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An investigation on the characteristics of self organized criticality (Soc) in ITG mode driven turbulence is
made, with the use of various statistical tools (histograms, power spectra, Hurst exponents estimated with
the rescaled range analysis and the structure function method). For this purpose, local non-linear gyrokinetic
simulations of the Cyclone Base Case scenario are performed with the GENE software package. Although
most authors concentrate on global simulations, which seem to be a better choice for such an investigation,
we use local simulations in an attempt to study the locally underlying mechanisms of Soc. We also study the
structural properties of radially extended structures, with several tools (fractal dimension estimate, cluster
analysis, and two dimensional autocorrelation function), in order to explore whether they can be characterized
as avalanches. We find that, for large enough driving temperature gradients, the local simulations exhibit
most of the features of Soc, with the exception of the probability distribution of observables, which show a
tail, yet they are not of power-law form. The radial structures have the same radial extent at all temperature
gradients examined, radial motion (transport) though appears only at large temperature gradients, in which
case the radial structures can be interpreted as avalanches.
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I. INTRODUCTION

The mechanisms responsible for anomalous transport
in magnetically confined plasmas are a subject of main
interest in fusion research. The characteristic scale of the
transport when considering the diffusive model proposed
e.g., by Kadomtsev predicts a gyro-Bohm scaling1, which
is of the order of the correlation length of turbulence. Ex-
perimental results show that the scale can though extend
to Bohm scaling, where the dominant transport scale
length is of the order of the machine size. One of the
mechanisms suggested2 to explain the apparent paradox
is based on the ideas of self-organized criticality3 (Soc).

Self-organized criticality is a possible state of complex,
spatially extended systems that are systematically driven
and that have mechanisms to develop local instabilities
and to relax them. A main characteristic of Soc systems
are long-range spatial and temporal correlations2–5, indi-
cating scale invariance and self-similarity. They are man-
ifested in the so called avalanches i.e., ballistically prop-
agating structures in various observables. When Soc is
present in dynamical systems, 1/f noise is generated due
to the propagation of local perturbations over all length
and time scales which usually cause sub critical trans-
port6. Observables of a system in a Soc state exhibit
power law form of their probability distribution function.

The possible presence of self organized criticality in
magnetically confined plasmas has been studied in many
ways. The creation and simulation of models that have
self organized criticality characteristics and the com-
parison of the findings with measurements from exper-
imental devices is an approach extensively used. One-

dimensional transport models7, transport models derived
from sandpile models8, cellular automata models as run-
ning sandpile models4, diffusive sandpile cellular au-
tomata models9, cellular automata models derived from
a diffusion equation10, as well as many other models have
been proposed. There are also studies that search for the
characteristics of self organized criticality in experimental
data. Electrostatic, density or temperature fluctuations
are measured by Langmuir probes usually at the plasma
edge of Tokamaks or Stellarators. The analysis of mea-
surements from the SOL of DIII-D11–13, TCABR14, Tore
Supra and Castor15, TEXTOR16, KT-5D17 are some of
the examples in this line of work. Summarizing some of
the experimental findings concerning self-organized crit-
icality we mention that the power spectrum of various
observables, e.g. density or electrostatic potential fluc-
tuations, exhibits a 1/f behavior, and the radial propa-
gation of avalanches is observed. Also, long-range time
correlations (or self-similarity) have been detected.

In this work, we are going to search for the character-
istics of Soc in data from numerical simulations with a
gyrokinetic code, which is the main tool of many stud-
ies. We are using the software package GENE (Gyroki-
netic Electromagnetic Numerical Experiment)19–22 for
performing non-linear ITG mode driven, gyrokinetic sim-
ulations in local magnetic flux tube geometry. Although
local simulations do not seem to be the best candidate
for the study of self organized criticality characteristics,
since the latter is a global phenomenon, it is proposed in a
work by McMillan et al. (Ref. 18) that a flux tube like 1D
model can be used to study the characteristics of bursts
and that the underlying mechanisms of avalanches are lo-
cal processes. So far, only the appearance of avalanches
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has been reported in gyrokinetic simulations by many au-
thors in various kinds of simulations, i.e. avalanches are
detected in local23 and global 24 gyrokinetic simulations.
There have also been studies using gyrokinetic simula-
tions concerning the effect of rotation on avalanches25,
and mainly on how avalanches influence transport26–28.
There has not yet been made though a statistical study
of the time series of observables for an examination of all
the characteristics of self organized criticality, besides the
appearance of avalanches. Our purpose here is to perform
such a statistical examination of gyrokinetic simulations
using various statistical tools. We also explore the de-
pendence of Soc characteristics on the different physical
parameters and the set up used in gyrokinetic simula-
tions.
The rest of this paper is organized as follows. In Sec. II

the numerical set up of our gyrokinetic simulations is
given, in Sec. III we show the results of the analysis of
the time series of the radially averaged heat flux, applying
various statistical tools, and searching for the character-
istics of self organized criticality. In Sec. IV we preform
a two dimensional analysis of the heat flux in the radius
- time (x − t) plane, focusing our interest on structural
properties of avalanches, in Sec. V a brief discussion and
comments on the results are given, and we summarize our
findings in Sec. VI. A detailed description of the theo-
retical framework of the statistical tools used is given in
Appendix A.

II. BASIC PARAMETERS AND SET UP

Our goal is to find the characteristics of a Soc state in
gyrokinetic simulations of ITG mode driven turbulence,
and as already stated, we consider the case of local non-
linear simulations. Since we focus on ITG turbulence we
will use a variation of the basic paradigm used in the
literature, the well known Cyclone Base Case29 (from
now on referred to as CBC). We use a magnetic equi-
librium with circular30 concentric flux-surfaces and with
inverse aspect ratio a/R = 0.36. This of course differs
from the CBC scenario, which uses s-alpha geometry but
this selection was made because we need a common basis
for planned future global simulations which can only be
done in circular geometry with the GENE software pack-
age. Local simulations are taking place in a magnetic
flux tube and the center of this magnetic flux tube is
the point where the parameter values are assumed. Also,
electrons are considered to be adiabatic in order to have
only ion driven modes of turbulence. The local safety
factor is selected to have the usual value for the CBC,
q0 = 1.4 with shear s = 0.796 at r = 0.5a and the lo-
cal aspect ratio is set to ϵt = 0.18. The value for the
plasma beta β is chosen for the case of the electrostatic
limit so β = 0. The density gradient is set to the value
ωn = 2.22 and the temperature gradient varies in the
range ωT = 3.5−6.9 in different simulations, with all the
other parameters kept the same. We also assume that

the plasma is collision-less.

The perpendicular to the magnetic field simulation box
size is chosen to be (Lx, Ly) = (125.628, 125.664) in units
of the ion gyroradius ρs and 128×48×24 grid points are
used in the radial (x), binormal (y), and parallel direc-
tion (z), respectively, complemented by 32×8 grid points
in (v∥, µ) space, where v∥ is the parallel velocity and µ
the magnetic moment. Finally, the box size in the v∥ di-
rection is Lv = 3.0 in units of the thermal velocity, and
the upper limit in µ direction is Lµ = 9.0 in units of the
equilibrium temperature of the species and the inverse
reference magnetic field. The minimum ky mode is typ-
ically set in the simulations to the value kymin = 0.05.
Finally for time integration, a Runge - Kutta scheme of
the fourth order is used.

For the parametric study, we have chosen the minimum
value of the temperature gradient ωT = 3.5 just above
the critical temperature gradient threshold of linear local
ITG simulations (ωT = 3.1) for the most unstable mode
which is close to ky = 0.2 ∼ 0.3, and we then use different
values of ωT up to the usual CBC value ωT = 6.9. The
parameters of the set up are summarized in Table I.

TABLE I: Summary of the parameters used in the
non-linear gyrokinetic simulations preformed with the

software package GENE.

Basic parameters Numerical value

Temperature gradient R/LT 3.5 - 6.9

Density gradient R/Ln 2.22

Magnetic shear ŝ 0.796

Safety factor q0 1.4

Inverse aspect ratio ϵ 0.36

Inverse aspect ratio (local) ϵt 0.18

III. RESULTS FROM THE TIME SERIES ANALYSIS

A. Analysis

We analyze the time series of the radially averaged heat
flux. Because of the varying time step used by GENE,
we have interpolated the data using cubic splines and
created time series that are equally spaced in time. We
exclude the initial linear growth phase of the time series
and select a part in it, where we can say that there is
saturation and stationarity ( an example is presented in
Fig. 1). The latter is important since it is a prerequisite
for some of the analysis tools applied. The number of
data points used in the analysis is 65536, a power of 2,
useful for Fourier transforms.
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FIG. 1: (Color online) A sample time series of the
radially averaged heat flux q for temperature gradient
R/LT = 5.0. Red dashed lines mark the stationary part

of the time series selected to be analyzed.

B. Histograms, skewness and kurtosis

We determine the histogram from each time series
(normalized to unity). Some sample histograms for se-
lected cases of simulations are presented in Fig. 2. Each
histogram is not an exact Gaussian but has an asymme-
try, as can be expected in turbulence. The histograms
are shifted and spread in width as the temperature gra-
dient increases. The latter holds also in the case of the
histograms not shown. The extent of the tail is too small
for a fit to be applied. The shapes of the histograms are
not compatible with Soc systems where the probability
distributions of observables have a power law form.

For a quantification of the asymmetry in the distribu-
tions we measure the skewness and the excess kurtosis,
as explained in Appendix A, using Eq. A9, A11, respec-
tively. The variation of the skewness and the excess kur-
tosis with the temperature gradients is shown in Fig. 3
and as can been seen, it is not a smooth function of the
temperature gradient.

All histograms are positively skewed and they also pos-
sess positive kurtosis. The positive skew indicates the ex-
istence of relatively large events (events larger than the
mean value of the time series), even for the smallest tem-
perature gradient values. We can see that the value of
the skewness does not change significantly with the in-
creasing temperature gradient, which suggests that the
appearance of large events does not change significantly
with the increase of the gradient. The kurtosis seems
to increase slightly with the increase of the temperature
gradient. This increase indicates that there is an increase
in the peakedness and tail which could be related to the

0 10 20 30 40 50 60 70 80 90
0

0.02

0.04

0.06

0.08

0.1

q  (normalized units)

P
(q

)

 

 
R/LT = 6.0
R/LT = 6.5
R/LT = 6.9

FIG. 2: (Color online) Probability distribution
functions P (q) of sample histograms of the normalized
heat flux q for the gradient values, R/LT = 6.0 (red)

solid line, R/LT = 6.5 (green) dashed line, R/LT = 6.9
(blue) dashed-dotted line.
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FIG. 3: (Color online) Variation of skewness (red) solid
line with crosses (A) and excess kurtosis (blue) dashed
line with circles (B) with the temperature gradient.

increase of the scales of structures created in more devel-
oped turbulence.

C. Power spectrum

A useful tool in the study of Soc systems is the power
spectrum of the time series of observables. The power
spectrum of such systems, can be divided into several
distinct frequency regions where it follows power laws,
P (w) ∝ w−α, with varying exponents. Each region is
related to a different scale of events taking place. At
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low frequencies a power law exponent equal to zero is ex-
pected corresponding to decorrelated scales. The region
of intermediate frequencies with exponent equal to unity
has been related to the overlapping of avalanches, and
finally the region of large frequencies with an exponent
much larger than 2, corresponds to small scale events32.
This behavior has been reported in theoretical works e.g.,
in Refs. 7 and 9, and it has also been seen in the power
spectrum of experimental data e.g., in Refs. 16, 17.
We determine the power spectrum of the radially av-

eraged heat flux. In Fig. 4, the power spectrum from
three simulations with different temperature gradients is
presented. The multiple power law feature, characteris-
tic of Soc systems, is observed, and appears also in the
power spectrum of the simulations not shown here. As
the temperature gradient increases the power spectrum is
expanding to higher frequencies, which means that even
smaller scales appear in the system. There is an increase
of the highest frequency of almost a decade, when R/LT

increases from R/LT = 3.5 to R/LT = 6.9.
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FIG. 4: (Color online) Power spectrum of the heat flux
from simulations for the cases with temperature

gradients: (a) solid line (red) R/LT = 3.5, (b) dashed
line (blue) R/LT = 5.0, (c) dashed-dotted line (green)

R/LT = 6.9.

We identify in the power spectra the three distinct re-
gions. The region at low frequencies shows exponents
very close to or almost zero. The region at large fre-
quencies exhibits exponent values starting from high val-
ues at low temperature gradients (α ∼ 10) and as the
temperature gradient increases the value of the exponent
decreases to smaller values (α ∼ 5− 6).
The exponent of the power law at the intermediate

frequencies, is of main interest. The variation of the ex-
ponent in this region with the temperature gradient is
shown in Fig. 5. It can be seen that the exponent is

varying between the values 1 and 3. As the temperature
gradient increases the characteristic for Soc systems 1/f
dependency, appears and the extent of the intermediate
frequency region increases. This can be explained by ex-
amining the number of ky modes in Fourier space for
various observables but mainly the heat flux. We find
that almost all ky modes included in the set up of our
simulations are non linearly interacting with a significant
amplitude when the temperature gradient R/LT ≥ 5.0,
while only a small number of modes interacts non lin-
early with significant amplitude at lower gradients. Also,
by examining the contribution of each ky mode to the
heat flux, we can see that all of them contribute when
R/LT ≥ 5.0, while for lower gradients only the linearly
most unstable modes are important for the heat flux.
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FIG. 5: (Color online) Variation of the power-law
exponent of the power spectrum in the intermediate

range frequencies (red) solid line.

D. Hurst exponent from the rescaled range analysis

A calculation of the Hurst exponent using the rescaled
range analysis33 (see App. A) method gives three differ-
ent scaling regions, as expected from the shape of the
power spectrum. An example of the rescaled range anal-
ysis is given in Fig. 6. There is a region where the expo-
nent is close to unity (region A), an intermediate region
which is of main interest (region B) and finally a region
where the values of the Hurst exponent are approaching
0 (region C).

The variation of the Hurst exponent for each region
with the temperature gradient is presented in Fig. 7. In
region A, all simulations have a Hurst exponent close to
unity. This region corresponds to highly correlated small
scales. Region C corresponds to large decorrelated scales.
We can see that the value of the Hurst exponent is quite
high in region C, we would expect it to be closer to zero
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FIG. 6: (Color online) Rescaled range analysis as a
function of the scale τ . Three different regions with

power-law scaling are discernible.

and only at the larger values of the temperature gradi-
ent, it starts at least diminishing towards the anticipated
values.

The region we are mainly interested in is the middle re-
gion, the so called mesoscale region. The term mesoscale
and its importance is discussed e.g. in Ref. 12. In short,
the mesoscale is the intermediate scaling range, and it is
of interest since at smaller scales the Hurst exponent is
basically one, due to the strong, yet trivial, correlations
at small scales in deterministic systems, while at larger
scales the Hurst exponent basically equals zero, since the
scales have been reached where the data become uncor-
related. The mesoscale thus is the scaling range that
reveals non-trivial, long range correlations.

At low value temperature gradients, where turbulence
is not fully developed, we can see that the Hurst ex-
ponent in the mesoscale region is close to unity. This
means that the system is highly correlated and the cor-
responding fractal dimension D is close to unity accord-
ing to Eq. A3. With increasing temperature gradient,
which, as already stated, increases the number of the
linearly destabilized modes, and also the number of non-
linearly interacting ky modes with significant amplitude
that contribute to the turbulence seen in the heat flux,
we can identify a clear deviation from unity and also an
extension of the scaling region. The Hurst exponent is
H = 0.85 − 0.83 for gradients R/LT ≥ 6.0 something
that shows the existence of long range correlations and
persistence in the time series. We can also see that as
the temperature gradient increases, the Hurst exponent
slightly decreases. These values correspond to a fractal
dimension D = 1.15− 1.17, according to Eq. A3.
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FIG. 7: (Color online) Variation of the Hurst exponent
from the rescaled range analysis in the different scaling

regions (see Fig. 6).

E. Generalized Hurst exponents

The Structure function34 Sq, (see App. A) is another
tool used to investigate long range correlations through
generalized Hurst exponents. Structure functions offer
many advantages12 compared to the rescaled range anal-
ysis method, among which are the inference of stationar-
ity of a time series and of multifractality. We calculate
the structure functions with the value of the parameter
q varying in the range q = 0.5− 7 and using first the raw
(original), time series data. We then repeat the proce-
dure for the cumulative data. From the structure func-
tions of the raw data we can identify the region where the
slope of log(Sq) with log(τ), where τ is the time lag, is
equal to zero for all q, which shows the scale range where
the raw time series is stationary. We then calculate the
structure functions of the integrated data and estimate
the Hurst exponent with linear fits in the log-log plots
at almost the same r egion where stationarity was de-
tected in the raw data, for the different values of the q
parameter. An example is given in Fig. 8.

The analysis with the structure functions gives simi-
lar results as the rescaled range analysis above. Three
distinct scaling regions appear, in agreement with the
R/S method. The first small τ region corresponds
again to highly correlated small scales. The intermedi-
ate mesoscale region, which is of main interest, concerns
self-similar structures. The large τ region, corresponds
to the large decorrelated scales.

In all simulations, the first region exhibits a generalized
Hurst exponent equal to unity, for all the values of the q
parameter. The largest τ region has values of the Hurst
exponent lower than or almost equal to H ≤ 0.5.
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For the mesoscale region, we present the variation of
the generalized Hurst exponent with the temperature
gradient for the value of q = 2 in Fig. 9. Estimates of
the Hurst exponent with the structure function with pa-
rameter q = 2 should theoretically give the same results
as the estimates of the Hurst exponent calculated by the
rescaled range analysis. At low temperature gradients
we have values of the generalized Hurst exponent close
to the value Hq ∼ 0.9 and as the temperature gradient
increases and turbulence gets fully developed, the value

lowers to Hq ∼ 0.85. These values are indeed very close
to the estimates yielded by the R/S method (see Fig. 7),
and show persistence of the time series, and the existence
of long range correlations.
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FIG. 9: (Color online) Variation of the generalized
Hurst exponent for the value of q = 2 with the

temperature gradient R/LT

The structure function method, as already stated, is
also a useful tool for the detection of multifractality. to
this end, we consider the product qHq = ζ(q) as a func-
tion of q. If ζ(q) is a linear function of q then we infer
monofractality, and otherwise multifractality. An exam-
ple is given in Fig. 10, for the case with R/LT = 6.9.
We can see that ζ(q) is a linear function, and the same
functional form is observed in all simulated cases, there
is thus no multifractal scaling in all cases.

IV. RESULTS FROM THE ANALYSIS IN THE RADIUS
TIME PLANE

A main characteristic of systems in Soc state are
avalanches. For their detection and the study of their
statistics we perform some analysis in the radius time
plane. The tools used are calculation of the fractal di-
mension of the heat flux patterns, analysis of the number
and extent of radial structures, and calculation of the two
dimensional autocorrelation function.

A. Fractal dimension of avalanching structures

We consider the heat flux as function of radius (x) and
time (t), as computed by GENE. The analysis was made
for the stationary parts of the heat flux data as deter-
mined for the time series in Sec. III, and we use simula-
tions with varying temperature gradientR/LT = 3.5−6.5
in steps of 0.5, except for the value R/LT = 5.5 where
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no stationary part was detected in the time series. As
already mentioned, we interpolate the computed data us-
ing cubic splines, in order to create data that are equally
spaced in time.

Since the x grid is limited to 128 data-points, we also
divided the time direction into sets of 128 steps, and con-
sider 128× 128 sized squares as images. A sample image
is presented in Fig. 11. We set a threshold value for the
heat flux, and each value of heat flux in the computa-
tional grid equal to or above the threshold value is kept,
and the values lower than the threshold are set to zero. In
this way we isolate events of relatively large magnitude,
with the threshold a free parameter. For each image we
calculate the fractal dimension, using the box-counting
method (see e.g., 35), and repeat the procedure for each
simulation. The threshold value for the box counting
method used is the mean value of the averaged in the
radial direction heat flux, and also 1.5 times this mean
value.

Results of the calculated fractal dimension D are given
in Tables II and III for the two threshold values. We
see that with increasing temperature gradient the mean
fractal dimension of the evolution is almost constant in
the simulations. For threshold value the mean value of
the averaged heat flux, Table II, we can see that D is in
the range D = 1.76 − 1.84. Results when increasing the
threshold to 1.5 times the mean value are given in Table
III and give a D in the range D = 1.45− 1.56. The max-
imum values of the dimension are also almost constant,
with values 1.9 and 1.7, respectively. The minimum val-
ues of the dimension are more diverse in values than the
maximum values.

FIG. 11: Large events in a 128× 128 sample image of
heat flux in the radius time plane from a simulation

with R/LT = 6.5.

TABLE II: Values of fractal dimension D for a
threshold value equal to the mean value of the radially
averaged heat flux: mean value Dmean of the 128× 128
images, maximum value Dmax, minimum value Dmin.

Temperature Gradient Dmin Dmax Dmean

3.5 1.677 1.911 1.84

4.0 1.734 1.934 1.84

4.5 1.426 1.95 1.76

5.0 1.713 1.903 1.80

6.0 1.487 1.939 1.79

6.5 1.669 1.909 1.81

TABLE III: Values of fractal dimension D for a
threshold value equal to 1.5 times the mean value of the
radially averaged heat flux: mean value Dmean of the
128× 128 images, maximum value Dmax, minimum

value Dmin.

Temperature Gradient Dmin Dmax Dmean

3.5 1.043 1.721 1.45

4.0 1.213 1.781 1.54

4.5 0.545 1.874 1.56

5.0 1.276 1.689 1.53

6.0 1.08 1.76 1.51

6.5 1.095 1.714 1.47
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B. Cluster analysis

For the detection of structures mainly in the radial
direction, we perform an analysis that determines the
structures (clusters) and counts their radial extent and
number. We again set a threshold value for the heat flux
and retain all values of the observable above this thresh-
old, all other values are set to zero. In this way isolated
radially extended structures are made identifiable. Each
structure is considered as separate if there is at least an
empty grid point surrounding it in every direction. We
then determine the extent of these structures in radial
direction and calculate the probability distribution func-
tions of the radial extents.
We use as threshold values 1.5, 1.8, 1.9, 2.0 times the

mean value of heat flux. A sample image of the structures
is given in Fig. 12 for the simulation with R/LT = 6.5
and with threshold value 1.5 times the mean value of the
heat flux. We see that the structures have a quite large
radial extent within the flux tube, and thus they can be
considered as candidates for avalanches, see below.
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FIG. 12: (Color online) Radially extended structures in
a contour plot of the heat flux with threshold 1.5 times

the mean value of heat flux, for simulations with
R/LT = 6.5

The histogram of the radial extent of a selected case
is presented in Fig. 13. We can identify a clear power
law shape, with two main regions, a region of low slope
∼ 2 and bigger extent (region A) and a region with high
slope and smaller extent (region B). The overall extent of
the histogram is limited by the relatively small size of the
grid in the radial direction. We calculate the slope of the
power laws with a fit, and the variation of the exponent of
the power law with the temperature gradient in the first
region is shown in Fig. 14. The variation is quite small,
with almost constant values 1.6 ∼ 1.7 with exception the
case R/LT = 4. This region concerns events of small to
medium extent and has structures with power-law shapes

whose indexes are also almost unaffected by the threshold
set. The exponent of the power law index of the radially
more extended structures in the second (B) region, has
higher values and seems to be affected by the threshold.
Yet the values can not much be interpreted due to the
small extent of the power laws.
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FIG. 13: Histogram of the radial extent of structures of
heat flux with values above a threshold of 1.5 times the
mean value and for the simulation with R/LT = 6.5.
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C. Two dimensional autocorrelation function

The autocorrelation function is defined as the cross -
correlation of the signal and a lagged version of itself.
In our case the signal consists of heat flux in the x − t
plane, and we calculate the two dimensional autocorrela-
tion function.
For the calculation we use the method based on the

Wiener - Khinchin theorem, which allows computing
the autocorrelation from the data q(x, t) with two Fast
Fourier transforms (FFT). First, we subtract the mean
value from the data. We then compute the autocor-
relation function of the data by Fourier transforming
them into the frequency domain, taking the modulus of
the spectral coefficients, and then performing the inverse
Fourier transform.
For each one of the simulations and for the purpose of

Fourier transforms, a data grid of heat flux, that consists
in 128 points in the radial (x) direction, and 4096 points
in the time t direction was selected as the highest values
which are both powers of two. Also we do not show the
redundant negative time lags.
We calculate the velocity of possibly traveling struc-

tures appearing in the autocorrelation function. At every
time lag, we locate the position of the maximum value
of the autocorrelation function above a minimum value
of 0.3, for both positive and negative spatial lags δx.
This produces lines in the time-lag radial-lag plane and
the calculation of the slope of a linear fit to these lines,
wherever this is possible, gives the velocity of structures
in units of the thermal speed.
At low temperature gradients R/LT = 3.5, 4, 4.5 we

observe that there are no traveling structures in the radial
direction, see the example in Fig. 15. As the temperature
gradient increases we find that for the simulations with
R/LT = 6.0 and 6.5 there are radially traveling struc-
tures. We make a linear fit for these two cases and cal-
culate the velocity of these structures. In the case of the
temperature gradient R/LT = 6 we find for positive lags,
a velocity v = 2.79, while for negative lags v = −2.57. In
the case of the temperature gradient R/LT = 6.5 we find
for positive lags, a velocity v = 2.96, while for negative
lags v = −2.75. In both cases, the values of the velocity
at negative and positive spatial lags, are close, with the
velocity of the positive spatial lags being larger. Also,
there is an increase of these values with the increase of
the temperature gradient.
Because in our analysis so far, we have seen that the

radial structures have almost the same size distribution
and the fractal dimension of the images in the radius-time
plane is almost constant, the above result is interesting,
because we find that these structures start traveling only
at large temperature gradients. So although these struc-
tures exist even with smaller gradients their radial mo-
tion starts above a certain threshold in the temperature
gradient.
In order to investigate this further we calculate accord-

ing to Ref. 18 the tilting parameter P = Im[(dq/dx +

FIG. 15: (Color online) Autocorrelation function for the
simulations with gradients R/LT = 3.5 (top) and

R/LT = 6.5 (bottom). The black lines show the local
maximum value of the autocorrelation function.

ıdq/dt)2] where q is the heat flux. This quantity mea-
sures the dominant direction of diagonally aligned struc-
tures. Spatial locations with positive P > 0 correspond
to events propagating to smaller x with increasing time
and vice versa for P < 0. The mean value of P is almost
zero for all simulations meaning that we have equally
tilted structures in both directions. The standard devi-
ation σ of P though is increasing with the temperature
gradient, as can be seen in Fig. 16. The increase of the
tilting of structures is related to the motion of structures,
which we now can consider to be avalanches at the large
temperature gradients.
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V. DISCUSSION

Since Soc is considered to be linked to systems in a
marginal stability state, we start the simulations from a
low temperature gradient very close to the linear thresh-
old, where the turbulence drive is low, and we then gradu-
ally increase the gradient. We could thus divide the simu-
lations into three regimes: (a) a regime R/LT ∼ 3.5−4.5
close to the linear threshold for the fastest growing mode,
where the heat flux transport is very low, (b) the Dimits
shift29 regime R/LT ∼ 5 − 6, near where the heat flux
transport still remains relatively small, and (c) the stiff
regime R/LT ≥ 6.0, where the heat flux strongly depends
on and increases as the temperature gradient increases.

In the first regime, close to the linear threshold, the
fluctuation level of the various observables is low, mainly
of the density. Zonal flows appear, which give rise to a
finite shearing rate. In Fourier space, we observe that the
amplitude of modes non-linearly interacting is significant
for only a limited number of them, for the observables
of density and temperature in the direction perpendic-
ular to the magnetic field. For the other observables,
e.g. the electrostatic potential, the modes correspond-
ing to zonal flows have the largest amplitude. In the
time-radius plane, we observe heat flux structures with
a quasi-oscillating behavior, rarely overlapping between
them, and when so, giving rise to larger structures. When
examining the contribution of each ky mode to the to-
tal heat flux, we can see that only a small number of
modes have a significant contribution. These modes are
typically localized next to the largest linear growth rate,
while most of the other modes included in the simula-
tion have a linear growth rate close or equal to zero.

This oscillating behavior of heat flux structures could be
understood as a consequence of the limited number of
modes that are significant in the non-linear interactions
and participate in the transfer of energy. We could say
that heat flux structures have a streamer-like behavior.
This behavior can also be considered responsible for the
value of the Hurst exponent to be close to unity, since
the quasi-oscillating heat flux structures are highly cor-
related. Also, it should lead to peaks appearing in the
power-spectrum at specific frequencies, which is observed
in some of the cases simulated (e.g. Fig. 4 for the case
with R/LT = 3.5), but radially averaging the time series
of the heat flux, as we did it in our analysis, tends to
smear out clear peak-shaped structures.

The Dimits shift is basically the nonlinear upshift of
the threshold for collisionless, electrostatic ITG turbu-
lence, which is caused by undamped, self-generated zonal
flows. In the regime of the Dimits shift, the number of
unstable and non-linearly interacting modes with signif-
icant amplitude of the density and the temperature in
the direction perpendicular to to magnetic field increases
both in kx as well as in ky space. The amplitude of
the density fluctuations remains at low values though,
while the amplitude of the temperature fluctuations in-
creases significantly. Heat flux structures gradually in-
crease their radial extent, and also their overlapping is
increasing but still limited, and there is no significant
degree of radial traveling structures. A gradual increase
in their tilting is also observed, and also the shearing
rate produced by zonal flows increases. The oscillating
behavior of heat flux structures, although present, dimin-
ishes, while larger magnitude heat flux structures appear.
These heat flux structures could be described to have a
streamer-like/bursty behavior. This behavior, as already
stated, makes the Hurst exponent in the mesoscale region
to remain close to unity. Turbulence is, relatively to the
previous regime, increased and more developed. Also, the
timeseries of the averaged heat flux appear to be more
intermittent in this regime. This could explain the in-
crease of the power law exponent with the temperature
gradient, yet there is no self-organization. The Dimits
shift regime is one where free energy is transferred to the
zonal flows, with relatively little remaining in the drift
waves. Thus this regime is dominated by zonal flows.

In the stiff regime with large temperature gradients
R/LT ≥ 6.0, the level of fluctuations of the electro-
static potential increase, and the number of modes of
the electrostatic potential in Fourier space that are in-
teracting non-linearly and have significant amplitude also
increases. The latter also stands for the parallel veloc-
ity, while for the density and the temperature almost all
modes taken into account by the simulation set-up inter-
act non-linearly with large amplitudes in Fourier space.
Strong zonal flows shear turbulent eddies for all the men-
tioned observables. In the radius-time plane, radially
traveling heat flux structures appear and overlap. As
described in our analysis, their attributes (tilting, radial
traveling, large tail in the two dimensional autocorrela-
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tion function) allows us to characterize such structures as
avalanches. So the non linear interaction between zonal
flows and drift waves seems to lead to self-organization,
as the values of the power spectrum indices, the Hurst ex-
ponent in the mesoscale region, as well as other findings,
tend to resemble those produced by direct Soc models.
Also, it has been reported in many cases31 that this tur-
bulence regime should be considered as a self-regulating,
two-component system consisting of the usual drift wave
spectrum and zonal flows.

An interesting point to comment on is the local min-
imum in the power-law exponent (Figure 5). This can
be interpreted based on the work of Ref. 32 and the
above analysis. At lower temperature gradients, large
non-overlapping events with significant radial extent ap-
pear and are of quasi periodic nature, having as already
mentioned a streamer-like behavior which results in an
exponent in the intermediate frequency region between
1 ∼ 2. As turbulence begins to develop with the in-
crease of the temperature gradient to intermediate val-
ues, this quasi periodic nature diminishes. Independent,
yet still with a tendency not to over-lap, large scale heat
flux events with no radial traveling and with a streamer-
like/bursty behavior lead then to a regime where the
exponent shows its minimum. Further increase of the
temperature gradient increases the number of the large
heat flux events, which become tilted and overlap hav-
ing a more avalanche-like behavior. The latter gradually
increases the value of the exponent, which finally, when
the gradient exceeds R/LT ≥ 6.0, leads to 1/f noise.

The skewness and kurtosis show a minimum in the
same range of temperature gradients (4 – 5) as the power-
law exponents. Thus, it seems that the two statistics
follow each other: there is a reduction in the temporal
correlations in this region of gradients that is accompa-
nied by an increased ’Gaussianity’ of the heat-flux his-
tograms. We can conclude that we see a transition from
a quasi-periodic, well correlated, slightly non-Gaussian
regime at the lowest gradients, to turbulent, correlated
and self-organized, again slightly non-Gaussian regime,
at the highest gradients. The regime of intermediate gra-
dients is the transient regime, where the developing tur-
bulence can be described as not yet much self-organized
and correlated noise with close to Gaussian statistics.

The main goal of this work is to conclude whether
ITG mode driven gyrokinetic turbulence reaches a state
of self-organization. This is quite a difficult task since
the definition of a Soc state is still a field of debate.
In brief, one can distinguish three definitions of Soc,
a phenomenological3 definition, an operational10 defini-
tion, and a theoretical3 definition. The theoretical defini-
tion (driven, spatially extended, non-linear systems that
are in a minimally (marginally) stable state) is vague in
the sense that it expresses only a necessary prerequisite
for Soc to appear. The operational definition can be un-
derstood as set of guiding rules for the construction of ex-
plicit Soc systems (e.g. the system is spatially extended
and driven locally, there are local threshold dependent

instabilities, and there is a local relaxation mechanism
that stabilizes the instabilities). Again, the operational
definition enumerates basically necessary conditions for
the appearance of Soc, and in any case, using either the
theoretical or the operational definition, the ’proof’ that
a Soc state is reached can be made only by using the
phenomenological definition of Soc, which describes a
basic set of statistical properties of the Soc state (the
appearance of avalanches, with power-law shaped distri-
bution functions and power-spectra, self-similarity and
long range correlations etc.).

In the frame of these considerations, we apply the phe-
nomenological definition of Soc in our work. Thus, ac-
cording to the phenomenological definition, some impor-
tant characteristics of a Soc state include a character-
istic form of the power spectrum having three distinct
regions (Ref. 32, and see also the respective comment
therein): A high frequency region where the exponent is
approximately −4, the middle to low frequencies region
(the avalanche overlapping region) where the power law
exponent is approximately −1 and the region of low fre-
quencies where the spectrum is flat and has an exponent
approximately 0. Although in our simulations, the power
spectrum has a definite multiple power law form, the ex-
ponents are closer to the usual values of a Soc state as
the temperature gradient R/LT ≥ 6.0 in the simulations.
Since the simulation with gradient R/LT = 5.5 had no
stationary part for the analysis, a precise determination
of the gradient where the usual power spectrum shape
of a Soc system appears cannot be made. The latter
gradient value concerns of course only the simulations
performed in this work.

Long range correlations are another characteristic of a
system in a Soc state. A usual method for their detec-
tion is the calculation of the Hurst exponent, which in
this work is performed with two different methods, the
R/S analysis and the structure function method, and
which give similar results. A usual value of the Hurst
exponent for a system in a Soc state is H ∼ 0.7 − 0.8
(e.g. Ref. 9). In our case these values appear also, as can
be seen in Figures 7 and 9, for the same large values of
the temperature gradient R/LT ≥ 6.

The previous point is also related to a third phe-
nomenological criterion, the existence of an algebraic tail
in the autocorrelation function. This can be detected in
the calculation of the one or two dimensional autocorre-
lation function, which falls off quite rapidly for the sim-
ulations with low temperature gradient, while for those
simulations preformed for gradients R/LT ≥ 6.0 the au-
tocorrelation function stays above the 1/e-limit for larger
values of the time lag (see e.g. Fig. 15).

Finally, as mentioned in Ref. 4, in a Soc state, co-
herent avalanches can be detected to grow and shrink,
some are seen to propagate ’up-hill’ while others are seen
propagating ’down-hill’, and this dual propagation rep-
resents a characteristic feature of the Soc state. In our
study, we observe propagation of avalanches for the al-
ready mentioned high temperature gradient values (see
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e.g. Figures 15, 16).
We must mention though that in local simulations the

mean temperature gradient stays constant during the
simulations, so that, applying the theoretical definition of
Soc, and studying the evolution of the temperature pro-
file and whether it reaches a subcritical state, which also
is a characteristic of Soc, is not feasible in the presented
simulations. Having the latter in mind, we conclude from
the above analysis that a Soc state is probably reached
for the simulations that have R/LT ≥ 6.0, or, more care-
fully formulated, our findings are largely compatible with
the system being in the state of Soc for large gradients.
A careful formulation also is appropriate since one ba-
sic phenomenological property of Soc is absent, namely
power-law shaped distribution functions of system vari-
ables, such as of the heat flux in our case.

VI. CONCLUSIONS

We have made local non linear gyrokinetic simulations
with varying temperature gradients, starting just above
the linear critical threshold and extending up to the stan-
dard value of the CBC scenario. We made a statistical
analysis of the time series of the averaged heat flux and
of the heat flux as a function of radius and time, applying
various statistical tools.
In the analysis of the radially averaged heat flux we

find some of the characteristics of Soc systems, mainly
as the temperature gradient increases. At low gradients
only a few modes non-linearly interact with a signifi-
cant amplitude and turbulence is not fully developed.
When all modes interact non linearly with almost the
same amplitude, we observe the multiple power law form
of the power spectra, as well as the 1/f dependency of
the power spectrum in the intermediate frequency region.
The Hurst exponent H ∼ 0.8 is estimated with the R/S
method and also by using structure functions. This value
shows the existence of long range correlations, a main in-
gredient of Soc systems. Histograms of heat flux do not
have a power law form, which would be expected in a
system exhibiting Soc. Instead, they have an almost
Gaussian shape with only a small tail and with positive
skewness and kurtosis.
In the radius - time plane we find that, although the

topology of the heat flux patterns does not change sig-
nificantly, when characterized by the fractal dimension
or the histograms of the radial extent of the structures,
which both show only slight variations, the motion of
structures in the radial directions appears only at the
largest gradient values. Also, the increasing tilting of
these structures as the temperature gradient increases is
closely related to their radial motion. We thus conclude
that there are radially extended structures for all tem-
perature gradients, only for large gradients though they
are traveling and can be called avalanches.
These results, obtained with a gyrokinetic code, resem-

ble experimental observations, although a direct compar-

ison can be made only with care since we have restricted
our study to local non linear simulations. Experimen-
tal measurements made at the plasma edge of Tokamaks
show the multiple power law form, as well as a close
to 1/f dependency in the intermediate frequency region
of the power spectra (e.g., see Refs. 11–17), which was
also found in this study for large temperature gradients.
The index in the high frequency region though is usually
slightly smaller than the one found in this work. The
Hurst exponent calculated from experimental data with
the use of the same methods as done here (R/S analysis,
structure function), show for the mesoscale region values
ranging usually between 0.7 ∼ 0.8 (e.g., see Refs. 11–13,
and 16), similar to our findings.

By applying a phenomenological definition of a Soc
state, we can conclude that a Soc state is probably
reached for the simulations that have R/LT ≥ 6.0,
with one characteristic Soc feature being absent, namely
power-law shaped distribution functions. Finally, the
fact that some characteristics of self organized critical-
ity can be reproduced by a gyrokinetic code, shows that
these can arise from the physical content of the gyroki-
netic equations and mainly the non linearities. In the
future, an extension of this kind of work will be made,
including global, flux and gradient driven simulations, for
a direct comparison with the experimental data, as well
as with the findings of the local simulations presented in
this study for large temperature gradients.
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Appendix A: Statistical Tools

The theoretical framework of the statistical tools used
throughout this work is given below.

1. Hurst exponent

In the R/S analysis a self-similar scaling

lim
τ→∞

R

S
(τ) = λτH (A1)

is sought, where R and S denote the range and the
standard deviation, respectively, of the cumulative (inte-
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grated) time series Wk, τ denotes a time lag, λ a constant
and H the Hurst exponent. For a time series segment
of length n which is a subset of the total data record
of length N (n ≤ N), X ≡ {Xn : n = 1, 2, 3, 4, ..., n},
corresponding to a stationary process, Wk is given by
Wk = X1 +X2 + · · ·+Xk − kX̄, where X̄ is the mean of
X. The R/S ratio is the ratio of the maximal range of the
integrated signal normalized to its standard deviation. It
is defined for a given time lag n as

R(n)

S(n)
=

max(W1,W2, ...Wn)−min(W1,W2, ...Wn)√
S2(n)

(A2)
We divide the original data set into subsets according

to the lag used, calculate for each subset the R/S ratio
and then calculate the mean value of all the subsets. A
possible scaling of R/S in the form of Eq. A1 is then
searched for, which allows to determine H.
When 1 > H > 0.5 there are long-range time correla-

tions (persistence), for 0.5 > H > 0 the time series has
long-range anti-correlations (anti-persistence), ifH = 1.0
the process is deterministic and finally for time series
with no correlations (i.e. purely random) H = 0, and
for Brownian motion H = 0.5. The Hurst exponent is
theoretically related to the fractal dimension D (see e.g.,
Ref. 35) as

D = 2−H (A3)

2. Structure function analysis - generalized Hurst
exponent

Assuming as before a stationary time series of length
N , X ≡ {Xn : n = 1, 2, 3, 4, ..., N}, we can create again
the cumulative series Wk, as already described in the pre-
vious section. For such a time series of length N , written
now as W (ti)(i = 1, 2, 3, ...N) the structure function of
order q is defined as:

Sq = ⟨|W (ti + τ)−W (ti)|q⟩, q > 0, (A4)

where ⟨·⟩ denotes the ensemble average. If the process is
scale invariant and self-similar over some range of time
lags τ1 ≤ τ ≤ τ2 then the qth - order structure function
is expected to scale as:

Sq(τ) = Cqτ
ζ(q) = Cqτ

qH(q) (A5)

where Cq can be a function of τ which varies more slowly
than any power of τ , ζ(q) is the exponent of the structure
function, and H(q) is the Hurst exponent or self - simi-
larity exponent of order q. Calculation of the Hurst ex-
ponent H(q) allows the straight-forward identification of
persistence or long time correlation, as in the R/S anal-
ysis, as well as to determine the possibly monofractal or
multifractal nature of the data. The structure function
analysis should coincide with the R/S analysis for the
structure function order q = 2.

3. Power spectrum

Also the power-spectrum can be used for the detec-
tion of self-similarity. The standard definition of self-
similarity is that a process X = {X(t), t ≥ 0} is self-
similar with self-similarity or Hurst, exponent 0 < H < 1
if it satisfies

X(λt)
d
= λHX(t) (A6)

where
d
= means equality in distribution for any λ > 0.

Also, the stationary process X is self-similar with self-
similarity exponent H if there exists a real number
α ϵ (0, 2) such that

lim
τ→∞

ρ(τ) = cρτ
−α, 0 < α = 2− 2H < 2 (A7)

where ρ(τ) is the normalized autocorrelation function.
In this case then the power spectral density exhibits the
power law scaling

lim
f→∞

S(f) = cSf
−β , −1 < β = 2H − 1 < 1 (A8)

with cS a constant, f the frequency, β the absolute value
of the power spectrum index (see e.g., Ref. 35).

4. Skewness and kurtosis

Skewness is a measure of symmetry of a distribu-
tion, and kurtosis is a measure of whether the data are
peaked or flat relative to a normal distribution. For data
X1, X2, ..., XN , the skewness g1 is given as

g1 =
1
N

∑N
i=1(Xi − X̄)3(

1
N

∑N
i=1(Xi − X̄)2

)3/2
(A9)

where X̄ is the mean value and N is the number of data
points. The skewness for a normal distribution is zero,
as for any symmetric distribution. Negative values of the
skewness indicate data that are skewed left and positive
values indicate data that are skewed right.

The kurtosis is given as:

kurtosis =
1
N

∑N
i=1(Xi − X̄)4(

1
N

∑N
i=1(Xi − X̄)2

)2 (A10)

The kurtosis for a standard normal distribution is 3
and for this reason, we use the following definition of
kurtosis (often referred to as ”excess kurtosis”)

g2 =
1
N

∑N
i=1(Xi − X̄)4(

1
N

∑N
i=1(Xi − X̄)2

)2 − 3 (A11)

In this way, the standard normal distribution has a kur-
tosis of zero, positive kurtosis indicates a ”peaked” dis-
tribution and negative kurtosis indicates a ”flat” distri-
bution.
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