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The detection of gravitational waves and the extraction of physical information from them requires the
prediction of accurate waveforms to be used in template banks. For that purpose, the accuracy of effective-
one-body (EOB) waveforms has been improved over the last years by calibrating them to numerical-relativity
(NR) waveforms. So far, the calibration has employed a handful of NR waveforms with a total length of ∼30
cycles, the length being limited by the computational cost of NR simulations. Here, we address the
outstanding problem of the stability of the EOB calibration with respect to the length of NR waveforms.
Performing calibration studies against NR waveforms of nonspinning black-hole binaries with mass ratios 1,
1.5, 5 and 8, and with a total length of∼60 cycles, we find that EOBwaveforms calibrated against either 30 or
60 cycles will be indistinguishable by the advanced detectors Laser Interferometric Gravitational-wave
Observatory (LIGO) and Virgo when the signal-to-noise ratio (SNR) is below 110. When extrapolating to a
very large number of cycles, using very conservative assumptions, we can conclude that state-of-the-art
nonspinning EOB waveforms of any length are sufficiently accurate for parameter estimation with advanced
detectors when the SNR is below 20, the mass ratio is below 5 and the total mass is above 20M⊙. The results
are not conclusive for the entire parameter space because of current NR errors.
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I. INTRODUCTION

Coalescing compact-object binaries are among the most
promising gravitational-wave (GW) sources for ground-based
interferometric detectors such as Laser Interferometric
Gravitational-wave Observatory (LIGO), Virgo, and The
Kamioka Gravitational Wave Detector (KAGRA) [1–3].
Accurate waveform models are crucial for detecting the
signals and measuring the physical parameters of the sources.
By solving the Einstein equations numerically [4], it is
possible to produce accurate waveforms for the very late
inspiral, merger and ringdown stages of the coalescence
process. However, the length of numerical-relativity (NR)
simulations is limited by their high computational cost, and
today it is unrealistic to generate sufficiently many NR
waveforms long enough to be used directly in GW searches.
The post-Newtonian (PN) formalism [5] is a slow-motion,
weak field approximation to the Einstein field equations
that provides reliable low-frequency inspiral waveforms.
However, the PN approach becomes increasingly inaccurate
close to merger [6]. Several studies [7–9] showed that there is
a substantial gap between the frequency fPN where PN
waveforms cease being accurate and the frequency fNR where
NR simulations start being available. The width of the
frequency gap fNR − fPN depends on source parameters,

and it is generally believed to increase rapidly with increasing
mass ratios and spin magnitudes. Much longer NR simu-
lations can reduce fNR while knowledge of higher-order PN
terms in the two-body dynamics and radiation-reaction force
can increase fPN [9], but it is extremely challenging to
achieve those goals. An accurate description of the waveform
in the frequency gap is thus an outstanding and pressing
problem of GW source modeling, especially because
advanced detectors will be operational in a few years.
The effective-one-body (EOB) formalism [10] is a

successful approach that provides a complete description
of the coalescence of compact-object binaries. It uses the
PN-expanded results in a resummed form and incorporates
results of black-hole perturbation theory to produce wave-
forms for the inspiral, merger and ringdown stages. By
construction, the EOB model reduces to the PN approxi-
mation at low frequency, while in the strong-field regime it
models the merger and ringdown signals using physically
motivated guesses and insights from perturbation theory.
Following the breakthrough in merger simulations in NR
[11], the EOB model has been improved by calibrating it to
progressively more accurate and longer NR simulations,
also spanning larger regions of the parameter space
[12–16]. Considering the success in calibrating NR
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waveforms, we expect that the EOB model will be able to
interpolate/extrapolate NR waveforms over the entire
source parameter space. However, it is not yet clear whether
the EOB calibration is stable under variations of the length
of the NR waveforms that are used to calibrate the model,
and whether EOB waveforms of lengths larger than the one
used for calibration can safely be used to detect GW signals
and extract physical parameters with advanced detectors.
In this paper, we focus on the low-frequency, inspiral

performance of the EOB model and assume, based on
previous calibrations, that calibrated EOB merger and ring-
down waveforms can be made indistinguishable from the
NR ones [17]. The EOB adjustable parameters that are used
to calibrate the model not only improve EOB waveforms at
high frequency, so that they match NR waveforms very
accurately above fNR, but they also introduce deviations
from known PN results in the frequency gap fPN − fNR.
Below fPN, all PN-waveform families and the EOB wave-
forms agree with each other. The goal of this paper is to
understand the accuracy of the EOB waveforms in the
frequency gap, addressing the following questions: Is the
EOB calibration stable with respect to the length of NR
waveforms (i.e., with respect to varying fNR)? If the
calibration is stable when using the current length of NR
simulations, for which we still have fNR ≫ fPN, can we
conclude that the calibrated EOB waveforms will be indis-
tinguishable from the exact ones for all frequencies
below fNR?

A. Calibrating the effective-one-body model

We calibrate the EOB model against four nonspinning
binary black-hole waveforms with mass ratios q ¼ 1, 1.5, 5
and 8. The q ¼ 1 simulation was first presented in [9], and
all four simulations are presented in [18]. Table I lists the
total number of GW cycles of the NR waveforms up to
merger, including the junk radiation, and the maximum
number of cycles Nmax that we use when calibrating the
EOB model (i.e., after removing the junk radiation). We
decompose the EOB waveforms in 2 spin-weighted spheri-
cal-harmonic modes ðl; mÞ. Previous studies [12] have
shown that during the inspiral stage the frequency of all
modes is well approximated by themmultiple of the orbital
frequency. Therefore, for simplicity, we consider only the
dominant ðl ¼ 2; m ¼ 2Þ mode. We expect that the results
of our study hold to a considerable extent for the other
modes since phase evolution of every mode is synchronized

with the orbital phase. However, since higher-order modes
give smaller contributions and have larger NR errors, it will
be more challenging to extend the current study to these
other modes.
The EOB inspiral-plunge dynamics for quasicircular

orbits is described by a set of Hamilton equations that
include a dissipative force proportional to the rate of loss of
the orbital energy. One then introduces adjustable param-
eters, i.e., unknown, higher-order PN terms, to improve
both conservative and dissipative parts of the dynamics. To
match the EOB to the NR waveforms within the NR error,
only a few adjustable parameters are needed and their
choice is not unique. In the nonspinning limit, the EOB
model depends only on two (or even one [19]) adjustable
parameters AðiÞ, i ¼ 1; 2. We follow the parametrization of
Ref. [13], where two adjustable parameters were used in the
nonspinning sector. The EOB inspiral waveform of mass
ratio q is therefore determined by the pair fAð1Þ; Að2Þg,
where these coefficients depend on the mass ratio q. We
calibrate the EOB model by mapping the phase difference
between EOB and NR waveforms in the Að1Þ–Að2Þ param-
eter space, taking into account NR errors in the simulations.
In our calibration procedure, we measure the phase

difference at the end of inspiral, after aligning the EOB
and NR waveforms at low frequency by shifting the EOB
waveform in time and phase. We determine the time and
phase shifts t̄0 and ϕ̄0 by minimizing the square of the
difference between the GW phases of the NR and EOB
waveforms,

Z
t2

t1

½ϕEOB
22 ðtþ t0Þ þ ϕ0 − ϕNR

22 ðtÞ�2dt; (1)

with respect to t0 and ϕ0. The phase difference at a given
time is given by

ΔϕðtÞ ¼ ϕEOB
22 ðtþ t̄0Þ þ ϕ̄0 − ϕNR

22 ðtÞ; (2)

where t̄0 and ϕ̄0 are the alignment parameters that minimize
Eq. (1). The global phase difference over a time window
ðt1; t3Þ is defined as

Δϕg ¼ max
t∈ðt1;t3Þ

jΔϕðtÞj: (3)

We set t3 to the time of merger, i.e., to the time at which
jhEOB22 j reaches its maximum. Here, we are interested in the
inspiral performance; thus we ignore the phase difference
beyond the time of merger, which is affected by the
procedure of building the merger-ringdown waveform.
Because of NR errors in ϕNR

22 , the time shift t0 and the
global phase difference Δϕg are rather sensitive to the
choice of the time window ðt1; t2Þ. To alleviate the effect of
NR errors, we choose ðt1; t2Þ, following the prescription of
Ref. [13]. We also repeat the alignment using four different
choices of ðt1; t2Þ to estimate the uncertainty of Δϕg due to

TABLE I. Total number of GW cycles Nsim of NR simulations
(including junk radiation) up to merger and maximum number of
cycles Nmax used for EOB-model calibration, i.e., without junk
radiation.

q 1 1.5 5 8

Nsim 65 66 58 52
Nmax 60 60 55 50
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NR errors. To calibrate the EOB model, we find those
parameters fĀð1Þ

N ðqÞ; Āð2Þ
N ðqÞg that minimize Δϕg. The

subscript N indicates that calibration was performed using
the last N GW cycles, i.e. t1 corresponds to a time N cycles
before merger, and t3 is at merger. When building a
calibrated EOB model [13], we fit the calibrated points

fĀð1Þ
N ðqÞ; Āð2Þ

N ðqÞg to a smooth function in q. However,
since the fits’ residuals are typically smaller than the NR
errors, we use the calibrated points instead of the fitted
functions. We then increase N from 30 to Nmax with a step

size of 5 and determine how the point fĀð1Þ
N ðqÞ; Āð2Þ

N ðqÞg
moves in the parameter space. Besides systematic errors in
the EOB model, the calibration point can also change
because of the NR errors.
The NR errors affect fĀð1Þ

N ðqÞ; Āð2Þ
N ðqÞg in two ways. The

oscillatory phase errors at low frequency (due to residual
eccentricity) introduce uncertainties in the alignment pro-
cedure, while the secular phase errors introduce uncertain-
ties directly in the global phase difference Δϕg. To estimate
the impact of those NR errors on fĀð1Þ

N ðqÞ; Āð2Þ
N ðqÞg, we

calculate those calibrated points using four different
choices of the alignment time window ðt1; t2Þ and three
numerical waveforms: (i) the high resolution, extrapolated
to infinity with polynomial degree 3, (ii) the high reso-
lution, extrapolated to infinity with polynomial degree 4,
and (iii) the medium resolution, extrapolated to infinity
with polynomial degree 3. The differences between these
numerical waveforms represent the typical truncation
and extrapolation errors. Since we are only interested
in the position (mean) and spread (variance) of
fĀð1Þ

N ðqÞ; Āð2Þ
N ðqÞg, we do not investigate higher central

moments and assume, for simplicity, a bivariate normal
distribution of fĀð1Þ

N ðqÞ; Āð2Þ
N ðqÞg. We use the 12 data points

to calculate the maximum likelihood estimators of their
mean and variance.
We summarize our results in Fig. 1 for q ¼ 1, 5, and 8

and omit the q ¼ 1.5 case because it is very similar to the
q ¼ 1 case. When N increases from 30 to Nmax, the volume
enclosed by the Δϕg contours decreases gradually, reflect-
ing tighter constraints from the calibration against longer
NR simulations. Somewhat unexpectedly, the contours also
shift and rotate smoothly, indicating a possible systematic
change of the calibrated EOB model. For clarity, we show
in Fig. 1 only the contours of N ¼ 30 and Nmax calibra-
tions. In the inset of each panel, we zoom in around the
calibrated points fĀð1Þ

N ðqÞ; Āð2Þ
N ðqÞg to show their path

when N changes from 30 to Nmax. We also show the
NR error box of fĀð1Þ

Nmax
ðqÞ; Āð2Þ

Nmax
ðqÞg, which is the sym-

metric 95% quantile of the estimated bivariate normal
distributions. In the q ¼ 1 case, the systematic drift of
fĀð1Þ

N ð1Þ; Āð2Þ
N ð1Þg with increasing N is not fully accounted

for by the NR errors. Of course, it is in principle possible to
improve the accuracy of the EOB model by calibrating it to
the Nmax-cycle numerical waveforms. However, since the
systematic differences between fĀð1Þ

N ð1Þ; Āð2Þ
N ð1Þg are not

much larger than the NR error boxes, the NR waveforms
have to be as accurate as the q ¼ 1waveforms employed in
this paper to bring new information to the EOB calibration.
For instance, the calibrated point fĀð1Þ

30 ð1Þ; Āð2Þ
30 ð1Þg sits on

the 0.5-radian contour of Δϕg obtained from the N ¼ 60
calibration. That is to say, if a q ¼ 1, 60-cycle NR wave-
form and a 60-cycle EOB waveform generated by a model
calibrated to a 30-cycle NR waveform, such as the EOB
model in Ref. [13], are aligned, their accumulated phase
difference at merger is only ∼0.5 radians. Any NR phase
error at a merger larger than that, accumulated over 60
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FIG. 1 (color online). Contours of the global phase difference Δϕg between nonspinning NR waveforms of N GW cycles and EOB
waveforms with adjustable parameters fAð1Þ; Að2Þg. The three panels show results for mass ratios q ¼ 1, 5 and 8 (from left to right).
The shaded regions, from inside out, are 0.1, 0.2 and 0.5 radian contours for comparisons with Nmax cycles of NR waveforms. The solid,
dashed and dotted lines are the same contours for comparisons with 30 cycles of NR waveforms. The connected black dots are the

calibrated points fĀð1Þ
N ðqÞ; Āð2Þ

N ðqÞg for N values changing from 30 to Nmax. The inset zooms around these points. The NR error box

of the calibrated point fĀð1Þ
Nmax

ðqÞ; Āð2Þ
Nmax

ðqÞg is shown with the dashed ellipse.
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cycles, would not improve the low-frequency accuracy of
the EOB model. In fact, the q ¼ 5 and q ¼ 8 NR wave-
forms, despite being rather long and accurate, do not
provide new information to the EOB calibration.
Truncation errors of these simulations dominate over other
numerical errors and EOB modeling errors. More accurate
NR simulations of large q are therefore needed to
further improve the low-frequency accuracy of the
EOB model.

B. Stability of the EOB calibration

Although the differences among fĀð1Þ
N ð1Þ; Āð2Þ

N ð1Þg
waveforms can be distinguished by the global phase
difference Δϕg, which is a highly sensitive quantity, it is
not clear whether they can be distinguished by interfero-
metric advanced detectors, such as LIGO. Using the zero-
detuned high-power advanced LIGO noise curve [1] and a
total mass for the black-hole binary of 20M⊙, we quantify
the data-analysis consequence of the differences between
fĀð1Þ

N ðqÞ; Āð2Þ
N ðqÞg. Our study follows the procedure of

Ref. [9] and our results can be compared directly with those
of Ref. [9].
First, we employ the quantity jjdhjj=jjhjj [20] to measure

the difference between waveforms h1 and h2, where
dh≡ h1 − h2, h ¼ h1. The norm is defined through the
inner-product hh1; h2i≡ 4Re

R
∞
0 ð ~h1ðfÞ ~h�2ðfÞÞ=SnðfÞdf,

where SnðfÞ is the noise spectral density.
When we minimize over time and phase of coalescence,

as well as physical parameters, jjdhjj=jjhjj measures the
relative loss of signal-to-noise ratio (SNR). When we
minimize over only the time and phase of coalescence,
jjdhjj=jjhjj measures the bias in measuring source param-
eters due to modeling errors. The bias is less than statistical
errors when jjdhjj=jjhjj < 1=ρeff , where the effective SNR
ρeff ¼ 1=ε

ffiffiffiffiffiffi
nD

p
ρ is proportional to the single-detector SNR

ρ with a coefficient given by the number of detectors nD
and a safe factor 1=ε [7] of order unity. Satisfying this
condition means that the detector cannot distinguish h1 and
h2. Either is an accurate enough template to measure the
source parameters of the other. (We emphasize that the
criterion of indistinguishability proposed in Ref. [20], i.e.,
jjdhjj < 1, is a sufficient but not necessary criterion, and it
has been shown to be highly restrictive [17].)
In order to calculate jjdhjj=jjhjj, we need to complete the

EOB inspiral waveforms fĀð1Þ
Nmax

ðqÞ; Āð2Þ
Nmax

ðqÞg with merger
and ringdown waveforms. Previous studies demonstrated
that it is always possible to calibrate the EOB merger and
ringdown waveforms to sufficient accuracy once the
inspiral waveforms are accurately calibrated [12,17]. So,
here, we do not include the EOB merger and ringdown
waveforms, but simply attach the NR late-inspiral, merger
and ringdown waveforms to the EOB inspiral waveforms,
starting at the matching frequency ωm; i.e., we construct
EOBþ NR hybrid waveforms. This allows us to directly
compare our results with the ones of Ref. [9]. In fact, for

this reason, when building EOBþ NR waveforms, we also
follow the prescription of Ref. [9] on the matching
frequency, the time window for alignment and the choice
of blending function.

In Fig. 2, we show jjdhjj=jjhjj between fĀð1Þ
30 ðqÞ; Āð2Þ

30 ðqÞg
and fĀð1Þ

Nmax
ðqÞ; Āð2Þ

Nmax
ðqÞg waveforms as a function of the

matching frequency. We also include a comparison between
PNþ NR hybrid waveforms constructed using the TaylorT1
and TaylorT4 approximants [6] as a validation of our code
and to compare with Ref. [9]. The difference between

fĀð1Þ
30 ðqÞ; Āð2Þ

30 ðqÞg and fĀð1Þ
Nmax

ðqÞ; Āð2Þ
Nmax

ðqÞg EOB wave-
forms is more than an order of magnitude smaller than the
one obtained using the Taylor-PN approximants. Specifically,
when attaching a 30-cycle NR waveform at the end of the
EOB inspiral waveform, the difference cannot be distin-
guished as long as ρeff < 110, which is an unlikely high SNR
for advanced detectors [8]. This implies that nonspinning
EOB waveforms calibrated to 30 or to Nmax cycles of NR
waveforms are equivalent when searching for GWs and
extracting binary parameters with advanced LIGO detectors.
For the EOBmodel calibrated to 30-cycle NRwaveforms, we
emphasize that the implication of these results is not just the
agreement of its waveform with Nmax-cycle NR waveforms,
but its agreement with the EOB model calibrated to 60-cycle
NR simulations, i.e., the stability and convergence of the
calibrated EOB model up to 60 cycles. Moreover, this result
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FIG. 2 (color online). jjdhjj=jjhjj minimized over time and the
phase of coalescence as a function of the hybrid matching
frequency ωm for EOB+NR hybrids where EOB waveforms

are generated with the calibrated points fĀð1Þ
30 ðqÞ; Āð2Þ

30 ðqÞg and

fĀð1Þ
Nmax

ðqÞ; Āð2Þ
Nmax

ðqÞg. We also show the same quantity for PN
+NR hybrids using TaylorT1 and TaylorT4 approximants. The
bigger symbol in each data set marks the matching frequency
where the hybrid is built using 30 cycles of NR waveforms. The
horizontal lines mark the effective signal-to-noise ratios (SNR)s
10, 25 and 100, below which the difference between waveforms
cannot be distinguished by advanced LIGO detectors.
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also demonstrates that calibrated higher-order PN terms (i.e.,
adjustable parameters) do not have a large effect at low
frequency.
Can we extend this conclusion to N > Nmax? In

Fig. 3, we show jjdhjj=jjhjj between EOB waveforms
computed at the calibrated points fĀð1Þ

30 ðqÞ; Āð2Þ
30 ðqÞg and

fĀð1Þ
N ðqÞ; Āð2Þ

N ðqÞg as a function of N. We see that when N
increases from 30 toNmax, jjdhjj=jjhjj increases moderately
from zero to < 1% and the increase seems to be slowing
down or becoming negative as we approach Nmax. The
oscillations in jjdhjj=jjhjj are consistent with the NR error
bars indicated in the plot and estimated using the 12
different fĀð1Þ

N ðqÞ; Āð2Þ
N ðqÞg points. If we assume that the

very mild increase of jjdhjj=jjhjj is largely explained by NR
errors, we might be tempted to conclude that the EOB
model has converged beyond Nmax. However, we must be
cautious in extrapolating the results. Nevertheless, it is
reasonable to expect that the variation of jjdhjj=jjhjj per
unit increase of N eventually becomes a decreasing
function of N when N is large enough, and consequently
jjdhjj=jjhjj becomes a concave function of N. We therefore
obtain a conservative estimate of jjdhjj=jjhjj by applying a
linear extrapolation of jjdhjj=jjhjj that goes through 0 at
N ¼ 30 and best fits the data points. We find that
jjdhjj=jjhjj < 0.05 until N ¼ 370, 235 and 120 for mass
ratios q ¼ 1, 5 and 8, respectively. That is to say, when
ρeff ≤ 20, EOB waveforms calibrated to those numbers of
NR cycles cannot be distinguished from EOB waveforms
calibrated to 30-cycle NR waveforms. One may hence
generate 30-cycle NR simulations to calibrate the EOB
model, and use the calibrated model to produce EOB
waveforms that are, for data-analysis purposes, identical to
NR waveforms of hundreds of cycles.

Finally, we compare these results to the length require-
ments of NR waveforms set by previous works [7–9] to
guarantee the accuracy of PN+NR hybrid waveforms for
parameter estimation. Basically, when NR simulations are
sufficiently long, their starting frequency fNR can be
reduced to fPN, below which all PN waveform families
and PN-based EOB models are consistent. Direct estimates
of the number of NR cycles before merger required for
accurate hybrid waveforms were made in Ref. [7] (see the
table in Fig. 4 of Ref. [7]). When ρeff ≤ 20, for advanced
LIGO detectors, the number of GW cycles required for
q ¼ 1, 4 and 10 nonspinning NR simulations is 12, 190 and
1268, respectively. Combining those results with ours, we
conclude that when ρeff ≤ 20 and q ≤ 5 the nonspinning
EOB waveforms of any length are sufficiently accurate for
parameter estimation with advanced LIGO detectors. Note
again that these EOB waveforms are generated by the EOB
model calibrated to only 30-cycle NR simulations.

II. CONCLUSIONS

We found that the EOB-model calibration against
NR simulations is stable with respect to the length of
NR simulations. In the nonspinning limit with mass ratio
q ≤ 8, the difference between EOB waveforms calibrated
against 30-cycle and ∼60-cycle NR simulations cannot
be distinguished by advanced LIGO detectors when
ρeff < 110. Extrapolating our results to a larger number
of cycles, making rather conservative assumptions, which
use the overstrict criterion from Ref. [20], we estimated
that the nonspinning EOB model calibrated to existing
NR simulations is sufficiently accurate for advanced-
LIGO parameter estimation when ρeff < 20, q < 5 and
M ≥ 20M⊙. Moreover, since EOB waveforms overcome
the frequency gap, they can completely replace PN + NR
hybrid waveforms [8,9]. Extending this conclusion to
larger ρeff or q requires longer and more accurate NR
simulations. We plan in the near future to extend this
kind of study to the spinning EOB model [19]. We expect
that in the presence of spins, we might need longer
and more accurate NR simulations, especially in the
extremal-spin limit, but the length can be much less than
those suggested by previous studies that aimed at reducing
fNR to fPN.
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