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Abstract 

Cells possess an extensive network of components to safeguard proteome integrity 

and maintain protein homeostasis (proteostasis). When this proteostasis network (PN) 

declines in performance, as may be the case during aging, newly-synthesized proteins 

are no longer able to fold efficiently and metastable proteins lose their functionally 

active conformations, particularly under conditions of cell stress. Apart from loss-of-

function effects, a critical consequence of PN deficiency is the accumulation of 

cytotoxic protein aggregates, which are also associated with many age-dependent 

neurodegenerative diseases and other medical disorders. Here we discuss recent 

evidence that the chronic production of aberrantly folded and aggregated proteins in 

these diseases is harmful by overtaxing PN capacity, setting in motion a vicious cycle 

of increasing proteome imbalance that eventually leads to PN collapse and cell death. 
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Aggregates and proteostasis 

The bulk of cellular functions are carried out by proteins. To maintain protein 

homeostasis (or proteostasis [1]) – the state of proteome balance – mammalian cells 

must ensure that more than 10,000 different proteins fold and assemble efficiently 

upon synthesis and preserve their functionally active states in a wide range of 

environmental and metabolic conditions. This is a challenging task, since proteins are 

only marginally stable at physiological temperature and are constantly at risk of 

misfolding. In addition, the concentration and subcellular localization of each 

individual protein species needs to be carefully controlled. Proteostasis is maintained 

by a plethora of factors, including molecular chaperones and their regulators as well 

as the machineries of proteolytic degradation (~1400 proteins in mammalian cells [2, 

3]). An emerging concept of recent research is that these components function as a 

coordinated proteostasis network (PN). The organizational principle of this network is 

far from being understood but it is clear that the PN has evolved to ensure proteome 

integrity and prevent the accumulation of aberrant conformational states, specifically 

protein aggregates, which are increasingly recognized as the cause of cytotoxicity in 

neurodegenerative diseases and other medical disorders, ranging from Alzheimer’s 

disease (AD) to type 2 diabetes [4].  

We define a protein aggregate as any association of two or more protein 

molecules in a non-native conformation. Aggregates cover a range of structures, from 

amorphous assemblies to highly ordered fibrils (amyloid) with cross-β-structure. The 

propensity of a specific protein to aggregate is governed primarily by the chemical 

properties of its amino acid sequence, the conformational stability of its folded state 

and its cellular concentration [5, 6]. The extremely high total protein concentration in 
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cells (~300 g/L) results in excluded volume effects (macromolecular crowding) and 

substantially increases the tendency of non-native protein molecules to aggregate 

compared to dilute solutions [7]. Moreover, ~30% of proteins in higher eukaryotes 

contain extensive intrinsically unstructured regions (>30 amino acids in length) [8]. 

These proteins are often metastable and some of them are particularly toxic when they 

aggregate, like α-synuclein in Parkinson’s disease (PD) and Aβ and Tau in AD. The 

presence of aggregates is indicative of proteostasis imbalance. However, aggregate 

formation is not only the result of insufficient proteostasis capacity, but can also be 

the cause of PN imbalance by overburdening available chaperone and degradation 

machineries, thereby enforcing a self-propagating cycle that eventually leads to 

proteostasis collapse and cell death (Figure 1). 

In this review we summarize recent research addressing the interrelationship 

between protein aggregation and the functional status of the PN. We propose that the 

failure of cells to maintain proteostasis contributes to the toxic effects of protein 

aggregates in numerous diseases and is also a major driver of the aging process. 

Correcting PN imbalance pharmacologically [2] presents an opportunity for the 

development of novel therapeutic strategies.  

 

Components of the PN 

While it has long been known that a large fraction of proteins require chaperone 

assistance for initial folding, we are only beginning to realize the extent to which 

proteins rely on chaperone-dependent functions throughout their cellular lifetime in 

order to maintain or regain their biologically active conformations [1, 3]. Core 

activities of the chaperone machinery include aggregation prevention (so-called 

‘holdase’ function), the ability to refold aberrantly folded states, and also the capacity 
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to actively dissociate certain protein aggregates (Figure 2). The archetypical holdase 

chaperones are the so-called small heat shock proteins (sHSPs), which buffer 

aggregation by binding non-native protein species via hydrophobic interactions [9]. 

They cooperate with Hsp70 chaperones, which refold proteins through ATP-

dependent cycles of protein binding and release and are subject to regulation by 

multiple co-chaperones (Hsp40s and nucleotide exchange factors) [10]. The Hsp70s 

also participate in protein disaggregation, sometimes in cooperation with AAA 

ATPase-chaperones, such as Hsp104 in fungi [11]. The Hsp70 system also functions 

with Hsp90 and its multiple co-factors in folding and regulating many 

conformationally dynamic proteins, including kinases and other signaling molecules 

[12]. 

 Protein synthesis and turnover must be carefully balanced and terminally 

misfolded proteins effectively removed by proteolysis to ensure proteostasis. 

Clearance of misfolded proteins is mainly performed by the ubiquitin-proteasome 

system (UPS) (Figure 2), comprising more than 600 proteins in human cells [13, 14]. 

Proteasome complexes are localized in the cytosol and nucleus. Proteins of the ER 

destined for degradation must first undergo retrotranslocation to the cytosol to gain 

access to the proteasome [15, 16]. Specific factors of the UPS cooperate closely with 

chaperone machinery. For example, the co-chaperone and ubiquitin ligase CHIP binds 

to Hsp70 and Hsp90, mediating ubiquitylation of faulty client proteins and guiding 

them to the proteasome [17]. Proteins that are unable to fold − due to mutation or 

amino acid misincorporation, or as a result of oxidative damage − will spend more 

time in the chaperone-bound state, thus increasing the chance of being recognized by 

CHIP and other ubiquitin ligases. Importantly, proteins need to be unfolded prior to 

proteasomal degradation in a reaction that is mediated by the AAA ATPase 
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components of the proteasome complex [18]. For this mechanism to be efficient, 

proteins must be delivered in a soluble, non-aggregated state and incipient aggregates 

[19, 20] may be actively dissociated by chaperone machinery to allow degradation via 

the UPS. 

Larger protein aggregates and insoluble inclusions, resistant to dissociation, 

can be removed by autophagy and lysosomal degradation, the other major pathway of 

proteolysis (Figure 2). Autophagy involves the engulfment of material by a double 

membrane vesicle (the autophagosome) that subsequently fuses with the lysosome 

[21]. Unlike the non-specific autophagy of bulk cytoplasm, aggregates are subject to 

selective autophagy. This process is assisted by the Hsp70 chaperone system, 

involving ubiquitylation of target proteins by CHIP and recruitment of the autophagic 

ubiquitin adaptor p62 by the Hsp70 co-factor Bag-3 [22]. Alternatively, Bag-3 may 

mediate selective autophagy independent of substrate ubiquitylation [23]. There is 

also evidence that protein aggregates are first actively concentrated in aggresomes 

[24] or juxtanuclear quality control compartments (JUNQs) [25] by cytoskeleton-

based transport processes [26, 27], followed by recruitment of autophagic machinery 

[28]. Aggresome and JUNQ formation are thought to allow the deposition of 

aggregated proteins in a non-toxic storage form until sufficient capacity for 

degradation is available [29]. Some misfolded protein species are delivered directly to 

lysosomes by cytosolic Hsp70 in a manner involving recognition of a specific peptide 

motif, KFERQ, present in many proteins [30]. 

 

Age-dependent proteostasis decline  

Age is the major risk factor for numerous aggregate deposition diseases, including 

AD, PD, Huntington’s disease (HD) and other degenerative disorders. Studies in 
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lower invertebrates such as the nematode C. elegans suggest that this is due to a 

decline in the capacity of aging cells and tissues to maintain proteostasis and to 

respond adequately to protein conformational stresses by upregulating PN machinery 

[31-33]. Whether an active aging program or simply lack of evolutionary pressure 

underlies this deterioration is unclear. It has been argued that organisms gained 

evolutionary advantage by devoting more resources to propagating the germ line than 

to maintaining the integrity of the somatic proteome (‘disposable soma theory’ [34]). 

Indeed, in C. elegans proteostasis deteriorates dramatically soon after progeny have 

been produced [33]. It has also been suggested that pluripotent stem cells dedicate 

considerably more resources to proteome maintenance than differentiated cells [35]. 

Although in mammals the age-dependent proteostasis decline is probably more 

protracted [36] than in a short-lived metazoan like C. elegans, the accumulation of 

aberrant protein species eventually exhausts the capacity of the PN and results in 

cellular dysfunction [32, 37]. Not surprisingly, this problem manifests itself most 

severely in post-mitotic cells (neurons and muscle cells) which lack the ability to 

remove aggregates by retaining them in the mother cell during cell division [38, 39]. 

Aggregate deposition diseases, including the major age-dependent 

neurodegenerative disorders, are typically associated with a gain-of-toxic-function, in 

contrast to loss-of-function diseases like cystic fibrosis [1], in which specific proteins 

− unable to fold due to mutation − are removed by degradation. While a connection 

between proteostasis decline and aggregation can be observed in most of the major 

degenerative diseases [40, 41], the analysis of pathological polyQ proteins in various 

model systems has provided the best evidence to date that age-dependent proteostasis 

decline is a prerequisite for disease manifestation and that protein aggregation in turn 

causes proteostasis impairment [42-45] (Figure 1). PolyQ-expansion diseases, 
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including HD) (Box 1), are inherited in a dominant manner and no sporadic cases are 

known, unlike most other aggregate deposition disorders. In contrast to the familiar 

forms of AD, PD and amyotrophic lateral sclerosis (ALS), HD is caused by mutation 

of a single gene. Moreover, the clear correlation between polyQ repeat length and 

aggregation propensity and the inverse correlation between repeat length and the age 

of disease onset greatly facilitates the development of disease models. 

Cellular dysfunction and cell death in neurodegenerative disease appears to be 

mainly caused by a subset of highly toxic aggregate species, including diffusible, 

oligomeric forms that lack ordered fibrillar topology [6] (Figure 2A). These toxic 

species are structurally ill-defined but are thought to expose hydrophobic amino acid 

residues on unpaired β-strands that provide ‘sticky’ surfaces for aberrant interactions 

with other proteins or cellular membranes [6, 46, 47]. Multiple endogenous proteins, 

often newly-synthesized or containing extensive disordered regions, as well as certain 

chaperones have been found associated with such aggregates [48]. Importantly, there 

is increasing evidence that sequestration of oligomers into large insoluble deposits is 

protective [49], presumably by reducing the interactive, solvent exposed surface area 

of the aggregates. However, while inclusion formation may be actively promoted by 

the PN of aged cells as a last resort [42], these deposits are unlikely to be entirely 

harmless. 

 

Mechanisms of proteostasis impairment 

Observations in cellular and organismal models indicate that the chronic production 

of misfolded and aggregated proteins compromises central functions of the PN, 

including the capacity of cells to fold proteins, clear misfolded proteins (Figure 3A,B) 

and to respond to conformational stress by upregulating PN machinery (Figure 3C) 
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[43-45]. How exactly the aberrant proteins target the PN is not clear in most cases, but 

it is plausible that they unduly occupy, sequester or otherwise functionally impair PN 

components, rendering them unavailable for use by other clients (chaperone titration). 

These clients comprise primarily the ‘metastable proteome’, a set of structurally 

dynamic proteins that need constant chaperone surveillance. Importantly, the acute 

accumulation of misfolded proteins under stress conditions (such a heat stress) causes 

the rapid induction of PN components to reestablish proteome balance. However, this 

fails to occur when aberrant protein species are produced chronically, as in disease or 

during aging [48, 50-52] (Figure 3C). One possible explanation is that under chronic 

stress, key components of stress signaling pathways can no longer be maintained in a 

functionally active state. For example, NF-Y, a transcription factor involved in Hsp70 

expression is sequestered by polyQ aggregates [53], and heat-shock transcription 

factor 1 (HSF-1), the key regulator of the cytosolic stress response, is itself a 

metastable protein whose level is regulated by chaperones and proteasomal 

degradation [54, 55]. 

Much research in recent years has focused on understanding how protein 

aggregation interferes with the function of the UPS. Ubiquitin is present in the 

inclusions of nearly all neurodegenerative disease proteins, consistent with the view 

that these proteins fail to be degraded when they accumulate to levels that exceed 

proteasome capacity [56, 57]. A decline in proteasome activity during aging [58, 59] 

would explain why aging is a key risk factor for protein aggregation. Conversely, 

there is evidence that aggregation is not the result of a malfunctioning UPS but is 

actually its cause. This view is supported by findings that the expression of 

structurally unrelated aggregation-prone proteins prevents other proteins from being 

proteasomally degraded. Examples include polyQ-expansion proteins, the disease-
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associated prion protein PrpSc, mutants of superoxide dismutase 1 (SOD1) linked with 

ALS and mutants of rhodopsin linked to autosomal dominant retinitis pigmentosa [60-

64]. Evidence has been presented that the aggregates engage the proteasome but 

cannot be unfolded, thus ‘choking’ the system [65] and interfering with the entry of 

other substrates [66]. However, polyQ aggregates do not inhibit proteasome function 

in vitro [61, 67] and polyQ proteins are efficiently degraded in yeast and mammalian 

cells when they are targeted to the proteasome by N- or C terminal degradation 

signals [44, 68]. 

How then does protein aggregation compromise the UPS? Support for a 

mechanism in which the aggregates sequester and functionally deplete critical 

components of the PN was recently provided using a yeast model (Figure 3). It was 

shown that expression of polyQ-expanded huntingtin exon 1 fragment causes the 

stabilization of terminally misfolded proteins that normally undergo rapid degradation 

via the UPS [44]. This effect was mediated by binding of the Hsp40 chaperone Sis1 to 

soluble polyQ oligomers and its sequestration into insoluble inclusions. Sis1 is an 

essential but low abundant regulator of the Hsp70 chaperone system, and homologs of 

Sis1 are potent modulators of polyQ aggregation in mammalian cells when 

overexpressed [44, 69]. Surprisingly, Sis1 was found to be rate-limiting for the 

transport of several cytosolic misfolded proteins into the nucleus (Box 2), where they 

are degraded by nuclear proteasomes [44, 70, 71]. Even when Sis1 was only mildly 

depleted by the polyQ aggregates, misfolded proteins aggregated in the cytosol, 

indicating that Sis1 has a critical function in the PN [44]. Interestingly, the human 

Sis1 homolog, DnaJB1, was found in polyQ inclusions of postmortem brain tissue 

from spinocerebellar ataxia type 3 patients [72], suggesting that proteostasis 

impairment resulting from Hsp40 sequestration is relevant in disease. Chaperone 
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sequestration by aggregation-prone proteins is likely to play a role in various 

neurodegenerative diseases. For example, the aggregates of mutant SOD1, associated 

with ALS, sequester Hsc70 and its nucleotide exchange factor Hsp110 [73]. Similar 

findings were made with the aggregates of engineered β-sheet proteins that form 

amyloid-like inclusions [48]. 

Maintaining the solubility of a chronically expressed mutant protein, such as 

polyQ-expanded huntingtin, may divert considerable PN resources from the rest of 

the proteome. Indeed, expression of mutant huntingtin has been shown to interfere 

with the folding and conformational maintenance of endogenous (or exogenously 

expressed) metastable proteins [43-45], and with specific chaperone functions, such 

as the uncoating of clathrin cages in endocytosis[74]. Notably, due to its high degree 

of interconnectedness and inbuilt redundancy, the PN is robust and able to buffer the 

deleterious consequences of aberrant protein species for long periods of time (up to 

decades in humans). However, when the network becomes critically overloaded, it 

can no longer stabilize its metastable, aggregation-prone clients (Figure 3). 

Consequently, these proteins will increasingly populate non-native states that would 

normally be degraded but now accumulate as ubiquitylated species in aggregates [61]. 

When the network is overwhelmed, proteostasis collapse can be rapid and dramatic, 

as observed in the C. elegans model [33]. This loss of proteome stability contributes 

critically to cellular dysfunction and demise.  

 

Mutations of PN components as cause for disease 

The importance of proteostasis impairment in the pathogenesis of aggregate 

deposition disorders is reinforced by the existence of familial forms of 

neurodegeneration which are caused by mutation of PN components [75]. For 
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example, loss-of-function mutations in the ubiquitin ligase PARKIN and the 

PARKIN-related kinase PINK1 are the cause of early-onset PD [76, 77]. PARKIN 

cooperates with PINK1 in the ubiquitylation and selective autophagy of mitochondria 

(mitophagy). Defects in this pathway result in accumulation of damaged 

mitochondria, disturbances in calcium homeostasis and oxidative stress [78]. The 

motor neuron disease ALS can also be caused by mutations in PN components. 

Dominant mutations causing ALS have been mapped to several factors, including 

ubiquilin-2, a protein that recruits proteasome complexes to ubiquitylated proteins; 

sequestosome-1 (p62), a ubiquitin binding protein required for autophagy of 

aggregates; and VCP (p97/Cdc48), a AAA ATPase that functions in ERAD [79]. 

Marinesco-Sjoegren syndrome, a rare autosomal recessive disorder characterized by 

cerebellar ataxia, is caused by loss of function mutations of the HSPA5 cochaperone 

SIL1, which is required for protein translocation and folding in the endoplasmic 

reticulum [80, 81]. Mutations of the mitochondrial chaperonin Hsp60 cause 

autosomal dominant spastic paraplegia [82] and an autosomal-recessive 

neurodegenerative disorder linked to brain hypomyelination and leukodystrophy [83]. 

 

The PN as a target for pharmacological intervention 

The physiological regulation of the PN is complex and involves several 

interconnected pathways, some of which are inducible by cellular stress. These 

signaling pathways regulate specific transcriptional programs to adjust proteostasis 

capacity at the level of protein synthesis, folding and degradation machineries. They 

include the cytosolic heat-shock response (HSR), the unfolded protein responses 

(UPR) of the ER and mitochondria, and additional pathways involved in 

inflammation and the responses to oxidative stress and caloric restriction [2]. The 
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complex mechanisms by which these forms of stress are sensed and the different 

signals integrated into a cellular response are only partially understood. For example, 

multiple signals from the cell membrane, cytosol, endomembrane system and nucleus 

feed into the cytosolic stress response that is executed by HSF-1 [54, 55]. In C. 

elegans the stress response pathways are also coordinated at the organismal level by 

cell non-autonomous mechanisms involving neuronal communication and humoral 

factors [84, 85]. There is also evidence that different cell types and distinct brain 

regions vary in their proteostasis capacity and their ability to respond to different 

forms of stress [36, 43, 86, 87]. A precise definition of these differences might help to 

explain why certain cell types are more vulnerable to aberrant protein folding than 

others, and why ubiquitously expressed proteins only aggregate in certain tissues.  

Seeking ways to pharmacologically upregulate proteostasis capacity may open 

up new opportunities to combat neurodegeneration and other aggregate deposition 

diseases [1, 2]. This may be achieved by intervening at multiple sites of the PN or by 

using chemical chaperones that stabilize misfolded proteins. Induction of the cytosolic 

stress response by small molecule compounds or overexpressing members of the 

Hsp70 system has been shown to be beneficial in cells expressing different 

aggregation-prone proteins, to prevent the formation of toxic aggregates [69, 88-90] 

and increase the formation of (presumably less toxic) inclusion bodies [51]. The 

chemical chaperone 4-phenylbutyrate helps to restore ER proteostasis in metabolic 

diseases like type 2 diabetes [91], and upregulation of ER folding capacity by 

activating the ER stress response can improve the secretion of certain disease proteins 

such as mutant α1-antitrypsin and mitigate lysosomal enzyme deficiencies [92]. 

Induction of the ER stress factor XBP1s can even prevent amyloid-β neurotoxicity in 

model systems for AD [93]. Phramacologically prolonging the transient attenuation of 
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translation that occurs upon ER stress may be employed to adjust protein production 

rates to levels manageable by available chaperones [94]. Increasing proteolytic 

capacity provides an alternative approach to maintaining proteostasis. This may be 

achieved by induction of autophagy [95] or by inhibiting specific deubiquitinating 

enzymes, thereby increasing the rate at which the UPS clears misfolded proteins [96]. 

Beyond counteracting the toxic effects of aggregating disease proteins, 

enhancing proteostasis capacity also extends lifespan and preserves the 

responsiveness of model organisms to acute stress [97]. Conversely, the chronic 

presence of aggregates can suppress the ability of cells to adequately respond to stress 

[48], supporting the view that protein aggregation is a major driver of the aging 

process.  Studies in mice showed that small molecule activators of the stress response, 

while effective early in disease, may lose efficacy during disease progression and 

aging [98]. On the other hand, sustained aggregate stress may result in a 

disproportionate response. For example, the long-term down-regulation of translation 

caused by chronic ER stress can be especially detrimental to neuronal cells [99, 100] 

which rely critically on ongoing translation for functionality. It will be crucial to 

unravel the mechanisms by which protein aggregation deregulates stress response 

pathways and undermines the cellular defense against toxic protein species. In any 

case, attempts to improve proteostasis pharmacologically would likely have to occur 

at an early stage of disease before the manifestation of severe cellular dysfunction. 

 

Concluding remarks 

Impairment of proteostasis is now being recognized as a basic mechanism by which 

chronic protein misfolding and toxic aggregation cause cellular dysfunction, 

facilitating the manifestation and progression of numerous neurodegenerative and 
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other aggregate deposition diseases. Due to the interconnected nature of the 

machineries of protein folding and degradation, deficiencies in specific PN 

components, for example as the result of their sequestration by aggregates, can have 

global detrimental effects. This sets in motion a self-propagating cycle that 

exacerbates proteome imbalance and eventually leads to proteostasis collapse and cell 

death. The gradual accumulation of proteome damage in post-mitotic tissues coupled 

with the age-dependent decline in proteostasis capacity and deregulation of stress 

response pathways can explain why age is the major risk factor for aggregate 

deposition diseases. Searching for effective ways to pharmacologically upregulate 

rate-limiting PN components may provide a viable strategy for therapeutic 

intervention. However, achieving this goal requires a detailed understanding of the 

organization and hierarchy of the PN and the signaling pathways underlying its 

control. 



16 
 

 

Figure 1: Self-propagating cycle of proteostasis decline in disease and aging.  

Chronic expression of aberrantly folded protein species caused by disease, aging or 

external stress reduces proteostasis capacity by sequestering or otherwise inhibiting 

PN components. This results in misfolding and aggregation of endogenous proteins. 

These additional misfolded species in turn engage the proteostasis network (PN 

titration model), thereby reducing available proteostasis capacity further and driving a 

positive feedback loop that eventually leads to proteostasis collapse. 

 

Figure 2: The proteostasis network (PN).  

(A) The PN maintains protein homeostasis by controlling the levels of functional 

proteins and preventing the formation of toxic aggregates. This is achieved by 

integrating three branches of the PN: (1) protein synthesis, the chaperone pathways 

for the folding of newly-synthesized proteins and intracellular trafficking (PN branch 

of biogenesis; green), (2) the chaperone pathways for the remodeling of misfolded 

proteins and protein disaggregation (PN branch of conformational maintenance; blue), 

and (3) the pathways of protein degradation by the ubiquitin proteasome system 

(UPS) and autophagy (PN branch of degradation; red). Toxic aggregates (mainly 

diffusible, oligomeric states) may be converted to less toxic, insoluble inclusions of 

amorphous or fibrillar (amyloid-like) structure. 

(B) Chaperones have important functions in all three branches of the PN. The 

approximate numbers of PN components in the human proteome are indicated. 

Adapted and modified from [3]. 

 

Figure 3: Mechanisms of proteostasis impairment.  
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(A) Homeostasis. The capacity of the chaperone network is sufficient to correctly fold 

the majority of newly synthesized proteins. The limited fraction of proteins that 

cannot be successfully folded upon synthesis (~5-10% of total) [101, 102] are 

degraded by the UPS, a process that may contribute to production of antigenic 

peptides [103]. 

(B) PN impairment by aggregate formation. Chaperone components are engaged and 

functionally depleted by soluble and insoluble protein aggregates (chaperone titration 

model). This prevents successful folding of endogenous chaperone clients and results 

in the accumulation of folding intermediates and misfolded states which are 

ubiquitylated and directed towards proteasomal degradation. When the accumulation 

of misfolded proteins exceeds the capacity of the UPS, additional protein aggregates 

containing ubiquitylated and non-ubiquitylated protein molecules form. These 

aggregates engage additional PN components, exacerbating PN impairment. 

Formation of insoluble inclusions may serve a protective role by binding less PN 

components. 

(C) Acute vs. chronic stress. Eukaryotic cells contain multiple signaling mechanisms 

which respond to acute forms of conformational stress, such as the cytosolic heat 

stress response (HSR) and the unfolded protein response of the ER (UPR). Activation 

of these pathways by the accumulation of misfolded proteins results in rapid induction 

of PN components, especially chaperones and degradation machinery. At the same 

time, synthesis of the majority of other proteins is reduced, to free up PN capacity for 

the removal of misfolded proteins. However, this cellular state is only sustainable for 

a limited period of time, and if maintained for too long can result in apoptosis. 

Chronic stress, such as the constant production of protein aggregates during disease or 

aging, is thought to render cells stress-refractory, thereby enhancing proteome 
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imbalance.
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Box 1: Huntington’s disease 

At least nine neurodegenerative diseases are associated with the expression of 

otherwise unrelated proteins containing polyglutamine (polyQ) expansion sequences. 

Among these, Huntington’s disease (HD) is the most frequent affecting about 5-10 in 

100,000 individuals. HD is associated with severe movement disorders and cognitive 

decline, and typically leads to death 15-20 years after the onset of symptoms. HD 

follows autosomal dominant inheritance and is caused by the expansion of a polyQ 

tract in the N-terminal exon of huntingtin, a ubiquitously expressed cytosolic protein 

of 3142 amino acids with unknown function. A characteristic feature of HD is the 

formation of detergent insoluble aggregates of mutant huntingtin in the nucleus and 

cytoplasm in a subset of neuronal cells in the cortex and striatum [104]. The length of 

the expanded polyQ stretch (38-100 Q and more) correlates with increased 

aggregation propensity [105] and is inversely correlated with the age of disease onset 

[106]. 

The formation of neuronal inclusions and toxic-gain-of-function pathology 

characteristic of HD can be reproduced in mouse models by expressing N-terminal 

fragments of huntingtin with an expanded polyQ tract [107]. Inclusions disappear 

when huntingtin expression is blocked [108]. Multiple lines of evidence suggest that 

polyQ expanded proteins titrate chaperones away from their clients, leading to 

proteostasis impairment [44, 74, 100, 109, 110]. Conversely, overexpression of 

various chaperones, such as members of the Hsp70 system, suppresses polyQ toxicity 

[3, 69, 75]. 

 

Box 2: The nucleus as quality control compartment 
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The proteostasis machinery in the nucleus differs from that of the cytosol in that no 

protein synthesis takes place in this compartment. In contrast to protein transport into 

the ER or mitochondria, the nuclear pore complexes allow the import of proteins in 

their folded and assembled states. Besides specific roles in histone remodeling, the 

nuclear chaperone machinery is therefore mainly involved in conformational protein 

maintenance and in the degradation of misfolded proteins. The nucleus is highly 

enriched in proteasome complexes [111] and contains specific ubiquitin ligases 

dedicated to quality control [112, 113]. During stress, import of most proteins into the 

nucleus is reduced but additional chaperones and proteasome complexes enter using 

specific import factors [114]. A substantial fraction of nuclear proteins are metastable. 

These proteins are conformationally destabilized upon stress and undergo proteasomal 

degradation [55]. 

Diseases associated with protein aggregation, such as HD, are often 

characterized by the presence of intranuclear inclusions. This may be explained by 

recent observations that misfolded cytosolic proteins, including mutants of huntigtin, 

are transported into the nucleus for proteasomal degradation [44, 71, 113, 115, 116]. 

When nuclear PN capacity is exhausted, misfolded proteins may form intranuclear 

inclusions. Since the autophagic machinery has no access to the nucleus, perhaps the 

only possibility to remove these aggregates is to transport them to the cytosol after 

disassembly of the nuclear envelope during mitosis. This would help to explain why 

postmitotic cells such as neurons are more vulnerable towards intranuclear inclusions. 
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