongation,

j1V = y ∂

∂y + zt
∂

∂zt
+ zx

∂

∂zx
, (152)
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to (131), we obtain

j1V (F) = zt + czx = λF , (153)

with λ = 1, such that by (95) and (97) the extended vector field (94) becomes

Ṽ = y ∂

∂y − ỹ ∂

∂ỹ , (154)

and its prolongation is

j1Ṽ = y ∂

∂y + zt
∂

∂yt
+ zx

∂

∂yx
− ỹ ∂

∂ỹ − z̃t
∂

∂ỹt
− z̃x

∂

∂ỹx
. (155)

The invariance condition of the Lagrangian (139),

j1Ṽ (L)(j1ϕ̃) = −v
(
ut + cux

)
+ v

(
ut + cux

)
= 0, (156)

is again fulfilled. The corresponding Noether charge (143) is

J̃ =
∫
J̃ t(j1ϕ̃) dx =

∫
vu dx. (157)

Upon restricting the Noether current J̃ with v = φ(u) = u, this becomes conservation of the L2

norm,

J =
∫ (

J̃ t ◦ j1Φ
)
(j1ϕ) dx =

∫
u2 dx = const. for all t. (158)

In the next sections we will derive the same conservation laws on the discrete level.

4.2.3 Midpoint Discretisation

We discretise the Lagrangian (139) as described in section 2.5 according to the midpoint rule
(122), obtaining

Lmp
d

(
j1ϕ̃(�)

)
= hthx

1
4
(
v�1 + v�2 + v�3 + v�4

)
×

×
[1

2

(
u�4 − u�1

ht
+ u�3 − u�2

ht

)
+ c

2

(
u�2 − u�1

hx
+ u�3 − u�4

hx

)]
. (159)

In the shorthand notation defined in (125-127), this becomes

Ld
(
j1ϕ̃(�)

)
= hthx v(�)

[
ut(�) + c ux(�)

]
, (160)

which resembles the continuous Lagrangian.

Variational Integrator

The discrete Euler-Lagrange field equations (59), corresponding to the variation of vd, are com-
puted as

0 = 1
4

[
ui+1,j−1 − ui−1,j−1

2ht
+ 2 ui+1,j − ui−1,j

2ht
+ ui+1,j+1 − ui−1,j+1

2ht

]
+ c

4

[
ui−1,j+1 − ui−1,j−1

2hx
+ 2 ui,j+1 − ui,j−1

2hx
+ ui+1,j+1 − ui+1,j−1

2hx

]
. (161)
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As in the continuous case, the discrete adjoint equation has the exact same form as the discrete
advection equation. We see that the derivatives are approximated by second-order centred finite
differences. This means that we need initial data at two consecutive points in time, even though
the advection equation is first order in time, so that initial data at one point in time should
suffice. This problem is typical for applying the Veselov discretisation to formal Lagrangians.
A simple solution will be provided in section 4.3.4.

We also see that the time derivative is averaged in space and the spatial derivative is averaged
in time. Under certain conditions, the spatial average of the time derivative can lead to grid-
scale oscillations. This can be seen as follows. The time derivative in (161) features a spatial
average of the form 1

4 [1 2 1]. So if on top of the actual solution there is some oscillation, e.g.,
of the form [−1 + 1 − 1], this is eliminated by the average. Similarly, the spatial centred finite
difference derivative, 1

2hx
[−1 0 + 1], “does not see” such an oscillation. For the case of periodic

boundary conditions, the only way to prevent the instability to appear is to use an odd number
of grid points in x. This is very similar to the phenomenon of checker-boarding often observed
in simulations of the incompressible Euler equations.

In the next section we will prove some important discrete conservation laws of the resulting
scheme. This exemplifies that even though a variational integrator has favourable conservation
properties it might be unstable, and that not every discretisation of the Lagrangian leads to a
good scheme.

Discrete Conservation Laws

For a formal Lagrangian of a single equation, the discrete symmetry condition (65) reads

0 = ∂Ld
∂y�1

(
ϕ̃i,j , ϕ̃i,j+1, ϕ̃i+1,j+1, ϕ̃i+1,j

)
· ηi,j + ∂Ld

∂ỹ�1

(
ϕ̃i,j , ϕ̃i,j+1, ϕ̃i+1,j+1, ϕ̃i+1,j

)
· η̃i,j

+ ∂Ld
∂y�2

(
ϕ̃i,j , ϕ̃i,j+1, ϕ̃i+1,j+1, ϕ̃i+1,j

)
· ηi,j+1 + ∂Ld

∂ỹ�2

(
ϕ̃i,j , ϕ̃i,j+1, ϕ̃i+1,j+1, ϕ̃i+1,j

)
· η̃i,j+1

+ ∂Ld
∂y�3

(
ϕ̃i,j , ϕ̃i,j+1, ϕ̃i+1,j+1, ϕ̃i+1,j

)
· ηi+1,j+1 + ∂Ld

∂ỹ�3

(
ϕ̃i,j , ϕ̃i,j+1, ϕ̃i+1,j+1, ϕ̃i+1,j

)
· η̃i+1,j+1

+ ∂Ld
∂y�4

(
ϕ̃i,j , ϕ̃i,j+1, ϕ̃i+1,j+1, ϕ̃i+1,j

)
· ηi+1,j + ∂Ld

∂ỹ�4

(
ϕ̃i,j , ϕ̃i,j+1, ϕ̃i+1,j+1, ϕ̃i+1,j

)
· η̃i+1,j .

(162)

Here and in the following, evaluation of ηi,j and η̃i,j at the fields ϕi,j and ϕ̃i,j is implied. For
the Lagrangian (159), this becomes

0 = hthx
1
8

[
vi,j + vi,j+1 + vi+1,j+1 + vi+1,j

][
ηi+1,j − ηi,j

ht
+ ηi+1,j+1 − ηi,j+1

ht

]
+ hthx

c

8

[
vi,j + vi,j+1 + vi+1,j+1 + vi+1,j

][
ηi,j+1 − ηi,j

hx
+ ηi+1,j+1 − ηi+1,j

hx

]
+ hthx

1
8

[
η̃i,j + η̃i,j+1 + η̃i+1,j+1 + η̃i+1,j

][
ui+1,j − ui,j

ht
+ ui+1,j+1 − ui,j+1

ht

]
+ hthx

c

8

[
η̃i,j + η̃i,j+1 + η̃i+1,j+1 + η̃i+1,j

][
ui,j+1 − ui,j

hx
+ ui+1,j+1 − ui+1,j

hx

]
. (163)

The corresponding discrete conservation law (72) is

J̃d =
N1−1∑
j=1

[
∂Ld
∂y�3

(
ϕ̃i,j , ϕ̃i,j+1, ϕ̃i+1,j+1, ϕ̃i+1,j

)
· ηi+1,j+1

+ ∂Ld
∂y�4

(
ϕ̃i,j , ϕ̃i,j+1, ϕ̃i+1,j+1, ϕ̃i+1,j

)
· ηi+1,j
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+ ∂Ld
∂ỹ�3

(
ϕ̃i,j , ϕ̃i,j+1, ϕ̃i+1,j+1, ϕ̃i+1,j

)
· η̃i+1,j+1

+ ∂Ld
∂ỹ�4

(
ϕ̃i,j , ϕ̃i,j+1, ϕ̃i+1,j+1, ϕ̃i+1,j

)
· η̃i+1,j

]
= const. for all i. (164)

In contrast to the continuous case (143), here we also find contributions due to derivatives of
the discrete Lagrangian Ld with respect to ỹ. For the Lagrangian (159), the Noether charge
becomes

J̃d = hthx
1
8

N1−1∑
j=1

[
vi,j + vi,j+1 + vi+1,j+1 + vi+1,j

][
ηi+1,j+1 + ηi+1,j

ht
+ c

ηi+1,j+1 − ηi+1,j
hx

]

+ hthx
1
4

N1−1∑
j=1

[
η̃i+1,j+1 + η̃i+1,j

][1
2

(
ui+1,j − ui,j

ht
+ ui+1,j+1 − ui,j+1

ht

)

+ c

2

(
ui,j+1 − ui,j

hx
+ ui+1,j+1 − ui+1,j

hx

)]
. (165)

We begin with mass conservation. The discrete generator (c.f. (146)) is

ηi,j = 1, η̃i,j = 0. (166)

The discrete symmetry condition (163) is fulfilled for (166). The second summation in (165) is
zero, hence

J̃d = hx

N1−1∑
j=1

1
4
[
vi,j + vi,j+1 + vi+1,j+1 + vi+1,j

]
= const. for all i. (167)

Identifying vi,j = ui,j , we obtain the discrete conservation law for the total mass in the system

Jd = hx
4

N1−1∑
j=1

[
ui,j + ui,j+1 + ui+1,j+1 + ui+1,j

]
= const. for all i. (168)

This expression supports grid oscillations. For the L2 norm, the discrete generator (c.f. (154))
is

ηi,j = ui,j , η̃i,j = −vi,j . (169)

The discrete symmetry condition (163) is again easily checked to be fulfilled. The corresponding
conservation law (72) is J̃d = const. for all i with

J̃d = hthx
1
8

N1−1∑
j=1

[
vi,j + vi,j+1

][
ui+1,j+1 + ui+1,j

ht
+ c

ui+1,j+1 − ui+1,j
hx

]

+ hthx
1
8

N1−1∑
j=1

[
vi+1,j+1 + vi+1,j

][
ui,j + ui,j+1

ht
− c ui,j+1 − ui,j

hx

]
. (170)

Upon identifying vi,j = ui,j and assuming periodic boundary conditions, the discrete Noether
charge becomes

Jd = hx

N1−1∑
j=1

ui,j

[
ui+1,j−1 + 2ui+1,j + ui+1,j+1

4 + cht
2
ui+1,j+1 − ui+1,j−1

2hx

]
. (171)

Just as the discrete mass (168), this expression also supports grid oscillations. It is somewhat
unexpected that the discrete conservation law contains terms corresponding to the spatial com-
ponent Jx of the Noether current. We therefore found an example where the discrete conserved
quantity differs from the continuous conserved quantity. Nevertheless, Jd is consistent with the
L2 norm of u, as in the limit of ht → 0, holding c fixed, the additional term vanishes.
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4.2.4 Trapezoidal Discretisation

Writing out the discrete Lagrangian (123) for the linear advection equation, we obtain

Ltr
d

(
j1ϕ̃(�)

)
= hthx

[1
2

(
v�1 + v�4

2
u�4 − u�1

ht
+ v�2 + v�3

2
u�3 − u�2

ht

)
+ c

2

(
v�1 + v�2

2
u�2 − u�1

hx
+ v�3 + v�4

2
u�3 − u�4

hx

)]
,

or in the compact notation of (129-130),

Ltr
d

(
j1ϕ̃(�)

)
= hthx

[
vut(�) + c vux(�)

]
. (172)

Variational Integrator

The discrete Euler-Lagrange equation (59) for the physical variable ud reads

0 = ui+1,j − ui−1,j
2ht

+ c
ui,j+1 − ui,j−1

2hx
, (173)

which is the leapfrog scheme. The discrete Euler-Lagrange equation for the adjoint variable vd
takes exactly the same form.

Discrete Conservation Laws

The discrete symmetry condition (162) applied to (172) becomes

0 = hthx

[1
2

(
vi,j + vi+1,j

2
ηi+1,j − ηi,j

ht
+ vi,j+1 + vi+1,j+1

2
ηi+1,j+1 − ηi,j+1

ht

)
+ c

2

(
vi,j + vi,j+1

2
ηi,j+1 − ηi,j

hx
+ vi+1,j+1 + vi+1,j

2
ηi+1,j+1 − ηi+1,j

hx

)
+ 1

2

(
η̃i,j + η̃i+1,j

2
ui+1,j − ui,j

ht
+ η̃i,j+1 + η̃i+1,j+1

2
ui+1,j+1 − ui,j+1

ht

)
+ c

2

(
η̃i,j + η̃i,j+1

2
ui,j+1 − ui,j

hx
+ η̃i+1,j+1 + η̃i+1,j

2
ui+1,j+1 − ui+1,j

hx

)]
. (174)

The corresponding discrete Noether charge (164) is

J̃d = hthx
1
2

N1−1∑
j=1

[(
vi,j+1 + vi+1,j+1

2ht
+ c

vi+1,j + vi+1,j+1
2hx

)
· ηi+1,j+1

+
(
vi,j + vi+1,j

2ht
− c vi+1,j + vi+1,j+1

2hx

)
· ηi+1,j

+
(
ui+1,j+1 − ui,j+1

ht
+ c

ui+1,j+1 − ui+1,j
hx

)
· η̃i+1,j+1

+
(
ui+1,j − ui,j

ht
+ c

ui+1,j+1 − ui+1,j
hx

)
· η̃i+1,j

]
. (175)

For the discrete generator of mass conservation (166), the symmetry condition (174) is fulfilled
and the discrete Noether charge (175) amounts to (168). Similarly, the symmetry condition
(174) is fulfilled for the discrete generator (169). The restriction of the corresponding discrete
Noether charge (175) becomes

Jd = hx
2

N1−1∑
j=1

[
ui,j+1 ui+1,j+1 + ui,j ui+1,j

]
= const. for all i, (176)

which is indeed different from (171) and an immediate discretisation of the L2 norm.
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4.2.5 Simplified Implicit Scheme

The discrete Lagrangian (124) reads

Lmt
d

(
j1ϕ̃(�)

)
= hthx

[1
2

(
v�1 + v�4

2
u�4 − u�1

ht
+ v�2 + v�3

2
u�3 − u�2

ht

)
+ c

8

(
v�1 + v�2 + v�3 + v�4

)(
u�2 − u�1

hx
+ u�3 − u�4

hx

)]
,

or equivalently

Lmt
d

(
j1ϕ̃(�)

)
= hthx

[
vut(�) + c v(�)ux(�)

]
. (177)

Variational Integrator

The discrete Euler-Lagrange equations (59) for the physical variable are obtained in the form

0 = ui+1,j − ui−1,j
2ht

+ c

4

[
ui−1,j+1 − ui−1,j−1

2hx
+ 2 ui,j+1 − ui,j−1

2hx
+ ui+1,j+1 − ui+1,j−1

2hx

]
. (178)

As becomes already apparent by comparing the discrete Lagrangian (177) with (172) and (159),
the time derivative is discretised in the same way as in the trapezoidal scheme (173) and the
spatial derivative is discretised in the same way as in the midpoint scheme (161). Again, the
discrete Euler-Lagrange equation for the adjoint variable takes the same form so that the system
is self-adjoint.

Discrete Conservation Laws

In this case, the discrete symmetry condition (162) can be written as

0 = hthx

[1
2

(
vi,j + vi+1,j

2
ηi+1,j − ηi,j

ht
+ vi,j+1 + vi+1,j+1

2
ηi+1,j+1 − ηi,j+1

ht

)
+ c

8

(
vi,j + vi,j+1 + vi+1,j+1 + vi+1,j

)(
ηi,j+1 − ηi,j

hx
+ ηi+1,j+1 − ηi+1,j

hx

)
+ 1

2

(
η̃i,j + η̃i+1,j

2
ui+1,j − ui,j

ht
+ η̃i,j+1 + η̃i+1,j+1

2
ui+1,j+1 − ui,j+1

ht

)
+ c

8

(
η̃i,j + η̃i,j+1 + η̃i+1,j+1 + η̃i+1,j

)(
ui,j+1 − ui,j

hx
+ ui+1,j+1 − ui+1,j

hx

)]
, (179)

which yields the discrete Noether charge, (c.f., (164)),

J̃d = hthx
1
2

N1−1∑
j=1

[(
vi,j+1 + vi+1,j+1

2ht
+ c

vi,j + vi,j+1 + vi+1,j + vi+1,j+1
4hx

)
· ηi+1,j+1

+
(
vi,j + vi+1,j

2ht
− c vi,j + vi,j+1 + vi+1,j + vi+1,j+1

4hx

)
· ηi+1,j

+
(
ui+1,j+1 − ui,j+1

ht
+ c

4
ui,j+1 − ui,j

hx
+ c

4
ui+1,j+1 − ui+1,j

hx

)
· η̃i+1,j+1

+
(
ui+1,j − ui,j

ht
+ c

4
ui,j+1 − ui,j

hx
+ c

4
ui+1,j+1 − ui+1,j

hx

)
· η̃i+1,j

]
. (180)

The symmetry condition (179) is satisfied for both, mass conservation and the L2 norm. The
corresponding discrete conservation laws reduce to (168) and (176), respectively.
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Figure 5: Numerical dispersion relation of the Veselov scheme (red dashed line), the
simplified implicit scheme (blue dash-dotted line) and the leap frog scheme (green dotted
line) applied to the linear advection equation with c/cgrid = 0.75 (left) and c/cgrid = 1.25
(right). For comparison the exact dispersion relation is also shown (black solid line).

4.2.6 Dissipation and Dispersion

In this section we want to carry out a simple von Neumann analysis of some of the variational
integrators we have derived in order to analyse their dissipation and dispersion behaviour.

The oscillatory function u(t, x) = e−ıωt+ıkx is a solution of the advection equation (131) if
and only if (ω, k) satisfies the exact dispersion relation ω = ck. When collocated at grid points
ti = iht, xj = jhx, this amounts to

uij = e−ı(τi−ξj), (181)

with τ = ωht and ξ = khx. In analogy with the continuous case, the collocated plane wave uij is
a solution of the numerical scheme if and only if (τ, ξ) satisfies the numerical dispersion relation.
For the case of the Veselov scheme (161), the dispersion relation can be written as

sin(τ)
[
1 + cos(ξ)

]
− c

cgrid

[
1 + cos(τ)

]
sin(ξ) = 0, (182)

where cgrid = hx/ht. This is the same dispersion relation as the one obtained by Ascher and
McLachlan [7] for the box scheme. For comparison, we consider the simplified implicit scheme
(178), for which the dispersion relation is

sin(τ)− 1
2

c

cgrid

[
1 + cos(τ)

]
sin(ξ) = 0, (183)

as well as the leap frog scheme (173), for which the dispersion relation is

sin(τ)− c

cgrid
sin(ξ) = 0. (184)

One can observe that in all cases the left-hand side is real valued, i.e., numerical dissipation
is exactly zero, but there is numerical dispersion. Figure 5 shows the solution of the numerical
dispersion relation in comparison with the exact linear dispersion of the advection equation
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in the (ξ, τ)-plane for different values of the ratio c/cgrid. As usual, for (ξ, τ) near the origin,
the numerical dispersion is a good approximation of the exact linear relation, and thus the
corresponding harmonics have a phase velocity close to the exact value c. On the other hand,
when the wave number is larger than half of the grid wave number 1/hx, the frequency of the
harmonic deviates from the exact dispersion relation. The corresponding harmonics have a
phase velocity different from the exact value c, leading to numerical dispersion.

For the simplified implicit scheme, one can also observe local maxima of the numerical
dispersion, which correspond to a zero numerical group velocity, while the exact value for the
advection equation is equal to the phase velocity c.

The left-hand-side panel of Figure 5 shows the dispersion relation for the case c/cgrid < 1.
We find that the leapfrog scheme supports parasitic modes, that is to each ξ ∈ [−π,+π] there
are two values of τ . The high-frequency branches are called parasitic modes. The Veselov and
the simplified implicit scheme also feature such modes at the τ = −π and τ = +π lines. As we
will see in the numerical experiments, these branches will be populated only if the spectrum of
the solution is sufficiently broad to cover the nonlinear region of the dispersion relation, that is
for waves which are not well represented by the chosen grid parameters.

For didactical purposes, we have also considered the case c/cgrid > 1 on the right-hand-side
panel of Figure 5. One can see that the numerical group velocity of the leapfrog scheme becomes
infinite, e.g., for ξ = ± sin−1(0.8), which renders the scheme unstable. This is always observed
for c/cgrid > 1 which corresponds to the Courant-Friedrichs-Levy (CFL) stability criterion that
limits the timestep for explicit schemes. The implicit variational integrators do not have such
a limitation. In the following examples, the timestep is chosen small enough so that these
instabilities do not appear.

4.2.7 Numerical Examples

We consider two test cases, a sum of cosines and a Gaussian. The first is purely meant to
verify the dispersion relation, whereas the second is used to judge the quality of the solution. In
both cases, the domain is Ω = [−0.5,+0.5) with periodic boundary conditions, the timestep is
ht = 2.5× 10−3, the phase velocity is set to c = 1, and the number of points in space and time
is nx = 255 and nt = 4000, respectively. Hence, the time interval is [0, 10], which corresponds
to ten passes of the wave packet through the domain.

The following tests are implemented in Python [2, 39] using NumPy [61] and the sparse
linear algebra module of SciPy [30]. Visualisation was done using matplotlib [1, 24].

Experimental Dispersion Relation

In this example, we initialise u with a sum of cosines,

uC,0(x) =
nx/2∑
i=1

cos(i2πx), (185)

which excites all the modes supported by the grid in order to experimentally verify the dispersion
relations (182-184) from the previous section. Figure 6 shows the theoretical and experimental
dispersion relations for the Veselov scheme, the simplified implicit scheme and the leapfrog
scheme. The theoretical dispersion relations are well matched by the simulation, including some
of the parasitic modes.

Gaussian Wave

In this section, we consider a Gaussian,

uG,0(x) = 1
σ
√

2π
exp

(
− 1

2

[
x

σ

]2)
, (186)
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(a) Veselov Scheme (b) Simplified Implicit Scheme (c) Leapfrog Scheme

Figure 6: Theoretical and experimental dispersion relation for the sum of cosines. The
experimental values lie right on top of the theoretical curve. Red dashed line: Veselov
scheme. Blue dash-dotted line: Simplified implicit scheme. Green dotted line: Leapfrog
scheme. Black solid line: Analytical dispersion relation.

with σ = 0.1, so that the spectrum is well within the linear region of the dispersion relation.
Figure 7 shows that after 10 passes the form of the Gaussian is close to the initial one for both,
the simplified implicit variational integrator (178) and the leapfrog scheme (173), and seems to
exactly match the initial conditions for the Veselov scheme (161). The leapfrog scheme shows
slightly less distortion than the simplified implicit scheme, which is explained by their dispersion
relations, which is closer to the analytic dispersion relation for the leapfrog scheme and even
more so for the Veselov scheme. For all three integrators, conservation of energy and the L2

norm is also shown in Figure 7.

4.3 Vorticity Equation
Next we consider an example with more than one equation and more than one spatial dimension,
the vorticity equation,

ωt + {ψ, ω} = 0, ω = ∆ψ. (187)

Here, ψ is the streaming function and ω is the vorticity. The vorticity equation arises by
computing the curl of the incompressible Euler equation in two dimensions,

ut + (u · ∇)u+∇p = 0, (188)

where u is the fluid velocity and p the pressure. Specifically, ψ and ω are related to the velocity
u by u = ∇⊥ψ and ω = ∇⊥ · u with ∇⊥ = (−∂y, ∂x)T . The Poisson bracket {·, ·} is defined by

{ψ, ω} = ψxωy − ψyωx, (189)

which coincides with the determinant of the Jacobian of the transformation (x, y) 7→ (ψ, ω). For
this reason, the 2-dimensional Poisson bracket is also referred to as Jacobian. The variational
discretisation of (187) leads to a very interesting result, namely Arakawa’s famous discretisation
of the Poisson bracket [5].

4.3.1 Formal Lagrangian

The formal Lagrangian of the vorticity equation (187) is

L(j2ϕ̃) = ζ (ωt + {ψ, ω}) + χ(ω −∆ψ), (190)
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Figure 7: Gaussian after ten passes with the Veselov scheme, the simplified implicit
scheme and the leapfrog scheme. Comparing the solution (green dashed curve) to the
initial condition (blue curve) the effect of dispersion becomes visible. Energy and the L2

norm are well preserved. For the Veselov scheme as well as the simplified implicit scheme
there is some drift in the errors, but this is extremely small.
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with solution vector (ω, ψ, ζ, χ). Here, the formal Lagrangian L is defined on the second jet-
bundle J2Ỹ due to the Laplace operator. In order to avoid second order derivatives, we apply a
symmetrisation (corresponding to an integration by parts in the action functional) in the term
that produces the Laplacian. This yields an equivalent Lagrangian, which however is defined on
the first jet-bundle J1Ỹ .

Some care has to be taken when discretising the Poisson bracket (see Salmon and Talley
[57]). In order to retain the antisymmetry property of the continuous bracket at the discrete
level, a symmetrisation has to be introduced in the Lagrangian. Using integration by parts
while assuming appropriate boundary conditions, it is seen that the cyclic permutations of the
functions in the integrand are all identical4,∫

ζ {ψ, ω} dx dy =
∫
ψ {ω, ζ} dx dy =

∫
ω {ζ, ψ} dx dy. (191)

Instead of selecting one of those equivalent forms, a convex combination can be considered,
namely, ∫

ζ {ψ, ω} dx dy =
∫ [

α ζ {ψ, ω}+ β ψ {ω, ζ}+ γ ω {ζ, ψ}
]
dx dy, (192)

with α+β+γ = 1. One finds that the symmetric case, α = β = γ = 1/3, is the one that retains
the properties of the bracket at the discrete level. We therefore use the modified Lagrangian

L′(j1ϕ̃) = ζωt + 1
3
[
ζ {ψ, ω}+ ψ {ω, ζ}+ ω {ζ, ψ}

]
+ χω +∇χ · ∇ψ. (193)

Computing the variational derivatives of the action with respect to the adjoint variables, we
obtain (187). The variational derivatives with respect to the physical variables give

ζt + {ψ, ζ} = χ, ∆χ = {ω, ζ}. (194)

This extended system of equations is obviously not self-adjoint, but we can still find a simple
compatible solution of the adjoint equations, namely (ζ, χ) = φ(ω, ψ) = (ω, 0). Assume we can
set ζ = ω, then the Poisson bracket in the adjoint Poisson equation vanishes, which implies that
χ is a harmonic function. In particular, we can choose χ = 0, so that the right-hand side of the
equation for ζ becomes zero and ζ fulfils the same equation as ω. This justifies the choice of φ.

4.3.2 Continuous Conservation Laws

In order to determine the conservation laws for the vorticity equation, it is not enough to just
consider vertical transformations as in (2.3). We have to consider also horizontal transforma-
tions, as the interesting symmetries of the vorticity equation are not generated by purely vertical
vector fields. To do so, the discrete Noether theorem as it is presented in section 2.6 is not suffi-
ciently general. Unfortunately, it is not straight forward to consider symmetry generators with
horizontal components in the framework of finite difference discretisations of the Lagrangian as
we use it here. For that reason, we follow a simplified approach to determine the continuous
conservation laws for the vorticity equation which is amenable to discretisation. A rigorous
analysis of the continuous and discrete conservation laws for the vorticity equation is postponed
to a subsequent exposition.

In the following, we will consider the vorticity equation for ω alone,

F [ω] = ωt + {ψ, ω} = 0, (195)

4 This holds assuming boundary conditions such that the surface terms of the integration vanish, e.g.,
periodic or homogeneous Dirichlet.
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without the Poisson equation, assuming a constant-in-time streaming function ψ. The Lagran-
gian for this system reads

L̄ = ỹ (zt + ψxzy − ψyzx). (196)

It is easily seen that Euler-Lagrange equations (10) for (196) amount to (195) and

ζt + {ψ, ζ} = 0, (197)

such that the extended system is self-adjoint and we can construct a solution for ζ simply by
φ(ω) = ω. The generating vector field for vertical transformations of solutions of the vorticity
equation (195) and its first jet prolongation are written as

V = η
∂

∂y and j1V = η
∂

∂y + ηµ
∂

∂zµ
. (198)

The action of a general vector field V on F is given by

j1V (F) = ηt + ψxηy − ψyηx. (199)

This is used to determine the component η̃ of the corresponding extended vector field Ṽ and its
first jet prolongation j1Ṽ ,

Ṽ = η
∂

∂y + η̃
∂

∂ỹ and j1Ṽ = η
∂

∂y + ηµ
∂

∂zµ
+ η̃

∂

∂ỹ + η̃µ
∂

∂z̃µ
. (200)

Its action on the Lagrangian (196) is

j1Ṽ (L̄) = ỹ (ηt + ψxηy − ψyηx) + η̃ (zt + ψxzy − ψyzx). (201)

For conservation of circulation (“mass”) we have η = 1, and therefore

j1V = ∂

∂y . (202)

The action of the prolonged vector field on (195) becomes

j1V (F) = 0, (203)

so that η̃ = 0 and

j1Ṽ = ∂

∂y . (204)

The action of the prolonged vector field on the Lagrangian (196) is

j1Ṽ (L̄) = ∂L̄

∂y = 0, (205)

that is we have a symmetry, and the corresponding conservation law (Noether charge) reads

J̃ =
∫
J̃ t dx =

∫
∂L

∂zt
(
j1ϕ̃
)
· η(ϕ̃) dx =

∫
ζ dx = const. for all t. (206)

Upon restricting the Noether current J̃ with ζ = φ(ω) = ω, this becomes conservation of the
total circulation in the system,

J =
∫ (

J̃ t ◦ j1Φ
)
(j1ϕ) dx =

∫
ω dx = const. for all t. (207)
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As here, ψ is treated as constant in time, energy conservation is obtained in the same way for
η = 1

2ψ.
Next we consider enstrophy, for which η = y, so that the first jet prolongation of the

generating vector field,

j1V = y ∂

∂y + zt
∂

∂zt
+ zx

∂

∂zx
+ zy

∂

∂zy
, (208)

acts on the vorticity equation (196) as

j1V (F) = zt + ψxzy − ψyzx = F , (209)

hence η̃ = −ỹ and

j1Ṽ = y ∂

∂y + zt
∂

∂zt
+ zx

∂

∂zx
+ zy

∂

∂zy
− ỹ ∂

∂ỹ − z̃t
∂

∂z̃t
− z̃x

∂

∂z̃x
− z̃y

∂

∂z̃y
. (210)

The prolongation of the extended vector field acts on the Lagrangian (196) as

j1Ṽ (L̄) = ỹ (zt + ψxzy − ψyzx)− ỹ (zt + ψxzy − ψyzx) = 0, (211)

so that we have a symmetry whose Noether charge is computed as

J̃ =
∫
J̃ t dx =

∫
∂L

∂zt
(
j1ϕ̃
)
· η(ϕ̃) dx =

∫
ζω dx = const. for all t. (212)

Restricting the Noether current J̃ with ζ = φ(ω) = ω, this becomes conservation of enstrophy,

J =
∫ (

J̃ t ◦ j1Φ
)
(j1ϕ) dx =

∫
ω2 dx = const. for all t. (213)

In summary, we obtain conservation of

(a) circulation (“mass”) ∫
ω dx dy, (214a)

(b) enstrophy (L2 norm) ∫
ω2 dx dy, (214b)

(c) and kinetic energy

1
2

∫
ψω dx dy. (214c)

For the symmetrised Lagrangian, c.f. equation (193),

L̄′(j1ϕ̃) = ζωt + 1
3
[
ζ {ψ, ω}+ ψ {ω, ζ}+ ω {ζ, ψ}

]
, (215)

we obtain the same conservation laws, although in that case they correspond to divergence
symmetries.
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Figure 8: For a given spacetime grid cell, there are four possible ways of defining deriva-
tives in the different coordinate directions (t, x, y), highlighted along the black lines.

4.3.3 Variational Integrator

To discretise the Lagrangian L(ϕ̃, ϕ̃t, ϕ̃x, ϕ̃y) from (193) we adopt the same strategy as in section
4.2.5. We use simple finite differences to approximate the derivatives (see Figure 8), the midpoint
rule for the time integral and the trapezoidal rule for the two spatial integrals,

Ld
(
j1ϕ̃(�)

)
= hthxhy

4 L′
(
ϕ̃�1 +ϕ̃�5

2 ,
ϕ̃�5−ϕ̃�1

ht
, 1

2

(
ϕ̃�2−ϕ̃�1

hx
+ ϕ̃�6−ϕ̃�5

hx

)
, 1

2

(
ϕ̃�4−ϕ̃�1

hy
+ ϕ̃�8−ϕ̃�5

hy

))
+ hthxhy

4 L′
(
ϕ̃�2 +ϕ̃�6

2 ,
ϕ̃�6−ϕ̃�2

ht
, 1

2

(
ϕ̃�2−ϕ̃�1

hx
+ ϕ̃�6−ϕ̃�5

hx

)
, 1

2

(
ϕ̃�3−ϕ̃�2

hy
+ ϕ̃�7−ϕ̃�6

hy

))
+ hthxhy

4 L′
(
ϕ̃�3 +ϕ̃�7

2 ,
ϕ̃�7−ϕ̃�3

ht
, 1

2

(
ϕ̃�3−ϕ̃�4

hx
+ ϕ̃�7−ϕ̃�8

hx

)
, 1

2

(
ϕ̃�3−ϕ̃�2

hy
+ ϕ̃�7−ϕ̃�6

hy

))
+ hthxhy

4 L′
(
ϕ̃�4 +ϕ̃�8

2 ,
ϕ̃�8−ϕ̃�4

ht
, 1

2

(
ϕ̃�3−ϕ̃�4

hx
+ ϕ̃�7−ϕ̃�8

hx

)
, 1

2

(
ϕ̃�4−ϕ̃�1

hy
+ ϕ̃�8−ϕ̃�5

hy

))
.

(216)

In 2+1 dimensions, the discrete Euler-Lagrange field equations have eight contributions instead
of four,

0 = ∂Ld
∂ϕ̃a�1

(
ϕ̃i,j,k, ϕ̃i,j+1,k, ϕ̃i,j+1,k+1, ϕ̃i,j,k+1, ϕ̃i+1,j,k, ϕ̃i+1,j+1,k, ϕ̃i+1,j+1,k+1, ϕ̃i+1,j,k+1

)
+ ∂Ld
∂ϕ̃a�2

(
ϕ̃i,j−1,k, ϕ̃i,j,k, ϕ̃i,j,k+1, ϕ̃i,j−1,k+1, ϕ̃i+1,j−1,k, ϕ̃i+1,j,k, ϕ̃i+1,j,k+1, ϕ̃i+1,j−1,k+1

)
+ ∂Ld
∂ϕ̃a�3

(
ϕ̃i,j−1,k−1, ϕ̃i,j,k−1, ϕ̃i,j,k, ϕ̃i,j−1,k, ϕ̃i+1,j−1,k−1, ϕ̃i+1,j,k−1, ϕ̃i+1,j,k, ϕ̃i+1,j−1,k

)
+ ∂Ld
∂ϕ̃a�4

(
ϕ̃i,j,k−1, ϕ̃i,j+1,k−1, ϕ̃i,j+1,k, ϕ̃i,j,k, ϕ̃i+1,j,k−1, ϕ̃i+1,j+1,k−1, ϕ̃i+1,j+1,k, ϕ̃i+1,j,k

)
+ ∂Ld
∂ϕ̃a�5

(
ϕ̃i−1,j,k, ϕ̃i−1,j+1,k, ϕ̃i−1,j+1,k+1, ϕ̃i−1,j,k+1, ϕ̃i,j,k, ϕ̃i,j+1,k, ϕ̃i,j+1,k+1, ϕ̃i,j,k+1

)
+ ∂Ld
∂ϕ̃a�6

(
ϕ̃i−1,j−1,k, ϕ̃i−1,j,k, ϕ̃i−1,j,k+1, ϕ̃i−1,j−1,k+1, ϕ̃i,j−1,k, ϕ̃i,j,k, ϕ̃i,j,k+1, ϕ̃i,j−1,k+1

)
+ ∂Ld
∂ϕ̃a�7

(
ϕ̃i−1,j−1,k−1, ϕ̃i−1,j,k−1, ϕ̃i−1,j,k, ϕ̃i−1,j−1,k, ϕ̃i,j−1,k−1, ϕ̃i,j,k−1, ϕ̃i,j,k, ϕ̃i,j−1,k

)
+ ∂Ld
∂ϕ̃a�8

(
ϕ̃i−1,j,k−1, ϕ̃i−1,j+1,k−1, ϕ̃i−1,j+1,k, ϕ̃i−1,j,k, ϕ̃i,j,k−1, ϕ̃i,j+1,k−1, ϕ̃i,j+1,k, ϕ̃i,j,k

)
. (217)

The resulting integrator for the vorticity equation takes the form

ωi+1 − ωi−1
2ht

+ 1
8
[
A(ψi+1, ωi+1) +A(ψi, ωi+1) +A(ψi+1, ωi)

+ 2A(ψi, ωi) +A(ψi−1, ωi) +A(ψi, ωi−1) +A(ψi−1, ωi−1)
]
, (218)
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where ωi = (ωij)j and ψi = (ψij)j are the rows of the solution matrix corresponding to constant-
time slices, whereas A denotes Arakawa’s discretisation of the Poisson bracket [5], given by

A(ψ, ω) = 1
3
(
A++(ψ, ω) +A+×(ψ, ω) +A×+(ψ, ω)

)
, (219)

with ω and ψ being row vectors and

A++(ψ, ω) = 1
4hxhy

[(
ψ+0 − ψ−0

)(
ω0+ − ω0−

)
−
(
ψ0+ − ψ0−

)(
ω+0 − ω−0

)]
, (220a)

A+×(ψ, ω) = 1
4hxhy

[
ψ+0

(
ω+− − ω++

)
− ψ−0

(
ω−− − ω−+

)
−ψ0+

(
ω−+ − ω++

)
+ ψ0−

(
ω−− − ω+−

)]
, (220b)

A×+(ψ, ω) = 1
4hxhy

[
ψ++

(
ω+0 − ω0+

)
− ψ−−

(
ω0− − ω−0

)
−ψ−+

(
ω−0 − ω0+

)
+ ψ+−

(
ω0− − ω+0

)]
. (220c)

The indices (−, 0,+) indicate the increment of the corresponding index on the grid relative to
the point where the bracket is computed. The integrator for the Poisson equation is

〈∆xψi,j,k〉t + 〈∆yψi,j,k〉t = 〈ωi,j,k〉t . (221)

Here, ∆x and ∆y denote the standard centred finite difference second-order derivative with
respect to x and y, i.e.,

∆xψi,j,k = ψi,j−1,k − 2ψi,j,k + ψi,j+1,k
h2
x

,

∆yψi,j,k = ψi,j,k−1 − 2ψi,j,k + ψi,j,k+1
h2
y

,

and the angle brackets 〈·〉t denote an average in time of the form 1
4
[
1 2 1

]
, namely,

〈ωi,j,k〉t = ωi−1,j,k + 2ωi,j,k + ωi+1,j,k
4 .

It is remarkable that Arakawa’s discretisation of the Poisson bracket is recovered. Indeed,
a similar derivation was proposed by Salmon and Talley [57]. Our approach, however, is fully
covariant, leading to a complete spacetime discretisation, that is a combination of Arakawa’s
scheme in space with a symplectic integrator in time. Whereas the Arakawa bracket alone
guarantees energy conservation only for the spatial discretisation, i.e., up to errors due to the
discretisation of the time derivative, the variational integrator is exactly energy preserving.

4.3.4 Simplifications

The integrator (218) for the vorticity equation has one drawback. Even though we are consid-
ering a partial differential equation that is first order in time, we need to initialise the fields
at two consecutive points in the discrete time domain, that is (218) is a multistep integrator.
Nevertheless, we can reduce it to a single-step integrator. Observe that we can rewrite (218) in
the following way,

0 = ψi+1 − ψi
2ht

+ 1
8
[
A(ψi+1, ωi+1) +A(ψi+1, ωi) +A(ψi, ωi+1) +A(ψi, ωi)

]
+ ψi − ψi−1

2ht
+ 1

8
[
A(ψi, ωi) +A(ψi, ωi−1) +A(ψi−1, ωi) +A(ψi−1, ωi−1)

]
, (222)
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which is the average over two points in time of the single-step integrator

0 = ψi − ψi−1
ht

+ 1
4
[
A(ψi, ωi) +A(ψi, ωi−1) +A(ψi−1, ωi) +A(ψi−1, ωi−1)

]
. (223)

Analogously, the Poisson equation (221) is the average over three points in time of

∆xψi,j,k + ∆yψi,j,k = ωi,j,k. (224)

The solution of the single-step integrator (223-224) is fully determined by specifying the vorticity
ω = ω0 at t = t0 on the spatial grid. Then ψ0 can be obtained by (224) and the vorticity can
be advected by solving (223). We observe that if the sequence (ωi, ψi) solves (223-224) with
initial conditions ω0, then it is also a solution of (218-221) with initialisation (ω0, ψ0, ω1, ψ1).
Vice versa, if the sequence (ωi, ψi) is a solution of (223-224) initialised by using (223-224) with
the initial data ω0, then it is also a solution of (223-224). Equations (223-224) are called the
underlying one-step method of (218-221).

The simplified equations (223) and (224) can also be obtained directly from a discrete La-
grangian as is shown in [38]. This is of course preferable as it allows us to check for symmetries
and to compute the discrete conserved quantities more easily. As solutions of the simplified
integrator (223-224) will also be solutions of (218-221), they will satisfy the same conservation
laws. Nevertheless, it is possible that (223-224) will have additional symmetries and therefore
additional invariants.

4.3.5 Discrete Conservation Laws

The discrete conservation laws of the variational integrator (218) for the vorticity equation are
computed in the same way as for the linear advection equation (section 4.2) except that we have
to account for discrete divergence symmetries as introduced in section 2.6 and that we are using
the generators discussed in section 4.3.2. As in the continuous case, we restrict our analysis to
the linear case, that is the Lagrangian (215) discretised according to (216).

Because the vorticity equation is defined on three-dimensional spacetime, the actual compu-
tations are tediously long and hardly possible to carry out by hand. We therefore provide only
the results, obtained via computer aided calculations, namely

(a) circulation (“mass”)

hxhy
∑
j,k

ωj,k = const., (225a)

(b) enstrophy (L2 norm)

hxhy
∑
j,k

ω2
j,k = const., (225b)

(c) and kinetic energy

hxhy
2

∑
j,k

ωj,kφj,k = const.. (225c)

It is well known that these quantities are preserved by Arakawa’s discrete bracket [5]. In nu-
merical simulations we indeed find that our integrator conserves them to machine accuracy or
at least the tolerance of the nonlinear solver, not only in the linear case (when ψ is constant in
time), but even in the nonlinear case (with self-consistent streaming function ψ).
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4.3.6 Numerical Examples

We implemented the simplified variational integrator (223-224) using Python [2, 39], Cython
[13, 12], PETSc [9, 10] and petsc4py [18]. Visualisation was done using NumPy [61], SciPy
[30] and matplotlib [1, 24]. The nonlinear system is solved via Picard iteration. Within each
nonlinear step the two linear systems corresponding to the vorticity equation and the Poisson
equation are solved separately. The vorticity equation is solved with GMRES and the Poisson
equation via LU decomposition with SuperLU [44, 43]. The tolerance of the nonlinear solver is
set to 10−10 or smaller, which is reached after 5 − 10 iterations. Usually, the GMRES solver
needs between 5 and 25 iterations to converge with a relative tolerance of 10−8 or an absolute
tolerance of 10−15.

The Linear Case

At first we consider the linear case, where we prescribe the streaming function ψ and only solve
the vorticity equation. The streaming potential is set to

ψ(x, y) = 1
2y

2 + 1− cos(x), (226)

while the vorticity is initialised with a localised, symmetric Gaussian,

ω0(x, y) = f(x, x0, σx) f(y, y0, σy), (227)

with

f(z, z0, σ) = 1
σ
√

2π
exp

(
− 1

2

[
z − z0
σ

]2)
, z ∈ R. (228)

The domain is Ω = [−2π,+2π)× [−2π,+2π) with periodic boundaries, the spatial resolution is
1024× 1024 and the timestep is 10−2.

The parameters are set to x0 = 0, y0 = 2 and σx = σy = 0.2, so that the Gaussian is placed
on the separatrix of the streaming function (c.f., Figure 9). As the Gaussian is moving along
the separatrix, it is stretched while the contours of the vorticity are preserved. In fact, if a field
ω is advected by a smooth flow, the topology of the contours of ω should be preserved. This
behaviour appears to be respected by the integrator. In Figure 10a, the contours for different
values of the vorticity are shown. Until t = 3 all three contours stay intact. At about t = 6
the stretching of the contours is so strong that resolution becomes insufficient and only the
outermost contour is still preserved. Towards the centre and the boundaries in x the effect of
dispersion becomes visible. Figure 10a shows the evolution of the errors of circulation, enstrophy
and energy.

Lamb Dipole

The lamb dipole [52] is a stationary solution of the vorticity equation which is at rest in its
frame of reference. The vorticity is initialised as

ω0(x, y) =

2λU cos θ J1(λr)
J0(λR) r ≤ R,

0 r > R,
(229)

which leads to a dipole of radius R moving in the y-direction with velocity U . Here, r and θ
denote polar coordinates, i.e.,

r =
√
x2 + y2 and θ = arctan(y/x), (230)
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Ji is the i-th Bessel function of first kind and λR is the first root of J1. In the example, we
use R = 0.2 and U = 1. The domain is Ω = [−1,+1)× [−1,+1) with periodic boundaries, the
spatial resolution is 1024× 1024 and the timestep is 10−3. The tolerance of the nonlinear solver
is set to 10−12.

After 10, 000 timesteps (at t = 10) no distortion of the lamb dipole is visible (compare
figures 11(a) and 11(b)). The dipole keeps its shape just as it is supposed to. It does not end up
exactly at the initial position due to the finite size of the box which reduces the velocity of the
reference frame [52, section IV.B]. Figure 11(c) shows that circulation, enstrophy and energy
are preserved to about machine accuracy. There is a small drift in the errors of enstrophy and
energy, but this is of O(10−13) and therefore comparable to the tolerance of the nonlinear solver.

Gaussian Vortex

Vorticity is initialised by a nonsymmetric Gaussian,

ω0(x, y) = f(x, x0, σx) f(y, y0, σy), (231)

with

f(x, x0, σ) = 1
σ
√

2π
exp

(
− 1

2

[
x− x0
σ

]2)
, (232)

which develops into a spiral structure. The domain is Ω = [−1,+1) × [−1,+1) with periodic
boundaries, the spatial resolution is 1024× 1024 and the timestep is 10−2. The tolerance of the
nonlinear solver is 10−11. We set σx = 0.1, σy = 0.2 and x0 = y0 = 0. The solution follows
the expected dynamics (c.f., Figure 12) and conservation of circulation, enstrophy and energy
is respected to machine accuracy (c.f., Figure 14(a)).

Vortex Sheet Rollup

The vortex sheet is a popular model in fluid dynamics used to approximate shear layers. Fol-
lowing [19], we use initial conditions

u0 =
( tanh(ρ(y − 0.25)) for y ≤ 0.5,

tanh(ρ(0.75− y)) for y > 0.5, , 0.05 sin(2πx)
)T
, (233)

which corresponds to the initial vorticity

ω0(x, y) = ∇⊥ · u0 = 0.1π cos(2πx) +


− ρ

cosh2(ρ(y − 0.25))
y ≤ r,

+ ρ

cosh2(ρ(0.75− y))
y > r.

(234)

The domain is Ω = [0, 1)× [0, 1) with periodic boundaries, discretised by a grid of 1024× 1024
points, and the timestep is ht = 10−3. The tolerance of the nonlinear solver is 10−10 and the
parameter ρ = 30. We observe good qualitative agreement of the solution in Figure 13 with [19,
p. 328] together with excellent conservation properties (c.f., Figure 14(b)).
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(a) t = 0.0 (b) t = 0.5

(c) t = 1.0 (d) t = 2.0

(e) t = 3.0 (f) t = 6.0

Figure 9: Linear case with a separatrix. Vorticity ω at t = 0.0, 0.5, 1.0, 2.0, 3.0 and 6.0.
Contours of the streaming function ψ are also shown.
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Figure 10: Linear case with a separatrix. (a) Contours of the streaming function ψ (black)
and of the vorticity ω (at 0.2 max ω0, 0.4 max ω0 and 0.7 max ω0) at times t = 0.0, 0.5,
1.0, 2.0, 3.0 and 6.0. (b) Conservation laws.
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(a) t = 0.0 (b) t = 10.0
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Figure 11: Lamb Dipole. Top: Vorticity ω at t = 0.0 and 10.0. Bottom: Conservation
Laws.
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(a) t = 0 (b) t = 2

(c) t = 4 (d) t = 6

(e) t = 8 (f) t = 10

Figure 12: Gaussian Vortex. Vorticity ω at t = 0, 2, 4, 6, 8, 10.
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(a) t = 0.00 (b) t = 1.00

(c) t = 1.25 (d) t = 1.50

(e) t = 1.75 (f) t = 2.00

Figure 13: Vortex sheet rollup. Vorticity ω at t = 0.00, 1.00, 1.25, 1.50, 1.75, 2.00.
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(b) Vortex Sheet Rollup

Figure 14: Conservation Laws. The errors in the circulation, enstrophy and energy are
all of the order of the machine accuracy.
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5 Summary and Outlook
We created a link between variational integrators, formal Lagrangians and Ibragimov’s theory of
conservation laws for arbitrary differential equations. The proposed method allows us to derive
variational discretisation schemes for potentially arbitrary systems of differential equations, even
the ones that do not possess a classical variational formulation. Thereby we were able to extend
the applicability of the variational integrator method to a class of systems much larger than
originally envisaged. The main strength of our method is that it allows for the straight forward
design of numerical schemes that respect certain conservation laws of the system at hand.

We presented an introduction to the theory of variational integrators that tries to make the
geometric framework of the variational integrators available also to non specialists. Thereby we
hope to make this class of methods accessible to a wider audience. We extended the discrete
Noether theorem to include discrete divergence symmetries.

The power of the method was demonstrated by several examples that are prototypical for
problems arising in fluid dynamics and plasma physics. We emphasised the analysis of discrete
conservation laws, which is seldom found in the variational integrator literature, and verified
these theoretical properties in numerical experiments. In follow-up papers we will present nu-
merical results for the Vlasov-Poisson system [38] as well as ideal and reduced magnetohydro-
dynamics [36, 37]. There, explicit computations will demonstrate the favourable properties of
the variational integrators for more elaborate and challenging applications.

Remarkably, we recovered Arakawa’s discretisation of the Poisson bracket combined with a
symplectic integrator in time. That is, we constructed a spacetime generalisation of Arakawa’s
discretisation. With our method, it is also straight-forward to generalise Arakawa’s method to
higher spatial dimensions and to higher order schemes.

An open question within our framework is the meaning of the discrete multisymplectic form
arising from the boundary terms of the action sum (see [48] for further details) and its restriction
to the original system. We observed that the multisymplectic form vanishes identically if the
extended system is self-adjoint in the sense of Ibragimov. This is a topic we have not included
in our discussion but one that certainly deserves attention.

The limits of the finite-difference approach to the discretisation of the Lagrangian became
obvious in several places in this work. The treatment of discrete divergence symmetries is not
straight-forward so that we are limited to global conservation laws. We cannot treat horizontal
transformations in the symmetry generator but only vertical transformations. This is a problem
for more complicated systems like the vorticity equations or the nonlinear advection equation
(inviscid Burgers equation). For nonlinear systems there is the additional complication that
even if the system is self-adjoint on the continuous level, it will in general not be self-adjoint
on the discrete level due to the absence of a discrete Leibniz rule. Moreover, we are limited to
low-order schemes. While it is in principle possible to design higher-order methods, this quickly
becomes very cumbersome and confusing, especially in the analysis of the discrete conservation
laws. All those issues appear easier to deal with in a Galerkin framework with finite elements or
splines as basis functions. The former has already been considered to a certain extend [16], that
is for the discretisation of the Lagrangian and the approximation of the action integral, but not
for the analysis of conservation laws. The latter is a topic under active development [35].

So far, we only considered examples of advection-diffusion type. A detailed analysis of the
applicability of the proposed method to other types of equations would be most interesting.
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