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Abstract

Background

As time series experiments in higher eukaryotesllysabtain data from different individua

Is

collected at the different time points, a time egrsample itself is not equivalent to a frue

biological replicate but is, rather, a combinatairseveral biological replicates. The analy
of expression data derived from a time series sanspiherefore often performed with a |
number of replicates due to budget limitations ionithtions in sample availability. |
addition, most algorithms developed to identify@fpe patterns in time series dataset do

Sis
DW

n
not

consider biological variation in samples collect¢dhe same conditions.




Results

Using artificial time course datasets, we show tlegampling considerably improves the
accuracy of transcripts identified as rhythmicphrticular, the number of false positives ¢an
be greatly reduced while at the same time the numbgue positives can be maintained in
the range of other methods currently used to debternmythmically expressed genes.

Conclusions

The resampling approach described here therefareeases the accuracy of time series
expression data analysis and furthermore emphasiizesnportance of biological replica%es

in identifying oscillating genes. Resampling can used for any time series expression
dataset as long as the samples are acquired fagpé@mdent individuals at each time point.
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Background

Even with decreasing costs for sequencing and @iy experiments, time series
experiments are still expensive and require a latgeber of samples. Thus, most time series
currently have a very limited number of biologigaplicates. This makes it difficult to
identify genes that truly show time-dependent esqin patterns (true positives) and genes
that just seem to have similar patterns due toobioal variance (false positives). The
biological variance is likely to be relatively higbspecially when samples are collected from
higher eukaryotes, because animals and plantssaadlyisampled from different individuals
to avoid perturbation artifacts during samplingushin most time course experiments, the
samples at each time point are usually from differmdividuals, resulting in a high
biological variance among samples. This is the nragson why sufficient numbers of
replicates are necessary. Leteal. proposed that three replicates are sufficient, this
number also depends on the type of experiment.[Hdvever, the importance of biological
replicates is often neglected in time series expents, especially when circadian rhythms in
gene expression are examined using transcriptaaiEsets.

Many organisms have an endogenous clock, knowncagadian clock, to coordinate daily
activities. The output of the circadian clock h&e tperiod of approximately 24 h; for
example, the body temperature and sleep-wake aydlemans, leaf movement Mimosa,
and flower opening in night-blooming jasmine allogh24 h diurnal rhythms under both
light/dark and approx. 24 h rhythms under constamiditions [5-7]. Although the molecular
components of circadian clocks are not conservéddmn animals and plants, negative and
positive feedback loops in transcriptional and goatslational levels are the core system of
circadian clocks in both animals and plants [8]e3d multiple interlocked feedback loops
confer stability and protection from stochastic tpdyations on the complexity of the
circadian system [9,10]. To understand this compietxvork on a transcriptional level, time
series microarrays have been frequently used toneeathe oscillation of genes on a
genomic scale [11,12].



Diurnal rhythms in transcript accumulation can lesatibed in mathematical terms, including
period, phase, and amplitude [10]. There are skddfarent algorithms that can be used to
calculate these parameters from real data; they feghermore be applied to identify
oscillating genes in microarray or RNA-sequenciagad From the algorithms available we
selected ARSER [13], HAYSTACK [14] as well as th&aithms implemented in
BIODARE (http://www.biodare.ed.ac.uk/) [15,16]. ARR was selected as it has been
shown to outperform earlier available algorithmsehsas COSOPT and Fisher’'s G-Test [13].
The BIODARE platform is not originally designed fitve analysis of gene expression data as
the maximal list length of datasets that can benstiéd is limited to 2500. Thus, gene
expression data has to be split into multiple ddatasNevertheless BIODARE has the
advantage of providing 6 additional different aijuns for the analysis.

Using these algorithms we show the influence oficefes and resampling on the accuracy of
predictions of rhythmically expressed genes. Altflowve perform the analysis to identify

oscillating genes in circadian expression datashesresampling method can be similarly
used to improve the detection of other time depené&pression patterns as long as the
samples are collected from different individual$heg specific time points.

Results and discussion

The determination of oscillating genes is a binadagsification. There are only two possible
outcomes: either a gene is rhythmically expressedt ds not. The accuracy of this

classification can be estimated by a confusion imatihere are four fundamental members
of the matrix: true positives (expression profilesrrectly classified as periodic), false
negatives (expression profiles incorrectly classifias non-periodic), true negatives
(expression profiles correctly classified as nonquic), and false positives (expression
profiles incorrectly classified as periodic). Asetmumber of true negatives and false
negatives can be directly calculated from the totahber of oscillating and non-oscillating
genes and the number of true- and false positinegalentified, we only analyzed true- and
false-positives in our calculations. The total nembf oscillating and non-oscillating genes
was set to 8400 in our simulated datasets (seeddstbection for details).

To calculate the performance of ARSER, HAYSTACK dhd algorithms implemented in
BIODARE, we simulated different conditions and wdwems for oscillating transcripts. To
do this we used three different simulation procedur

To simulate entrained, synchronized oscillationssahulations were done with a fixed

period ranging from 22 to 28 h (LD-dataset). In tcast, the differences in free running
period between different individuals under constaontditions were simulated by generating
a dataset that contained 36 time courses thatrelifféen period according to published

standard deviations for individual cells [17] (Llatdset). In addition we generated a time
course based on a published ordinary equation naddee mammalian circadian model [18]

(ODE-dataset) (see Methods section for details).

For each simulation procedure 36 time courses wdially calculated, corresponding to the
common experimental time courses for gene expresaimalysis in the literature that
resample 2-day time courses with 4 h sampling walsrand 3 replicates. From these initial
time courses we generated the initial dataset{lBcede time courses) by randomly selecting
one time point from each simulated time course.s€hmitial datasets were in addition



averaged to generate a fourth, averaged time colirse and false positives were then
calculated for ARSER, HAYSTACK and using BIODARErom BIODARE we initially
tested all implemented algorithms but found that fLLS was performing best, confirming
the observations form Zielinskt al. [15,16]. We therefore only present the resulbenfithis
BIODARE algorithm (Figure 1). In comparison ARSERtelts the largest number of true
positives but at the cost of a relatively high nembf false positives.

Figure 1 Identification of oscillating transcripts in each replicate and the average
dataset.True positivegA-C) and false positive®) for LD. LL and ODE-based time
courses using ARSER, HAYSTACK or BIODARE FFT-NLL®& results are displayed for
each individual replicate and the average datd$etreplicates were generated as described
in the Methods section.

In the averaged time courses the number of trudiypes detected by ARSER is in most
cases slightly higher than in the individual reples but this again comes at the cost of a
higher number of false positives. HAYSTACK and BIARE FFT-NLLS show similar
performance but HAYSTACK has more problems to detscillating genes in ODE-based
simulations. As detected false positive genes eaaxperimentally quite costly in follow up
studies, we wanted to improve the accuracy of tiediption without increasing the number
of replicates or time points required as this toould be experimentally costly if not
infeasible.

We hypothesized that transcripts identified sevenags in resampled datasets contain more
true positive and fewer false positive transcrifts. test this hypothesis, we generated 36
resampled datasets and identified oscillating gényeBARSER and HAYSTACK algorithms

in each resampled dataset. Subsequently, we ceddullae consensus of detected oscillating
genes in these 36 resampled datasets. A conseh&0smeans that the genes were detected
in at least 10 out of the 36 resampled datasets. ddnsensus graphs for the analysis
performed with ARSER and HAYSTACK are shown in Figgl2 and 3, respectively. We
compared the number of true and false positivetheéonumber of true and false positives
found in the averaged dataset, as well as to theetsus between the initial datasets and the
initial simulations. The initial simulations repesg the ideal situation that samples could be
retrieved from the same individual, this is, howew®t possible for gene expression analysis
in most cases. It nevertheless represents the mbxdetectable number of true positive
transcripts in a noisy dataset. As can be seen faure 2, up to a required consensus
between 15 datasets, the resampled datasets slaogeanumber of true positives compared
to average and the overlap between initial datadaisacquire the same consensus the
number of false positives is 8 of 8400. A similamber of false positives is found if a full
overlap between the 3 initial datasets is requifétk number of true positives for the latter
is, however, much lower for all types of simulasorWe can therefore conclude that the
resampling of datasets increases the number optriaiive oscillating transcripts detected in
a dataset without increasing the number of falsstives compared to the initial replicates.
Except when very low consensus is required (leas th for resampled dataset and 2 for
initial datasets), the number of false positivetedied with ARSER is always higher for
averaged datasets, and hence not well suitediédheldentify oscillating genes.

Figure 2 Performance evaluation of the resampling method talentify oscillating
transcripts. For LL-, LD- and ODE-based time courses 36 timerses were simulated
(original simulations). From these original simidat 3 replicates (initial dataset) for each
type of time course were generated by randomlycsefgone time point from each of the



original simulations to mimic experimental samplprgcedures. To generate the averaged
dataset, the expression values of the 3 repliedateach time point were averaged. The initial
datasets were furthermore used to generate 36 pésduatatasets by random sampling at
each time point. All datasets were analyzed witlt5&R and true positivg&-C) and false
positives(D) were calculated requiring increasing consensusdeat the datasets (see
Methods for details). A consensus of 10 therebymadhat a gene is found in at least 10
different resampled or originally simulated datas€br the averaged time course the true
and false positives calculated are displayed asweddr comparison.

Figure 3 Analysis of resampled time courses with HAYSTACKZFor LL-, LD- and ODE-
based time courses 36 time courses were simulatiggin@l simulations). From these
original simulations 3 replicates (initial dataget) each type of time course were generated
by randomly selecting from each of the original gliations one time point to mimic
experimental sampling procedures. To generatevbeaged dataset, the expression values of
the 3 replicates at each time point were averableel .initial datasets were furthermore used
to generate 36 resampled datasets by random sanapleach time point. All datasets were
analyzed with HAYSTACK and true positivés-C) and false positived®) were calculated
requiring increasing consensus between the dat@sstdMethods for details). A consensus
of 10 thereby means that a gene is found at laakd different resampled or originally
simulated datasets. For the averaged time couesieud and false positives calculated are
displayed as a line for comparison.

We next analyzed the influence of the number cimgsed datasets on the detection of true
and false positive oscillating transcripts. As dan seen in Figure 4, higher consensus is
required for a higher number of resampled datdsgtshe consensus range in which no false
positives are found and in which the number of frasitives remains high, is larger when a
larger number of randomized datasets are analyzdhe analysis of real data we therefore
chose to generate 70 resampled datasets. Unfogtyriaere are very few circadian datasets
available with sufficient replicates and time psiniVe found one study with two replicates
performed in two different mouse tissues (liver amascle) [19] and one other mouse study
with 3 replicates [20]. The overall number of ostihg genes found in the dataset from
Miller et al. [19] is similar to that reported in the origiraticle. The overlap, however, was
not analyzed in the original work and we only fouhdnd 3 transcripts, respectively (Figure
5A and B) in both replicates. Using our resampkpgproach we identified 74 and 96 genes
when requiring consensus between at least 10 sdtd@and 5 transcripts, respectively, if a
consensus of 20 was required.

Figure 4 Dependency of the analysis on the number of resangal dataset.3 initial

datasets were generated as described in Figure i éime Methods section and from these
either 10, 36 or 70 resampled datasets were gedeogtrandom resampling and the number
of true (TP) and false positive (FP) transcriptiswated. The detection of oscillating genes
was performed with ARSER.

Figure 5 Analysis of published expression dataNe reanalyzed 2 published circadian
datasets with 4 hour sampling intervals and 12 fimiats using ARSER. The dataset by
Miller et al. [19] contained only two replicates each for twouse tissues (livgA) and
muscle(B)). The dataset from Nat al. [20] (C) contained 3 replicates.




For the dataset from Nat al. [19] 147 transcripts were found in all 3 initraplicates (Figure
5C). In our resampled dataset 796 transcripts wierified as oscillating when we require a
consensus of 10, 183 genes remain if we requiosigensus of 20.

As the study by Nat al. resulted in a larger number of oscillating traipgs we used our
simulated LL datasets to analyze how the numbeegfcates influences the number of true
and false negatives and thus the accuracy of tteetiten of oscillating transcripts. To do so
we initially simulated 72 datasets. Those were usedenerate the different numbers of
initial replicated datasets. The analysis showeat the number of oscillating transcripts
detected for a full overlap between all replicatedecreasing with the number of replicates
(Figure 6A) with increasing consensus required. ®atting from a required consensus of 4,
false positives were no longer detected in théainitatasets (Figure 6C), thus a consensus of
4 is sufficient to accurately detect oscillatingrtscripts for initial datasets. Taken this into
account the amount of true positives transcriptagber for higher numbers of replicates as
would be expected. Looking at the resampled datasetsee that with increasing number of
replicates lower consensus is required to avoiddtiein of false positives, emphasizing the
importance of replicates for the detection of ailiea regulated transcripts.

Figure 6 Impact of the number of replicates on the accuracyl-rom 72 original

simulations, either 2,3,4,5, or 6 replicates wereegated by random samplingy &ndC) and
analyzed using the ARSER algorithm as describédarMethods section. The initial datasets
were then used to generate 36 resampled dat&satsdD) as described in Figure 2 and the
Methods section. The number of true positivesidB) and false positive<C(andD) for
different consensus required is shown.

Conclusions

In this analysis, we conclude that in comparisorsitmle replicates and averaged datasets,
our resampling method improves the detection ofllaing transcripts without increasing
the number of false positives. The resampling neeiparticularly outperformed the average
method to reduce the number of false positive tnapis. Furthermore, the resampling
method shows that biological replicates are immarta accurately identify true oscillating
transcripts using time series gene expression elataand that the average method may result
in a large number of false positives. To relialdentify oscillating transcripts, resampled
datasets should be generated from at least 3 exgetal samples per time point.

Methods

Simulated time series

As there is no way to determine whether an algorittan distinguish true oscillating
transcripts (true positives) from non-oscillatimgriscripts (false positives) in a real gene
expression dataset, we generated artificial tinneseo analyze the performance of different
algorithms. The atrtificially generated time serezstained the expression values of 8400
transcripts. To generate periodic patterns for Bymuized datasets (LD dataset), we used the
formula by Yang and Su [13]. Thus the model isruedi by:



X = S\IR-ZCOSZTH('[—¢) +£ (1)

where SNR = 2 is the signal-to-noise ratias the period in the range of 22 and 28 hodurs;
is phase (0-28 h with 0.1 h intervals); ands the normally distributed noise term (mean =0
standard deviation =1).

Desynchronizing individuals under constant conditifor example constant light (LL)) were

simulated using the above formula but with a fiymtiod that was randomly selected for
each of the 36 initially simulated time coursese Periods were normally distributed with a
mean of 25 hours and a standard deviation of 3cbrding to published experimental data

9.

For more realistic circadian simulations we used@DE-model of the mammalian circadian
oscillators by Leloupet al. [18]. We first generated time courses for alliafale model
species and then generated phase shifted copiemth@®hase shifts had 0.1 h intervals.
From these time courses, datasets with 4 h samplitegvals were generated. Normally
distributed white noise was added as for the cosiage simulations. To simulate non-
periodic time series, we used normally distributeite noise with the same mean and
standard deviation as above.

The simulations described above were repeated rB6stifor each type of data. If not
described otherwise we generated 3 initial datalseta these time courses by randomly
selecting once from each original simulation toegate a new 4 hour interval time course.
This mimics the sampling procedure from differemividuals in real experiments.

Python scripts used to generate time series atidlidatasets are provided as Additional file
1.

ARSER, HAYSTACK and BIODARE

Recently, Yang and Su developed the algorithm ARSHEfRch combines frequency domain
and time domain analyses [13]. The algorithm fieshoves any linear trend from time series
data (data preprocessing), and then the periodtegmdined by AR spectral analysis (period
detection). Because the period can differ from 24ddpending on the experimental
conditions, the algorithm takes a range from 2@ [2& h into account. With each period,
ARSER employs harmonic regression to determine fthe cyclic parameters: period,
amplitude, mean level, and phase (rhythm modeliGoally, false discovery rate (FDR})
values are calculated for multiple comparisons #ed output was filtered and only those
transcripts with a@-value greater than 0.05 were consider in the amaly

To exclude the possibility that our results dependhe chosen algorithm, the analysis was
repeated with the HAYSTACK algorithm [21] and thETFNLLS algorithm implemented in
BIODARE [15,16]. HAYSTACK was designed to find paedic patterns in any large-scale
dataset representing at least three data poinesswEb version and 120 cycling patterns are
available at http://haystack.mocklerlab.org/. ThAMSTACK algorithm compares gene
expression profiles with predefined cycling patterDifferent cutoffs are used to detect
oscillating patterns in gene expression. The moxgiortant parameter is the correlation
coefficient. The higher value means a higher cati@h between the experimental data and



the predefined models. A coefficient of +1 indicaperfect positive correlation. Other cutoff
values are the fold change apevalue, and these values are used to achieve ltist
significance. The HAYSTACK algorithm searches far laast six different patterns,

including “asymmetric,” “rigid,” “spike,” “cosine,”sine,” and “box-like” patterns. The

models that most successfully identify rhythmicaxpressed genes are “cosine” and
“spike.”

BIODARE and the implemented algorithms are desdriesewhere [15]. Shortly, FFT-

NLLS (Fast Fourier Transform - Non-Linear Least &®) is a curve fitting method which

models a sum of cosine functions and calculatedidance levels for period, phase and
amplitude. The BIODARE FFT-NLLS algorithm detectiasas limited to period range from

20 to 28 h to match the period range of ARSER. &irtetrending was applied.

Resampling

The artificially generated time series dataset t&10f 12 time points at 4 h sampling
intervals, representing 48 h of observation. Toegaete resampled datasets, expression values
of each gene were randomly selected from (if ratest otherwise) three initial replicate time
series, and the values were combined to generateetiv resampled dataset. Each expression
value has an equal probability of selection, aredtitme points are treated independently of
one another. If not stated otherwise, the procedia® repeated 36 times, and we created 36
different resampled datasets (python script pravide Additional file 1). Each resampled
dataset was analyzed by the ARSER algorithm wighstiingency thresholdj{value) set to
0.05. HAYSTACK algorithm was used with the followirparameter: p-value = 0.05; fold
change = 2.0, correlation cutoff = 0.8; and baclkgrb cutoff = 0.01. Using the oscillating
transcripts detected the consensus between thes@fpled datasets were calculated.
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Additional files provided with this submission:

Additional file 1. Models and simulations. Python scripts used to generate time series, initial and resampled datasets are
provided as ZIP-archive (2k)

http//www.biomedcentral.com/content/supplementary/s 12859-014-0352-8-s 1.zip


http://www.biomedcentral.com/content/supplementary/s12859-014-0352-8-s1.zip
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